
BBC: Enabling BLE to Support Bluetooth Classic

Hsun-Wei Cho
University of Michigan

Kang G. Shin
University of Michigan

Abstract

Bluetooth Classic has been the technology used by the over-
whelming majority of wireless headphones. However, Blue-
tooth Classic is incompatible with Bluetooth Low Energy
(BLE), and hence cannot directly communicate with BLE
devices. With the recent shift toward BLE, this incompatibil-
ity prevents using simple, energy-efficient BLE chips with
Bluetooth headphones, and requires using more complex dual-
mode chips to support both Bluetooth Classic and BLE.

To overcome this incompatibility, we present BBC, which
enables Bluetooth-Classic connectivity on BLE chips. BBC
sends and receives raw FSK bits using BLE hardware while
emulating all other Bluetooth-Classic operations in the driver.
By eliminating the need for Bluetooth-Classic hardware, BBC
enables future devices to use BLE-only chips while maintain-
ing the Bluetooth-Classic compatibility via emulation. It also
enables new connectivity for current BLE devices to directly
stream audio to Bluetooth-Classic headphones. BBC achieves
a throughput of 557kbps and a packet error rate (PER) of
4.86% at the distance of 10m,1 and provides the same audio
quality as off-the-shelf Bluetooth-Classic chips.

1 Introduction

Since its invention more than 20 years ago, Bluetooth has been
widely used for short-range, low-power communications. One
major Bluetooth application is streaming audio to wireless
headphones. Each year, more than one billion (more precisely,
1.01 billion [2] in 2024) Bluetooth audio streaming devices
have been shipped worldwide and Bluetooth has been the
dominant wireless technology for audio streaming. To stream
high-fidelity audio, the overwhelming majority (> 85% [3])
of headphones use the “Bluetooth-Classic” protocol.

The Bluetooth SIG (Special Interest Group) has been tran-
sitioning from Bluetooth Classic to Bluetooth Low Energy

1The maximum operating range of standard Class 2 devices (4dBm)
specified in the Bluetooth standard [1].

Figure 1: BBC enables direct communication between BLE
chips and Bluetooth-Classic headphones

(BLE), since BLE enables simpler hardware implementa-
tion and higher energy-efficiency, and Bluetooth Classic is
no longer in active development. However, BLE is an en-
tirely separate and different protocol from Bluetooth Classic.
BLE uses different bit-processing, frequency-hopping, tim-
ing, packet format from Bluetooth Classic and does not sup-
port A2DP (Advanced Audio Distribution Profile [4]) at all.
Consequently, BLE chips cannot directly communicate with
Bluetooth-Classic devices. Even though BLE single-mode
chips are widely available (e.g., in ultra-low power BLE tags
and BLE locks) in the market and are smaller, cheaper and
highly energy-efficient (supporting years of battery life), they
cannot be used with Bluetooth-Classic headphones. On the
other hand, because the vast majority of headphones use Blue-
tooth Classic, multimedia devices must use dual-mode chips
that contain both Bluetooth Classic and BLE hardware com-
ponents. As shown in Bluetooth SIG’s block diagram [5, 6],
Bluetooth Classic and BLE are very different in each layer
and share very little in common. As a result, dual-mode chips
have to maintain two full and separate communication stacks
(from digital circuits to application profiles) [7], thus increas-
ing their cost, size and power consumption.

This incompatibility between BLE and Bluetooth Classic
is becoming a major obstacle as the number of BLE devices
continues to grow rapidly. As the industry shifts towards
more and more BLE devices, billions of Bluetooth-Classic
headphones would not be able to communicate with energy-
efficient, ultra-low-power BLE devices.

One solution of using BLE to send audio data is leveraging
the optional LE Audio feature introduced in Bluetooth 5.2.
However, this does not solve the incompatibility between
BLE and Bluetooth-Classic devices. Furthermore, LE Audio
does not apply to all BLE devices, and a large portion of
BLE devices (i.e., all devices from Bluetooth 4.0 to 5.2) do
not support this feature. Even with Bluetooth 5.2 and newer
devices, LE Audio and LE isochronous channel features are
optional [8], and devices can be qualified for Bluetooth 5.2
without supporting LE Audio [9]. Thus, even devices qualified
for Bluetooth 5.2 do not guarantee the use of LE Audio. For
example, Apple’s latest Airpods do not support LE Audio [10],
even though they are qualified for Bluetooth 5.3.

On the headphone side, LE Audio is not just a simple
change in the audio application. LE Audio requires a new
transport layer (ISOAL) as well as a new proprietary audio
codec known as LC3 (due to the throughput limitation of
the BLE protocol). This LC3 codec does not exist on most
Bluetooth headphones, and using LC3 codec requires licens-
ing through Fraunhofer [11] or licensing through Bluetooth
SIG’s LE Audio qualification. It is unlikely for chipmakers
and headphones manufacturers to pay per-chip LC3 royalties
for released products or to go through Bluetooth SIG’s quali-
fication process again for LE Audio. Thus, making existing
Bluetooth headphones support LE Audio requires more than
just a firmware upgrade, and upgrading the firmware also may
not be possible for end users.

To address this important and practical problem with the
majority of headphones using Bluetooth-Classic, we propose
BBC, which enables direct communication between BLE and
Bluetooth-Classic chips. It emulates full operation of Blue-
tooth Classic using BLE chips, directly connecting unmodi-
fied Bluetooth-Classic headphones with BLE chips.

On the technical front, the key question BBC aims to answer
is: Instead of using dedicated hardware blocks for Bluetooth
Classic, can we emulate corresponding blocks in software so
that simpler hardware, such as a BLE chip, can appear and
function like a Bluetooth-Classic chip? BBC shows that such
software-based emulation is actually possible, even though
the operation and processing in Bluetooth Classic are highly
hardware-dependent by design. For example, the bit process-
ing, connection establishment, and encryption are directly
tied to Bluetooth-Classic’s hardware timer. Bluetooth Classic
requires timing precisions at the microsecond level, which
is challenging for real-time processing in software. Addi-
tionally, BBC provides insights into the inner-workings of
Bluetooth Classic by presenting a fully-functional, emulation-
based Bluetooth system. In the literature, Bluetooth-Classic
hardware is treated as black boxes and research on the pro-
cessing between the raw FSK bits and the HCI layer is lacking.
BBC bridges this gap and emulates every step between the two
layers.

Benefits. BBC offers several important benefits. First, it
is an ideal solution for backward compatibility on newer or

BLE-only chips without the need for “dual-mode” chipsets
that require two full stacks [5–7]. BBC is especially attractive
during the transition from Bluetooth Classic to BLE when
billions of headphones are still relying on Bluetooth Classic.
Second, even without considering this transition, BBC creates
new audio features on current BLE-only devices (such as BLE
beacons or BLE fitness trackers) by enabling a new mode of
communication. Compared to streaming via LE Audio, BBC
does not require any modification to Bluetooth headphones
and does not require upgrading the firmware of Bluetooth
headphones. Finally, BBC provides the same audio quality as
Bluetooth Classic, and blind tests [12, 13] have shown that
high-quality audio codecs (AAC or aptX) used in Bluetooth
Classic offer noticeably better sound quality than LE Audio,
since the LC3 codec uses a very high compression ratio. So,
BBC combines the benefits of using simple radio hardware
and supporting high audio quality.

For hardware vendors, BBC enables using simpler, cheaper
and smaller BLE chips to support both BLE and Bluetooth
Classic. BBC directly reduces the cost of future devices, mak-
ing the solution particularly attractive. It removes hardware
complexity using software. Because modern devices have
considerably higher computational power than 20 years ago,
this emulation only incurs very minimal overhead on modern
processors. Our evaluation shows that BBC only requires about
1.6% of the CPU time. For users, BBC solves the problem of
incompatibility between different Bluetooth standards with-
out modifications to the hardware. Furthermore, BBC enables
new applications that are not possible on existing hardware.
For example, audio streaming becomes possible with existing
BLE devices using BBC.

To enable Bluetooth-Classic operations without Bluetooth-
Classic chips, we propose a new architecture where lower
layers of Bluetooth Classic are emulated in the driver. This ar-
chitecture offers several significant advantages. First, since the
driver in BBC directly sends and receives FSK bits, it has com-
plete knowledge of radio transmissions and receptions, and
has much better control and diagnostic capabilities. In the tra-
ditional Bluetooth architecture, the driver can only send high-
level commands and logical data packets whereas the Blue-
tooth chip applies physical-layer processing, autonomously
schedules transmissions and maintains internal connection
states. The indirection and complexity make diagnostics diffi-
cult, and are prone to incompatibility between different sili-
con implementations. For example, when Bluetooth does not
work, failing to make an initial connection between two Blue-
tooth devices is a major source of the problem. On traditional
systems, these lower-layer operations are autonomously han-
dled and scheduled by the hardware chip, and the driver has
limited ability to alter packet exchanges or pinpoint the error.
In contrast, BBC is similar to WiFi systems and provides direct
visibility of over-the-air transmissions and receptions to the
driver. Raw radio bits can be directly monitored to determine
the error sources. Second, because the lower-layer processing

Radio

BT Classic HW

Driver

HCI

BT Classic FW

Link Controller

Link Manager Encryption

Scrambling

FEC
Freq.

Hopping

Auth.

ARQ

CRC
BLE HW

BLE FW

Bluetooth Chip Level

Software Level

Digital Circuits in Silicon

(a) A typical Bluetooth dual-mode chip [5–7]

Radio

Driver

HCILink Controller

Link Manager Encryption

Scrambling

FEC
Freq.

Hopping

Auth.

