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Abstract—We propose an equity-aware GRAph-fusion differen-
tiable Pooling neural network to accurately predict the spatio-
temporal urban mobility (e.g., station-level bike usage in terms
of departures and arrivals) with Equity (GRAPE). GRAPE consists
of two independent hierarchical graph neural networks for two
mobility systems—one as a target graph (i.e., a bike sharing system)
and the other as an auxiliary graph (e.g., a taxi system). We
have designed a convolutional fusion mechanism to jointly fuse
the target and auxiliary graph embeddings and extract the shared
spatial and temporal mobility patterns within the embeddings to
enhance prediction accuracy. To further improve the equity of
bike sharing systems for diverse communities, we focus on the
bike resource allocation and model prediction performance, and
propose to regularize the predicted bike resource as well as the
accuracy across advantaged and disadvantaged communities, and
thus mitigate the potential unfairness in the predicted bike sharing
usage. Our evaluation of over 23 million bike rides and 100 million
taxi trips in New York City and Chicago has demonstrated GRAPE
to outperform all of the baseline approaches in terms of prediction
accuracy (by 15.80% for NYC and 50.55% for Chicago on average)
and social equity awareness (by 32.44% and 24.43% in terms of
resource fairness for NYC and Chicago, and 13.36% and 16.52%
in terms of performance fairness).

Index Terms—Bike sharing, differentiable pooling, equity
awareness, usage prediction, target and auxiliary graphs.

I. INTRODUCTION

THE operation efficiency and profitability of urban mobility
systems (e.g., bike and ride sharing, and other public trans-

portation systems) depends heavily on the mobility modeling
for accurate prediction of mobility resource usage, which is key
to distributing mobility resources (e.g., re-balancing bike de-
mands and supplies), meeting the mobility needs, and enhancing
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communities’ access to life-essential resources (e.g., grocery,
employment opportunities) in the city.

In this paper, we address the following two important ques-
tions with the focus on station-based bike sharing as a represen-
tative case study to re-imagine the predictive usage modeling
and accessibility implications regarding this popular first- and
last-mile connectivity (say, between the riders’ home locations
and the bus stops, or between the metro stations and their
employment locations).

(a) How to capture and exploit cross-modality mobility pat-
terns? Existing bike sharing modeling techniques largely con-
sider single modality (i.e., the bike sharing system itself), and
focus on engineering and integrating of various exogenous
features [1], [2], [3], [4], [5] for accurate prediction. Different
mobility systems or modalities, such as taxi, bus, and subway, in
the transportation network in a city might share similar mobility
patterns due to the people’s commute and travel preferences.
Despite these modalities’ seemingly heterogeneous data rep-
resentations [6], [7], [8], accounting independently for their
mobility patterns will likely discard the essentially useful mobil-
ity patterns shared across these platforms, leading to degraded
prediction accuracy. Furthermore, existing studies [9], [10]
largely focus on hand-crafted feature engineering to integrate
the patterns. Such approaches cannot fully extract the complex
latent correlations across these modalities. In fact, these mobility
systems may be represented or described in terms of network
graphs, with their mobility trips, such as bike and taxi rides,
connecting different city regions – for instance, bike stations
and taxi pick-up/drop-off zones. Such a representation provides
excellent feature interpretation regarding the spatial connectiv-
ity, and the latent correlations across these graphs of different
modalities, may bring complementary knowledge beyond the
engineering of single-modality features. However, how to design
an effective way to fuse these graphs for the model predictability
enhancement remains largely under-explored.

(b) How to account for the equity-aware prediction modeling?
We focus on bike sharing as it has great potential for serving
the broader communities due mainly to its ease of use and low
cost, particularly providing disadvantaged communities accessi-
bility at low cost. However, the recent publications and various
field studies [11], [12] have revealed that regions with more
economic activities (e.g., central business area, tourism zones)
exhibit more bike usage (i.e., departures and arrivals). These
regions may often be predominated by historically advantaged
communities (e.g., in terms of ethnicity, education, and income
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Fig. 1. Motivations of GRAPE. ⊕ represents the advantaged community while
� represents the disadvantaged community.

levels) who may therefore be allocated with more bike resources
and infrastructures, if based on the historical fulfilled mobility
demand, than those predominated by the disadvantaged com-
munities [12], [13]. Such an unbalanced resource distribution, if
recorded as the historical data for training the prediction model,
could lead to a biased performance of deep learning in the
prediction of bike usage across different regions, as existing
usage learning and prediction methods [2], [14] might aim to
match the mobility patterns of the regions with more usage data.
The resulting biased prediction, in terms of predicted resources
as well as prediction accuracy, will affect the service quality for
the different communities, leading to mobility inequality across
the bike sharing networks due to degraded or limited service
quality and exacerbation of the long-lasting disparity [15], [16].

Motivated by the above concerns, we propose GRAPE, a
novel station-based bike sharing usage prediction approach with
GRAph-fusion differentiable Pooling neural network with re-
source and performance Equity (GRAPE) awareness. This paper
makes the following four major contributions in addressing the
above research questions.

(i) Analyzing Mobility Modality and Social Equity (Sec-
tion II): In this study, we select the taxi system as a typical
and pervasive modality to derive our cross-modality designs.
Specifically, we have conducted the comprehensive real-world
data analytics on the shared spatial and temporal characteristics
of both bike and taxi systems in two metropolitan cities, New
York City (NYC) and Chicago. We analyze and quantify the
spatial (say, in terms of the common location-wise demand
distributions) and temporal (e.g., in terms of the shared repetitive
patterns) correlations between different mobility systems from
our analysis. Such spatio-temporal correlations motivate our
cross-modality graph fusion inGRAPEbeyond a single-modality
setting. We have also conducted an extensive bike station anal-
ysis with the socioeconomic data of NYC and Chicago. We
derive their social equity implications in relation to the differ-
ent modality systems. We observe the unbalanced distributions
of bike resources across regions with different socioeconomic
features (e.g., ethnicity, education, and income), which motivate
our equity-aware prediction modeling.

