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Design of Safer Control for Semi-Autonomous Vehicles

CHUN-YU CHEN and KANG G. SHIN, CSE/EECS, University of Michigan, Ann Arbor, Michigan,
USA

Component faults, bugs, and malicious attacks can all degrade in, or even prevent Semi-Autonomous Vehicles
(SAVs) from, correctly capturing their operation context, which is essential to support critical safety features
like emergency braking or wheel-steering. While safety features in contemporary SAVs usually rely on static
assignment of control priority, such a design may lead to catastrophic accidents when accompanied with
erroneous/compromised control and context estimation. To mitigate the grave consequence of using incorrect
data, we propose CADCA, a novel control decision-maker for SAVs, that is designed to operate under sensor/data
errors or falsifications as well as malicious/erroneous control inputs with the ultimate goal of resolving
conflicting control inputs to ensure safety. Our evaluation of >15,700 test-cases has shown CADCA to achieve
a 98% success rate in preventing the execution of incorrect control decisions caused by component failures
and/or malicious attacks in the most common (i.e., rear-end) collisions.

CCS Concepts: • Security and privacy→ Intrusion/anomaly detection and malware mitigation;

Additional Key Words and Phrases: Anomaly detection, Accident Prevention
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1 Introduction
As advanced driver assistance system and self-driving capabilities are getting integrated into
commercial and personal vehicles, we have officially entered the era of Semi-Autonomous
Vehicles (SAVs), which can be controlled by either autonomous systems (Lv.2+) or human drivers.
In addition to reducing fuel consumption, the main reason for adopting autonomous functions in
SAVs is to ensure driving safety because drivers are known to be the reason for up to 95% of car
accidents [1]. However, autonomous controls in SAVs still have a long way to go as there can never
be a perfect human-in-the-loop system that is free of design flaws or software bugs that can be
exploited by attackers (e.g., Jeep Cherokee hack [2]). Besides the attacks that directly send malicious
control commands to SAVs, sensor spoofing or data manipulation can also compromise SAVs’ safety.

In particular, there are three main causes of SAVs’ unsafety:

F1. Sensor failures and/or falsifications that generate incorrect inputs to the autonomous system;
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F2. Compromised or imperfect controllers or algorithms that generate dangerous controls even
with correct input; and

F3. Malicious (unsafe) control inputs from the human driver.

Since neither autonomous nor manual control is perfect, a conflict or disagreement between the
two may arise. To resolve such a conflict, state-of-the-art safety features are usually implemented
with static assignment of control priority under a specific context (i.e., driving condition). For
example, an automatic emergency braking can override the driver’s control if an object is detected
in front of the vehicle [3]. However, this static assignment of priority can lead to catastrophic
accidents when accompanied with incorrect sensor readings.

The two crashes of Boeing 737 MAX [4] are the most iconic example of SAV control conflict
from which engineers must learn for the design of SAVs. The original 737 MAX’s Maneuvering
Characteristics Augmentation System (MCAS) was designed to prevent stalls from happening
caused by human mistakes and was given priority over the pilot’s control. However, when the
Angle-of-Attack (AOA) sensor used by MCAS malfunctions, pilots need to compete with MCAS
for the control of the plane’s pitch angle. This static priority assignment eventually caused two
fatal crashes when the pilots could not disable MCAS completely in time. Boeing’s updated MCAS
[5] addresses the above problem by using two (instead of only one) AOA sensors for data integrity
verification and modifying MCAS to activate only once (i.e., MCAS alone will never override pilots’
control). However, this fix returns the control priority back to the pilot, defeating the original
purpose of MCAS (i.e., control automation and preventing human errors) and potentially allowing
for malicious/erroneous manual control, e.g., the pilot may intentionally or accidentally crash the
airplane, like the Germanwings 9525 incident [6].

Since the static assignment of priority to either human or autonomous control has been shown to
fail in safety-critical situations and as more autonomous functions are introduced in SAVs, scalability
becomes an issue if the engineers need to hard-code priorities to every potential anomalous situation
because the bugs triggered by unforeseen/corner conditions are never completely known and taken
care of during implementation. Therefore, we must answer the following safety-critical question:

How can an SAV avoid executing unsafe control (F2 and F3) in the case of attacks and/or failures
(F1) that feed incorrect input to the SAV itself?

We propose Context-Aware Detection and resolution of Control Anomalies (CADCA) as an
effective answer to this critical question. As shown in Figure 1, CADCA is designed for use in SAVs
equipped with both autonomous and manual control capabilities. CADCA’s architecture is designed
for SAVs from low-level (Lv.2) to high-level (Lv.4+) autonomy while stressing the compatibility for
lower-level architectures. That is, CADCA does not require any change to the existing autonomous
control modules—requiring neither hardware upgrade for additional sets of sensor inputs nor
additional control output—since hardware cost is a major concern for car-makers. Specifically,
CADCA can be considered as a standalone decision-maker (i.e., separate from the autonomous control
system) that can be deployed in the ego SAV and aims at identifying the source(s) of anomalies in
order to prevent use of anomalous inputs/controls for its maneuver.

There are two characteristics that differentiate SAVs from typical, stand-alone Cyber-Physical
Systems (CPSs):
C1. Behavior consistency does not imply safety: Whether a control decision is safe to execute

depends on its operation “context,” instead of whether an SAV acts consistently with the control or
sensor input (e.g., prior anomaly detection schemes [7–9]). CADCA estimates the operation context
in real time based on potentially anomalous data to determine if a control decision is safe to execute.
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Fig. 1. CADCA’s application overview and attack surfaces A1–A4 (more in Section 3). CADCA, Context-Aware
Detection and resolution of Control Anomalies.

C2. Limited observability: The autonomous control in an SAV makes decisions based on not only
its own measurement/perception but also the data received from other SAVs, for example, via Basic
Safety Messages (BSMs) [10] or Vehicle-to-Everything (V2X) communications [11–16]. Data
received from other SAVs do not have the same level of detail as those measured by the SAV itself.
Also, the SAV usually does not know other SAVs’ initial states and control decisions, which have
been assumed by most prior works on estimation-based anomaly detection.

For example, prior studies of robotic vehicles or industrial control systems usually assume that the
target system’s internal state can be deterministically and uniquely identified by the observed out-
put. However, such an assumption does not hold for SAVs because multiple anomaly scenarios (i.e.,
faults and attacks) can all lead to the same observations due to insufficient input and observations.
Also, by treating the detection process as a pure mathematical/optimization problem based on an
equation system describing the transitions and causalities between system states and their outputs,
they do not account for the feasibility/difficulty of attacks (see Section 2). Furthermore, anomaly
detection and risk assessment have commonly been treated as independent/separate problems.
Typically, the latter makes implicit assumptions that the input error is bounded, while the former
only outputs if there is a data anomaly (i.e., either true or false), missing useful input to the latter.

We, therefore, employ a new design for CADCA that (i) combines anomaly detection with context
estimation to eliminate detection uncertainties by identifying the probable anomaly scenario(s) and
(ii) restores the thus-identified anomalous data in the corresponding scenario(s). This way, CADCA
takes contexts (i.e., the likelihood of the SAV being in certain operation scenarios) into account.
As a result, CADCA avoids (1) blindly (thus excessively) consuming computing resources to find all
possible (including infeasible) solutions that lead to the same observation, and (2) getting trapped
in a single suboptimal/local solution that does not match the real condition.

Specifically, upon acquiring sensor readings of the ego SAV1 and the (optional) state reports from
other entities in the vicinity, CADCA cross-validates the received data to check if any data can be
incorrect (meeting F1). If there is any detected inconsistency among the received data, CADCA will
restore/correct the anomalous data by constructing one or more local views—possible realities that
describe the most probable SAV context(s) (e.g., the relative location, speed, and heading of other
vehicles). This way, CADCA can capture the conditions that the ego SAV will most likely encounter
without restricting itself to only one specific scenario. Finally, CADCA performs risk assessment
based on all 〈local view, controls input〉 combinations, and aggregates their results to select a final

1We use ego SAV to indicate the SAV that is the focus of the discussion and where CADCA is deployed.
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control decision (meeting F2 and F3) based on a safety-first principle while ensuring maximum
flexibility of manual control.