ARQ

CRC

BLE HW

BLE FW

Bluetooth Chip Level

Software Level

BT Classic Emulation in Software

(b) BBC enables Bluetooth Classic on BLE hardware

Figure 2: BBC moves entire Bluetooth-Classic processing from HW to SW domain, enabling BLE to support Bluetooth Classic.

is emulated in the driver, BBC does not require Bluetooth-
Classic-specific blocks and components on the radio chip.
Thus, BBC can use simple BLE chips as the hardware. Finally,
BBC is highly flexible as the lower-layer processing is easily
upgradable by compiling new drivers. In contrast, these com-
putations are hardcoded in digital circuits on conventional
Bluetooth chips, making it infeasible to upgrade them via
software.
BBC matches the operational range of Bluetooth-Classic de-

vices with the same transmit power. Using BLE chips with a
transmit power of 4dBm, BBC can stream music without glitch-
ing at 10m, which is the same operational range of Class 2
(4dBm [1]) Bluetooth-Classic devices. Note that the adver-
tised range of 100m of Bluetooth requires using “Class 1”
devices, which have a transmit power of 20dBm. However,
Class 1 devices are for industrial applications and most con-
sumer electronic devices are Class 2 or 3 [14]. BBC simply
matches the operational range of Bluetooth Classic with the
same transmit power, and does not increase or decrease the
communication range. Similar to the case of industrial appli-
cations, a higher transmit power (e.g., using power amplifiers)
can be used if a greater range is desired.

Challenges. Emulating Bluetooth-Classic’s operation is
very challenging as its lower layers are tightly coupled with
hardware. Furthermore, they consist of numerous highly-
intricate components, and implementing the full emulation
is highly error-prone. To the best of our knowledge, BBC is
the first end-to-end, bidirectional, fully functional Bluetooth-
Classic system built from the ground up in academia. BBC
is unique in that it accurately emulates various Bluetooth-
Classic components (especially below the HCI layer) and
enables off-the-shelf BLE chips to establish, negotiate, au-
thenticate, encrypt Bluetooth-Classic connections and then
stream audio to Bluetooth headphones, all without the help
of any Bluetooth-Classic chip.

Although the design of Bluetooth is documented in the
Bluetooth Core Specification [1], it is challenging to build
several key hardware components in software and emulate
them accurately. One of the challenges is parsing the un-

conventional use of terminologies in the standard. For exam-
ple, “baseband” in the Bluetooth standard includes control-
ling carrier frequencies, connection establishment between
two devices, connection authentication, payload encryption,
packet ACK/retransmission, addressing and flow controls.
These components are not considered as baseband in other
(WiFi or cellular) standards. Another challenge is that the fre-
quencies are constantly changing in Bluetooth, and hence the
frequency hopping and bit processing must both be correct
in order to communicate with Bluetooth headphones. Fur-
thermore, generating frequency-hopping sequences is com-
plicated and is both address- and state-dependent. (The se-
quences are different before and after a connection is estab-
lished, and are also different for Central and for Peripheral.)
The packet generation and processing involve numerous fields
(e.g., headers, scrambler seeds, error checking, encryption)
that are time-varying (dependent on the hardware clock) and
address-dependent. All of these have to be emulated correctly
for successful communication. Finally, debugging Bluetooth
communication is difficult because every packet uses a differ-
ent frequency. This is especially challenging for debugging
the connection establishment ("paging") process because the
frequency-hopping pattern changes at each packet exchange.
It is thus almost impossible for a narrow-band sniffer to reli-
ably trace the entire process as such a sniffer cannot simul-
taneously capture traffic on two different frequency-hopping
sequences.

2 System Design

2.1 Primer of Bluetooth Classic
In a Bluetooth connection pair, one device assumes the role
of Central while the other is Peripheral. Bluetooth Classic
is a strict time-slot-based protocol and Central assigns the
time slots. Central and Peripheral both maintain a Bluetooth
clock for precise time-slot communication. The initial syn-
chronization of two clocks is achieved via paging, where
Central informs Peripheral its clock value in a 6-packet ex-
change. In each time slot, packets are sent over a different

RF frequency carrier. The RF frequency depends on the Blue-
tooth clock and address, and thus Central and Peripheral hop
to the same RF frequency once synchronized. The Bluetooth
standard defines various packet types. BBC sends ID, FHS,
POLL, DM1 and DH3 packets. The first three are used in
paging while the last three are used after paging. Each type of
packet comes with different encodings and number of fields.
ID only contains the access code whereas POLL has the ac-
cess code and header. FHS, DM1 and DH3 further contain
the payload field. Forward-error correction (FEC) is applied
to the payload of FHS and DM1. DM1 and DH3 are used for
general data communication. DH3 uses up to 3 time slots and
has higher throughputs than DM1.

As shown in Fig. 2a, Bluetooth-Classic chips perform a
significant amount of bit processing for each packet, which
is done by a hardware component called the Link Controller
(LC). The LC’s bit processing varies with time since the com-
putations depend on the hardware clock. To ensure reliable
communication, the LC also handles the ARQ (automatic
repeat request). The component above the LC is the Link
Manager (LM), which runs the Link Manager Protocol (LMP)
to establish, negotiate and control a logical Bluetooth connec-
tion. The LM also controls link authentication and encryption,
implemented in hardware on typical Bluetooth-Classic chips.

2.2 Architecture
The architecture of BBC is shown in Fig. 2b. BBC reuses the
hardware essential on BLE chips and emulates all Bluetooth-
Classic operations and processing in the driver. BBC generates
and processes raw FSK bitstreams in software so that BLE
chips can transmit and receive standard Bluetooth-Classic
packets. BBC emulates the standard paging process of Blue-
tooth Classic. After paging, BBC enables slot-based communi-
cation with precise timing while also allowing software-based
(as opposed to hardware-based) computation. BBC provides
reliable communication using retransmission with software
ARQ. BBC also emulates all authentication and encryption
functions in software. Finally, we complete our Bluetooth
system with software-based LM and transport-layer support.

2.3 Connection Establishment
Before streaming audio/music from Central to Peripheral can
start, the first step is to establish an initial connection. This is
known as paging in the Bluetooth standard. The purpose of
paging is to synchronize the Bluetooth timers/clocks of two
devices. Since Bluetooth is a strict time-slot-based protocol
and each time slot uses a different frequency, this process is
critical in ensuring that two devices are synchronized in time
and follow the same hopping sequence after paging.

On conventional Bluetooth-Classic chips, paging is en-
tirely and autonomously handled by hardware, responsible for
all packet/bit processing, Tx/Rx timing, and hop generation.

Since BLE chips do not come with these hardware blocks at
all, BBC must emulate all these functions in software while uti-
lizing only the existing hardware components on BLE chips:
the FSK radio and the timer.

BBC
(Central)

Headphones
(Peripheral)

ID FHS

ID ID

POLL

NULL

POLL

NULL

POLL

NULL

Figure 3: Connection Establishment: BBC always sends all
packets whereas ID and NULL may not be received. Paging
is successful if ID and NULL are received. The hopping
sequence and access code change between ID and POLL.

In the Bluetooth standard, paging is a 6-packet process (and
each packet occupies a time slot). Central sends ID, FHS, and
POLL packets in odd time slots whereas Peripheral sends ID,
ID, and NULL packets in even time slots. The FHS packet
contains Central’s clock value and thus Peripheral can start
following Central’s hopping sequence after the POLL packet.
By design, paging is highly dependent on hardware for correct
processing, timing, and frequency hopping. Note that the fre-
quency hop and the bit processing of FHS, POLL, and NULL
packets are time-variant since the value of the hardware clock
changes the processing steps. The same logical packet will
have random FSK bits in different time slots.

Since Central and Peripheral initially operate with different
clocks during paging, the 6-packet process normally fails at
different steps. On conventional chips, hardware blocks will
then be used to generate new random bits and hops based on
the current clock. However, this poses a significant challenge
to BBC since BLE chips do not have such hardware for on-the-
fly processing.
BBC’s paging is based on our key insight: Instead of requir-

ing hardware to generate bits and hops from the Bluetooth
clock in real time, the entire paging process can be made deter-
ministic, thus allowing simple BLE chips to page Bluetooth
headphones with pre-generated FSK bits and hops. More
specifically, the first 4 packets (and the hopping sequence)
depend on the Peripheral clock, Peripheral address and a 5-bit
number X. In the standard, Central simply uses part of its own
clock as a “guess” of X. (The true X is a constantly changing
number only known to Peripheral.) Furthermore, the address
is known to Central, and the Peripheral clock during paging
is only used for alternating Tx/Rx and is always the same pat-
tern. Therefore, the first 4 packets are deterministic if the same
clock is used each time. Moreover, the last 2 packets (and the
hopping sequence) depend on Central’s clock and address,
which are specified in the FHS packet. Since we can make the
first 4 packets deterministic and have complete control of the
FHS packet, the entire paging process is deterministic and can
be pre-generated.2 Finally, since the pre-generated bits and

2Bluetooth Classic was designed when the strict FHSS regulation was in

hops are legitimate sequences that conventional chips also
generate (when the same X is used), the design of Bluetooth
ensures that the Peripheral will be paged. The only difference
is that BBC chooses a fixed (instead of a random) X.

In BBC, we pre-generate the FSK bits and hops, and send
the raw bits using BLE radio. Each transmission is scheduled
using the timer on BLE chips. If the BLE chip receives re-
sponses (ID and NULL packets), paging is successful and BBC
starts bidirectional packet communication. Otherwise, BBC
continuously retries paging.

In the Bluetooth standard, the Peripheral should always
respond to the POLL packet with a NULL packet. However,
when experimenting with Bluetooth headphones, we find that
some headphones do not strictly follow this. To handle this
problem, BBC further sends two additional POLLs in the next
two transmit slots. We find Apple’s headphones usually do
not respond to the first POLL and two additional POLLs are
particularly crucial.

