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Understanding and learning the actor-to-X interactions (AXIs), such as those between the focal vehicles (ac-
tor) and other traffic participants, such as other vehicles and pedestrians, as well as traffic environments like
the city or road map, is essential for the development of a decision-making model and the simulation of au-
tonomous driving. Existing practices on imitation learning (IL) for autonomous driving simulation, despite
the advances in the model learnability, have not accounted for fusing and differentiating the heterogeneous
AXIs in complex road environments. Furthermore, how to further explain the hierarchical structures within
the complex AXIs remains largely under-explored.

To meet these challenges, we propose HGIL, an interaction-aware and hierarchically-explainable
Heterogeneous Graph-based Imitation Learning approach for autonomous driving simulation. We have de-
signed a novel heterogeneous interaction graph (HIG) to provide local and global representation as well
as awareness of the AXIs. Integrating the HIG as the state embeddings, we have designed a hierarchically-
explainable generative adversarial imitation learning approach, with local sub-graph and global cross-graph
attention, to capture the interaction behaviors and driving decision-making processes. Our data-driven sim-
ulation and explanation studies based on the Argoverse v2 dataset (with a total of 40,000 driving scenes)
have corroborated the accuracy (e.g., lower displacement errors compared to the state-of-the-art (SOTA) ap-
proaches) and explainability of HGIL in learning and capturing the complex AXIs.
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1 Introduction

Imitation learning (IL) for autonomous driving simulation aims at capturing a cost function or
a policy from the human driver demonstrations (e.g., real-world driving datasets) [3, 5, 6, 25, 30].
In the IL setting, the actor, i.e., the focal vehicle, interacts with various other traffic participants
(e.g., other vehicles, pedestrians) as well as the traffic environments (e.g., map topology), forming
the diverse scenes of the actor-to-X interactions (AXIs). These AXIs involve the behaviors of
car following, lane changing, cutting in when interacting with other vehicles and road contexts
(e.g., closure and road work), as well as the responses to the presence of pedestrians (e.g., yielding
at the crosswalks). Understanding and learning such complex AXIs is essential for designing the
decision-making models and simulation of autonomous driving systems.

Despite the recent IL advances [3, 4, 27, 41], existing studies have not accounted for the following
two major designs that are critical for interaction awareness and hierarchical explainability toward
an autonomous driving simulation framework:

(1) How to differentiate heterogeneous AXIs for generalizing the contextual dependencies: Learn-
ing the decision-making process of AXIs performed by the human drivers hinges on under-
standing the contextual dependencies between the actor (the focal vehicle) and other traffic
participants as well as the traffic environments. However, the same human driver maneuver
behaviors (e.g., turning or deceleration) may result from various heterogeneous contexts of
AXIs. Existing feature representations such as simple feature vectorization [21], 2D rasteri-
zation [17, 19], and homogeneous graphs [18] of the actor’s mobility features (e.g., motion
information) and surrounding contexts (e.g., map information and topology) may not neces-
sarily differentiate these AXIs, lowering the generalizability of the IL designs.

(2) How to enable the hierarchical explanation of IL for autonomous driving simulation: In the
model simulation studies, understanding the global and local contexts of the human driver
demonstrations hinges on tracing and dissecting the decisions of the actor. Specifically, re-
sponses to the global contexts, i.e., incoming general traffic conditions and map topological
information (e.g., road work closure or highway exits), and those to the local contexts, i.e.,
the nearby traffic participants, can be highly interleaved and lead to complex AXI outcomes.
Transparency requirements for autonomous driving simulation [20, 31] have established the
need to provide hierarchical explainability to enable more trustworthy human-vehicle inter-
actions [20], which, however, remains to be explored further in the IL designs.

To overcome the above-mentioned gaps, we propose HGIL, a novel Heterogeneous Graph-based
Imitation Learning framework for interaction awareness and hierarchical explainability in au-
tonomous driving simulation. Toward this framework, we have made the following three major
contributions:

(a) Heterogeneous Interaction Graph (HIG) Fusion for AXIs: We have designed an HIG
representation as the state embeddings of our IL designs, characterizing the various objects
involved in AXIs as the nodes and their interplay as the edges. To infuse the complex AXI
scenes, we have derived within the HIG the sub-graph structures, which account for the
heterogeneous interactions among the actor, other traffic participants such as other vehicles
and pedestrians in our studies, and lane topology. This way, HGIL enhances its learnability
over the existing IL approaches.
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(b) Hierarchically-Explainable IL Designs: Based on the HIG fusion, we have further de-
signed the hierarchical explanation designs for HGIL, via the local sub-graph attention and
global cross-graph attention within the HIG. The proposed hierarchical explanation designs
differentiate the contextual dependencies between the local and global observations, yielding
the traceability of the decision-making process within the autonomous driving simulation.

(c) Data-driven Simulation and Explanation Studies: We have conducted extensive exper-
imental studies on the Argoverse v2 dataset [34] with a total of 40,000 driving scenes to
validate the accuracy and explainability of HGIL in learning and capturing driving behav-
iors for autonomous driving simulation. Our simulation results have demonstrated that our
HGIL outperforms the other state-of-the-art approaches (including [1, 2, 10, 16, 24]) in terms
of various displacement error measures (such as final displacement error), and achieves hi-
erarchical explainability (in terms of sparsity and fidelity) regarding various AXIs.