This article makes the following contributions:

—A novel control decision-maker, CADCA, that accounts for the difficulty of attack as a context
for determining probable operation scenarios, including:
–An efficient anomaly detection mechanism targeting C1 and C2 (Section 4.1);
–A mechanism for restoring local views to help the ego SAV comprehend its operation context
(Section 4.2);

–An efficient risk assessment for a given 〈local view, control input〉 setting and result aggre-
gation mechanisms under uncertain situations (Sections 4.3); and

—Extensive evaluation of CADCA (with >15,700 test-cases), demonstrating its ability to achieve
98% Success Rate (SR) in avoiding use of malicious control inputs and preventing vehicle
collisions in the most commonly seen driving scenarios under component failures and/or
attacks (Section 6).

2 Related Work and Formulation
(a) Risk Assessment and Collision Avoidance. Researchers in the field of robotics and vehicle systems
[17–19] have explored ways of assessing risks to prevent collision. Fraichard and Asama [20]
proposed the concept of inevitable collision states for the analysis of navigation and motion
planning. Brännström et al. [21] proposed a model-based algorithm to estimate how the vehicle
can take actions to avoid collision with an object. Kaempchen et al. [22] proposed how to compute
the trigger time for an automatic braking system to avoid at least three types of collision scenarios.
As one of the latest risk-assessment schemes, Baek et al. [23] proposed the utilization of sensor
fusion and inter-vehicle communications for predicting a vehicle’s trajectory. As mentioned earlier,
the above systems usually purely focus on risk assessment or avoidance and implicitly assume that
their inputs can be trusted or within a certain error bound.

(b) Reliability Enhancement. We can, in general, enhance vehicle safety by ensuring the system
(O1) maximizes its performance/reliability if inputs are correct, or (O2) still operates correctly even
with anomalous inputs. There exist prior works on enhancing the reliability (O1) of vehicle control
based on the vehicle’s operation context, such as expanding drivers’ awareness of the surrounding
environment [24, 25], or predicting operation context [26]. Selvaraj et al. [27] provided a formal
process of verifying system reliability, while Sha [28] proposed a two-layered approach to utilize a
high-performance subsystem for common execution with another high-assurance subsystem to
ensure system reliability. These works focus on enhancing the effectiveness/reliability of safety
features (O1) under the assumption that the data can be trusted like risk assessment/avoidance,
while CADCA targets a different but common situation where inputs can be incorrect/manipulated
(O2). Despite its focus on the different aspects of liability/safety, CADCA can integrate the above-
mentioned approaches to ensure driving safety, e.g., by adopting the implementation of [28] to
protect CADCA’s integrity.

(c) State Estimation and Anomaly Detection. Considering the existence of anomalous input (O2),
a typical approach to detecting anomalies in a single (or ego) system is to formulate the target
system with the following equation system [29–31]:{

G [: + 1] = �(G [:]) + �(D [:]) + b? [:] + ` [:]
I [:] =� (G [:]) + b< [:] +k [:],

(1)

where G is the ground-truth system state, “[·]” represents discrete time index, I is the observed
output, D is the control input/setpoint, and ` and k are the process and measurement noises,
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respectively. �, �, and � are transformations used to capture the correlation/causality between
the variables. b? and b< are the vectors describing the effect of an attack. Given the constraints of
bounded process noise ` and measurement noisek (i.e., ` ≤ ¯̀ andk ≤ k̄ always hold for some ¯̀
and k̄ ), the attack (i.e., b ’s) can then be identified by solving Equation (1). Note G , I, D, `,k , and b ’s
can all be vectors, while �, �, and � have appropriate output dimensions.

Utilizing Equation (1) to have a unique, deterministic solution requires the control input D to be
known a priori and the CPS to have certain observability properties [31]. However, this requirement
cannot be met in CADCA’s use-case (C2) that involves multiple entities. That is, the ego SAV does not
have D in the first equation of Equation (1) for all non-ego SAVs in practice. Also, prior work (e.g.,
[31]) usually transforms Equation (1) further to an optimization problem and solves it numerically
assuming the existence of a unique solution. This will make the process of finding the solution
stop/stuck at the first (and maybe incorrect) solution it identifies without searching for other
feasible ones.

There have also been approaches tailored for vehicles under multi-entity scenarios [32–35]. They
conduct plausibility/consistency checks on their inputs by cross-validating the received data with
measurements and motion prediction. Specifically, Jaeger et al. [36] proposed a data verification
scheme based on Kalman Filter (KF) to predict vehicle locations which reports the detection
of an anomaly if the prediction does not match the received data. Bißmeyer et al. [37] utilize the
particle-filter to cross-validate vehicles’ location with radar readings to track and verify the motion
of neighboring vehicles. Stübing et al. [38] proposed a two-stage data verification scheme for
position and velocity based on KF and motion prediction with probabilistic maneuver recognition.

While the above schemes focus on detecting data anomalies, they usually consider the data
of interest as a single group and do not identify which data are anomalous, nor do they restore
them, thus missing one of the most crucial functions required by safety feature. Also, when there is
inconsistent information, multiple scenarios may potentially all lead to the same observation by the
ego vehicle as mentioned in Section 1. This is also the very reason why a direct combination of prior
anomaly detection (even if it has the capability of restoring anomalous data) and risk assessment
cannot work well in practice (Section 6). How to perform risk assessment with multiple control
inputs without assuming existence of trusted data (F1), despite its importance, has not yet been
fully addressed.

3 Deployment and Attack Models
Deployment Model.The ego SAV perceives/receives up to three sources of data: (i) the measurements
of its own state, (ii) the (optional) state report from other SAVs, and (iii) its own measurements/ob-
servations of other SAVs in its vicinity. We use the following equation system to capture all the
observations/data the ego entity perceives/receives:

I (4 ) =� (4 ) (G (4 ) ) + b< (4 ) +k (4 )
I ( 9 ) =� ( 9 ) (G ( 9 ) ) + b< ( 9 ) +k ( 9 )
I (4,9 ) =� (4,9 ) (G (4 ) , G ( 9 ) ) + b< (4,9 ) +k (4,9 ) ,

(2)

where G , I,k , � , and b<’s are the same as in Equation (1), while 4 and 9 represent the ego entity
and non-ego entity with index 9 , respectively, and the subscripts (4), ( 9), and (4, 9) correspond
to the three data sources mentioned above. We also regard a measurement as anomalous if the
measurement noisek is greater than a pre-specified error bound k̄ .

The default SAV states (G ’s) and measurements (I’s) considered in CADCA are vehicle location (?),
speed (E), acceleration (0), heading (ℎ), and yaw rate (l), as shown in Figure 1(b). The ego SAV is also
capable of making measurements with its own sensors, such as RADAR/LIDAR/cameras, to obtain
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Fig. 2. Attack classification and attributes.

the distances between itself and other SAVs. Since G ’s, b ’s, andk ’s are all unknown to the ego SAV,
Equation (2) does not necessarily have a unique solution under attacks. That is, solving Equation (2)
to deterministically and uniquely determine the true state (i.e., G ) of each SAV may not be possible
as there can be multiple solutions that all lead to the same observations as in Equation (2).