2.4 Bidirectional Packet Communication

Upon successful paging, BBC emulates the bidirectional
packet communication of Bluetooth Classic using BLE chips.
We divide the design into two parts. The first part (Sec. 2.4.1)
solves packet-level challenges where BBC enables BLE chips
to transmit/receive packets in strict time slots and follow the
frequency hopping sequence of Bluetooth Classic without
dedicated hardware. The second part (Sec. 2.4.2–2.4.3) ad-
dresses the bit-level challenges where BBC emulates all bit
processing of Bluetooth Classic, including both transmission
and reception, in software.

2.4.1 Packet-level Design

Bluetooth Classic’s physical and MAC-layer designs are very
hardware-centric, which makes software emulation particu-
larly challenging. On the one hand, Bluetooth devices have to
maintain a very strict and precise time base to align transmis-
sions at the start of each time slot, which is best achieved by
hardware timers. On the other hand, the timer’s instant clock
value at the time of transmission/reception is also used in the
physical and MAC layer processing of each packet. For sili-
con implementation, these processing blocks can be directly
wired to hardware timers. For software emulation, however, it
is much more challenging because the computation is done in
software and is much further away from the hardware timer.

We address this challenge with a design of ping-pong com-
munication between the driver and the BLE chip. BBC uses the
timer on BLE chips to maintain a stable and precise timing.
Every 2.5ms, the BLE chip sends the current clock value and

effect, thus requiring random hopping. Section 15.247 was amended in 2002,
which allows digital modulation systems to be used. For example, BLE uses
fixed advertising channels, which are also used for connection establishment.

Driver

BLE
Chip Timer Tick

BT clocks &
Rx payload

Next freq. &
Tx Payload

BLE Tx
BLE
Rx BLE Tx

BLE
Rx

Timer Tick

Figure 4: Ping-pong design in BBC to satisfy BT’s strict timing

the raw FSK payload to the driver. These pieces of informa-
tion allow BBC to correctly decode raw bits in software. The
BLE chip also sends the clock value of the next transmit slot
to the driver. BBC uses this clock to encode the next transmis-
sion and calculate the next frequency hops. BBC then sends
the next two frequency hops, the number of bytes to be trans-
mitted, and the raw FSK bits to the BLE chip. The bits are not
immediately transmitted. Instead, BBC uses the timer to set
the frequency hop and always trigger the transmission at the
same timer value, which guarantees that each transmission
is precisely 2.5ms apart. After each transmission, BBC hops
to the new frequency and directly enters the receive mode
to collect FSK bits. By decoupling the timer and the com-
putation this way, BBC guarantees precise timing required by
the Bluetooth standard while also allowing software-based
processing, which naturally has looser timing.

Each time slot in Bluetooth Classic is 625µs and thus one
pair of Tx-Rx slots is 1.25ms. However, the standard also
defines multi-slot transmissions where a transmission can
take 3 slots (followed by 1 slot of reception). We find that
this multi-slot transmission is widely used in conventional
Bluetooth headphones since it significantly improves through-
put. BBC uses an interval of 2.5ms so that both single-slot and
multi-slot transmissions are supported. For the (mandatory)
single-slot transmission, only 2 slots are used. When stream-
ing audio data, multi-slot transmission is used and all 4 slots
are occupied.
BBC configures the length of the transmission when the

transmission starts. For the reception, BBC uses a fixed length
of 42 bytes after a single-slot transmission and 14 bytes after
a multi-slot transmission. This design allows BBC to receive
a full packet from Peripheral after a single-slot transmission
and to receive the acknowledgement bit after a multi-slot
transmission.

2.4.2 Bit-level Design (Transmission)

Since BLE chips do not have the hardware bit-processing
blocks for Bluetooth-Classic packets, BBC has to emulate
all these blocks in software. Specifically, BBC generates ac-
cess codes, header/HEC, and payload/CRC. Then, it emulates
(time-variant) bit scrambling and FEC coding so that legiti-
mate Bluetooth-Classic packets will be transmitted when the
bits are transmitted by BLE radio.

Access Code. Each Bluetooth packet begins with a 72-
bit access code. BBC generates the access code in software
by applying two XOR (exclusive OR) operations with BCH

(Bose-Chaudhuri-Hocquenghem) coding applied in between.
The packet structures of Bluetooth-Classic and BLE pack-

ets are very different. Bluetooth Classic uses 72-bit access
codes whereas BLE uses 4-byte access addresses. BBC re-
solves this difference by setting the access address of BLE to
the byte 0 to byte 3 of the generated access codes. This en-
sures that BLE starts receiving bits when a Bluetooth-Classic
packet arrives, and correctly transmits access code bits in
Bluetooth Classic’s format.

Since two access codes are used during the paging process
of Bluetooth Classic, BBC switches access addresses at differ-
ent slots. Specifically, BBC uses Peripheral’s access code when
transmitting ID and FHS packets, and uses Central’s access
code when transmitting POLL packets. If paging is successful,
the Central’s access code will be used for subsequent traffic.

Header and HEC. Most Bluetooth packets contain an 18-
bit header, which consists of 10 bits of information and 8
bits of Header Error Check (HEC). The 10 bits include the
packet type (e.g., DM1), a unique address (AM_ADDR), 1
bit (ARQN) for acknowledgement, and 1 bit (SEQN) for data
toggling, and BBC fills each field accordingly. BBC specifies
AM_ADDR explicitly in the FHS packet and all subsequent
traffic contains the same AM_ADDR. The ARQN and SEQN
bits are used for the packet retransmission logic and are cal-
culated in Sec. 2.5. To generate the HEC, we build a linear
feedback shift register (LFSR) in software and calculate the
10 bits of HEC by the shift register.

Payload and CRC. For data-bearing packets, payload fol-
lows the header. In addition to actual data, the payload field
contains a separate header known as the payload header. The
payload header contains LLID and the length of the remaining
payload.

The LLID is important for managing fragmentation and
LMP. BBC sets LLID to 2 to indicate the start of a logical
packet, and to 1 to indicate a continuation fragment. LMP
packets have an LLID of 3.

Similar to HEC, BBC runs a software-based LFSR to gener-
ate the CRC. The LFSR is also initialized with addresses but
has a different length and feedback polynomial. BBC appends
the CRC bytes at the end of the packet.

Scrambling. After BBC generates the header and payload
(including CRC) in the driver, the entire bitstream is processed
by the scrambler. BBC uses a 6-bit LFSR as the scrambler,
initialized by bit 6 to bit 1 of the Bluetooth clock. Then, BBC
continuously XORs each bit with the LFSR output.

Forward Error Correction (FEC). After scrambling, BBC
applies FEC to the bitstream. The header and the payload
use different FEC codes. The header portion (the first 18 bits)
is encoded with the (3,1) repetition code. For packet types
such as FHS and DM1, the payload is encoded with a BCH
encoder. For the encoder, BBC uses software LFSR to generate
15 coded bits for every 10 information bits. The input to the
encoder is padded so that its length is a multiple of 10. For
other packet types, the scrambled payload is directly used.

Pack FSK Bits as BLE Payload. After the FEC, BBC
prepends the bitstream with the last 5 bytes of the access
code. Since BLE’s access address is set to the first 4 bytes
of the access code, the first 4 bytes are automatically trans-
mitted by the chip. The entire bitstream is packed as the BLE
payload and is sent to the chip for transmission.

2.4.3 Bit-level Design (Reception)

When a Bluetooth-Classic packet arrives, its access code will
match BLE’s access address and raw FSK bits will be col-
lected. These raw bits, along with the two clock values, are
sent directly to the driver for decoding. The decoding process
is the reverse process in Sec. 2.4.2, including removing the
FEC, descrambling the entire bitstream, checking the HEC
and CRC, parsing the fields, and collecting the payload.

When the driver receives the bits from the BLE chip, it
first removes the first 14 bytes (which includes two clock
values, one byte of total length, and 5 bytes of the tail of the
access code). The next 54 bits (which use the repetition code)
are decoded using majority vote. The next 255 (=15·17) bits
correspond to the payload portion of a packet. We extract
the first 10 bits of every 15 bits and concatenate all output
bits. Note that DM1 is the only data-bearing packet type that
is mandatory for all Bluetooth devices, and the maximum
payload length of a DM1 packet is 17 bytes.

The entire bitstream is then descrambled using the clock
value of the receive slot. BBC follows a strict processing order
(FEC, descrambling, then parsing the fields) that the Bluetooth
standard mandates.

After descrambling, BBC checks the HEC by comparing the
calculated and received HEC. If the header check passes, BBC
further parses the information bits (e.g., the acknowledgement
bit) and the packet type. If the incoming packet is DM1,
BBC decodes the length of the payload (via the first byte of
the payload) and calculates the CRC of the packet. If the
CRC passes, BBC checks the LLID. If the LLID is 3, the
payload is processed by BBC’s emulated LM (Sec. 2.7.1). If
the LLID is 2, BBC starts collecting a new logical packet.
Such a packet can be larger than the maximum size of DM1,
and continuation fragments (LLID=1) may follow. To ensure
correct fragmentation, we first calculate the total length of the
logical packet when a DM1 with LLID=2 is received (since
the length of the logical packet is encoded in the first two bytes
of the actual payload). BBC then continuously concatenates
all subsequent payload bytes until the total length is reached.

2.5 Reliable Packet Communication

In Sec. 2.4, both transmission and reception are realized with
BLE chips. However, the packet delivery is not reliable since
packets may be lost or received with error. To provide reli-
able communication, BBC runs software-based error checking
and retransmission. In particular, BBC handles the SEQN (se-

quence number) and ARQN (acknowledgement) bits of each
packet in the driver.

We build a software circular FIFO to queue outgoing mes-
sages. After a successful paging, the read and write pointers
of the FIFO are reset. Each entry in the FIFO contains a
pointer to the payload and a flag. The flag indicates whether
the payload is an LMP message, whether the payload should
use multi-slot transmission, and whether the payload is a start
of a logical packet. When the upper layer sends a large packet
to BBC, BBC first fragments the packet into a start fragment
and continuation fragments to make each fragment smaller
than the maximum payload size. All fragments are queued in
the FIFO.