The rest of the article is organized as follows. We first review the related work in Section 2. Then,
we present the HIG representation designs, and the problem formulation of HGIL in Section 3. Next,
we present the core designs of our interaction-aware and hierarchically-explainable heterogeneous
graph-based IL in Section 4. This is followed by the results of our experimental studies in Section 5,
deployment discussion in Section 6, and the conclusion of this article in Section 7.

2 Related Work

We briefly review two categories of prior work related to this article.

2.1 Graph Representations for Motion Modeling

Prior motion modeling and planning studies for autonomous driving [17, 19, 21] considered vec-
torized feature encoding, such as 2-D rasterization of the bird’s-eye view (BEV), of the vehicle’s
mobility features and surrounding contexts. However, existing 2-D rasterization, processed by fea-
ture convolution [19, 22], may not fully capture the interplay of the objects with the actor in com-
plex traffic scenes. Therefore, graph neural networks have recently attracted attention to model
the relations of the objects in the traffic environments [18, 20, 31]. Jia et al. [12] and Zhang et
al. [39] have considered graph-based transformers for motion modeling. Zeng et al. [38] proposed
a graph-based approach to incorporate the lane and map topology structures. Deo et al. [8] and
Gilles et al. [9] have formulated a graph traversal problem for the motion modeling process. Tang
et al. [31] studied the neural relation inference to generate the interactive behavior interpretation.
Kosaraju et al. [14] implement graph attention networks based on BycleGAN [42] for multi-modal
trajectory forecasting.

In addition, prior graph representation studies [36] often consider post-training and model-
agnostic approaches to infer the interactions. Recent studies [5, 16, 38] investigated the interactions
among different traffic participants. However, these designs often lack proper reasoning for their
motion modeling processes and the subsequent simulation results. These designs often provide
limited information about the importance of factors, rather than revealing detailed interactions.

Unlike these efforts, we have designed within HGIL the HIG fusion, which provides the hierarchi-

cal characterization and explanation of the interactions and relations of the actor (the focal vehicle)
with different types of traffic participants of the complex traffic scenes. HIG consists of the sub-
graph structures, which accounts for the heterogeneous interactions among the actor, other traffic
participants, and lane topology. This way, HGIL yields high learnability in the complex AXI scenes.

2.2 IL for Autonomous Driving Simulation

Deep IL has recently been adopted for autonomous driving simulation and model development
to capture the cost function or policy from the large-scale human driver demonstration data
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[3, 6, 16, 24, 29, 40]. Compared to the inverse reinforcement learning (IRL) which is usually ex-
pensive to run and difficult to scale [35], generative adversarial imitation learning (GAIL) [11]
generates the policy without capturing the cost function and is able to scale in the complex and
spacious traffic environments. Zhou et al. [41] proposed a feedback synthesizer for data augmenta-
tion in IL to improve the autonomous driving performance in the unobserved environments. Bhat-
tacharyya et al. [4] improved GAIL designs via a parameter sharing mechanism that enhances the
generalizability to complex driving scenes. Lee et al. [15] leverage both positive (from expert) and
negative (with collisions) demonstrations for fast convergence of the IL model.

Unlike the above-mentioned studies, the IL approach in HGIL provides a novel state embed-
ding design based on HIG, which provides heterogeneous representability and hierarchical ex-
plainability. Our data-driven simulation studies have further corroborated our proposed designs
in characterizing and explaining the complex AXIs. In addition, beyond the results in [27], we
have conducted more model and sensitivity studies (e.g., over important model parameters) and
explainability evaluations (based on the metrics of sparsity and fidelity) to corroborate the novel
designs of HGIL.

3 HIG Representation and Problem Formulation

We first present the representation designs of HIG in Section 3.1, followed by the important con-
cepts and problem formulation in Section 3.2.

3.1 HIG Representation

Toward interaction awareness and hierarchical explainability, we formulate the surrounding con-
texts of the actor (focal vehicle) at the t th timestamp into an HIG. Each HIG consists of multiple
sub-graphs that characterize the actor’s local relations with the surrounding objects in different
types of AXI scenes. All the sub-graphs share the node of the actor (the focal vehicle). Specifically,
at each timestamp t , HGIL accounts for the node features of the actor as

V
(f)
t =

[
x (f)t ,y

(f)
t ,v

(f)
t ,θ

(f)
t ,Δx

(f)
t ,Δy

(f)
t

]
∈ R6, (1)

where x (f)t , y(f)t ,v(f)
t , and θ (f)t correspond to the actor’s position coordinates (unit: m), instantaneous

speed (unit: m/s), and heading angle (unit: rad) in the global (earth) coordinate system under the

BEV. Δx (f)t = x (f)t − x (f)t−1 and Δy(f)t = y
(f)
t − y(f)t−1, respectively, denote the displacements of the actor

w.r.t. the x and y axes from the preceding timestamp t − 1.
In this prototype study, we take into account the following three types of sub-graphs within

the HIG representation (illustrated in Figure 1), while our HIG design is general enough to be
extended to other types of AXIs given the availability of other interacting objects. HGIL determines
the relations of the actor with other objects through the local sub-graph and global cross-graph
attention mechanisms (detailed in Section 4.2).