To facilitate deployability, the information of non-ego vehicles utilized in CADCA is limited to
the vehicles’ dynamics measurements—either from the sensors of ego SAV such as RADAR/LI-
DAR/cameras or BSMs from other SAVs [10]—including location (?), speed (E), acceleration (0),
yaw rate (l), and heading (ℎ). That is, CADCA is designed to run directly on a single vehicle (i.e.,
the ego vehicle) without requiring cooperation (i.e., additional, non-standardized computation, and
message exchange for obtaining results) from other vehicles.
Attack Model. Besides malicious/erroneous driver control and erroneous autonomous control

algorithms (A3 and A4 in Figure 1), we assume that the adversary has the goal of causing collision
to the ego SAV by making the ego SAV incorrectly estimate its operation context (e.g., assuming an
incorrect distance/speed w.r.t. nearby vehicles) and further misleading the autonomous control of
the ego SAV. The attacker can (i) transmit incorrect data from non-ego vehicles (A1 in Figure 1)
and/or (ii) remotely spoof the sensors of the ego vehicle (A2 in Figure 1). To better understand
the problem space, we propose an attack-space classification for SAVs, decomposing the entire
attack space into three tiers/levels according to the adversary’s capabilities (Figure 2). These threat
levels are determined by the attack attributes, i.e., classifiers, that are directly linked to the level
of difficulty and effort for the adversary to launch attacks. To avoid confusion with the value of
a single data sample, we use the term “data type” (DT) to denote a specific type of data from a
specific vehicle (e.g., Vehicle-1’s location and Vehicle-Ego’s speed).

The lowest threat level includes S1 and S2, where the (naive) adversary can only manipulate
one DT or manipulate multiple DTs but s/he cannot manipulate the DTs in a way that matches
the normal data correlation (e.g., the manipulated location and speed do not match each other),
where an attack is said to match normal data correlation if the data under the attack show the
same correlation/causality in terms of the kinematics of rigid bodies and control-to-dynamics
responses as those before the attack (within a predefined error tolerance). In the medium threat
level (S3–S4), the adversary can launch an attack or spoof DTs from one or more non-ego vehicles
and the anomalous DT from that entity may be consecutively manipulated to partially match the
normal data correlation. For example, the adversary can manipulate the location and speed in a
BSM simultaneously so that the vehicle’s moving distance matches the manipulated speed. In the
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Fig. 3. An overview of CADCA’s operation. CADCA, Context-Aware Detection and resolution of Control Anom-
alies.

highest threat level (S5–S6), the adversaries can expand their target to the ego vehicle’s DTs in
addition to other non-ego vehicles’.

Since no data can be trusted entirely (i.e., a strong attack model), CADCA is designed mainly
for guaranteed defense against the low- and medium-level threats while providing less-than-
complete protection against high-level threats. That is, CADCA is not designed to operate when
the data from multiple entities are simultaneously manipulated to achieve a perfect match with
their normal correlation/causality (S7). This detection scope should not diminish CADCA’s value and
practicality. Specifically, unless the adversary has the complete control over non-ego vehicles’ BSM
transmissions, simultaneously spoofing all of their DTs (other than the location/GPS) to generate
specific values without the direct/physical access to all the sensors is proven very difficult, if not
impossible. For example, spoofing an MEMS-based accelerometer requires direct feedback from
the sensor for phase tuning to generate a specific waveform/value [39]. That is, even though an
adversary may have the capability described in the high threat level, these types of attack will not
be as scalable as the attacks in the low/medium threat level as the adversary needs to physically
compromise multiple vehicles.

As CADCA is designed under a strong (and harsh) fault/attack assumption (i.e., no data can be
trusted as mentioned previously), this assumption provides the most general deployment scenario
without requiring the existence of trusted measurement and/or entities. At a first glance, this
assumption may seem to be a drawback of CADCA, but it enables CADCA to have the most
powerful deployment scenario without requiring the existence of a trusted entity.

Furthermore, since CADCA does not require any external/cooperative help/computation in gener-
ating a decision, it can be deployed in SAVs as an internal module shielded from the SAV plant that
may be exposed/connected to an external-facing communication module (e.g., Wi-Fi) as shown
in Figure 1. So, CADCA’s execution integrity can be protected by digital signatures together with
memory integrity verification since its input can be confined to pure sensor readings/BSM/control
decisions from other internal components. See Section 7 for more discussion on how to extend
CADCA to a relaxed threat model.

4 System Design
CADCA follows the design concept shown in Figure 3. First, it cross-validates the data acquired by
the ego SAV itself and those received from other entities to detect if there is any inconsistency
indicating the existence of a data anomaly or an attack. Second, upon detection of an anomaly,
CADCA will construct local views to establish models of its surrounding environment, each of which
describes a probable scenario when different combinations of data are anomalous but can lead to
the same observed inconsistency. The above two steps are equivalent to first identifying the attack
factor b ’s in Equation (2) to eliminate the uncertainties in the equation system and then restoring
the identified anomalous data based on the remaining correct ones under certain attack scenarios.
Finally, CADCA conducts risk assessments on all probable 〈control input, local view〉 combinations,
and then aggregates the assessment results to select a final control decision.

ACM Transactions on Cyber-Physical Systems, Vol. 10, No. 1, Article 2. Publication date: January 2026.
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Table 1. This Table Shows Examples of Detection Sets of the Ego Vehicle
and Vehicle-1 (Figure 1(b)), Where 3 (4,1) is the Distance between the Two

Vehicles Measured by the Ego Vehicle

DS Ego Dynamics I (4 ) Dist. Vehicle-1 Dynamics I (1)
? E 0 l ℎ 3 (4,1) ? E 0 l ℎ

E,1 3 3 3 3 3 �( ·,1:
E,2 3 3 %:+1 = %: +

∫ (
+: +

∫
0:� (g)3g

)
3C

E,3 3 3 integrate g = 0 → C and C = 0 → ΔC ,
E,4 3 3 � (g) = unit vector of ∠(ℎ: + lg)
E,5 3 3 and % (+ ) is the vector form of ? (E).
V1,1 ΔC : time interval, : : time index 3 3 3 3 3
V1,2 �( ·,2: E: = |%:+1 − %: |/ΔC 3 3
V1,3 �( ·,3: E:+1 = E: + 0:ΔC 3 3
V1,4 �( ·,4: ℎ:+1 = ℎ: + l:ΔC 3 3
V1,5 �( ·,5: ℎ: = direction of ?: to ?:+1 3 3

V1,6 3 3 3 3 (4,1) = |% (4 ) − % (1) |

4.1 Consistency Check
CADCA’s first function block is the consistency check, determining if there are any inconsistencies
among the received/perceived data by cross-validating the correlation between them.While utilizing
physical invariants for detecting inconsistencies is not new, CADCA’s novelty lies in the consideration
of input data in small and overlapping groups, instead of a single large group, and the transformation
of the result of each group’s consistency-check into a corresponding equation in an equation
system; solutions of the equation system will directly indicate the potentially anomalous data. We
call such data groups Detection Sets (DSs).

Table 1 shows an example of DSs when there are only two vehicles (i.e., the ego vehicle and
Vehicle-1). Specifically, �(�,1–�(�,5 (�(+ 1,1–�(+ 1,5) capture the correlation between the dynamics
measurements of the ego vehicle (Vehicle-1), and �(+ 1,6 describes the correlation between the
distance measurement 3 (4,1) and the locations of the two vehicles. If there is another vehicle, say
Vehicle-2, the ego vehicle can have six more observations (�(+ 2,1–�(+ 2,6) just like �(+ 1,1–�(+ 1,6.
The DSs shown here are the default formulations derived from the kinematics of rigid bodies [40].

A DS, �(; , will have the following general form:

Î′ [: ′] =ℱ (I [:], I [: + 1]), (3)

whereℱ is the function describing the correlation between Î′ [: ′], the prediction of a data I′ ∈ �(;
with timestamp index : ′ ∈ {:, : + 1}, and other observations (i.e., I [:] and/or I [: + 1], where the
latter is optional in the formulation). Note the correlation function ℱ can be additional observers
designed by the engineers, or it can be directly derived from the �’s in Equation (2). For example,
�(+ 1,6 checks whether the distance between the ego vehicle and Vehicle-1 matches the received
location data and has the form of 3̂ (4,1) = ℱ(% (4 ) , % (1) ) = |% (1) − % (4 ) |, where “| · |” denotes the
Euclidean distance, % is vector form of location ? , and ℱ equals � (4,9 ) when we have I (4,9 ) = 3 (4,9 )
in Equation (2).