At every available transmit slot, BBC checks the FIFO. If
the FIFO is not empty, BBC generates the raw bits (Sec. 2.4.2)
and transmits them. Otherwise, BBC sends a POLL packet.

BBC

Headphones

NULL,
ARQN=1

DH3,
SEQN=1

NULL,
ARQN=1

DH3,
SEQN=0

NULL,
ARQN=1

DH3,
SEQN=0

Tx completed, advance FIFO pointer

DM1,
SEQN=1

POLL,
ARQN=0

DM1,
SEQN=1

POLL,
ARQN=0

NULL

POLL,
ARQN=1

Rx completed
BBC

Headphones

Figure 5: Reliable Transmission and Reception

2.5.1 Processing SEQN and ARQN.

After sending DM1 or DH3, Peripheral should always respond
with a packet with a header (such as DM1 or NULL). This
header contains the ARQN bit, indicating whether the last
transmission is successful. If ARQN is set, BBC advances the
read pointer of the FIFO. Otherwise, the read pointer remains
and the next transmit slot retransmits the same payload. In
Bluetooth Classic, the SEQN bit is toggled for every new mes-
sage, which is used to detect duplicate transmissions. When
BBC receives a data packet, BBC checks the SEQN. If the
SEQN is the same as the last data reception, BBC ignores the
current reception and does not send the payload to the upper
layer or BBC’s Link Manager.

2.5.2 Setting SEQN and ARQN.

When sending a packet, BBC also sets SEQN and ARQN
so that reliable communication is achieved. If BBC receives
a data packet with a correct CRC, ARQN of the next BBC
transmission is set to 1. For SEQN, BBC sets this bit to the
inversion of the least-significant bit of the FIFO read index.
This design comes from the observation that SEQN should
toggle for every new message and this maps exactly to the
least-significant bit of the index of a circular FIFO with an
even number of elements.

2.6 Authentication and Encryption

Modified
SAFER+

SAFER+Key
RAND

XOR & ADD

Round #0Sub-
keys

XORLast
Subkey

⋮
ADDR

Round #7Sub-
keys

ADD/XOR

4 PHTs
3 Permutations

Sub-
key

Mapping

XOR/ADDSub-
key

Figure 6: Authentication and Encryption Key Generation

BBC emulates Bluetooth authentication and encryption in
software.

2.6.1 Authentication

At the core of Bluetooth authentication is a hash function. This
hash function consists of two block ciphers: a SAFER+ cipher
and another SAFER+ cipher with a modified third round. The
input of the first cipher is a 128-bit key and a 128-bit random
number. Within the SAFER+ cipher, the key is first expanded
into 17 “subkeys” by applying bit rotation, byte permutation
and byte addition. The SAFER+ cipher has 8 rounds and
each round uses two subkeys. The input to each round is
first added (or XOR’ed) with the first subkey, transformed
by a nonlinear mapping, and then added (or XOR’ed) with
the second subkey. The bytes are further processed through
4 sets of Pseudo-Hadamard Transform with 3 permutations
in between. After 8 rounds, the 17-th subkey is applied to
generate the output. The output of the first cipher is then
XOR with its input, and combined with the third input to the
hash function. The second SAFER+ cipher takes this result
as the input and uses an offset key. The final output of the
hash function is generated by the second SAFER+ cipher.
We implement the entire hash function and the two SAFER+
ciphers in software from the ground up.

2.6.2 Encryption

After authentication, the upper layer starts encryption by issu-
ing HCI_Set_Connection_Encryption. When this command
is received, BBC sequentially sends 3 LMP packets (encryp-
tion mode, encryption key size, start encryption) to Peripheral.
The second LMP packet contains the size of the encryption
key and BBC specifies a size of 16 bytes (128 bits).

In Bluetooth, the actual encryption key differs from the
link key. The actual key is generated, using the hash func-
tion, from the link key, a random number EN_RAND, and
ACO (generated during authentication). The 16-byte random
number EN_RAND is specified by Central in the third LMP
message (LMP_START_ENCRYPTION_REQ). The entire
128-bit output of the hash function is used as the encryption
key. BBC reuses the software-based hash function that we built
for authentication.

For actual encryption, Bluetooth uses a proprietary algo-
rithm known as E0. We find that emulating E0 in software is

highly intricate. For example, although an open-source im-
plementation of E0 [15] can be found online and although
it passes all Bluetooth’s test vectors, the implementation is
actually incorrect and yields wrong encrypting bitstreams for
most Bluetooth addresses. BBC uses our in-house software
implementation.

For generating the encryption/decryption sequence, BBC
uses 4 software LFSRs with different sizes (25, 31, 33, 39).
The LFSRs are initialized with Central’s address, current Blue-
tooth clock, and the 128-bit encryption key. The outputs of
the shift registers are fed into an auxiliary logic including a
summation and a “blend” logic. The output of E0 is generated
by combining (with XOR) the outputs of all shift registers
and the auxiliary logic.

In Bluetooth, only the payload portion of a packet is en-
crypted. E0 is applied after the payload is generated but before
scrambling. We add the function call to E0 at the correspond-
ing locations in BBC.

We also design an optimization to minimize the E0 compu-
tation during packet transmission. (After various negotiations,
the majority of traffic is BBC-to-headphones and thus trans-
mission optimization is the most effective.) Note that the
pseudorandom sequence can be pre-generated because the
address and the encryption key are known and the Bluetooth
clock of the next transmit slot can be estimated. After sending
a packet to the BLE chip, BBC estimates the next transmit
clock value and calculates the pseudorandom sequence. At
the time of the next transmission, if the actual clock value
matches the estimation, BBC encrypts the payload by simply
performing XOR with the pre-generated sequence.

2.7 Link Management and Transport Layer

To make a BLE chip appear like a Bluetooth-Classic chip
to the upper software stack, BBC has software-based Link
Manager and L2CAP logic.

2.7.1 Link Manager (LM)

The LM is used in Bluetooth-Classic systems to negotiate and
control various properties of the physical link. After paging,
two Bluetooth devices must first establish an LMP connection
so that other Bluetooth protocols and profiles can use the link.
Authentication and encryption are also controlled by LMP.

As the LM, BBC queues LMP_VERSION_REQ af-
ter a successful paging. This triggers several mes-
sage exchanges about LMP features and eventually
BBC sends LMP_HOST_CONNECTION_REQ and
LMP_SETUP_COMPLETE. At this point a very basic LMP
connection is established but no link properties have been set.
When BBC receives LMP_SETUP_COMPLETE from head-
phones, it informs the upper layer of a successful LMP con-
nection via an HCI message (HCI_Connection_Complete).

After LMP_SETUP_COMPLETE, Bluetooth headphones
start negotiating link capabilities in detail by sending different
LMP requests. BBC emulates the LM by responding to various
LMP requests according to the Bluetooth standard.

2.7.2 L2CAP

After an LMP connection is established and with the link
authenticated and encrypted, the L2CAP (Logical Link Con-
trol and Adaptation Layer Protocol) traffic can be transferred
using BBC. From this point on, BBC operates just like a con-
ventional Bluetooth-Classic chip, allowing the upper layers
(BlueZ and PulseAudio) to send and receive arbitrary L2CAP
data.

After being notified that the link is encrypted, the upper
layer automatically initiates various protocols over the L2CAP
layer. These include SDP (Service Discovery Protocol [1]),
AVCTP (Audio/Video Control Transport Protocol [16]) and
AVDTP (Audio/Video Distribution Transport Protocol [17]),
which are typically handled by BlueZ. These protocols must
be connected first before audio streaming can start. Since BBC
appears as a normal Bluetooth-Classic chip to BlueZ, BBC is
directly compatible and connected to BlueZ. After negotiation
of these protocols, BlueZ continuously sends audio packets,
encoded by PulseAudio, over the L2CAP layer of BBC.

3 Implementation and Evaluation

We implement BBC on readily-available BLE chips. For eval-
uation, we first conduct microbenchmarks using the industry-
standard Bluetooth measurement tool. We then perform end-
to-end evaluation of BBC by directly connecting and streaming
music to unmodified, commodity Bluetooth headphones.

We implement BBC on CC2540 BLE chip from Texas In-
struments (TI) and use the CC2540EMK-USB development
board [18] as the hardware. We use SDCC (Small Device C
Compiler) [19] to develop the firmware and CC-DEBUGGER
[20] from TI is used to flash the firmware. The CMD_BLE_TX
and CMD_BLE_RX commands are used to transmit and receive
BLE packets. We also set the frequency deviation to 160kHz
using the MDMCTRL0 register. Since modulation of modern
BLE chips is done by digital circuits and radio (e.g., FCC)
regulations require measurement of the output power of the
unmodulated carrier (i.e., zero frequency deviation), the fre-
quency deviation can be configured. We also build a Bluetooth
driver (as a Linux kernel module) to implement Bluetooth-
Classic operations. Our driver registers a new HCI Bluetooth
device when the kernel detects a matching VID and PID. After
opening the Bluetooth device, the kernel sends various HCI
messages to the driver. Meanwhile, BBC starts paging Blue-
tooth headphones after initialization. Once the headphones are
successfully paged, the ping-pong communication between
the BLE chip and the driver begins. Bidirectional reliable
communication is then established.

Since BBC emulates LM in the driver, most of the HCI mes-
sages are intercepted and directly responded to by the driver.
For a small subset of HCI messages (such as the name request,
encryption requests and the ACL traffic), the driver constructs
LMP or DH3 packets and puts them in the Tx FIFO. In the
driver, the key processing steps (Sec. 2.4–2.5 and Sec. 2.6.2)
are implemented in the USB receive callback function. For
authentication (Sec. 2.6.1), the hash function is called when
the driver receives authentication HCI messages, but the LMP
exchanges are implemented in the receive callback function.