3.1.1 Actor-to-Vehicle Sub-graph G
(c)
t . We form G

(c)
t by including the actor and the peer vehicles

within a range from the actor as the nodes (25 m in our study). For each vehicle i of the K nearest
peers observed (i ∈ {1, . . . ,K}), we find its node feature as

V
(c)
t,i =

[
x (c)t,i ,y

(c)
t,i ,v

(c)
t,i ,θ

(c)
t,i ,d

(c)
t,i

]
∈ R5, (2)

i.e., its global coordinates, speed, heading direction, as well as the distance (unit: m) from the actor.

We let V
(c)
t ∈ RK×5 be the node features of all the K nearest peer vehicles at the timestamp t . Let

E
(c)
t ∈ R(K+1)×(K+1) be the adjacency matrix representing the edges from the actor node to its peer
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Fig. 1. Illustration of an HIG representation in HGIL.

vehicles at the timestamp t , where the elements in E
(c)
t are initialized as those for the edges between

the actor and peer vehicle nodes, and zeros otherwise.

3.1.2 Actor-to-Pedestrian Sub-graph G
(p)
t . Similar to G

(c)
t , we form G

(p)
t that includes the pedes-

trians within a range (25 m in our study) from the actor. We find the corresponding pedestrian
node feature j ∈ {1, . . . , P} as

V
(p)
t, j =

[
x
(p)
t, j ,y

(p)
t, j ,v

(p)
t, j ,θ

(p)
t, j ,d

(p)
t, j

]
∈ R5, (3)

i.e., the global coordinates, velocity, heading direction, and distance of the pedestrian from the

actor. We let V
(p)
t ∈ RP×5 be the node features of all the P nearby pedestrians at the timestamp t .

We similarly define E
(p)
t ∈ R(P+1)×(P+1) as the adjacency matrix representing the edges from the

actor node to the nearby pedestrians, where the elements in E
(p)
t are initialized as those for the

edges between the actor and pedestrian nodes, and zeros otherwise.

3.1.3 Actor-to-Lane Sub-graph G
(l)
t . To model the interaction between the actor and the map

topology (e.g., when approaching the intersection or exit), we divide the road lane into multiple
segments (of length 25.45 m each on average) and represent them by the nodes of a series of
coordinates in the BEV. For each of the R closest road segment m ∈ {1, . . . ,R} within a range (10
m in our study) from the actor, we find the lane node feature

V
(l)
t,m =

[
x (l)t,m ,y

(l)
t,m ,d

(l),
t,m , e

(l)
t,m

]
∈ R4, (4)

i.e., the global coordinates, distance (unit:m) from the actor, and a binary variable e(l)t,m ∈ {1, 0}

indicating whether the road segment is part of an intersection (e(l)t,m = 1) or not. We let V
(l)
t ∈ RR×4

be the lane node features of all the R nearby lane segments at the timestamp t . Similar to E
(c)
t and

E
(p)
t , we form the adjacency matrix for the nodes of the actor and the lane, i.e., E

(l)
t ∈ R(R+1)×(R+1).
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Given the above sub-graphs, we denote an HIG at a timestamp t as

Gt =
{
G
(c)
t ,G

(p)
t ,G

(l)
t

}
. (5)

3.2 Concepts and Problem Formulation

3.2.1 State. In our IL setting with the infinite horizon, we formulate the state St of the actor
(i.e., the focal vehicle as the agent) based on the historical HIGs for the past L timestamps, i.e.,

St = {Gt−L,Gt−L+1, . . . ,Gt } . (6)

Furthermore, without loss of generality, we can account for the focal vehicle as the actor, while
the formulation is general enough to be extended to the multi-agent setting [4, 12].

3.2.2 Actions and Policy. Given an observed state St , we aim at determining the decision
process as well as the respective actions At of the actor that represents the focal vehicle. The IL
designs of HGIL will identify the policy π (·), a function that maps the state St to its corresponding
action At ,

At ∼ π (A|St ). (7)

In this prototype study, HGIL rolls out and generates a series of planned displacements toward
the x and y axes,

At =
[(

Δx (f)
(t+1)
,Δy(f)

(t+1)

)
, . . . ,

(
Δx (f)

(t+L)
,Δy(f)

(t+L)

)]
∈ RL×2, (8)

for the future L timestamps.

3.2.3 Problem Definition. Given the above-mentioned states and actions from the human driver
demonstration data, we formulate the GAIL within HGIL to recover the focal vehicle’s policy π that
can be used to imitate the behaviors of the human drivers by generating At , given its observed
state St .

Given the observed state S (say, the historical HIGs in Equation (6)), the GAIL in HGIL optimizes
the actor’s policy π , such that the resulting actions A of the actor (i.e., series of planned displace-
ments) are indistinguishable from the expert demonstrations (i.e., human driver demonstration).
This can be formalized as finding a Nash equilibrium [11] within a minimax game between a pol-
icy generator network approximating π , and a discriminator networkψ , i.e.,

min
π

max
ψ
ES,A∼π [log(ψ (S,A))] + ES,A∼π e[log (1 −ψ (S,A))], (9)

whereψ represents the policy discriminator network function of the GAIL and π e denotes the pol-
icy of the expert (i.e., human drivers). To further expand the interaction awareness and hierarchical
explainability, we design the state embeddings with HIGs for S (detailed in Section 4).