Fig. 2. System overview and information flow of GRAPE.

(ii) Predicting Bike Usage with Cross-modality Graph-Fusion
Differentiable Pooling (Sections III and IV): To achieve the
cross-modality prediction for the heterogeneous system of target
(bike) and auxiliary (taxi) networks, we have designed within
GRAPE a novel graph-fusion differentiable pooling framework
where the cross-modality spatio-temporal features of the above
two systems are combined throughout the hierarchical space
with the shared graph structures. The framework incorporates
the hierarchical features of the auxiliary graph into the target
graph via a novel convolutional fusion design which captures
the spatio-temporal correlations between the target and auxiliary
systems. We further augment a spatial attention mechanism
with a long short-term memory (LSTM) network to capture
the spatio-temporal correlations from the fused hierarchical
features, yielding high prediction accuracy.

(iii) Designing Resource and Performance Fairness Metrics
for Station-based Bike Sharing Learning (Section V): GRAPE
accounts for the socioeconomic information and integrates
the fairness metrics with the model regularization to generate
equity-aware prediction across the entire bike sharing network.
Specifically, we consider fairness in the bike-resource distribu-
tion and in the model prediction performance. As for resource,
we mitigate the difference in per capita demands across the sta-
tions in the advantaged and disadvantaged regions. This way, the
predictions can help the bike sharing service providers to adjust
future resource allocation equitably and mitigate the unfairness
across communities. As to performance, we aim to reduce
the prediction-error difference weighted by the populations at
the bike sharing stations within advantaged and disadvantaged
communities. This way, GRAPE can balance the quality of bike
sharing service, say, in terms of prediction accuracy, experienced
by the different communities.

(iv) Extensive Experimental Studies (Section VI): We have
conducted extensive experimental studies upon over 23 million
of bike trips and 100 million of taxi trips in total from NYC and
Chicago. Our current experimental studies have demonstrated
that our proposed model outperforms the other approaches in
bike usage prediction, on average by 15.80% for NYC and
50.55% for Chicago in terms of Mean Squared Error and R2

on average. Furthermore, GRAPE improves the social equity of
the bike sharing systems, on average by 32.44% and 24.43% in
terms of resource fairness for NYC and Chicago, and 13.36%
and 16.52% in terms of performance fairness.
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• System Overview: Fig. 2 provides an overview of GRAPE’s
system framework. We first harvest the mobility data from the
target and auxiliary modalities, i.e., the bike and taxi systems
in our studies. Then, GRAPE processes and extracts the graph
features from the target and auxiliary graphs, and fuses the
hierarchical graphs. The embedded spatial features are then
integrated for the temporal feature extraction. Finally, GRAPE
leverages the socioeconomic data from the U.S. Census for the
equity-aware regularization upon the model in order to mitigate
the unfairness in resource prediction and model performance.
• Societal Implications: As illustrated in Fig. 1(b), our model

output can be fed to the government web portals, enabling re-
sponsible city planning [17], digital governance, and civic com-
munity engagement. Above and beyond the theoretical analysis
and data-driven studies, the insights gained from GRAPE may
benefit the following three stakeholder groups: (1) government
and city planners in integrating the mobility equity insights
to plan bike sharing station distributions; (2) diverse urban
communities in benefiting from more inclusive deployment of
bike sharing resources/services; and (3) urban computing prac-
titioners and bike sharing service providers in enhancing bike-
usage prediction through cross-modality graph-fusion pooling
designs. Using our results, the related stakeholders can take
various measures, including user survey, feedback crowdsourc-
ing [18], and public hearings to further investigate the usage and
socioeconomic distributions in digital city planning/governance
and civic community engagement, as illustrated in Fig. 1(b).

The rest of the paper is organized as follows. We first present
the mobility and socioeconomic data analysis in Section II.
Given the derived features, we then present the problem defini-
tion and the model overview in Section III. We then present the
core model of GRAPE in Section IV, and designs of the fairness
metrics in Section V. We provide the performance evaluations in
Section VI. We discuss the deployment ofGRAPE in Section VII,
followed by the review of the related work in Section VIII. We
finally conclude the paper in Section IX.

II. MOBILITY & SOCIOECONOMIC DATA ANALYSIS

We first detail our real-world datasets of bike sharing, taxi
systems, and socioeconomic datasets in Section II-A. We then
present the data analysis of the shared spatio-temporal features
in Section II-B. After that, we study the distributions of bike
resources regarding the socioeconomic characteristics in Sec-
tion II-C, which further motivates the needs for equity-aware
learning and model designs.

A. Dataset Overview

To explore the spatio-temporal correlations between bike and
taxi systems, we utilize the real-world user trip data of bike
sharing platforms of NYC and Chicago. To analyze the socioeco-
nomic features of bike resource distribution, we take into account
the socioeconomic data from the U.S. Census Bureau. Each of
these datasets is detailed below.

1) User Trip Data of Bike Sharing Systems: The bike
trip dataset describes every single trip including the

Fig. 3. Pick-up demand heatmaps of bike sharing and taxi systems of NYC on
Monday 01-21-2019 from 8:00 to 9:00 am. The warmer colors indicate higher
demands.

trip’s start/end time, start/end stations, and their longi-
tudes/latitudes. We have collected a total of 23,665,647
trips from two cities: 20,551,697 trips from Citi Bike [19]
in NYC during 2019/01/01–2019/12/31 and 3,113,950
trips of Divvy Bike [20] in Chicago during 2019/01/01–
2019/09/30.

2) User Trip Data of Taxi Systems: In this prototype, we
use the taxi data as auxiliary information to enhance
bike-usage prediction. Similar to bike trip data, the taxi
trip dataset describes every single trip including the trip’s
start/end time, start/end regions (e.g., community areas,
taxi zones), and the GPS coordinates of the regions’
boundaries. We have extracted a total of 100,876,384
trips from the two cities in 2019: 84,399,019 trips from
the Yellow Cab in NYC [21] and 16,477,365 trips in
Chicago [22].