Definition 4.1. A DS is properly designed if I′ [: ′] = Î′ [: ′] =ℱ (I [:], I [: + 1]) is always true
when there is no measurement noise or an attack in I′ and I.
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During runtime, CADCA will use the properly designed correlation function ℱ in Equation (3)
to compute data prediction Î′ [: ′] and compare it with the received value I′ [: ′]. Specifically, if
|Î′ [: ′] − I′ [: ′] | > ΓI′ where ΓI′ is a detection threshold, CADCA will report an anomaly in the DS
(�(; → 7); otherwise, CADCA will report the DS to have passed the consistency check (�(; → 3).
ΓI′ ’s should be set to values not larger than common error bounds to avoid miss detection for the
default values. While small thresholds may cause false positives in the consistency-check phase, it
will not influence CADCA much as the anomalous data will be restored in the subsequent phase.
CADCA will then use the results from the consistency check to establish an equation systemℰ, and
its solution will tell which data may be anomalous.

Each DS, say �(; , that fails the consistency check will yield an equation:∑
∀I8 ∈�(;

� (I8 ) ≥ 1, (4)

where � (·) is the indicator function describing whether a received data I8 is anomalous (=1) or not
(=0). This equation indicates that whenever a DS fails the consistency check, there must be at least
one anomalous data within the DS (which may be due to an attack, a fault, or excessive measurement
noise) as

∑
∀I8 ∈�(;

� (I8 ) captures the number of DTs that may be anomalous. However, �(; → 3
(i.e., �(; passes consistency check) does not necessarily mean no anomalous data in �(; , i.e., it
may be a false-negative detection.

Property 4.1. For every solution to the equation system (ℰ) constructed by Equation (4) under
properly designed DSs, there exists at least one corresponding solution for Equation (2).

Proof. Assume no valid solution for Equation (2). ⇒ There always exists some �(; → 7 s.t.
I8 [:] = �8 (G [:]), ∀I8 ∈ �(; . However, the definition of properly designed DSs tells us that �(;
will pass the consistency check since all its data do not have measurement noise or attack. This
contradicts �(; → 7. So, the assumption must be false. �

4.2 Construction of Local Views
(1) Concept. A local view, as the name suggests, is what the ego SAV thinks or estimates its
current operation context to be (e.g., the status of the ego SAV itself and the surrounding SAVs).
In an ideal scenario without component failures or attacks, the ego vehicle should be able to
construct a perfect local view that matches the ground truth (with the bounded deviation caused
by measurement noises). However, if the ego SAV receives/perceives anomalous data, there may
exist some inconsistencies in the data received or locally perceived that may prevent the ego SAV
from constructing a correct local view. The basic idea of Local View Construction is to (i) identify
potentially anomalous data and (ii) correct the anomalous data, if any, based on the normal data.

To identify the anomalous data that need to be restored, CADCA will solve the equation system
(ℰ) to identify the data I8 with � (I8 ) = 1. Since Equation (2) may not yield a unique solution, there
can be multiple solutions that satisfyℰ even in a perfect detection scenario (i.e., with neither false
positives nor false negatives during the consistency-check phase). Therefore, CADCA constructs
multiple local views each of which corresponds to one valid solution to the equation systemℰ that
represents a specific failure/attack scenario. Note that solving the equation systemℰ is equivalent
to the NP-Complete fitting set problem while assuming a perfect consistency-check phase while
considering all probable false-negative/positive situations will be equivalent to solving multiple
NP-Complete problems. Also, since not all the solutions have the same level of feasibility given
CADCA’s application context, we have designed six (heuristic) algorithms to solveℰ for constructing
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Algorithm 1: Solution-Space Algorithm

local views (instead of blindly finding all probable solutions forℰ). Next, we provide an overview
of these six algorithms.

The Solution-Space algorithm (Section 4.2.2) is designed to capture the search space of anomalous
DTs and provide the other five algorithms with a list of potential anomalous DTs as a starting
point for identifying the real anomalous DTs. The Greedy (Section 4.2.3) and Anomalous-Individual
algorithms (Section 4.2.4) are designed to capture solutions forℰ that have the minimum number
of anomalous DTs and vehicles, respectively. The Trust-Ego (Section 4.2.5), Anomalous-Ego-Only
(Section 4.2.6), and Anomalous-Ego-and-Others (Section 4.2.7) algorithms are designed to capture
the special scenarios related to the normality of the ego vehicle (i.e., S3–S6). While the six algorithms
do not have an obvious mapping associated with the six attack scenarios, they do collectively cover
S1–S6 defined in Figure 2, which will be introduced later.

(2) Solution-Space Algorithm (Algorithm 1) is designed to capture the search space of anomalous
DT(s). First, it temporarily assumes no false negatives in the consistency check and considers a
DT to be normal as long as it is included in a DS that passed the consistency check (Lines 7–11 in
Algorithm 1). Second, those data in the DSs that fail the consistency check (denoted by anomalous
DSs) but not ruled out by the first step will be considered potentially anomalous (Lines 12–17).
Third, the Solution-Space algorithm will perform a sanity check (Lines 18–22) to see if all anomalous
DSs contain at least one anomalous data. If there is an anomalous DS that does not satisfy the above
condition, then the Solution-Space algorithm will conclude the existence of a false negative in the
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Algorithm 2: Greedy Algorithm

consistency check and consider all the data in that anomalous DS to be potentially anomalous. We
call this step as normality inversion.

Property 4.2. (Correctness) L is a solution space of the equation systemℰ (i.e., there must exist a
list of anomalous data L( ⊆ L that is a solution toℰ), whereℰ and L are, respectively, the input
and output defined in Algorithm 1.

Proof. Assume L is not the solution space ofℰ, indicating at least one equation inℰ cannot be
covered by L. However, the sanity check (Lines 18–22) of the Solution-Space algorithm ensures
every equation (or anomalous DS) inℰ will be covered by L. Therefore, L must not be the output
of the Solution-Space algorithm. �

(3) Greedy Algorithm (Algorithm 2) is designed to find a solution to ℰ that requires as few
anomalous DTs as possible (i.e., argmin� (I8 )

∑
� (I8 ) given Equation (4) as the constraint) in a

greedy way. Specifically, it will identify the anomalous DTs starting from the list obtained from the
Solution-Space algorithm (i.e., L) and pick the anomalous DT IC that covers the most number of
anomalous DSs. A �(8 is said to be anomalous if ∃ IC s.t. IC ∈ (L ∩ �(8 ). The Greedy algorithm
will then remove all the DSs in ∪∀�(8 3IC 8 from LDS and remove IC from L. Next, it will continue
to pick the DT in L that covers the most remaining anomalous DSs and repeat the process until all
the anomalous DSs are covered.

(4) Anomalous-Individual Algorithm (Algorithm 3) is designed to capture a solution toℰ that
requires the attacker to compromise the least number of vehicles. Unlike the Greedy algorithm that
directly selects the data covering the most number of anomalous DSs, the Anomalous-Individual
algorithm will first identify the vehicle that covers the most number of anomalous DSs and follows
the same concept of the Greedy algorithm to identify the anomalous data associated with that
particular vehicle first. Next, the Anomalous-Individual algorithm will target the vehicle that covers
the most number of anomalous DSs, excluding those already covered, and repeat the process.

(5) Trust-Ego Algorithm (Algorithm 4) is designed to capture the situation in which no anomalous
data originated from the ego vehicle. The algorithm also starts from the results obtained from the
Solution-Space algorithm, but it will only try to construct a list (L)� ) of anomalous DTs from
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Algorithm 3: Anomalous-Individual Algorithm

Algorithm 4: Trust-Ego Algorithm

non-ego vehicles’ DTs by following the same procedure as the one in the Greedy algorithm. Note
that the Trust-Ego algorithm may not find a valid solution toℰ.
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(6) Anomalous-Ego-Only Algorithm is designed to capture the condition where only the ego
vehicle is anomalous. Opposite to the Trust-Ego algorithm, the Anomalous-Ego-Only algorithm tries
to find the solution that satisfies the observed equation system assuming that the anomalous data
can only originate from the ego vehicle. Like the Trust-Ego algorithm, the Anomalous-Ego-Only
algorithm may not have a valid solution.