4 Interaction-Aware and Hierarchically-Explainable IL Designs

We first overview the state-embedding processing in Section 4.1, then present the state embeddings
with HIGs in Section 4.2, and finally provide the training design in Section 4.3.

4.1 Overview of State Embedding Processing

We overview the state embedding processing of HGIL in Figure 2, which consists of (I) local sub-
graph attention and (II) global cross-graph attention. Specifically, HGIL first creates the HIGs to
represent the actor’s state in the traffic environment at each timestamp. Then, the local sub-graph
attention in HGIL updates the node features of each sub-graph by accounting for the local interac-
tions and relations of the objects involved. Next, HGIL fuses the resulting node features from the
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Fig. 2. Architecture overview of state embeddings within HGIL, which consists of (I) local sub-graph attention

and (II) global cross-graph attention.

HIGs, and further leverages the global cross-graph attention to quantify the actor’s interactions in
a global context, and generates the state embeddings for policy learning (detailed in Section 4.3).

4.2 State Embeddings with HIGs

4.2.1 Local Sub-graph Attention. The human driver may respond to traffic participants and en-
vironments with different strategies. In order to capture the interactions between the actor with
different objects and the resulting AXI scenes, we design the local sub-graph attention for our IL
settings, which helps identify the important sub-graphs within our HIG that concern the decision-
making process of the actor.

(a) Node Feature Embeddings: Given the set of the node features of the actor and all the sub-
graphs for the t th timestamp,

Vt =
{
V
(f )
t ,V

(c)
t ,V

(p)
t ,V

(l )
t

}
, (10)

we first process each node feature in Vt with an independent fully-connected (FC) layer with
B1 hidden units and the LeakyReLU activation function, to convert them to the B1-dimensional
feature space. This way, we obtain the set of the node embeddings:

Vt =
{
V
(f)
t ,V

(c)
t ,V

(p)
t ,V

(l)
t

}
, (11)

where V
(f)
t ∈ R1×B1 , V

(c)
t ∈ RK×B1 , V

(p)
t ∈ RP×B1 , V

(l)
t ∈ RR×B1 .

Then, we concatenate the actor node feature V
(f)
t with each of the sub-graph node feature em-

beddings, and obtain the node features of the sub-graphs.
(b) Graph Convolution: We then process each concatenated feature with a separate graph con-

volutional (GCN) layer (with a total of B2 hidden units) to account for the local interaction within

each of the sub-graphs, resulting in the updated node features Q
(c)
t ∈ R(K+1)×B2 , Q

(p)
t ∈ R(P+1)×B2 ,

and Q
(l)
t ∈ R(R+1)×B2 .

For instance, to find Q
(c)
t , we concatenate the peer vehicles’ node features, V

(c)
t , with the actor

node features, V
(f)
t , i.e.,

V̊
(c)
t =

[
V
(c)
t

����V(f)
t

]
. (12)

We then further feed it to the GCN layer, i.e.,

Q
(c)
t =

(
D̂(c)

)− 1
2
·
(
E
(c)
t + I

)
·
(
D̂(c)

)− 1
2
· V̊

(c)
t · W(c) + b(c), (13)

where D̂(c) ∈ R(K+1)×(K+1) represents the diagonal degree matrix, i.e.,

D̂(c)[i, i] =
∑

j

E
(c)
t [i, j], (14)
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Fig. 3. Illustration of the attention scoring for sub-graphs.

where (E
(c)
t + I) adds the self-loops to the graph. W(c) ∈ RB2×B2 and b(c) ∈ RB2 represent the

trainable weights. We similarly find Q
(p)
t ∈ R(P+1)×B2 and Q

(l)
t ∈ R(R+1)×B2 with two separate GCN

layers.
(c) Attention Scoring for Sub-graphs: We then quantify the importance of different sub-graphs

based on the graph embeddings. Specifically, as illustrated in Figure 3, we first concatenate the
actor node’s features within the resulting graph embeddings from the three GCN operations into a

vector Q
(f)
t , i.e.,

Q
(f)
t =

[
Q
(c)
t [−1, :]

����Q(p)
t [−1, :]

����Q(l)
t [−1, :]

]
, (15)

where Q
(c)
t [−1, :], Q

(p)
t [−1, :], and Q

(l)
t [−1, :] correspond to the embedded features of the actor node

(i.e., the last row) w.r.t. actor-to-vehicle, actor-to-pedestrian, and actor-to-lane sub-graphs.

In other words, the vector Q
(f)
t ∈ R1×B′

2 (B′
2 = 3B2) aggregates the local context of different objects

near the actor, and can be further leveraged to determine and differentiate the relative importance
of the sub-graphs in the AXIs.

We then feed Q
(f)
t to two FC layers with the B3 hidden units to generate the sub-graph attention

scores

αt =
[
α (c)

t ,α
(p)
t ,α

(l)
t

]
= ρ

(
FC

(
σ
(
FC(Q(f)

t

)))
∈ R3, (16)

where σ (·) represents the LeakyReLU activation function and ρ(·) is the Softmax function. Each
of the three elements in αt represents the level of interaction between the actor and each of the
sub-graphs.

4.2.2 Global Cross-graph Attention. To capture the human driver decisions in a joint response
to different involved objects (e.g., other traffic participants, map topology) in the global contexts
of the traffic environments, we have also designed the global cross-graph attention to capture the
global interplay in the AXIs.