3.1 Evaluation Setup
We use Ubuntu 20.04 with BlueZ 5.53 and PulseAudio 14.0
to evaluate BBC. The transmit power of the BLE chip is set to
4dBm, which corresponds to Class 2 devices (with an opera-
tional range of up to 10m) in the standard [1]. Thus, in both
PHY and system evaluations, we test BBC at 1, 5 and 10m.

For microbenchmarks, we use Teledyne LeCroy’s FTS4BT
[21], the de facto industry-standard [22] sniffer. This Blue-
tooth test equipment allows us to directly capture the over-the-
air (OTA) Bluetooth traffic and measure the physical-layer
performance, such as packet error rate (PER) and the maxi-
mum achievable throughputs.
Table 1: Evaluation with Unmodified Bluetooth Headphones

Headphones Bluetooth Chip Used
Sennheiser CX150 Qualcomm QCC3024

Sony SBH20 CSR CSR8640
Apple Airpods 2 Apple H1

We also conduct system evaluation where BBC creates a
direct connection with off-the-shelf Bluetooth headphones
(Table 1), negotiates the capabilities and streams audio, just
like a conventional Bluetooth chip. The system evaluation
involves all aspects of Bluetooth, including PHY, packet-
retransmission (ARQN/SEQN), and all other components
(LMP, authentication/encryption, BlueZ and PulseAudio). On
Ubuntu 20.04, the audio codec is implemented in PulseAudio
and SBC is used in the system evaluation. Our system eval-
uation uses the default SBC setting (Bitpool: 53, Block:16,
Allocation: Loudness, Subbands:8). This is the “high quality”
setting defined in the A2DP standard [4], and is commonly
the highest SBC setting of Bluetooth headphones. The setting
corresponds to a bitrate of 328kbps.

3.2 Microbenchmark
We evaluate the physical-layer performance at 1, 5, and 10m,
and we test POLL, DM1 and DH3 packets at each distance.
For each test case, we send 4096 packets. We send the maxi-
mum amount of payload for each payload-bearing packet (17
bytes for DM1 and 183 bytes for DH3). From the FTS4BT
capture, we count the number of correctly received packets
(with correct HEC and correct CRC), and calculate the PER
and effective throughputs.

Table 2: Packet Error Rate (PER) and Throughputs at the
Physical Layer

POLL
Distance 1m 5m 10m

Correctly Received Packets 4094 4087 4077
Packet Error Rate (%) 0.05 0.22 0.46
Throughputs (kbps) No payload

DM1
Distance 1m 5m 10m

Correctly Received Packets 4094 4075 4074
Packet Error Rate (%) 0.05 0.51 0.54
Throughputs (kbps) 54.37 54.12 54.11

DH3
Distance 1m 5m 10m

Correctly Received Packets 3965 3954 3897
Packet Error Rate (%) 3.20 3.47 4.86
Throughputs (kbps) 566.87 565.30 557.15

Table 2 shows the results. For POLL and DM1 packets,
the PER is very low. At 1m, only 2 of the 4096 packets are
not received correctly, corresponding to a PER of 0.05%. The
PER steadily increases with distance, but still remains very
low at 10m at around 0.5%. Compared to POLL, DM1 has
a slightly higher PER because DM1 packets are longer. The
PER is noticeably higher for DH3 packets because DH3 pack-
ets have 183 bytes of payload (plus payload header and CRC)
and are much longer than DM1 and POLL packets. However,
BBC still has good performance with a PER of 3–5%.

We also calculate the throughputs achieved. Table 2 shows
that DH3’s throughputs are much higher than DM1’s because
of its much larger packets and lower overheads. Thus, even
though DH3 is optional, supporting DH3 packets is important
for audio streaming because DH3 is about 10x faster than
DM1. We calculate the throughputs by the number of bytes
(DM1: 17, DH3: 183) that can be actually used by the L2CAP
layer, and we do not count the payload header and CRC bytes
as usable payloads. DH3 achieves a throughput of ∼560kbps,
which provides ample headrooms for the bitrate required by
audio streaming (Sec. 3.1).

3.3 System Evaluation
In the system evaluation, BBC directly connects to Bluetooth
headphones and streams audio. We measure the performance
for 1 min after BBC successfully pages the headphones. Since
Bluetooth operates strictly based on time slots, 60s corre-
sponds to 96000 slots. As described in Sec. 2.4.1, transmis-
sion is scheduled at a 4-slot interval (which maximizes the
throughput of DH3). Therefore, BBC transmits exactly 24000
packets within the 1-min duration. At each transmission, BBC
either sends POLL or DM1 (or DH3), depending on the status
of the Tx FIFO. We gather the statistics of the number of
packets sent and acknowledged. A DM1 or DH3 packet is
acknowledged if BBC receives a packet with correct HEC and

Table 3: System Performance with Sennheiser CX150

1m 5m 10m
Ack’d
Sent

PER
(%)

Ack’d
Sent

PER
(%)

Ack’d
Sent

PER
(%)

POLL 8714
8825 1.26 8472

8617 1.68 8276
8549 3.19

DM1 18
18 0.00 18

18 0.00 19
19 0.00

DH3 14709
15157 2.96 14723

15365 4.18 14588
15432 5.47

Total 23441
24000 2.33 23213

24000 3.28 22883
24000 4.65

Total
Payload

2490987
Bytes

2493419
Bytes

2470472
Bytes

Throughput
(Avg./Peak)

332.13 kbps/
338.90 kbps

332.46kbps/
338.54 kbps

329.40 kbps/
338.19 kbps

Table 4: System Performance with Sony SBH20

1m 5m 10m
Ack’d
Sent

PER
(%)

Ack’d
Sent

PER
(%)

Ack’d
Sent

PER
(%)

POLL 8797
8873 0.86 8564

8654 1.04 8563
8701 1.59

DM1 17
17 0.00 17

18 5.56 17
17 0.00

DH3 14701
15110 2.71 14701

15328 4.09 14701
15282 3.80

Total 23515
24000 2.02 23282

24000 2.99 23281
24000 3.00

Total
Payload

2491546
Bytes

2491546
Bytes

2491546
Bytes

Throughput
(Avg./Peak)

332.21 kbps/
336.13 kbps

332.21 kbps/
338.54 kbps

332.21 kbps/
336.22 kbps

ARQN. A POLL packet is acknowledged if a reply with a
correct HEC is received. (POLL has no effect on ARQN.) We
also calculate the number of payload bytes of all acknowl-
edged packets. We then convert this number to average (60s)
and peak (1s) throughputs.

Table 3 shows the system performance with Sennheiser
CX150 headphones. Similarly to the microbenchmarks, the
PER increases with distance, but the overall PER is still rel-
atively low (∼5%) at 10m. From the individual breakdown,
we can see that DH3 has a higher PER because of the longer
length. Note that there are very few DM1 packets because
we only use DM1 for LMP packets and use DH3 for all
other L2CAP traffic. (The Bluetooth standard specifies that
DM1 should always be used for LMP.) Finally, because the
maximum throughput at the physical layer (∼560 kbps) is
significantly higher than the application bitrate (∼328 kbps),
the total payload delivered and throughputs are very similar
across distances (and are governed by the application bitrate).
By using ARQN/SEQN, audio packets are reliably transmit-
ted to the headphones and the audio does not have glitches
or interruption. Similarly, Table 4 shows the system perfor-
mance with Sony SBH20 headphones. The overall PER is
only 2–3%. Because Bluetooth uses time slots very strictly
and the traffic is entirely scheduled by Central, the traffic

Table 5: System Performance with Apple Airpods

1m 5m 10m
Ack’d
Sent

PER
(%)

Ack’d
Sent

PER
(%)

Ack’d
Sent

PER
(%)

POLL 5103
6204 17.75 4813

6019 20.04 4774
5987 20.26

DM1 21
27 22.22 21

28 25.00 21
26 19.23

DH3 13739
17769 22.68 13741

17953 23.46 13740
17987 23.61

Total 18863
24000 21.40 18575

24000 22.60 18535
24000 22.77

Total
Payload

2330133
Bytes

2330499
Bytes

2330316
Bytes

Throughput
(Avg./Peak)

310.68 kbps/
340.00 kbps

310.73 kbps/
338.54 kbps

310.71 kbps/
344.39 kbps

pattern is highly predictable at very low PER. Note that the
number of acknowledged DM1 and DH3 packets is exactly
the same, and thus the total payload and average throughputs
are the same. However, the peak throughputs have very small
variations due to occasional retransmissions.

3.3.1 Deep Dive into Airpods’ Bluetooth Connection

Table 5 shows the performance with Apple Airpods, and the
PER is significantly higher than the other headphones. We
have taken a close look at Airpods’ Bluetooth connection. We
find that the higher PER comes from the design and imple-
mentation on the Airpods’ side, and the result is similar to the
PER of using an off-the-shelf Bluetooth chip with Airpods.

Specifically, as a reference of using a standard Bluetooth
chip, we use the Qualcomm WCN6856 card (Qualcomm
Atheros FastConnect 6900 [23]) on a Windows 10 laptop to
connect to Apple Airpods, and capture the OTA traffic using
Teledyne LeCroy’s FTS4BT. In the packet trace, we counted
the number of packets transmitted by WCN6856 and the num-
ber of packets not acknowledged by Airpods. (We manually
counted the packets within the duration of 300 packets be-
cause this specific condition cannot be easily configured in the
FTS4BT suite.) Of the 165 packets transmitted by WCN6856,
30 packets are not acknowledged, which corresponds to a
PER of 30/165 = 18.18%. BBC’s PER (see Table 5) is about
3–5% higher than this baseline, which is similar to the results
of CX150.