(7)Anomalous-Ego-and-Others (AEnO) Algorithm is designed to capture the situation in which the
ego vehicle and at least one non-ego SAV are anomalous. AEnO follows the same initial procedure
as Anomalous-Ego-Only that focuses on the ego SAV’s DTs first and then moves on to examine the
non-ego vehicles’ DTs.

(8) Restoration of Anomalous Data. The final step in Local View Construction is to restore (or
estimate) data identified as anomalous and construct local views for each algorithm’s output.
Specifically, CADCA will directly utilize the data correlation captured in the DSs for restoring
anomalous data if enough correct data are observed. Otherwise, CADCA will use the last (set of) data
determined to be correct to build the local view.

4.3 Risk Assessment
 Concept. The process of risk assessment will be triggered whenever an anomaly is detected or

CADCA receives more than one control input, and the result of risk assessment will be updated
whenever the ego vehicle receives new data. Its goal is to identify whether there exists any safety
risk (e.g., possible collision) associated with the control inputs and helps the SAV choose which of
the control inputs to accept and execute. CADCA inherently accounts for operation in an uncertain
situation even when there are multiple probable operation contexts that can lead to the same
observed sensor inputs. While CADCA generates a local view for each of the algorithm’s result, it
also performs risk assessment for every 〈local view, control input〉 pair.

CADCA then determines which control input is safe to execute based on the following (safety-first)
rules:

—Rule-1: If there is no safety concern in any of the combinations, execute the manual control.
—Rule-2 : If only one control input has a safety concern (in any of the probable local views),

execute the other safe one.
—Rule-3: If both control inputs have safety concerns, select the control input with a longer

Time-to-Collision (TTC) (i.e., less unsafe) under the most likely local view (see below).

Specifically, CADCA’s local view construction is equivalent to identifying the potential states of
the ego SAV in the state space and CADCA’s risk assessment is equivalent to determining which
control input can potentially lead the ego SAV to the unstable/unsafe state. CADCA will try to avoid
any potential safety risk if possible; otherwise, it will try to delay the occurrence of a safety-critical
event as much as possible according to the most likely condition.

CADCA’s design is not restricted to any specific metrics or types of risks as long as the risk can be
clearly defined. As vehicle collision is the most obvious safety risk, here we use collision avoidance
as a concrete example to illustrate CADCA’s risk assessment process. In this example, the risk of
collision could be defined by the time left for a driver to react to an urgent condition, and CADCA
may perform risk assessments of potential vehicle collision for each control input by checking
whether TTC ≤ a threshold)� =max()( ,)* +)'), where)( (=4.5 s) is determined by the (medium)
driver’s reaction time while ensuring a smooth transition of control (e.g., no sudden braking all
the time) [41], )* is the minimum time required for the ego vehicle to avoid the collision through
speed control, and )'(=2.6 s) is the driver’s reaction time in an urgent situation [42].
Estimation of Time to Avoid Collision ()* ). )* is computed based on (i) the relative speed

E ′([ ) = E ([ ) − E (4 ) between the ego and the target vehicle [, (ii) target vehicle [’s acceleration 0 ([ ) ,
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Fig. 4. An example of computing time-to-collision, where � (4,1),: is the distance between the centers of the
two vehicle circles at time C: .

(iii) the ego vehicle’s maximum acceleration 0+(4 ) and deceleration 0−(4 ) capability, and (iv) the
relative location ?′([ ) of [ with respect to ego vehicle’s travelling direction:

)* =


|E ′([ ) |/( |0

−
(4 ) | + 0 ([ ) ), if E

′
([ ) , ?

′
([ ) < 0;

|E ′([ ) |/( |0
+
(4 ) | − 0 ([ ) ), if E

′
([ ) , ?

′
([ ) > 0;

0, otherwise.
(5)

Note that Equation (5) does not consider every possible combination of 〈E ′([ ) , 0 ([ ) , ?
′
([ )〉 because

computation of )* is required only when there is a possibility of collision.
Estimation of TTC. To reduce the computation workload and account for the possibility that

the ego vehicle may not have the accurate information of (other) vehicles’ physical dimensions
(i.e., lengths and widths), CADCA treats each vehicle as circles as in [23], instead of rectangles, in a
2D plane and the diameters the circles are required to cover the vehicle body. Figure 4 shows an
example where the circle of the vehicles can just cover the vehicle body, i.e., (2A (4 ) )2 = !2(4 ) +,

2
(4 )

and (2A (1) )2 = !2(1) +,
2
(1) . Note that the vehicles’ dimensions can be obtained from BSM Part-I or

estimated from the ego vehicle’s LIDAR or camera sensor readings.
CADCA will then predict the future trajectory of vehicles using the following equations:

?
(- )
:+1 = ?

(- )
:

+ E:

l:

[sin(ℎ′
:
) − sin(ℎ: )] +

0:ΔC

l:

sin(ℎ′
:
) − 0:

l2
:

[cos(ℎ: ) − cos(ℎ′
:
)], (6)

?
(. )
:+1 = ?

(. )
:

+ E:

l:

[cos(ℎ: ) − cos(ℎ′
:
)] − 0:ΔC

l:

cos(ℎ′
:
) − 0

l2
:

[sin(ℎ: ) − sin(ℎ′
:
)], (7)

E:+1 = E: + 0:ΔC, (8)
ℎ:+1 = ℎ

′
:
= ℎ: + l:ΔC, (9)

where subscripts : and : + 1 are the timestamp indices of data, and ? (- ) and ? (. ) represent the
vehicle’s - (east–west) coordinate and . (north–south) coordinate, respectively. Finally, CADCA can
determine TTC by checking the timing when the distance between the ego vehicle and another
vehicle is less than the sum of their circles’ radii (e.g., � (4,1),: < A (4 ) + A (1) in Figure 4). Note that
CADCA updates TTC estimation upon receipt of new data.

Most Likely Local View. CADCA determines the local view that is most likely to capture the actual
situation based on a record of whether a vehicle has been determined to be potentially anomalous
before. Table 2 shows an example of this history record. Specifically, each row of the record shows if
a vehicle is determined to be potentially anomalous (normal) at some time C: , and the entry will be
marked with 1 (0) under the C: column (with frequency of 10 Hz, same as BSM). CADCA will consider
a non-ego vehicle to be potentially anomalous if any algorithm except for the Solution-Space
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Table 2. An Example of Vehicle Anomaly History,
Where WAC:,8 Is the WAC of the Vehicle 8 at Time C:

Vehicle C1 C2 C3 C4 C5 C6 C7 … WAC:,8

Ego 0 0 0 1 1 1 1 … 0.5
Vehicle-1 - - - 0 1 1 0 … 0.1
Vehicle-2 1 1 1 1 1 1 1 … 1.0

… …

algorithm determines the vehicle to be anomalous. In contrast, the ego vehicle will be determined to
be anomalous if the Trust-Ego algorithm cannot find a solution and will be determined to be normal
if AEnO algorithm cannot find a solution. Otherwise, its integrity will be determined by the Greedy
algorithm. The rationale behind treating the ego vehicle differently than others is: (i) the observed
equation system is centered around the ego vehicle and (ii) Trust-Ego, Anomalous-Ego-Only and
AEnO algorithms are designed to target special cases of the ego vehicle.

To identify the most likely scenario, CADCA summarizes the history of each vehicle and uses
a scalar value to represent the likelihood of each vehicle being anomalous. Since this value is
computed based on a weighted sum of anomaly counts, we call it Weighted Anomaly Count
(WAC):

WAC =min(,� +,', 1) ∈ [0, 1],
where,� ∈ [0, 1] is computed over all the records of indicating a vehicle’s overall credibility
and,' is the additional factor/weight used to account for the recency of anomaly detection.
Specifically,,� ∈ [0, 1] is the ratio of the number of anomalies (#�) to the total number of records
(#) ). For example, since the ego vehicle in Table 2 has seven records, four of which are marked to
be anomalous (=1),,� of the ego vehicle will be 4/7 ≈ 0.57. To avoid unstable,� when a vehicle
just enters the ego vehicle’s communication range, we design CADCA to compute,� normally if
there are ≥#<8= records; otherwise, CADCA will fill in the “missing” records with 1 (i.e., assuming
the vehicle cannot be trusted initially):

,� =

{
(#� + #<8= − #) )/#<8=, if #) < #<8= ;

#�/#) , if #) ≥ #<8= .