Recall that Q
(c)
t [−1, :], Q

(p)
t [−1, :], and Q

(l)
t [−1, :] refer to the embedded features of the actor node

(i.e., the last row) w.r.t. the three sub-graphs. We further update the actor node features from
Equation (15) by multiplying the sub-graph attention scores with the corresponding actor node
features (i.e., the last row) in the sub-graphs, i.e.,

Q
(f)
t =

(
α (c)

t · Q
(c)
t [−1, :]

)
⊕
(
α
(p)
t · Q

(p)
t [−1, :]

)
⊕
(
α (l)

t · Q
(l)
t [−1, :]

)
,

where ⊕ denotes the element-wise addition operation.
To find the global cross-graph attention, for each timestamp t , we fuse all the sub-graph nodes

and their edges into a global interaction graph, denoted as Gt , that consists of T = 1 + K + P + R
nodes in total. We form the global node feature embeddings of Gt by concatenating the updated
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actor node feature Q
(f)
t with those of all other nodes, i.e.,

Qt =
[
Q
(f)
t

����Q(c)
t [1 : K , :]

����Q(p)
t [1 : P , :]

����Q(l)
t [1 : R, :]

]
, (17)

where Qt ∈ RT×B2 .
We then model the levels of interactions at the timestamp t , denoted as Γt ∈ RT×T , across all

the nodes in the global interaction graph Gt , where the level of interaction between each pair of
nodes is quantified by the attention score of

Γt [i, j] =
exp(μt [i, j])∑T

o=1 exp(μt [i,o])
, (18)

and μt [i, j] is given by

μt [i, j] � (Wv )
� · σ

( (
Qt [i, :] · Wд

) ���� (Qt [j, :] · Wд

) )
.

Here σ (·) represents the LeakyReLU activation function, and Wv ∈ RB′
3 (B′

3 = 2B2) and Wд ∈

RB3×B3 represent the trainable parameter matrices.
Then, we generate the weighted node embeddings Ft ∈ RT×B3 based on the following linear

operation,

Ft = Γt · Wд + bд , (19)

where Wд ∈ RT×B3 and bд ∈ RB3 are trainable parameters.
Recall that each observed state is given by a series of HIGs, i.e., St = {Gt−L,Gt−L+1, . . . ,Gt }.

For the timestamps from (t − L) to t , HGIL finds the node embeddings of the global interaction
graphs Gt−L to Gt , i.e., Ft−L to Ft . We feed the corresponding actor node feature embeddings (i.e.,
the last row of each Ft ) from the L historical timestamps to the long short-term memory (LSTM)
with the LealyReLU activation function. Then, we obtain the sequence embeddings of the global
interaction graphs, i.e.,

H′
t = LSTM

(
[F(t−L)[−1, :], . . . , Ft [−1, :]]

)
. (20)

The sequence embeddings from the global interaction graphs are added with the temporal feature
embeddings of the actor node features generated by another LSTM module, i.e.,

Ht = H′
t ⊕ LSTM

(
[V

(f)
t−L
, . . . ,V

(f)
t ]

)
, (21)

which forms the final state embeddings Ht ∈ RB4 for the training of HGIL (detailed in Section 4.3).

4.3 Training Designs of HGIL

In what follows, we present the training designs of HGIL.

4.3.1 Policy Generator and Discriminator Networks. Figure 4 illustrates the model training pro-
cess given the state embeddings Ht . Based on the state embeddings, HGIL provides a policy gener-
ator network consisting of FC layers to approximate and generate the policy π that resembles the
decision-making process of the human drivers. In the meantime, HGIL provides the policy discrim-
inator network ψ to distinguish the actions performed (i.e., trajectories) by the policy generator
network against the human driver demonstration data (i.e., expert action from the demonstration).
We show the structures of the two networks in Figure 5.

(a) The policy generator network takes in the state embeddings of the actor Ht , and returns
a set of Z possible sequences of displacement actions,

{
Ât,i

}
(i ∈ {1, . . . ,Z }), through the FC

network. Here we take into account multiple sequences of displacement actions to accommodate
the decision uncertainty of motion planning in the autonomous driving simulation. To this end, the
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Fig. 4. Illustration of the policy learning designs in HGIL.
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Fig. 5. Structures of the policy generator and discriminator networks.

policy generator network outputs the confidence score Ĉt ∈ RZ (in terms of probability) for each
of {Ât,i }.

(b) The policy discriminator network ψ aims at discriminating the actions generated from the
policy generator as well as the human driver demonstration (expert).ψ takes in (i) the policy gen-
erator’s output actions (say, Ât,∗ that corresponds to the maximum confidence score in Ĉt ); or (ii)
the actual actions Ae

t performed in the human driver demonstration data. Thus, given the concate-
nation of input actions (At,∗ or Ae

t ) as well as state embeddings Ht ,ψ estimates the probability (i.e.,

ψ
( [

Ht

����Ae
t

] )
orψ

( [
Ht | |Ât

] )
) that the input action resembles the human driver demonstration.