There are several factors that might cause Airpods to only
respond to around 80% of the packets. Airpods are known
as true wireless headphones where left and right earbuds
both have a Bluetooth chip. Since the original Bluetooth
standard [24] was designed to communicate with only one
Bluetooth chip, the key design principle of true wireless head-
phones is to make a pair of Bluetooth chips appear as one
logical chip. The packet capture between WCN6856 and Air-
pods shows that Airpods use the standard Bluetooth protocol.
However, because Airpods actually have two physical Blue-
tooth chips, Airpods can be temporarily unable to respond

to some incoming packets due to the need for coordination
between the chips on two earbuds.

Note, however, because the PHY provides significantly
higher throughputs, BBC actually streams audio to Airpods
without interruptions or glitches. Another difference between
Airpods and other devices is that Airpods start audio stream-
ing after the “connected” chime (about 5s after successful
paging). This contributes to the lower number of total payload
bytes and average throughputs in Table 5. In the steady state
(11∼60s), the average throughputs are 334.62, 334.68 and
334.67 kbps, which are consistent with prior results.

Another important observation from the packet capture of
the Qualcomm WCN6856 with Apple Airpods is that the
audio configuration and the authentication/encryption algo-
rithms are exactly the same as BBC. By default, Qualcomm
WCN6856 and Apple Airpods use the high-quality A2DP
SBC setting (the same setting as Sec. 3.1) and the default
authentication (Sec. 2.6.1) and encryption (Sec. 2.6.2). Note
that WCN6856 is one of Qualcomm’s latest flagship solutions
for Bluetooth connectivity on laptops and smartphones, and
BBC provides identical audio quality and security for common
Bluetooth headphones like Airpods.

3.4 Computation Time
Table 6: Computation Time of BBC

POLL DM1 DH3 Encryption
Mean (µs) 1.19 2.32 10.03 29.67

Std. Deviation (µs) 0.65 1.03 2.70 7.62

We evaluate the computation time of BBC using an HP
800 desktop with an i5-4570S processor. BBC only requires
simple logic and integer operations, and is efficient on modern
hardware. Table 6 shows the time required for generating
packets and for precomputing encryption sequences. Packets
are sent every 2500µs (4 slots) and the computation (for DH3
packets with encryption) only takes ∼1.6% of the time.

3.5 End-to-end Latency
Table 7: End-to-end Latency

SBH20 CX150 Airpods
BBC (ms) 161.3 229.9 181.8

CSR dongle (ms) 149.3 216.0 165.3

We measure the end-to-end latency of BBC by collecting the
sound samples fed into the Bluetooth codec (via Pulseaudio’s
sound monitor interface) and the recorded samples of the
analog signals from Bluetooth headphones.

Table 7 shows the results. For comparison, we also use a
CSR USB dongle and measure the end-to-end latency under
identical conditions. In a typical Bluetooth system, the latency
is largely contributed by the audio codec. For the mandatory
SBC codec, the latency is around 200ms and BBC’s latency
is consistent with this value. Compared to the USB dongle,
the latency difference is only 12.0–16.5ms, which is much

less than the audio codec latency. BBC’s computation latency
(29.67µs) is very small, although the time slot scheduling,
packet fragmentation and buffering strategy may affect the
latency. We leave these optimizations as future work.

3.6 High-quality Bluetooth Codec
Table 8: BBC with High-quality Audio Codec

CX150 Airpods Momentum 2
Codec AAC AAC aptX

PER (%) 6.9 25.2 6.6
Throughput (kbps) 307.40 304.51 352.01

BBC also directly supports high-quality audio codecs by
leveraging Bluetooth Classic. We install the pulseaudio-
modules-bt module [25] on Ubuntu and BBC can directly use
these codecs through the same A2DP and L2CAP protocols.
CX150 and Airpods support AAC, and we additionally test
Sennheiser Momentum 2 with aptX.

The result is provided in Table 8. The codec module by de-
fault sets the AAC bitrate to maximum (∼320kbps) whereas
aptX has a bitrate of 352kbps. These application-level bi-
trates are on the same level of SBC’s bitrate, and similar to
streaming with SBC, BBC can stream audio without glitches.
In Table 8, PER is higher than Tables 3–5 due to the nois-
ier environment, but the bitrate targets are still well within
the PHY throughput of BBC. In such a scenario, adding the
optional adaptive frequency hopping (AFH) feature can be
beneficial. Alternatively, we can set AAC’s bitrate to 265kbps
per Apple’s specification [26] and provide more headroom
for BBC.

3.7 Comparison
BBC enables using BLE chip for Bluetooth Classic and thus
allows smaller chip area. For a fair comparison between
BLE and dual-mode chips, we compare CSR’s product line,
since CSR makes both BLE and dual-mode chips. CSR’s
smallest BLE chip is CSR1013 with a size of 2.43x2.56mm
[27]. In comparison, CSR’s smallest dual-mode chips are
CSR8610 (3.92x3.68mm [28]) and QCC3026 (3.98x4.02mm
[29]), which are 2.3–2.6x the size of CSR1013 with wafer-
level packaging. (CC2540 does not use wafer-level pack-
aging and thus the packaged IC is larger. TI’s CC2340 is
2.2x2.6mm [30] with wafer-level packaging.) A smaller die
size directly affects cost. CSR1013 costs $1.12 [31] whereas
QCC3026 costs $5.09 [32]. (CSR8610 is unavailable.) Sim-
ilarly, CC2540 and CC2340 cost $3.05 [33] and $1.14 [34],
respectively, and both are cheaper. In terms of power con-
sumption, CC2540 consumes 15.8mA and 24.6mA during Rx
and Tx [35]. Ultra-low-power BLE such as CC2340 consumes
5.3mA (Rx) and 5.1mA (Tx) [30]. In comparison, CSR8640
consumes 15mA [36] during SBC audio streaming. In terms
of latency, although the LC3 codec used in LE Audio can re-
duce the latency to 20∼30ms [37], LE Audio requires support

from both the transmitter and receiver. In comparison, BBC
can directly work with existing headphones without requiring
this optional feature, and our main focus is addressing the
compatibility between BLE and existing headphones. BBC
does not require firmware upgrade or any modification to
Bluetooth headphones. In Table 1, none of the headphones
supports LE Audio. Furthermore, BBC and LE Audio are not
orthogonal and can complement each other. BBC can be used
as a compatibility mode on BLE chips to support Bluetooth
Classic headphones.

4 Discussion

4.1 Using BBC with other BLE chips

BBC only requires BLE chips to have a hardware timer and
modulation control, and is portable to other BLE chips. The
BLE standard requires maintaining a microsecond-level timer
to precisely follow the T_IFS (Inter Frame Space), and this
can be directly reused by BBC for Bluetooth Classic. Also,
the timer does not have to be hard-wired to BLE’s digital
circuits and it can just be a general-purpose timer accessible to
microcontrollers. Even if there is no timer peripheral (unlikely
on modern microcontrollers), ARM core has a built-in system
timer (SysTick) as part of the ARM design.

In terms of modulation control, the frequency deviation of
common BLE chips is digitally configurable and supports a
frequency deviation of around 160kHz. For example, Nordic’s
chips can use a frequency deviation of 170kHz [38,39], which
is within the specification (140 to 175kHz) of Bluetooth Clas-
sic. Another example is that the frequency deviation of Sil-
icon Labs’ EFR32 chips is configurable [40] between 0 to
1000kHz [41]. These configurations exist because Nordic’s
legacy protocol (known as ShockBurst) has a standard fre-
quency deviation of 160kHz, and other vendors include this
configuration to enable communication with a large number
of Nordic’s devices. BBC can reuse this property for Bluetooth
Classic communication.

5 Related Work

Few academic or open-source research investigates the inter-
nals (between FSK and HCI layers) of Bluetooth, and BBC
is the only fully operational Bluetooth system (from con-
nection establishment to audio streaming) to the best of our
knowledge. Some prior work, with the bottom-up approach,
focuses on sniffing Bluetooth traffic. Ubertooth [42] can fol-
low and passively sniff an active Bluetooth connection, and
is used in numerous projects [43–45]. However, it operates
on the raw FSK level (without Bluetooth bit processing or
packet processing) and lacks the ability to create (i.e., pag-
ing), maintain (ARQN and LMP), or encrypt a connection.
BlueEar [46] adds Bluetooth clock acquisition and adaptive

hop selection to Ubertooth for sniffing. Sniffing raw FSK bits
using USRP [46, 47] is also proposed.

Some other work, with the top-down approach, focuses on
leveraging hidden features on conventional Bluetooth chips
for low-level Bluetooth experiments. InternalBlue [48–50]
reverse-engineers Broadcom’s Bluetooth chips and directly
sends LMP messages below the HCI layer. BrakTooth Sniffer
[51] reverse-engineers the ESP32’s Bluetooth implementation,
and allows sniffing or injecting of Bluetooth packets. Their
goal is modifying the normal packet exchange on Bluetooth-
Classic chips, whereas BBC aims to emulate full Bluetooth
Classic with BLE chips. They focus on packet-level (POLL,
LMP, etc.) interactions in the connected state, whereas BBC
handles bit-level processing, paging, frequency hopping and
reliable delivery.

Some researchers investigate the security of Bluetooth.
SoK [52] provides an overview of the security flaws in Blue-
tooth. An open-source (but incorrect) E0 implementation [15]
has been attempted. KNOB [53, 54] and BIAS [55, 56] focus
on the authentication and key entropy in Bluetooth. Black-
tooth [57] implements more attacks using InternalBlue and
BIAS. BLUR [58, 59] uncovers the flaws of key derivation
across Bluetooth and BLE. BrakTooth [60] discovers abnor-
mal Bluetooth packets that trigger crashes and deadlocks.
BBC is also related to CTC research. BlueFi [61] and WiBea-

con [62] enable communication from WiFi to Bluetooth. They
are limited to either broadcasts or one-way communication
for audio streaming (i.e., without connection establishment).
FLEW [63] and Unify [64] convert Bluetooth chips into WiFi
chips. Bluetooth-Zigbee communication [65, 66] is also pos-
sible, but the research focuses on signal processing of wave-
forms and not on full protocol and system-level emulation.