3) Socioeconomic Data: To analyze the social equity of bike
sharing systems, we have extracted socioeconomic data
per census block group for the two cities. We retrieve
the social ethnicity distribution, per capita income, and
population holding bachelor’s degrees in 2018 from U.S.
Census Bureau [23]. The dataset contains socioeconomic
information in each of the 6,493 census block groups
in NYC (i.e., Bronx, Kings, New York, Queens, and
Richmond counties) and the 3,993 census block groups
in Chicago (Cook county).

We note that all the datasets we studied are open-sourced and
all sensitive user information has been sanitized before release
by the government portals and service providers, and hence no
institutional review board approval is required.

B. Shared Spatio-Temporal Mobility Patterns

• Spatial Correlations between Bike Sharing and Taxi Sys-
tems: We first show the similar spatial usage patterns of two
mobility systems in NYC in Fig. 3 (with the spatial demand
distributions in terms of bike stations and taxi zones that are
pre-defined by the service operators). Fig. 3(a) shows that the
bike sharing stations at the center of Manhattan, NYC have
higher bike demands than the rest of the city. The taxi system
demonstrates spatial distributions similar to the bike sharing sys-
tem, as illustrated in Fig. 3(b). Despite the potentially different
commute purposes and mobility preferences of the two mobility
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Fig. 4. PDFs of spatial correlations of daily bike and taxi pick-ups/drop-offs
in 2019.

Fig. 5. Hourly bike/taxi departures from 01-08-2019 to 01-14-2019 in NYC.

systems, such a spatial correlation should be carefully taken into
account in our cross-modality modeling.

To further quantify the spatial correlations between the two
systems, we divide the city map of NYC into a grid map, each
of which is of the size of 1.0× 1.0km2. We aggregate the total
departures or arrivals of each day in all bike stations or taxi
regions in each grid. We then flatten the generated grid data into
a vector and compute the Pearson’s correlation coefficient [24]
between the usage vectors of the bike and taxi systems. We can
see from the results Fig. 4 that the spatial correlation coeffi-
cients are mostly around 0.6 (i.e., 0.61±0.03 and 0.60±0.03
for pick-ups and drop-offs, respectively). We have empirically
studied different spatial discretization levels, and observed the
similar probability density functions (PDFs). Such a shared
spatial distribution motivates our designs to characterize the
spatial correlations across the modalities in GRAPE.
• Temporal Correlations between Bike Sharing and Taxi

Systems: Our extensive data analysis also reveals the temporal
correlations between bike sharing and taxi systems. Taking NYC
as an example, we aggregate the hourly bike/taxi usage of all
the stations/regions to generate the hourly bike/taxi usage of the
entire city. We first illustrate in Fig. 5 the temporal patterns of
city’s total bike and taxi demands during a week. We can see that
despite the scale and value differences, there exist similar daily
mobility patterns of taxi and bike usages due to the repetitive
daytime commute. Furthermore, we also observe the similar

Fig. 6. PDFs of daily temporal correlations in 2019.

weekly mobility patterns for both systems; the weekday usage
is usually higher than that of the weekends.

In particular, we find the correlation coefficients between the
hourly departures/arrivals of the bike and taxi systems in NYC
for each week of 2019. We then plot in Fig. 6 the PDFs of
the Pearson’s correlation coefficients. We can observe gener-
ally high temporal correlations between the two systems (i.e.,
0.73±0.11 and 0.74±0.10 for pick-ups and drop-offs, respec-
tively). This motivates our cross-modality model designs in
GRAPE to capture the temporal correlations of the two systems.

C. Analysis of Station-Based Bike-Usage Fairness

• Advantaged and Disadvantaged Communities: In addition
to the cross-modality feature fusion, our work aims at enhancing
the fairness in the deployment of mobility systems, particularly
focusing on bike sharing. As discussed in Section II-A, we have
collected the raw demographic data per census block group.
Based on these census tract data, we first define the binary social
groups for fairness evaluation following the practices in prior
transportation mobility fairness studies [25], [26].

Specifically, we define the advantaged and disadvantaged
communities based on socioeconomic attributes in the U.S.
Census Tract datasets, and our study focuses on the following
three attributes:

(a) Social Ethnicity: We consider the geographic regions
where the major population is from the social ethnicity other than
Caucasians as the disadvantaged communities, and the regions
where the Caucasian population exceeds 50% of the total as the
advantaged communities.

(b) Income Level: Taking NYC as an example, we illustrate in
Fig. 7(a) the normalized per capita income, which shows the spa-
tial variations of the income levels of different neighborhoods.
In this study, we take into account the regions where the per
capita/median household annual income is lower than the 30th

percentile of that of the city as the disadvantaged communities.
(c) Education Level: Our formulation takes in the regions with

less than 30% of population holding bachelor’s degrees as the
disadvantaged communities.

Note that despite our focus upon the above three attributes in
this prototype study, GRAPE is general enough to be extended
to other socioeconomic attributes [23].

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2025 at 00:57:06 UTC from IEEE Xplore.  Restrictions apply. 



290 IEEE TRANSACTIONS ON BIG DATA, VOL. 11, NO. 1, JANUARY/FEBRUARY 2025

Fig. 7. (a) Normalized per capita income. (b)–(d) Bike station distributions of NYC. The blue dots represent the stations located in the areas where the advantaged
community predominates and the red dots otherwise.

• Socioeconomic Features & Unbalanced Station Distribu-
tions: Fig. 7(b)–(d) further illustrate the spatial distributions
of bike stations located in advantaged and disadvantaged com-
munities in terms of social ethnicity, income, and education.
From Fig. 7(b)–(d), we can see that stations with mostly the ad-
vantaged communities (labeled with blue dots) residing nearby
are often distributed at the center of Manhattan and the east
of Brooklyn. We note that Fig. 3(a) shows that the major bike
resources (stations) are allocated to the mobility demands at the
center of Manhattan in NYC. Combining Figs. 3(a) and 7(b)–(d),
we can infer that the potential social inequity of deployed bike
resources across different communities, where the stations with
high demand and, therefore, more bike resources are usually
situated in the city regions close to advantaged communities.