,' controls the influence of most recent #' records:

,' = (1 − U#�,' )/(1 − U#' ),
where #�,' is the number of anomaly reports within the latest #' records and U is the parameter
designed to adjust how fast,' should increase if an anomaly report is received. This design ensures
that,' will (i) increase while more and more “1” records are received (ii) gradually (but not
drastically) decrease while the vehicle is determined to become normal again before #' number of
“0” records are received.

The last step of identifying the most likely local view is to find a solution obtained from the
algorithms that has the best match with the WACs (i.e., the observed history). Specifically, we can
present the WACs as a vector ®,: = (WAC:,4 ,WAC:,+ 1, . . .), where WAC:,8 is the WAC of vehicle
8 at time C: , and this vector represents a snapshot of the vehicles’ normality perceived by the
ego vehicle. Similarly, we can present the solutions/results from the algorithms in a vector form
®q:,� = (1 (4 ) , 1 (1) , 1 (2) , . . .), where 1 ( 9 ) is the normality of vehicle 9 determined by algorithm �

and 1 ( 9 ) = 1 (0) indicates the vehicle is anomalous (normal). For example, if the Greedy algorithm
determines that the ego vehicle and Vehicle-2 are anomalous and Vehicle-1 is normal, its vector
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form will be ®q:,� = (1, 0, 1). CADCA then utilizes the common normalized inner product to compute
the similarity (() between the vehicles’ normality perceived by the ego vehicle and the result of
each algorithm:

(:,� = ( ®,: · ®q:,�)/| ®q:,� |. (10)

CADCA then selects the view with the largest ( as the most likely local view !" and recommends
the control that has the largest TTC under !" if both of the controls are determined to be unsafe.

5 Analytical Properties of CADCA
We now discuss the security properties of CADCA while mapping them to different attack scenarios
(S1–S6) in Figure 2.

Property 5.1. (S1–S6: Detection Guarantee) If not all of the data are simultaneously manipulated
to match the data correlation, CADCA is guaranteed to detect the anomaly.

Proof. Due to the design of overlapping DSs as shown in Table 1, the DSs in CADCA cannot be
partitioned into two groups, say �� and �� , such that:

©­«
⋃

∀�( 9 ∈��

�( 9
ª®¬

⋂ ©­«
⋃

∀�( 9 ∈��

�( 9
ª®¬ = q (a null set), (11)

meaning that there will always be DTs overlapping across two DS groups. That is, as long as not all
the data are manipulated simultaneously, there will be at least one DS containing both correct and
anomalous data since there is no way to partition the data into a normal and an anomalous groups
based on the DSs. �

Property 5.2. (Low-Threat S1: Data Identification Guarantee) Greedy algorithm is guaranteed to
identify the anomalous data G0 under a single-DT anomaly if no two DTs are covered by the same
DSs.

Proof. (Part-I: The first identified data must be G0 .) Assume that the Greedy algorithm identifies
another normal data G= (≠ G0) first. Since the algorithm chooses G= first (i.e., G= must cover the same
number as, or more anomalous DSs than, G0) and no two data are covered by the exact same DSs,
there must exist some anomalous �(: , such that G= ∈ �(: but G0 ∉ �(: . However, this contradicts
the fact that G0 is the only anomalous data since any anomalous DS must contain at least one
anomalous data.

(Part-II: Greedy algorithm must terminate after identifying G0 .) If the Greedy algorithm does not
terminate after selecting G0 , then there are other DSs that fail the consistency check but do not
contain G0 , contradicting the fact that G0 is the only anomalous data. Thus, the assumption must be
false. �

Property 5.3. (Low-Threat S1–S2: Entity Identification Guarantee) Solution-Space algorithm can
identify the anomalous entity under a naive attack.

Proof. Since no false-negatives can occur under a naive attack, no anomalous data will be ruled
out by the algorithm. Therefore, the anomalous entity must be identified. �
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Property 5.4. (Low-Threat S1–S2: Ruling-Out Condition) If the normality inversion (Line 20 of
Algorithm 1) is activated in the Solution-Space algorithm, then there must be a false-negative in the
consistency check, i.e., CADCA is dealing with an attack of medium or high-level threat.

Proof. Assume that no false negative occurs in the consistency check, but the Solution-Space
algorithm activates the normality inversion for an anomalous DS (�(: ). Then, there must exist an
G0 such that � (G0) = 1 and G0 ∈ �(: , but it is not included in the final result of the Solution-Space
algorithm, and hence must be ruled out by some �( 9 → 3. However, this contradicts the fact
that �( 9 must fail the consistency check under a naive attack if G0 ∈ �( 9 . Thus, there must be a
false-negative detection. �

Property 5.5. (Mid-Threat S3–S4: Entity Identification Guarantee) Trust-ego algorithm will
identify any non-ego, anomalous vehicle as long as not all the data of that entity are manipulated to
match the normal data correlation.

Proof. Suppose the output (ℒ)� ) of the Trust-Ego algorithm does not contain any data from an
anomalous entity (�C ). Since the Trust-Ego algorithm will not determine any data from the ego
vehicle to be potentially anomalous and there is no data of �C determined to be anomalous in ℒ)� ,
all DSs associated with �C must pass the consistency check, contradicting the fact that not all data
of that entity are manipulated to match the normal data correlation. Thus, ℒ)� must contain at
least one data from �C . �

Property 5.6. (Mid-Threat S3–S4: Ruling-Out Condition) If the Trust-Ego algorithm cannot find a
solution, the ego vehicle must be anomalous. (By algorithm design.)

Property 5.7. (High-Threat S5: Ruling-Out Condition and Entity Identification Guarantee) If no
solution can be found by the Anomalous-Ego-Only algorithm, there must exist an anomalous data
from a non-ego vehicle. (By algorithm design.)

Property 5.8. (High-Threat S5–S6: Entity Identification Guarantee) Anomalous-Ego-and-Others
algorithm is guaranteed to identify the anomalous ego entity and any anomalous entity (�C ) if not
all �C ’s status data (i.e., the data excluding the distance measurement) are manipulated to match the
normal data correlation.

Proof. Since not all �C ’s status data are manipulated to match the data correlation, there must
exist some �(: associated only with �C and �(: → 7. Therefore, the AEnO algorithm must identify
at least one anomalous data G0 ∈ �(: from �C to cover �(: . �

Property 5.9. (S1–S6: Entity Identification Guarantee) Anomalous-Individual algorithm is guar-
anteed to include the anomalous entities as long as not all the data/measurement of the anomalous
source are manipulated coordinately. (Proof similar to Property 5.8.

Computational Complexity. All algorithms have an $ (# ) computational complexity, where  
and # are the numbers of data types per vehicle and DSs, respectively. See Section 6.5 for CADCA’s
end-to-end computation time analysis.
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Fig. 5. CADCA’s basic testing scenarios and the number of cases tested. We omitted different potential
maneuvers of the ego SAV in the figures. CADCA, Context-Aware Detection and resolution of Control Anomalies;
SAV, Semi-Autonomous Vehicle.

6 End-to-End Evaluation
6.1 Experimental Settings
Since CADCA is designed to operate under safety-critical conditions with sensor failures or malicious
attacks,2 we use Simulink with the automated driving toolbox [43] to evaluate CADCA’s performance.
The ego vehicle is equipped with a front camera and radar while its autonomous system controls
both the steering and acceleration of the ego vehicle. Vehicles periodically broadcast BSMs to
inform nearby vehicles of their location, speed, acceleration, heading, and yaw rate. To account
for noisy sensor measurements in the real world, the ego vehicle’s radar is assumed to have a
maximum detection range of 174 m, range resolution of 2.5 m, 90% detection probability, and false
alarm rate of 10−4% and the camera generates 480 × 640 image frames every 0.1 s while its object
recognition algorithm has a 90% detection rate [23]. These settings will be altered to account for
the conditions where the sensors are anomalous, or under the influence of an inclement weather.