6 Conclusion

BBC is a complete system that enables BLE chips to di-
rectly support Bluetooth Classic. By eliminating the need
for Bluetooth-Classic hardware blocks, BBC enables using
simpler hardware (BLE chips) in the future while maintaining
compatibility in the driver. BBC also enables existing BLE
chips to directly communicate with Bluetooth headphones,
opening the possibility of new audio applications on current
BLE devices. Our extensive evaluations demonstrate BBC’s
low PER and high throughputs, and its ability to stream audio
to conventional headphones with the same audio quality as
COTS Bluetooth-Classic chips.

References

[1] Bluetooth SIG. Bluetooth Core Specification v5.3. ht
tps://www.bluetooth.com/specifications/spe
cs/core-specification-5-3/, 2021.

[2] Bluetooth SIG. 2024 Bluetooth Market Update. https:
//www.bluetooth.com/2024-market-update/,
2024.

[3] Bluetooth SIG. 2023 Bluetooth Market Update. https:
//www.bluetooth.com/2023-market-update/,
2023.

[4] Bluetooth SIG. Advanced Audio Distribution Profile
1.4. https://www.bluetooth.com/specificatio
ns/specs/advanced-audio-distribution-profi
le-1-4/, 2022.

[5] MathWorks. Bluetooth Protocol Stack. https://ww
w.mathworks.com/help/bluetooth/ug/bluetoot
h-protocol-stack.html, 2024.

[6] Kevin Townsend, Carles Cuf, Akiba, and Robert David-
son. Getting Started with Bluetooth Low Energy: Tools
and Techniques for Low-Power Networking. O’Reilly
Media, Inc., 1st edition, 2014.

[7] Design and Reuse. Bluetooth Dual Mode v5.3 Baseband
Controller IP. https://www.design-reuse.com/s
ip/bluetooth-dual-mode-v5-3-baseband-contr
oller-ip-ip-48804/, 2024.

[8] Intel Corporation. Intel Bluetooth: Isochronous channels
and other mandatory features. https://community.
intel.com/t5/Wireless/Intel-Bluetooth-Iso
chronous-channels-and-other-mandatory/m-p
/1595248#M53835, 2024.

[9] Ezurio. Is LE Audio mandatory with BT5.2? https:
//www.ezurio.com/support/faqs/le-audio-man
datory-bt52?srsltid=AfmBOorGyIEkfekvshpCrx
IFj7q2gKmbP4By1K-BI3es4ACAw8E6FEVw, 2025.

[10] Simon Cohen. Apple AirPods 4 review: a bit better than
basic. https://www.digitaltrends.com/home-t
heater/apple-airpods-4-review/, 2024.

[11] Fraunhofer IIS. Fraunhofer IIS licenses LC3 audio
codec software to Microsoft. https://www.audi
oblog.iis.fraunhofer.com/fraunhoferiis-lc3
-microsoft, 2020.

[12] Google. Low Complexity Communication Codec (LC3).
https://github.com/google/liblc3, 2022.

[13] Personal blind comparison of the Bluetooth codecs,
AAC vs LC3, re-encoding. https://hydrogenau
d.io/index.php/topic,122575.0.html, 2022.

[14] Adoroma. What is Bluetooth Range? What You Need
to Know. https://www.adorama.com/alc/blueto
oth-range/, 2022.

[15] Arnaud Delmas. A C implementation of the Bluetooth
stream cipher E0. https://github.com/adelmas/e0,
2015.

[16] Bluetooth SIG. A/V Control Transport Protocol 1.4.
https://www.bluetooth.com/specifications/s
pecs/a-v-control-transport-protocol-1-4/,
2012.

[17] Bluetooth SIG. A/V Distribution Transport Protocol 1.3.
https://www.bluetooth.com/specifications/s
pecs/a-v-distribution-transport-protocol-1
-3/, 2012.

[18] Texas Instruments. CC2540EMK-USB. https://www.
ti.com/tool/CC2540EMK-USB, 2023.

[19] Sandeep Dutta. SDCC - Small Device C Compiler.
https://sdcc.sourceforge.net/, 2024.

[20] Texas Instruments. CC-DEBUGGER. https://www.
ti.com/tool/CC-DEBUGGER, 2014.

[21] Teledyne LeCroy. FTS4BT Bluetooth Protocol Analyzer
and Packet Sniffer. https://fte.com/products/F
TS4BT.aspx, 2009.

[22] Frontline Test Equipment. Frontline Introduces World’s
Only Bluetooth v3.0 + HS Protocol Analyzer. https:
//fte.com/docs/PressReleases/FTS4BT-HS-pre
ss-release.pdf, 2009.

[23] Qualcomm. Qualcomm FastConnect 6900 System. ht
tps://www.qualcomm.com/content/dam/qcomm-m
artech/dm-assets/documents/qualcomm-fastc
onnect-6900-product-brief_finalv7.pdf, 2020.

[24] Bluetooth SIG. Specification of the Bluetooth System,
1999.

[25] Huang-Huang Bao. pulseaudio-modules-bt. https:
//github.com/EHfive/pulseaudio-modules-bt,
2020.

[26] Apple Inc. Accessory Design Guidelines for Apple
Devices. https://developer.apple.com/access
ories/Accessory-Design-Guidelines.pdf, 2023.

[27] Qualcomm. CSR1013. https://www.qualcomm.com
/products/technology/bluetooth/csr101x-ser
ies/csr1013, 2015.

[28] Qualcomm. CSR8610. https://www.qualcomm.com
/products/internet-of-things/consumer/aud
io/csr8610, 2018.

[29] Qualcomm. QCC3026. https://www.qualcomm.com
/products/internet-of-things/consumer/aud
io/qcc30xx-series/qcc3026, 2018.

[30] Texas Instruments. CC2340R SimpleLink Family of
2.4GHz Wireless MCUs. https://www.ti.com/lit
/ds/symlink/cc2340r5.pdf, 2023.

[31] DigiKey Corporation. CSR1013A05-IUUM-R. https:
//www.digikey.com/en/products/detail/qualc
omm/CSR1013A05-IUUM-R/5640481, 2025.

[32] DigiKey Corporation. QCC-3026-0-81WLNSP-TR-00-
0. https://www.digikey.com/en/products/deta
il/qualcomm/QCC-3026-0-81WLNSP-TR-00-0/217
22333, 2025.

[33] DigiKey Corporation. CC2540F128RHAR. https:
//www.digikey.com/en/products/detail/texas
-instruments/CC2540F128RHAR/2534018, 2025.

[34] DigiKey Corporation. CC2340R21N0RGER. https:
//www.digikey.com/en/products/detail/texas
-instruments/CC2340R21N0RGER/22539646, 2025.

[35] Texas Instruments. 2.4-GHz Bluetooth low energy
System-on-Chip. https://www.ti.com/lit/ds/
symlink/cc2540.pdf, 2013.

[36] Lite on Technology Corporation. BT V4.0 LE Dual
Mode Bluetooth Stereo Audio Module WB116C CSR
8640. https://fcc.report/FCC-ID/MDZ-WB116C/
1998708.pdf, 2013.

[37] Avantree. AS70P - Latency Levels with Different De-
vices. https://support.avantree.com/hc/en-us/
articles/44460172603417-AS70P-Latency-Lev
els-with-Different-Devices, 2025.

[38] Nordic Semiconductor. nRF52840 Product Specifica-
tion v1.11. https://docs-be.nordicsemi.com/bun
dle/ps_nrf52840/attach/nRF52840_PS_v1.11.p
df?_LANG=enus, 2024.

[39] Nordic Semiconductor. nRF5340 Product Specification
v1.6. https://docs-be.nordicsemi.com/bundle/
ps_nrf5340/page/nRF5340_PS_v1.6.pdf?_LANG=
enus, 2025.

[40] Silicon Labs. EFR32xG22 Wireless Gecko Reference
Manual. https://www.silabs.com/documents/p
ublic/reference-manuals/efr32xg22-rm.pdf,
2024.

[41] Silicon Labs. AN971: EFR32 Radio Configurator Guide
for RAIL in Simplicity Studio v4. https://www.sila
bs.com/documents/public/application-notes
/an971-efr32-radio-configurator-guide.pdf,
2025.

[42] Michael Ossmann. GREAT SCOTT GADGETS Uber-
tooth One. https://greatscottgadgets.com/uber
toothone/, 2020.

[43] Maxim Chernyshev, Craig Valli, and Michael Johnstone.
Revisiting urban war nibbling: Mobile passive discovery
of classic bluetooth devices using ubertooth one. Trans.
Info. For. Sec., 12(7):1625–1636, jul 2017.

[44] Aaron Kinfe, Chijung Jung, Kai Lin, Marshall Clyburn,
and Fnu Suya. Hackwrt: Network traffic-based eaves-
dropping of handwriting. In Proceedings of Cyber-
Physical Systems and Internet of Things Week 2023,
CPS-IoT Week ’23, page 55–60, New York, NY, USA,
2023. Association for Computing Machinery.

[45] Thomas Willingham, Cody Henderson, Blair Kiel,
Md Shariful Haque, and Travis Atkison. Testing vulner-
abilities in bluetooth low energy. In Proceedings of the
ACMSE 2018 Conference, ACMSE ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[46] Wahhab Albazrqaoe, Jun Huang, and Guoliang Xing.
Practical bluetooth traffic sniffing: Systems and privacy
implications. In Proceedings of the 14th Annual Inter-
national Conference on Mobile Systems, Applications,
and Services, MobiSys ’16, page 333–345, New York,
NY, USA, 2016. Association for Computing Machinery.