Given the above settings and conditions, a conventional deep
learning model [2], [27] trained with unbalanced station distri-
butions and historical bike usage may create biased bike-usage
prediction favoring these regions with advantaged communities.
The prior practices might escalate the divergence in the future
resource allocation as well as service quality. This motivates
our designs in the fairness metrics regarding bike resources and
prediction errors as regularizers in our cross-modality model.

III. PROBLEM & MODEL OVERVIEW

Given the above data analysis, we first define and formalize
the core problem in Section III-A, and overview our GRAPE
design in Section III-B.

A. Problem Definition

• Bike Sharing Usage Prediction: Considering a bike sharing
network of N stations as the target system, denoted as “tar”, each
station i has two features, z(d)tar,k[i] and z

(r)
tar,k[i], i.e., the aggregate

numbers of departures (d) and arrivals (r) from/at station iwithin
a time interval k. Taking in a time window of T such intervals,
GRAPE forms

z
(d)
tar =

[
z
(d)
tar [1], . . . , z

(d)
tar [N ]

]
,

and

z
(r)
tar =

[
z
(r)
tar [1], . . . , z

(r)
tar [N ]

]
,

where z
(d)
tar [i] = [z

(d)
tar,t−T +1[i], z

(d)
tar,t−T +2[i], . . . , z

(d)
tar,t[i]] and

z
(r)
tar [i] = [z

(r)
tar,t−T +1[i], z

(r)
tar,t−T +2[i], . . . , z

(r)
tar,t[i]] for i ∈ [1,

. . . , N ], representing the T historical bike sharing departures
or pick-ups, and arrivals or drop-offs from/at station i by the
present time interval t.

Similarly to z
(d)
tar , z

(r)
tar ∈ R

N×T , taking into account the taxi
system as the auxiliary system, denoted as “aux”, we find
z
(d)
aux, z

(r)
aux ∈ R

N ′×T for the taxi departures and arrivals of N ′

taxi regions.
Using the above setting, the bike sharing usage prediction

problem of GRAPE is defined as follows. Given the bike/taxi
usage of each station/region of previous T time intervals, z(d)tar ,
z
(r)
tar , z(d)aux, and z

(r)
aux, we aim to predict the target bike departures

and arrivals beyond the present time interval t,

ẑ
(d)
tar [i] =

[
ẑ
(d)
tar,t+1[i], ẑ

(d)
tar,t+2[i], . . . , ẑ

(d)
tar,t+F [i]

]
, (1)

and

ẑ
(r)
tar [i] =

[
ẑ
(r)
tar,t+1[i], ẑ

(r)
tar,t+2[i], . . . , ẑ

(r)
tar,t+F [i]

]
, (2)

at each station i with the horizon of future F time intervals.
• Bike Sharing System Equity: To further achieve the equity-

aware prediction, we will take into account resource distribution
and model performance in regularizing the GRAPE model:
� Resource Fairness: For resource distribution, our regular-

ization mitigates the unbalanced bike resource distribution
between stations in the advantaged and disadvantaged com-
munities to reduce the unfairness of resource allocation of
the bike sharing system.
Specifically, we reduce the difference of the per capita
demand predictions between the stations that are near
the advantaged communities i+ ∈ [1, . . . , N+] and those
near the disadvantaged communities, i− ∈ [1, . . . , N−],
∑N+

i+
ẑ
(d)
tar,k[i

+]
∑N+

i+
Di+

and
∑N−

i− ẑ
(d)
tar,k[i

−]
∑N−

i− Di−
, whereN+ (N−) is the total

number of stations with major advantaged (disadvantaged)
communities nearby (N+ +N− = N ), and Di+ and Di−

denote their respective ratios of the population of the census
block group to the total population of the city where the
stations i+ and i− are located.

� Performance Fairness: To evaluate the performance fair-
ness, our regularization reduces the difference in mean
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Fig. 8. Overview of the core structure of GRAPE.

squared errors (MSEs) of predictions which are weighted
by the populations of advantaged and disadvantaged com-
munities, Di+ and Di− , where the stations i+ and i− are
located. Here we incorporate the population as the weights
in order to ensure a reasonable model prediction accuracy
(and the subsequent service quality) can be experienced by
a substantial population.

B. Overview of Core Model and Hierarchical Graphs

• Model Overview: To jointly approach the prediction and
equity problems, we have designed GRAPE, an equity-aware
bike-usage prediction system, and its core structure is illustrated
in Fig. 8.

Specifically, we first formulate the bike sharing network as a
target graph,Gtar, and the taxi system as an auxiliary graph,Gaux,
where Gtar and Gaux have different numbers of nodes. Given
the thus-constructed target and auxiliary graphs from the input
level, we then extract their hierarchical spatial features using
the separate differential pooling mechanisms (see Section IV-A)
from the levels 1 to P . This way, at each hierarchical level (level
p) the nodes in the target and auxiliary graphs are assigned,
respectively, to the same number of nodes, enabling fusion of
hierarchical spatial features of the auxiliary graph into those of
target graph.

The extracted features of the auxiliary graph are then incor-
porated into the target graph at hierarchical levels via a con-
volutional fusion mechanism (see Section IV-A) in a backward
direction from the level P to the input level. We further leverage
temporal and spatial learning module, which consists of tempo-
ral sequence learning and spatial attention (see Section IV-B),
to capture the temporal and spatial features of the updated
embeddings of the target graph.

To mitigate the social inequity of the target (bike) systems
in terms of resource and performance, we have designed two
fairness metrics (Section V), i.e., fairness in resource allocation
and model performance, as additional objective functions for
GRAPE, leading to equity-aware prediction.
• Target and Auxiliary Graphs: For the target graph, Gtar,

each node represents a bike station with bike departure and
arrival volumes as its two features, and there are a total of N

nodes considering a system with N bike stations. We consider
an edge between any two nodes representing that users can
commute between any two stations in the city. We note that in
our experimental studies, as the pick-up and drop-off locations of
the NYC taxis are provided in the zone or region level instead of
fine-grained coordinates. We formulate the bike station network
as a graph and let each node in the graph represent such a region
including taxi departure and arrival volumes as its two features.
For a taxi system with N ′ taxi zones or community areas, the
auxiliary graph, denoted as Gaux, contains N ′ nodes. Similarly,
we construct an edge between any two nodes inGaux to represent
the commutes between any two regions of the city.