The testing scenarios (T1–T4) are designed to cover 98.56% of (in-transport) vehicle crashes in
2021 according to [44], including rear-end (41.8% coverage), sideswipe (19.62% coverage), angle
(33.19% coverage), and head-on (3.90% coverage) collisions. See Figure 5 for the statistics and
illustration of the test-cases:

T1: (Rear-end) The most crucial scenario for collision avoidance: a front vehicle suddenly brakes;
T2 : (Rear-end and sideswipe) An unsafe lane change;
T3: (Angle) Potential side-collision; and
T4: (Sideswipe, angle, and head-on) At an intersection, the ego SAV may experience different

safety-critical encounters with vehicles from other directions.

In each scenario, there are 1–5 non-ego vehicles in the vicinity (i.e., within two lanes) of the ego
vehicle. We evaluate the conditions in which both autonomous and manual controls can lead to a
collision. Specifically, each test case has a unique combination of 〈initial vehicle location, vehicle
maneuver, control input magnitude, control timing, attack/anomaly timing, attack magnitude〉.
2It is too dangerous to conduct experiments on a production vehicle.
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Also, the control input to vehicle acceleration and deceleration is limited to up to 2 m/s2, which
is below the maximum 2.24 m/s2 acceleration and the maximum 3.36 m/s2 deceleration observed
in [45] for petrol vehicles. In each test case, at least one control input will lead to a collision. The
attack will start right after a test case begins and last until a collision occurs or until the test case
ends. We have also implemented a baseline approach “RA-BSM” based on [23], which is, to the best
of our knowledge, the most recent risk assessment that accounts for data (un)availability and also
utilizes both vehicle state estimation with inter-vehicle communications.

CADCA’s performance is evaluated using two metrics:

—SR: The probability of successfully disallowing a control input to prevent collision.
—Incorrect Blockage Rate (IBR): The probability of unnecessarily disallowing a control, which
should have been allowed.

6.2 Low Threat
We first evaluate CADCA’s performance when there is only one anomalous DT (the low-level threat
in Figure 2) on top of (natural) measurement noises embedded in the sensor data. We start with the
attack that tries to misguide the ego SAV’s path planning by making the ego SAV believe a non-ego
vehicle is traveling at an incorrect speed with the value deviation ΔE = ±5–15 m/s (or 18–54 kph).
We will henceforth use “VSC” to denote the vehicle that will cause a safety-critical situation and,
unless specified otherwise, VSC will also be the victim of an attack (i.e., VSC’s data perceived by
the ego vehicle can be incorrect or manipulated).

Under each of T1–T4 scenarios, we design test-cases where the ego SAV’s autonomous system
may generate both safe and unsafe controls (due to imperfect control or sensors’ blind spots)
and further inject manual controls that may either cause or avoid collision. Note that the speed
manipulations are designed to make the ego vehicle believe that it is in a safe condition while it
is actually not. In T1 and T2 (T3 and T4), VSC’s speed perceived by the ego vehicle will be larger
(smaller) than the ground truth, making the ego vehicle believe that it has more time to react to
VSC’s action.

Figure 6(A) shows the SRs and IBRs of CADCA and RA-BSM. One can observe that CADCA is able
to achieve ≥92.86% SR (T2) in disallowing unsafe controls and the level of data manipulation does
not have any significant impact on CADCA’s performance. CADCA is further shown to achieve >98%
SR for T1, T3 and T4. On the other hand, RA-BSM can only achieve 55.15% SR and its performance
further deteriorates when the perceived data deviates more from the ground truth, indicating that
it cannot properly perform risk assessment when there is a data anomaly. The SR of RA-BSM
decreases as attack magnitude increases because that SR is not entirely equivalent to detection
rate. That is, while a system can detect the attack as the deviation increases, it may still have an
incorrect estimation/recovery of the ground-truth condition. These results showcase CADCA’s
advantage over typical sensor-fusion techniques—the incorrect inputs may bias the state estimation
if the input does not deviate significantly from the ground truth to make the filters exclude the
tampered data. Furthermore, CADCA is able to achieve 0% IBR in all the test-cases, indicating that
CADCA will not unnecessarily disallow any of the safe controls. That is, CADCA will allow drivers
to manually control the vehicle if the control input is determined to be safe as if there were no
additional “control-filtering.”

6.3 Medium Threat
Let us consider the condition in which the attacker can manipulate the VSC’s (entire) status
report/BSM to prevent the ego SAV from performing accurate risk assessment. The data in manip-
ulated VSC’s BSMs will perfectly match the normal data correlation, leaving no trace of tampering.
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Fig. 6. Performance (%) comparison of CADCA (left/blue bars) and RA-BSM (right/red bars) under (A) single-DT
and (B) multi-DT anomalies targeting VSC’s speed and location, respectively. Missing bars indicate 0%. CADCA,
Context-Aware Detection and resolution of Control Anomalies.

Note the data manipulation considered here can be viewed as the final stage of Drift-with-Devil
attacks proposed in [46], which is one of the strongest attacks against the approaches utilizing
state estimation. CADCA will face cases when it cannot deterministically identify anomalous data.

Figure 6(B) shows the performance of CADCA, where the manual controls are injected when VSC’s
location drifts away from its actual location by Δ- = 10–25 m. CADCA is shown to achieve >92% SR
in T1 and T3 while achieving 42–64% SR in T2 and T4. The lower SRs in T2 and T4 are caused by
the fact that it is harder for CADCA to predict and reconstruct the maneuvering behavior of vehicles
since the manipulated BSMs do not contain any useful information that reveals the actual VSC’s
maneuvering behavior. When CADCA’s IBR is compared with those under single-DT manipulation,
the IBRs in Figure 6(B) are slightly larger due to CADCA’s safety-first design to always execute the
safer control decision under an uncertain situation. Note that even though CADCA can only achieve
moderate SRs in T2 and T4, it still has a >40% (absolute) SR advantage over RA-BSM.

6.4 High Threat
Next, we evaluate CADCA’s performance under the high-level threat in which data of multiple
entities (including the ego SAV) can be anomalous in addition to the attack considered in Section 6.3.
That is, the attacker may now tamper with VSC’s location data (Δ- = 5–25 m) along with other
DTs just like in Section 6.3 and simultaneously spoof the sensors/algorithms of the ego vehicle. To
simulate this extreme condition, we purposely adjust the object detection rates of RADAR/camera
to 0.9, 0.5 and 0.1 and assume there can be measurement errors (Δ3 = 6–10 m) for the ego vehicle’s
distance sensing. Note that the degradation of sensing quality can also be the result of severe
weather condition. CADCA is shown to achieve 90.43–98.33% SR and ≤2.44 IBR in T1 while RA-BSM
can only achieve ≤87.83 SR and ≤3.83 IBR (Table 3). We use the same set of ground-truth vehicle
behaviors within a 〈scenario, detection rate〉 case to capture the effects of anomalous distance
sensing on CADCA’s performance.