4.3.2 Model Training Loss. In order to capture the discrepancy between the generated actions
and the human driver demonstration, we consider the following types of loss within HGIL, i.e., (a)
displacement regression loss �r and (b) confidence cross-entropy loss �c . We integrate them within
the training loss of HGIL, i.e., (i) policy generator network loss Lд and (ii) discriminator network
loss Ld .

(a) Displacement Regression Loss �r : The displacement regression loss �r is given by the mean

squared error (MSE) between the generated sequence of actions (i.e., a series of planned dis-
placements) with the highest score (probability) in Ĉt , denoted as Ât,∗, and the actual action in the
human driver demonstration, i.e.,

�r �
1

Z

Z∑
i=1

(
Ât,i − At,i

)2
. (22)

We here leverage �r to generate the state embeddings before the adversarial optimization of the
entire network [37].

(b) Confidence Cross-Entropy Loss �c : We define a one-hot encoding vector as a label for the
confidence scores, Bt ∈ RZ , to indicate the set of actions among all generated ones that is the clos-
est to the human driver demonstration. For instance, we denote Bt = [0, 1, 0, . . . , 0], if the second
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set of the generated actions has the least Euclidean distance from At in the human driver demon-
stration. Based on the above, we find the cross-entropy loss �c between the generated actions and
the human driver demonstrations, i.e.,

�c � −

Z∑
i=1

(
Bt [i] · log

(
Ĉt [i]

))
. (23)

Based on the above designs, we have the loss in the policy generator and discriminator networks
as follows.

(i) Policy Generator Loss Lд : In order to train the policy generator network, we integrate the
regression loss �r and confidence loss �s to account for the discrepancy between the actions per-
formed by the actor and the human driver demonstration. In the meantime, based on the formula-

tion in Equation (9), HGIL maximizes the probabilityψ
( [

Ht | |Ât

] )
(i.e., minimize 1−ψ

( [
Ht | |Ât

] )
)

such that the discriminator network cannot discriminate the actions generated by the generator
network from those of the human driver demonstration.

In summary, the policy generator minimizes

Lд � βr · �r + βc · �c + βd · log
(
1 −ψ

( [
Ht | |Ât

] ))
, (24)

where βr , βc , and βd represent the corresponding weights.
(ii) Policy Discriminator Loss Ld : Based on the formulation in Equation (9), the policy discrim-

inator network further performs the opposite optimization against the generator, by maximizing

Ld � log
(
ψ
( [

Ht

����Ae
t

] ) )
+ log

(
1 −ψ

( [
Ht | |Ât

] ))
. (25)

Since there is a minimax game between the policy generator and discriminator networks [11], we
train them iteratively based on Equations (24) and (25) until convergence.

5 Data-driven Model Emulation Studies

We first review the IL-based baseline approaches used for performance comparison in Section 5.1.
Then, we provide the details of the simulation settings and the network parameters in Section 5.2
followed by the experimental results and data visualization in Section 5.3.

5.1 Baseline Approaches

We compare HGIL with the following baseline and state-of-the-art approaches on IL for au-
tonomous driving simulation.

(1) DualDisc [2]: which implements a spatio-temporal model (along with the conventional
LSTM) based on dual-discriminator GAIL.

(2) DualDisc-GRU: which adapts DualDisc [2] based on the gated recurrent unit (GRU) to
capture the spatio-temporal correlations.

(3) DualDisc-BiLSTM: which adapts DualDisc [2] based on the bidirectional long short-term

memory (BiLSTM) to capture the spatio-temporal correlations.
(4) CGAIL [16, 24]: which adopts and adapts the conditional GAIL for trajectory prediction.
(5) SocialGAN [1, 10]: which integrates the social pooling operation [1] with GAIL.
(6) LaneGCN-GAIL [18]: which implements a graph neural network architecture based on GAIL.
(7) HGAIL [5]: which provides the hierarchical model-based GAIL.
(8) SeqST-GAN [33]: which implement a sequence-to-sequence model based on the recurrent

neural networks and the generative adversarial networks.
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5.2 Simulation Settings

5.2.1 Dataset Studied and Performance Metrics. We leverage the large-scale human driver
demonstration dataset Argoverse v2 [34] for our experimental studies. Specifically, we select 35,000
driving scenes for IL training and 5,000 scenes for evaluation.

We evaluate the effectiveness of HGIL and other baselines in learning the human driving be-
haviors based on final displacement error (i.e., distance of the final generated position from the
true position in the demonstration; denoted as FDE) and average displacement error (i.e., average
distance of all locations in the generated and actual actions; denoted as ADE). We also find the
minimum final displacement error (minFDE) and the minimum average displacement er-

ror (minADE) that represent the errors of the actions with the lowest FDE/ADE. We also find the
miss rate (MR) regarding the percentage of all scenes when minFDE is over 2 m.

5.2.2 Model Parameter Settings. Unless otherwise stated, we use the following parameters by
default. Since the Argoverse v2 dataset is collected with a 10 Hz frequency, we setL = 30 to leverage
3 s of historical information to generate the next 3 s of actions. Like the prior studies [18, 38], we
set Z = 6, i.e., 6 sets of candidate actions given an observed state St , and estimate their uncertainty
based on the confidence score Ĉt ∈ R6. For the local sub-graph and global interaction attention
components, we use an FC layer with B1 = 64 units to convert the node features. Furthermore,
we set the number of the hidden units of all the subsequent graph layers to B2 = B3 = 64. We set
the number of hidden units for the LSTM modules to B4 = 32 to generate the state embeddings.
Besides, we leverage B5 = B6 = 2 FC layers in each of the policy generator and discriminator
networks (Figure 5), and each FC layer has 32 hidden units. We set βs = βd = 1 and βc = 0.3 in
Equation (24).