The weight of each edge in Gtar or Gaux represents the cor-
relation between two city locations. In this work, we adopt the
inverse of geo-distances between locations as their correlations
to formalize each element inside the adjacency matrix of the
constructed graph. The adjacency matrix at the input level for
Gtar, denoted as A(1)

tar ∈ R
N×N , is formulated as

A
(1)
tar [i, j] = A

(1)
tar [j, i] =

1

gtar(i, j)
, (3)

where gtar(i, j) denotes the geo-distance (in km) between two
locations i and j. Similarly we can find the weight in the auxiliary
graph A

(1)
aux[i, j] based on gaux(i, j), where A

(1)
aux ∈ R

N ′×N ′
. We

set the diagonal elements of the adjacency matrix A
(1)
tar [i, i] = 0

and A
(1)
aux[i, i] = 0. In practice, for the taxi graph, the regions of

departures/arrivals are usually in polygons. For simplicity, we
use the center points of their bounding boxes to calculate the
geo-distances between each two regions as their correlations.

IV. CORE MODEL DESIGN

We present in the following the core model designs ofGRAPE,
i.e., the hierarchical graph learning design in Section IV-A, and
temporal and spatial learning design in Section IV-B.

A. Hierarchical Graph Learning Designs

Our hierarchical graph learning for cross-modality fusion
includes the following two major components, i.e., (1) the graph
differentiable pooling, and (2) the convolutional fusion of graph
embeddings, which will be discussed in details below.

(1) Graph Differentiable Pooling: From Section II-B, we learn
that the mobility patterns of the target and auxiliary systems have
latent spatio-temporal characteristics shared at the city regions.
The graph differentiable pooling design ofGRAPE aims to merge
the knowledge of the auxiliary system into the target system at
the hierarchical level to improve the target graph representation
and the subsequent prediction accuracy. Specifically, we first
design the hierarchical graph embedding to achieve such knowl-
edge fusion across the target and auxiliary mobility systems, via
a graph differentiable pooling mechanism [28]. Taking the target
graph as an example, we construct a total ofP hierarchical levels.
The detailed designs are as follows.

(a) Graph Convolution: As illustrated in Fig. 9, for each level,
p, we form a total of N (p) nodes by assigning the N (p−1) nodes
from the previous levelp− 1. At each level for the time intervalk
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Fig. 9. An example of graph differentiable pooling mechanism at the pth
hierarchical level of the target graph.

(k ∈ {t− T + 1, . . . , t}), we first perform aGCN operation [29]
on the input embeddings,H(p)

tar,k, and the adjacency matrixA(p)
tar,k,

assigned from the preceding level p− 1 to process and capture
the spatial correlations between N (p) nodes, and generate the
GCN embeddings at this level, H̃(p)

tar,k, i.e.,

H̃
(p)
tar,k = GCN

(
A

(p)
tar,k,H

(p)
tar,k

)
∈ R

N(p)×f̃
(p)
tar , (4)

where the superscript p denotes the pth hierarchical level, and
f̃
(p)
tar represents the GCN embedding size. Note that level p = 1

denotes the input level, and we let H
(1)
tar,k be the bike pick-

ups/drop-offs at the time interval k, and A
(1)
tar,t−T +1 = . . . =

A
(1)
tar,k = . . . = A

(1)
tar,t = A

(1)
tar be the adjacency matrices at the

input level ((3)).
Within the GCN(·) operation, each element of the adjacency

matrix A
(p)
tar,k[i, j] is first normalized, i.e.,

Ã
(p)
tar,k = D− 1

2

(
A

(p)
tar,k + I

)
D

1
2 , (5)

where D ∈ R
N×N is the degree matrix of A(p)

tar,k and I ∈ R
N×N

is an identity matrix. Then the convolutional operation is given
by

H̃
(p)
tar,k = Ã

(p)
tar,kH

(p)
tar,kW

(p)
tar , (6)

where W
(p)
tar ∈ R

f
(p)
tar ×f̃

(p)
tar represents the learnable parameter.

(b) Node Assignment: We have another GCN which leverages
the H̃(p)

tar,k and the adjacency matrix A
(p)
tar,k to generate the transi-

tion matrix, T(p)
tar,k ∈ R

N(p)×N(p+1)
. The transition matrix T

(p)
tar,k

will be used for assigning H̃
(p)
tar,k and A

(p)
tar,k to the (p+ 1)th

level, and the resulting H
(p+1)
tar,k and A

(p+1)
tar,k again become the

input of the successive (p+ 1)th level. Such node assignment
mechanism extracts the hierarchical spatio-temporal knowledge
shared by bike and taxi systems, enabling the embedding fusion.

We detail our node assignment mechanism in the following.
To assign the nodes at the pth level to the nodes at the (p+
1)th level, we generate the transition matrix by another GCN.
Specifically, the GCN takes in A

(p)
tar,k and H̃

(p)
tar,k as input for the

time interval k:

T
(p)
tar,k = softmax

(
GCN

(
A

(p)
tar,k, H̃

(p)
tar,k

))
, (7)

where T
(p)
tar,k ∈ R

N(p)×N(p+1)
is the transition matrix from the

levels p to p+ 1, and A
(p)
tar,k ∈ R

N(p)×N(p)
is the adjacency

matrix at the pth level.
We let the output dimension of theGCN be equal to the number

of nodes at the (p+ 1)th level, N (p+1). We use the soft-
max function to normalize each row of the transition matrix,
and hence the transpose of the transition matrix, (T(p)

tar,k)
ᵀ ∈

R
N(p+1)×N(p)

, represents the probability of assigning the nodes
at the pth level to each one of the nodes at the (p+ 1)th level.
This probability encodes which target nodes in a graph belong
to the same geospatial region (a node at the next level) based on
the spatial correlations between the nodes (further visualization
and interpretation can be referred to Section VI-B).