[47] Marco Cominelli, Francesco Gringoli, Paul Patras, Mar-
gus Lind, and Guevara Noubir. Even black cats cannot
stay hidden in the dark: Full-band de-anonymization of
bluetooth classic devices. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 534–548, 2020.

[48] Jiska Classen and Matthias Hollick. Inside job: diagnos-
ing bluetooth lower layers using off-the-shelf devices.
In Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks, WiSec ’19,
page 186–191, New York, NY, USA, 2019. Association
for Computing Machinery.

[49] The InternalBlue Team. Bluetooth experimentation
framework for Broadcom and Cypress chips. https:
//github.com/seemoo-lab/internalblue, 2021.

[50] Dennis Mantz. InternalBlue—A Bluetooth Experimen-
tation Framework Based on Mobile Device Reverse
Engineering. Master’s thesis. Technische Universität
Darmstadt. http://tubiblio.ulb.tu-darmstadt
.de/107125/, 2018.

[51] Matheus Eduardo. BrakTooth ESP32 BR/EDR Active
Sniffer/Injector. https://github.com/Matheus-G
arbelini/esp32_bluetooth_classic_sniffer,
2023.

[52] J. Wu, R. Wu, D. Xu, D. Tian, and A. Bianchi. Sok:
The long journey of exploiting and defending the legacy
of king harald bluetooth. In 2024 IEEE Symposium on
Security and Privacy (SP), pages 23–23, Los Alamitos,
CA, USA, may 2024. IEEE Computer Society.

[53] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper
Rasmussen. The knob is broken: Exploiting low en-
tropy in the encryption key negotiation of bluetooth
br/edr. In Proceedings of the USENIX Security Sympo-
sium (USENIX Security), August 2019.

[54] NIST. CVE-2019-9506. https://nvd.nist.gov/v
uln/detail/CVE-2019-9506, 2019.

[55] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper
Rasmussen. Bias: Bluetooth impersonation attacks. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), May 2020.

[56] NIST. CVE-2020-10135. https://nvd.nist.gov/v
uln/detail/CVE-2020-10135, 2020.

[57] Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Neng-
hai Yu, Qibin Sun, and Feng Wu. Blacktooth: Breaking
through the defense of bluetooth in silence. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’22, page 55–68,
New York, NY, USA, 2022. Association for Computing
Machinery.

[58] Daniele Antonioli, Nils Ole Tippenhauer, Kasper Ras-
mussen, and Mathias Payer. Blurtooth: Exploiting cross-
transport key derivation in bluetooth classic and blue-
tooth low energy. In Proceedings of the 2022 ACM on
Asia Conference on Computer and Communications Se-
curity, ASIA CCS ’22, page 196–207, New York, NY,
USA, 2022. Association for Computing Machinery.

[59] NIST. CVE-2020-15802. https://nvd.nist.gov/v
uln/detail/CVE-2020-15802, 2020.

[60] Matheus E. Garbelini, Vaibhav Bedi, Sudipta Chattopad-
hyay, Sumei Sun, and Ernest Kurniawan. BrakTooth:
Causing havoc on bluetooth link manager via directed
fuzzing. In 31st USENIX Security Symposium (USENIX
Security 22), pages 1025–1042, Boston, MA, August
2022. USENIX Association.

[61] Hsun-Wei Cho and Kang G. Shin. Bluefi: bluetooth over
wifi. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, SIGCOMM ’21, page 475–487, New York,
NY, USA, 2021. Association for Computing Machinery.

[62] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian
He. Wibeacon: expanding ble location-based services
via wifi. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, Mo-
biCom ’21, page 83–96, New York, NY, USA, 2021.
Association for Computing Machinery.

[63] Hsun-Wei Cho and Kang G. Shin. Flew: fully emulated
wifi. In Proceedings of the 28th Annual International

Conference on Mobile Computing And Networking, Mo-
biCom ’22, page 29–41, New York, NY, USA, 2022.
Association for Computing Machinery.

[64] Hsun-Wei Cho and Kang G. Shin. Unify: Turning
BLE/FSK SoC into WiFi SoC. Association for Com-
puting Machinery, New York, NY, USA, 2023.

[65] Wenchao Jiang, Zhimeng Yin, Ruofeng Liu, Zhijun Li,
Song Min Kim, and Tian He. Bluebee: A 10,000x faster
cross-technology communication via phy emulation. In
Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems, SenSys ’17, New York, NY,
USA, 2017. Association for Computing Machinery.

[66] Wenchao Jiang, Song Min Kim, Zhijun Li, and Tian
He. Achieving receiver-side cross-technology commu-
nication with cross-decoding. In Proceedings of the
24th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’18, page 639–652,
New York, NY, USA, 2018. Association for Computing
Machinery.

A Alternative Design Choices

We have explored alternative design options in BBC. However,
we find that they either make the system incompatible with
Bluetooth headphones, or cannot establish a connection at all.
In particular, we have tried using the open-source E0 cipher.
However, this breaks the compatibility with commodity Blue-
tooth headphones and cannot stream music at all because the
E0 cipher does not produce the correct bit sequence. Also,
in the LMP implementation, we tried streaming music with-
out setting up link authentication and encryption first (since
they are technically optional according to the standard). How-
ever, we find that Bluetooth headphones will not accept audio
packets without authentication and encryption. Finally, for
the slotted communication, we have tried longer transmis-
sion intervals (instead of 2500µs). However, we find that such
a design cannot sustain the required throughput for music
streaming, which results in audio glitches.

B Initialization Steps of E0

In BBC, the shift registers and the auxiliary logic are first run
for 240 cycles. During the last 128 cycles, the E0 output is
temporarily stored as a variable Z. At the 240-th cycle, the
content of the 4 shift registers is instantaneously updated
(“parallel load”) with Z. At that instant, E0 also starts out-
putting the pseudorandom sequence to be used for encrypting
the payload. However, the auxiliary logic has internal states
and they are carefully maintained to generate the correct E0
output. Specifically, BBC first pauses the update of the aux-
iliary logic, loads 4 registers with Z, and generates the first

pseudorandom bit before updating the auxiliary logic again.
This order is followed so that the first encryption bit is correct.
BBC then keeps on generating the pseudorandom sequence
until the end of a packet.

C Encryption Check using CRC

A peculiar design of Bluetooth is that the CRC is encrypted,
and BBC leverages this property to detect whether the payload
is encrypted or not. Specifically, after BBC sends the third LMP
encryption request (LMP_START_ENCRYPTION_REQ),
Peripheral should turn on encryption and reply with an en-
crypted LMP_ACCEPTED packet. When this packet is re-
ceived, BBC first tries, without decryption, to decode the packet
and check the CRC. If the packet is encrypted, the CRC check
fails, and BBC tries to decode the same packet with decryption
enabled. If the CRC check (after decryption) passes, BBC sets
an internal flag (encryptionenabled) to 1. If this flag is set,
BBC enables encryption for any outgoing payload. After the
encrypted LMP_ACCEPTED packet is received, BBC informs
the upper layer that encryption is turned on.

This two-step CRC check ensures that BBC is resilient when
the encryption exchange is different from the ideal case. For
example, Peripheral may be temporarily unable to turn on en-
cryption and send an unencrypted LMP_NOT_ACCEPTED
packet. Or, Peripheral sends other unencrypted packets before
LMP_START_ENCRYPTION_REQ is processed. BBC’s de-
sign ensures that these packets can still be received correctly
regardless of Peripheral’s encryption state.

D Initial LMP Exchanges

When establishing an initial LMP connection, BBC’s LMP
exchanges are slightly different from the reference mes-
sage chart in the Bluetooth standard [1]. In the reference
chart, after LMP_HOST_CONNECTION_REQ, the Cen-
tral and Peripheral will negotiate various link capabilities,
authenticate and encrypt the link before finally exchang-
ing LMP_SETUP_COMPLETE. However, commercial Blue-
tooth headphones tend to first establish a very simple con-
nection before negotiating Bluetooth capabilities. We design
the LM in BBC as described in Sec. 2.7.1 so that it is directly
compatible with COTS headphones.

E HCI Interaction during Authentication

BBC intercepts and emulates the interaction with the
upper layer (HCI) during authentication. When BBC
receives HCI_Authentication_Requested, it first sends
HCI_Link_Key_Request to retrieve the link key from the
upper layer. The link key is first input to the hash function.
BBC then sends LMP_AU_RAND to Peripheral. The
LMP_AU_RAND packet contains a 128-bit random number

(AURAND), which is the second input. Finally, the third
input to the hash function is Peripheral’s address. Peripheral
responds to LMP_AU_RAND with LMP_SRES, containing
the first 4 bytes of the hash function’s output. If LMP_SRES
is received, BBC notifies the upper layer that authentication is
completed. The remaining 12 bytes of the hash are known as
ACO, which is essential for the encryption bit processing.

F Synchronization Procedure for FTS4BT

Because the frequency hopping and bit scrambling depend on
the Bluetooth clock, Teledyne LeCroy’s FTS4BT tool has to
be synchronized with BBC first before capturing the packets.
The FTS4BT suite provides three possible clock synchro-
nization methods and we use the “Central Inquiry” mode.
In this mode, FTS4BT sends an ID packet and BBC should
reply with an FHS packet. Since the FHS packet contains
BBC’s current clock value, FTS4BT can be synchronized with
BBC’s clock. We add this synchronization message exchange
in firmware to satisfy the synchronization requirement of
FTS4BT. This exchange is very similar to the second to third
packets of the paging process (Sec. 2.3). The key difference is
that instead of using Peripheral’s access code, the GIAC (Gen-
eral Inquiry Access Code) and the corresponding hopping
sequence should be used. Additionally, HEC and CRC shift
registers are initialized with zeros. Following this procedure,
once BBC receives ID and sends FHS, interrupts are enabled
to start packet transmission, and FTS4BT is now in sync with
BBC and can capture packets from BBC.