Specifically, it is worth noting that CADCA does not experience any noticeable performance
degradation even if Δ3 increases from 6 to 10, indicating CADCA’s effective resolution of control
conflicts irrespective of how much error is embedded in the data once the anomaly is detected. RA-
BSM, however, will yield a much worse performance with larger data deviations. This observation
further showcases CADCA’s advantage in that its identification of anomalous data does not directly
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Table 3. CADCA and RA-BSM’s Performance (%) under Both Sensor/Algorithm
Failure and Data Manipulation

T1 T2 T3 T4
Δ3 CADCA R-B CADCA R-B CADCA R-B CADCA R-B CADCA R-B CADCA R-B CADCA R-B CADCA R-B

SR SR IBR IBR SR SR IBR IBR SR SR IBR IBR SR SR IBR IBR
Object Detection Rate = 0.1

6 90.43 87.83 0.00 0.85 88.89 44.44 1.12 0.00 100 0.00 10.53 0.00 100 100 1.56 1.56
7 90.43 78.26 0.00 3.83 88.89 27.78 1.12 0.00 100 0.00 10.53 0.00 100 60.00 1.56 1.56
8 90.43 76.52 0.00 2.98 88.89 22.22 0.56 0.00 100 0.00 10.53 0.00 100 0.00 0.00 0.00
9 90.43 66.09 0.00 2.55 72.22 22.22 0.56 0.00 100 0.00 10.53 0.00 100 0.00 0.00 0.00
10 90.43 60.00 0.00 6.38 94.44 22.22 1.12 0.00 100 0.00 10.53 0.00 100 0.00 0.00 0.00

Object Detection Rate = 0.5
6 98.25 68.42 2.44 0.73 50.00 50.00 0.00 0.00 95.12 0.00 0.00 0.00 100 100 1.56 1.56
7 98.25 57.89 2.44 0.73 50.00 33.33 0.00 0.00 95.12 0.00 0.00 0.00 100 60.00 1.56 1.56
8 98.25 47.37 2.44 0.73 66.67 27.78 0.00 0.00 95.12 0.00 0.00 0.00 100 0.00 0.00 0.00
9 98.25 35.09 2.44 0.73 66.67 22.22 0.56 0.56 95.12 0.00 0.00 0.00 100 0.00 0.00 0.00
10 98.25 31.58 2.44 0.73 66.67 22.22 0.56 0.56 95.12 0.00 0.00 0.00 100 0.00 0.00 0.00

Object Detection Rate = 0.9
6 98.33 68.33 1.96 0.49 50.00 50.00 0.00 0.00 97.50 0.00 0.00 0.00 100 100 1.56 1.56
7 98.33 53.33 1.96 0.25 55.56 33.33 0.00 0.00 97.50 0.00 0.00 0.00 100 60.00 1.56 1.56
8 98.33 41.67 1.96 0.49 66.67 27.78 0.00 0.00 97.50 0.00 0.00 0.00 100 0.00 0.00 0.00
9 98.33 31.67 1.96 0.74 66.67 22.22 0.56 0.56 97.50 0.00 0.00 0.00 100 0.00 0.00 0.00
10 98.33 28.33 1.96 0.98 66.67 22.22 0.00 0.00 97.50 0.00 0.00 0.00 100 0.00 0.00 0.00

rely on data causality. A similar pattern can also be observed in T2–T4. As expected, CADCA shows
a slightly worse performance in T2 due to the unpredictability of VSC’s behavior. However, it can
still achieve up to 72.22(= 94.44 − 22.22)% absolute SR increase over RA-BSM.

6.5 Execution Time Analysis
We evaluate CADCA’s execution time on a 2016 MacBook Pro with 2.6 GHz Quad-Core Intel Core i7
CPU, which is relatively old hardware. Specifically, CADCA is implemented in Matlab with single-
thread execution (only on CPU). We measure the execution time when there are 2–50 vehicles
(including the ego vehicle). Figure 7 shows the average execution time that increases linearly with
the number of vehicles. This result matches our analysis in Section 5—CADCA’s algorithms have an
$ (# ) ∝ $ (# ) computation complexity when  , the number of data types, is fixed and # , the
number of DSs, is proportional to the number of vehicles. Furthermore, even if CADCA operates with
50 vehicles, it only requires a 33.3 ms execution time on average—only 0.7% of )( (i.e., the medium
time to achieve a smooth control transition) and only 1.2% of )' (i.e., the driver’s reaction time
to an urgent situation)—thus reacting to safety-critical events much faster than a typical driver.
Even under the high-threat scenario of requiring more resources to perform data recovery and risk
assessment, the execution time has a <8.3% increase (3.8% on average).

7 Discussion
7.1 Vulnerability of CADCA to a Super Adversary
There are two ways an attacker can harm CADCA’s performance. First, to evade CADCA’s detection,
an adversary can skillfully craft an attack that tampers with the data to fully match the correct data
correlation (S7 in Figure 2). This requires the adversary to be able to simultaneously manipulate
multiple data with fine-grained control as mentioned in Section 3. Second, to defeat the collision
avoidance (that CADCAmay still detect), an adversary can attack when non-ego vehicles change their
maneuvering drastically to keep CADCA from predicting their behavior under tampered inputs. This
requires the adversary to be able to predict how non-ego vehicles would maneuver or have direct
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Fig. 7. The execution time of CADCA, where “per vehicle” represents the total computation time divided by
the number of vehicles within the ego SAV’s perception range. The execution time is computed based on the
average of 10,000 executions for scenarios with the same number of vehicles. CADCA, Context-Aware Detection
and resolution of Control Anomalies.

control over non-ego vehicles. Both exploits require the adversary to have super (unrealistic/non-
scalable) capabilities to manipulate data at specific instants or control non-ego vehicles.

7.2 Extension of CADCA
7.2.1 General Expansion. CADCA can be adjusted to support a more relaxed threat model than

the one specified in Section 3. Specifically, the attack magnitude (b) of data< in Equation (2) can be
set to 0 if< is trusted (only measurement errors can occur and within a certain known boundk ).
All the rest of CADCA’s operations will still be the same, except that< will no longer be considered
as an anomaly source.

If the assumption of no trusted data holds, the challenge of enabling CADCA to handle attacks
with coordinated multiple entities is the lack of objective evidence (based on the law of physics)
that can definitively determine the received data to be anomalous. As multi-entity coordination
attacks can control all degrees-of-freedom in Equation (2) to evade detection mechanisms, new
detection dimensions must be introduced to detect such a strong adversary.

For example, this new detection dimension can be the characteristics of vehicle capability, such
as the limit of acceleration that the target vehicle can achieve. By doing so, CADCA can report that
an anomaly has occurred if the received data indicate that a vehicle exceeds this limit. However,
this new dimension can also be the adversary’s manipulation target, as this context information
also needs to be either obtained from the external entities or estimated by the ego vehicle itself.

The vehicle’s behavior pattern can be another detection dimension. By comparing the observed
vehicle movement or maneuver with some pre-existing behavior models, CADCA can detect and
report an anomaly if the current observed vehicle behavior deviates from the models. The challenge
of this approach is the source of the behavior models. In general, the models can be derived from
either external entities’ reports/messages or the ego vehicle’s observation. While a strong adversary
can also falsify the former, the latter requires long-term observation, which could be difficult to
achieve in a dynamic driving scenario.

Although the introduction of the above two additional dimensions will not eliminate the pos-
sibility of multi-entity coordinated attacks, adding more observations and constraints will make
attacks harder to launch, creating more and higher barriers to advanced attacks.
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7.2.2 Cooperative Scenario. While SAE J2945/8 defines how vehicles broadcast perception
information of roads/objects nearby, CADCA can extend it further to support the case when vehicles
can share their observations with one another. Specifically, Table 1 can be expanded to include the
measurements/DSes from the non-ego to other vehicles (similar to Row V1,6) while the algorithms
in CADCA already support this cooperative scenario as they are designed to operate on expandable
DSes, instead of specific equations.

7.2.3 Absence of V2X Capabilities. The assumption of V2X capabilities is not a hard requirement
of CADCA. Specifically, as mentioned in Section 3, the state report from other entities is optional.
CADCA can either entirely remove the state report from Equation (2) during its operation, or the
ego vehicle can use its own measurements (based on radar, LIDAR, camera, etc.) to estimate the
state of external entities. Note that if the measurements are made by the ego vehicle itself, the
corresponding detection thresholds for anomalies should also be adjusted based on the error bound
of its own sensors.

8 Conclusions
To reduce/eliminate the danger of static assignment of control priority in safety-critical situations
due to potential anomalies (i.e., failures and attacks) and malicious/erroneous control input, we
have proposed CADCA, a decision-maker for SAVs, that can perform risk assessment and resolve
control conflicts when any of the received/perceived data is anomalous. Specifically, CADCA selects a
control input that is safe to execute under uncertain situations. Our extensive evaluation has shown
CADCA to achieve a 98% success rate in avoiding use of unsafe control inputs (T1) and have a ≥0.4
more success rate than the latest representative prior work for most commonly seen scenarios (T2).
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