Then, we obtain the input embeddings of the (p+ 1)th level,
i.e.,

H
(p+1)
tar,k =

(
T

(p)
tar,k

)ᵀ
H̃

(p)
tar,k, (8)

where H
(p+1)
tar,k ∈ R

N(p+1)×f
(p+1)
tar represents the input embed-

dings of the GCN at the (p+ 1)th level, and f
(p+1)
tar = f̃

(p)
tar .

Similarly, taking into account T(p)
tar,k as the probability of node

assignment, the adjacency matrix at the (p+ 1)th level becomes

A
(p+1)
tar,k =

(
T

(p)
tar,k

)ᵀ
A

(p)
tar,kT

(p)
tar,k, (9)

where A
(p+1)
tar,k ∈ R

N(p+1)×N(p+1)
is the adjacency matrix at the

(p+ 1)th level.
Following the same manner, we feed A

(p)
aux,k and H

(p)
aux,k to the

graph differentiable pooling module of the auxiliary graph, and
obtain the T

(p)
aux,k, H(p+1)

aux,k , and A
(p+1)
aux,k at the pth hierarchical

level of the auxiliary graph.
(2) Convolutional Fusion of Graph Embeddings: Given

the embeddings [30] of the target and auxiliary graphs at
each hierarchical level for the past T time intervals, i.e.,

H
(p)
tar ∈ R

T ×N(p)×f
(p)
tar = [H

(p)
tar,t−T +1, . . . ,H

(p)
tar,t] and H

(p)
aux ∈

R
T ×N(p)×f

(p)
aux = [H

(p)
aux,t−T +1, . . . ,H

(p)
aux,t] (f (p)

aux represents the
channel size for the auxiliary graph at the level p), we fuse them
in a backward manner from the levels P to 1.
GRAPE generates the updated representations of the target

graph at the first level, i.e., the station level, and realizes the
accurate bike usage predictions at all stations for the target
system. Recall that Fig. 6 implies the long-term (weekly) tem-
poral patterns of the auxiliary (taxi) system are correlated with
those of the target (bike) system. We note that the convolutional
fusion within our GRAPE captures the correlations in terms of
the repetitive and recurrent trends between the bike and taxi
modalities, despite the differences in the absolute volumes of
the two modalities (see Fig. 5).

Specifically, as illustrated in Fig. 10, for historical embed-
dings at the pth hierarchical level for auxiliary graph, H(p)

aux ∈
R

T ×N(p)×f
(p)
aux , we adopt a 2-D convolutional neural network

(Conv2D) with zero padding to learn their weekly patterns and
obtain the updated embeddings of the auxiliary graph, i.e.,

H′(p)
aux = Conv2D

(
H(p)

aux

)
, (10)
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Fig. 10. Illustration of convolutional fusion mechanism across the levels p

and p− 1. The mechanism takes in the embeddings of H(p)
aux and Ĥ

(p)
tar , and

the probability of assignment, T(p)
tar,k , and returns Ĥ

(p−1)
tar,k for the preceding

layer. The operator ‖ denotes concatenation operation and × denotes matrix
multiplication.

where H′(p)
aux ∈ R

T ×N(p)×f
(p)
aux .

Then, we fuse the updated auxiliary embeddings with the

target embeddings, H(p)
tar ∈ R

T ×N(p)×f
(p)
tar , at each hierarchical

level via the concatenation operation. We use the concatenation
operation instead of summation fusion to increase the flexibil-
ity of the model as the summation requires the same matrix
dimension making the model less robust. Specifically, at the
level P (at the top of the hierarchical structure), the updated
auxiliary embeddings H′(P )

aux are concatenated with the original
target graph embeddings H(P )

tar , i.e.,

H
(P )
tar = H

(P )
tar

∥∥∥∥ H′(P )
aux , (11)

where H
(P )
tar ∈ R

T ×N(P )×f̄
(P )
tar and f̄

(P )
tar = f

(P )
aux + f

(P )
tar . We up-

date the embeddings of the (P − 1)th level by projecting H
(P )
tar

back to the level (P − 1) at each time interval [31], i.e.,

Ĥ
(P−1)
tar,k = T

(P−1)
tar,k H

(P )
tar,k, (12)

and we have Ĥ
(P−1)
tar = [Ĥ

(P−1)
tar,t−T +1, . . . , Ĥ

(P−1)
tar,t ] for all the

time intervals.
For the subsequent layers other than the P th level, we update

embeddings of the target graph by the concatenating the projec-
tion of the updated target graph embeddings at the level p for all
time intervals, Ĥ(p)

tar , and the convolution of the auxiliary graph
embeddings at the level p, H′(p)

aux, i.e.,

H
(p)
tar = Ĥ

(p)
tar

∥∥∥∥ H′(p)
aux. (13)

Then we project H
(p)
tar back to the level (p− 1) at each time

interval, i.e.,

Ĥ
(p−1)
tar,k = T

(p−1)
tar,k H

(p)
tar,k. (14)

Following the above fusion and projection processes, we ob-
tain the updated embeddings of the target graph at the input level,

H
(1)
tar ∈ R

T ×N×f̄
(1)
tar , which are fed into the subsequent LSTM

module for capturing the temporal and sequential characteristics.

B. Temporal and Spatial Learning

We further design the temporal sequence learning and spatial
attention learning modules to extract the temporal and spatial
features from the generated graph embeddings.
• Temporal Sequence Learning: The updated embeddings of

the station level, H
(1)
tar ∈ R

T ×N×f̄
(1)
tar , is reshaped into H′(1)

tar ∈
R

T ×Nf̄
(1)
tar and fed to an LSTMmodule. We obtain the last hidden

state (the present time interval t)ht = LSTM(H′(1)
tar )whereht ∈

R
h and h is the number of hidden states.
• Spatial Attention Learning: Our spatial attention further

captures the multi-level spatial correlations across the time series
of different bike stations. Specifically, we first leverage a 1-D
convolutional layer (Conv1D) with kernel size T upon the time
dimension (the first dimension of H̄(1)

tar ) to encode the temporal
patterns of each bike stations, i.e.,

H
att

= Conv1D
(
H

(1)
tar

)
, (15)

where H
att ∈ R

N×f att
represents the resulting station embed-

dings, and f att is the channel size of Conv1D. This way, we can
directly achieve the internal representation of the time series
data.