5.2.3 Simulation Environment and Model Training Setup. Our networks are implemented on
Pytorch 1.13.1 and Python 3.8.16. We performed experiments on an HPC server equipped with
Linux Ubuntu 18.04.5 LTS, an AMD Ryzen Threadripper 3960X 24-Core CPU, 4×GeForce RTX
3090 with GDDR5 24 GB, and 128 GB RAM. With these settings, the training of our HGIL took an
average of 361.3 ms per AXI scene (each driving scene lasts for 6 s on average).
HGIL is trained as follows. We first pre-train the policy generator network with the learning

rate decay (from 0.01 to 0.001) for 300 iterations (Adam optimizer is adopted for this). We then train
the policy generator and discriminator networks according to the Equations (24) and (25) with a
learning rate of 0.001 for 200 iterations. At each iteration, we sample 1,000 driving scenes from the
dataset and train the networks. We note that HGIL is overall efficient, with a total of 71,473 model
parameters, average training time per sample as 5.506 ms, and average inference time per sample
as 4.486 ms based on our computing platform.

5.3 Performance Evaluation Results and Case Studies

5.3.1 Overall Performance. We present the overall performance of HGIL in Table 1, and com-
pare HGIL with other IL-based methods. HGIL is observed to outperform the other baselines in
learning the human driving behaviors in the AXIs. In particular, our HGIL achieves 18.79%, 23.84%,
23.41%, 29.90%, and 42.39% lower in terms of FDE, ADE, minFDE, minADE, and MR on average
compared with the baseline approaches. DualDisc (as well as the variations of DualDisc-GRU and
DualDisc-BiLSTM), CGAIL, SocialGAN, and SeqST-GAN may not account for the complex AXIs in
the traffic scenes, and hence lead to lower accuracy as the actor (the focal vehicle) actively inter-
acts with other traffic participants and environments. We can also observe that inclusion of the
BiLSTM helps improve the performance compared with the conventional sequence learning for
DualDisc due to enhanced learnability on the spatio-temporal correlations. While LaneGCN-GAIL
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Table 1. Overall Performance and Evaluation Results of All Approaches

Model FDE ADE minFDE minADE MR

HGIL 2.88 1.19 2.43 1.02 23%

DualDisc 3.77 1.83 3.95 1.92 41%
DualDisc-GRU 3.73 1.61 3.13 1.41 42%
DualDisc-BiLSTM 3.69 1.59 2.97 1.37 38%
CGAIL 3.11 1.33 2.71 1.15 28%
SocialGAN 3.07 1.29 2.71 1.18 30%
LaneGCN-GAIL 3.01 1.26 2.60 1.10 27%
HGAIL 3.45 1.42 2.91 1.22 27%
SeqST-GAN 3.54 1.46 3.01 1.25 29%

Table 2. The Results of Our Ablation Studies of HGIL

Variations FDE ADE minFDE minADE MR

HGIL 2.88 1.19 2.43 1.02 23%

HGIL w/o HIG 3.05 1.32 2.73 1.20 29%
HGIL w/o Local 3.22 1.39 2.82 1.24 30%
HGIL w/o Global 3.83 1.74 3.29 1.52 39%
HGIL w/o Edge Weights 3.59 1.62 3.36 1.53 43%

accounts for the map topology and HGAIL aims at understanding the hierarchy of the interactions,
their interaction designs may not further differentiate other traffic participants and their global
and local contexts. Using the local sub-graph attention and the global cross-graph attention, HGIL
achieves better performance in learning the human drivers. In particular, HGIL has achieved more
than 4.32%, 5.56%, 6.54%, 7.27%, and 14.81% performance improvements in terms of FDE, ADE,
minFDE, minADE, and MR compared with LaneGCN-GAIL, demonstrating the effectiveness of our
hierarchical graph designs.

5.3.2 Model Ablation Studies. Table 2 presents the results of our model ablation studies on HGIL
that evaluate the importance of different designs. Specifically, we compare the performance of
complete HGIL designs with the following variations: w/o HIG, w/o the local sub-graph attentions,
w/o the global cross-graph attention, and w/o the edge weights of AXIs.

We can see that the highest performance drop is caused by removing the global cross-graph and
local sub-graph attention mechanisms. This implies the importance of local sub-graph attention
and global cross-graph attention in learning and capturing human driving behaviors. In addition,
we can also observe that relying upon temporal information only without the HIGs degrades the
performance. This demonstrates the necessity of the HIGs for capturing the interactions within
the complex traffic environment.

5.3.3 Sensitivity Studies. We have also evaluated the sensitivity of the important parameters
of HGIL. Figure 6 illustrates our results in terms of FDE; Figure 6(a) shows the FDE vs. the hidden
units for the graph operations in the local sub-graph attention (denoted as B2). The performance
is found to start to decrease after 64 due mainly to the fitting over the complex and potentially
noisy traffic scenes.