Then, we multiply H
att

with the LSTM output hidden
state ht to compute attention scores for all stations, α =
[α1, . . ., αi, . . ., αN ], i.e.,

α = softmax
(
H

att
Wattht

)
, (16)

where Watt ∈ R
f att×h is a trainable parameter. We then sum

up the station embeddings based on their attention scores and
generate the attention hidden state, hatt ∈ R

f att
, i.e.,

hatt =

N∑
i

αiH
att
[i]. (17)

Then, we update final hidden state by a linear (dense) layer of
the concatenation of hatt and ht, i.e.,

h̄t = Whidden

(
hatt

∥∥∥∥ ht

)
+ bhidden, (18)

where Whidden ∈ R
h×(f att+h) and bhidden ∈ R

h are trainable pa-
rameters.

A fully connected layer with a ReLu activation function takes
the updated last hidden state, h̄k, to generate predictions of bike
departures and arrivals simultaneously. The final prediction of
the future F time intervals for all N bike sharing stations, ẑ ∈
R

2FN , is formulated by

ẑ = ReLu
(
Wouth̄t + bout

)
, (19)

where Wout ∈ R
2FN×h and bout ∈ R

2FN . We reshape ẑ into
[ẑ

(d)
tar , ẑ

(r)
tar ] (see (1) and (2)) as the final outputs.

V. EQUITY-AWARE OBJECTIVE DESIGNS

Based on the aforementioned model designs, we further
present in Section V-A the objective designs of GRAPE in
prediction accuracy, as well as the fairness metrics for the equity
in terms of resource allocation and performance in Section V-B.
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A. Prediction Accuracy Metrics

To train GRAPE for predicting the bike usage at different
stations, our objectives in terms of prediction accuracy are
two-fold.
• Prediction Accuracy: First, for usage prediction accuracy,

GRAPE minimizes the Mean Square Error (MSE), i.e.,

LMSE =
1

2NF

N∑
i=1

t+F∑
k=t+1

(
ẑ
(d)
tar,k[i]− z

(d)
tar,k[i]

)2

+
1

2NF

N∑
i=1

t+F∑
k=t+1

(
ẑ
(r)
tar,k[i]− z

(r)
tar,k[i]

)2

, (20)

where ẑ(d)tar,k and ẑ
(d)
tar,k are the predicted and ground-truth depar-

tures, while ẑ
(r)
tar,k and z

(r)
tar,k are the predicted and ground-truth

arrivals.
• Node Assignment: However, minimizing MSE does not

necessarily benefit the hierarchical graph learning due to the
non-convexity of the graph optimization [28]. To address this
issue, we introduce an auxiliary objective function, i.e., the
node assignment loss. We leverage this loss to ensure that
the spatio-temporal embeddings of the auxiliary graph at the
hierarchical levels will be assigned to the correct nodes inside
the target graph. It is formally given by

Ltra =
t+F∑

k=t+1

∑
m∈[tar,aux]

P−1∑
p=1

∥∥∥H(p)
m,k−T

(p)
m,k

(
T

(p)
m,k

)ᵀ
H

(p)
m,k

∥∥∥2
F

N (p)

+

t+F∑
k=t+1

P∑
p=2

∥∥∥A(p)
tar,k −A

(p)
aux,k

∥∥∥
F
. (21)

The Frobenius norms in (21) help capture the differences of the
input embeddings (matrices) [32]. Specifically, the first squared
Frobenius norm, denoted as ‖ · ‖F , captures the difference be-
tween the original embeddings from the target and auxiliary
graphs, H(p)

tar,k and H
(p)
aux,k, and the embeddings after pooling

and back projection for all levels of the target/auxiliary graphs
(p ∈ {1, . . . , P − 1}). The second Frobenius norm denotes the
difference between the adjacency matrices of the target and
auxiliary graphs, A(p)

tar and A
(p)
aux, at each hierarchical level.

In other words, (21) ensures that (i) the embeddings after
pooling and backward projection should be close to the original
input level; (ii) the adjacency matrices of the target and auxiliary
graphs, representing the node correlations, should be enforced
to be the same.

B. Designs of Fairness Metrics

In order to reduce the social inequity of our target systems,
we propose two fairness metrics in our model studies, i.e.,
the fairness in resource distribution and the fairness in model
performance weighted by population.

• Resource Distribution Fairness: This metric is designed
to mitigate the difference between the resources across the
advantaged and the disadvantaged communities [33]. We define
the fairness metrics in the bike station resource distribution as

difference in the per capita predicted demand (pick-up) between
the stations in advantaged and the disadvantaged communities
(in terms of a certain socioeconomic attribute such as social
ethnicity). Specifically, we have the loss as

Lres =
1

F

t+F∑
k=t+1

1∑N
i z

(d)
tar,k[i]

∣∣∣∣∣
∑N+

i+ ẑ
(d)
tar,k[i

+]∑N+

i+ Di+

−
∑N−

i− ẑ
(d)
tar,k[i

−]∑N−

i− Di−

∣∣∣∣∣ , (22)

where i+ ∈ {1, . . ., N+} is the index of a station in advantaged
communities and i− ∈ {1, . . ., N−} represents that of a station
in disadvantaged communities. N+ +N− = N , and Di is the
ratio of the population of the census block group where the
station i is located to the total population of the city.