We can observe a similar trend in Figure 6(b) and (c) for the number of the hidden units used
in the global cross-graph attention (denoted as B3) as well as that of the hidden units for the LSTM
layers (denoted as B4). So, we adopt B2 = B3 = 64 and B4 = 32 to balance between the model
learnability and generalizability.
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Fig. 6. Model parameter sensitivities in HGIL.

5.3.4 Model Explanationability. We have further conducted explainability studies on HGIL
based on measures of sparsity and fidelity [23]. Specifically, we measure the sparsity as the ra-
tio of the number of the graph nodes in each HIG i that have been identified as important by HGIL
(i.e., with the attention score greater than a certain threshold of 0.7), denoted asmi , over the total
number of nodes in the HIG, Mi . The average sparsity of all N HIGs from all driving scenes is then
given by

sparsity �
1

N

N∑
i=1

(
1 −

mi

Mi

)
. (26)

This quantifies the explainability of HGIL in differentiating the interactions.
In addition, we find the fidelity that characterizes the performance drop when the nodes of the

HIGs with high attention scores (say, above 0.7) are removed. Specifically, we measure the average
percentage of drops in terms of the final displacement errors (FDEs), i.e.,

fidelity �
1

N

N∑
i=1

|FDE′
i − FDEi |

FDEi
, (27)

where FDEi and FDE′
i , respectively, represent the final displacement errors with and without the

nodes with high attention scores. The fidelity represents the model explainability in terms of cap-
turing the essential AXIs toward improved performance.

We illustrate the explanation quantification results in Figure 7. In terms of sparsity, we evaluate
the percentage of graph nodes (in local sub-graph attention and global cross-graph attention) that
have been identified as important. In terms of fidelity, we evaluate the performance of the drop of
HGIL given the removal of nodes in local sub-graph attention and global cross-graph attention in
HIGs. Higher sparsity and fidelity indicate a model’s explainability. Both local sub-graph and global
cross-graph attentions (denoted as “local” and “global”) have high sparsity and fidelity values,
indicating that HGIL captures and differentiates more important nodes for AXIs. We have also
shown the sparsity and fidelity values by SuperGAT [13] and AGNN (based on the conventional
graph attention [32]), and HGIL is found to outperform them with higher quantified explainability.
Furthermore, we can observe that the local sub-graph attention has an even higher fidelity value,
implying the more importance of the interactions identified by the local sub-graph attention that
deals with the IL performance.

5.3.5 Hierarchical Visualization. The learned interactions by the local sub-graph and global
cross-graph attentions are illustrated in Figures 8 and 9, respectively. Figure 8 shows the local sub-
graph attention where different types of objects in the three sub-graphs are linked with edges of
colors representing their weights. We can see from the highlighted sub-graphs that the behaviors
of the actor were mainly resulting from the local contexts at the lane segments near the intersection.
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Fig. 7. Explainability quantification studies of HGIL and the other two baseline approaches.

Fig. 8. Visualization of local sub-graph attention in AXIs. We illustrate the actor-to-vehicle, actor-to-

pedestrian, and actor-to-lane sub-graphs.

Fig. 9. Visualization of global cross-graph attention in AXIs.

Figure 9 further visualizes the global cross-graph attention where the actor is actively interacting
with the global contexts where an incoming pedestrian was walking toward the cross-walk of the
intersection. From these two figures, we can further infer HGIL’s capability in interpreting various
AXIs based on our proposed HIG representations.

6 Discussion

We briefly discuss the deployment of HGIL in the following three aspects.

— Extension to multi-agent scenarios: In this article, we focused on one focal vehicle as
the agent to forecast its future trajectories. In addition, these traffic participants, say, the
pedestrians or the peer vehicles in the complex AXIs, may vary their mobility or driving
styles. Our formulation is general and can be further extended to a multi-agent setting [4,
12, 16] by simultaneously creating the HIGs for different actors of interest at each timestamp.
This will be considered in our future studies.

— Extension to other data or sensing modalities: To prepare the inputs to our HGIL, we
leveraged the situation awareness information [26, 28] about the nearby traffic participants,
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which can be acquired through the sensors commonly available in autonomous vehicles (e.g.,
LiDAR, cameras, or mmWave) [7]. However, our designs within HGIL are general enough to
be extended upon the availability of other data or sensing modalities (e.g., traffic signals).

— Extension to complex deployment scenarios: Our current studies focus on interaction
awareness and hierarchical explainability for autonomous driving simulation. Further exten-
sion to practical and complex deployment scenarios will take into account aspects such as
model complexity (e.g., parameter pruning and model compression) and uncertainty model-
ing when interacting with various traffic elements (e.g., noise in the perception module). We
will explore these in our future work.

7 Conclusion

We have proposed HGIL, a heterogeneous graph-based imitation learning approach for au-
tonomous driving simulation. We have designed an HIG representation to provide local and global
representations and awareness of AXIs. HGIL leverages the HIGs to generate the state embeddings,
and a hierarchically-explainable GAIL approach captures the interactions and driving decision-
making processes of the focal vehicle. We have performed extensive data-driven simulation and
explanation studies, and demonstrated the accuracy, interaction awareness, and hierarchical ex-
plainability of HGIL in learning and capturing the complex AXIs. We have compared HGIL with
various baselines and state-of-the-art approaches, and our scheme outperforms the other methods
in terms of displacement errors, sparsity, and fidelity.
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