In other words,Lres decreases if the difference in the per capita
demand drops across the stations near the advantaged and the
disadvantaged communities, introducing a fairer distribution of
bike mobility resources. As here we focus on the station-based
bike sharing, we leverage the exact census block groups provided
by U.S. Census Tract where the stations are situated for popu-
lation calculation instead of spatial partitioning and estimation,
which may not necessarily reflect the populations served [33].
•Performance Fairness Adjusted with Population Ratio: This

metric is used to measure the difference of prediction errors
weighted by the populations for stations with the major ad-
vantaged and disadvantaged communities nearby (in terms of
a certain socioeconomic attribute such as social ethnicity). We
first find the two MSEs of the stations where the advantaged and
disadvantaged communities predominate given the predictions
of GRAPE, i.e.,

Eper+ =
1

2FN+

∑
q∈{d,r}

N+∑
i=1

Di+

E [Di+ ]

t+F∑
k=t+1

×
(
ẑ
(q)
tar,k[i

+]− z
(q)
tar,k[i

+]
)2

,

Eper− =
1

2FN−

∑
q∈{d,r}

N−∑
i=1

Di−

E [Di− ]

t+F∑
k=t+1

×
(
ẑ
(q)
tar,k[i

−]− z
(q)
tar,k[i

−]
)2

, (23)

where we adjust the population ratio, denoted as Di, by its mean
over all regions, denoted as E[Di], so that Eper+ and Eper− are in
the same magnitude of LMSE to mitigate the impacts from the
over-populated regions. Then, the fairness score in the weighted
MSE is given by

Lper =
(
Eper+ − Eper−

)2
. (24)

In other words, the decrease in Lper results in a more balanced
performance of usage predictions between the stations in the
advantaged and the disadvantaged communities.

In summary, we jointly take in the prediction accuracy (20)
and (21) with the fairness metric (either (22) or (24)) as the
final loss function of GRAPE training. Specifically, for GRAPE
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with resource fairness (GRAPE + R), the final loss function is
formally given by

LR = λMSELMSE + λtraLtra + λresLres, (25)

and for GRAPE with performance fairness (GRAPE + P), the
final loss function is given by

LP = λMSELMSE + λtraLtra + λperLper, (26)

where (λMSE, λtra, λres, λper) are the weights of different loss
perspectives. By minimizing (25) or (26) in addition to LMSE

and Ltra, we are able to regularize the model to maintain the
system fairness in resource or performance. In practice, the city
planner or the bike service provider can select the socioeconomic
attribute as well as the fairness metric to customize for specific
urban planning purposes or scenarios.

VI. EXPERIMENTAL EVALUATION

We first present the evaluation setup in Section VI-A, followed
by the experimental results in Section VI-B.

A. Evaluation Setup

• Schemes Compared:GRAPE is compared against the follow-
ing baselines and state-of-the-art spatio-temporal approaches:

1) HA (Historical Average) [34]: We calculate the future
bike usage based on the average of all historical data at
the same time interval of a day.

2) ARIMA ( Auto Regressive Integrated Moving Average):
regresses and predicts the bike usage at the stations.

3) RNN (Recurrent Neural Network [14]), LSTM (Long
Short-Term Memory [35]), and GRU (Gated Recurrent
Units [36]): We implement these classic deep learning
models for the bike usage time-series prediction.

4) CNN-LSTM/CNN-GRU/CNN-RNN: With the spatial bike
usage in the heatmap representations, convolutional
neural network (CNN) is respectively combined with
LSTM/GRU/RNN to predict future bike usage.

5) TPA-LSTM (Temporal Pattern Attention LSTM [37]:
leverages the correlations between LSTM modules for
learning multivariate time series.

6) LSTNet (Long- and Short-term Time-series Net-
work [38]): combines CNN and RNN to extract short-
and long-term temporal patterns to predict multivariate
time series, and incorporates an autoregressive model to
tackle the scale insensitivity problem.

7) DeepST: We divide the city maps into grid maps. By
using the aggregation of bike usage in each grid, we
leverage spatio-temporal ResNet [39] followed by a
fully connected layer to predict bike traffic at the station
level.

8) GCNN-DDGF (Graph Convolutional Neural Network
with Data-driven Graph Filter [1]): considers the adja-
cency matrix as an adjustable variable.

9) GCN-LSTM (Graph Convolutional Network (GCN) com-
bined with LSTM for spatial and temporal bike usage
chararcterization): The parameters of GCN and LSTM are
set exactly the same as GRAPE.

10) GAAN [40]: predicts the bike usage with a graph neural
network with an adjacency matrix attention mechanism.

11) GraphWaveNet [41]: contains an adaptive dependency
matrix for spatial learning and a stacked dilated 1D
convolution component to conduct the temporal learning.

12) FairST [25]: leverages the three-dimension bike usage
heatmaps, two-dimension spatial information, and one-
dimension external factors for equity-aware predictions
with consideration of resource fairness.

13) Ada-STNet [42]: obtains an optimal graph adjacency
matrix from both macro and micro perspectives and
learns spatial relationships and temporal dependencies
via a spatio-temporal convolution architecture.

14) CrossFormer [43]: utilizes the dependency across
the bike stations for predicting the usage based on the
dimension-segment-wise embeddings and the two-stage
attention layers.

15) iTransformer [44]: leverages the transformer blocks
for the bike usage prediction.

16) Informer [45]: adopts the efficient transformer de-
signs for long time-series prediction.

17) Autoformer [46]: uses the decomposition transform-
ers based on auto-correlations.

18) FEDFormer [47]: predicts the time series with the fre-
quency enhanced decomposed transformer.

19) Reformer [48]: leverages an efficient transformer for
the time series prediction (bike usage in our case).

• Evaluation Metrics: We evaluate the model prediction ac-
curacy using MSE (20) and Coefficient of Determination (R2).
A higher R2 implies a better performance [24].

We leverage (24) to evaluate the model performance fairness.
To evaluate the resource fairness, we adjust (22) with the stan-
dardized prediction results without dividing by the ground-truth
values, i.e.,

L′
res =

1

F

t+F∑
k=t+1

∣∣∣∣∣
∑N+

i+ ẑ
(d)′

tar,k[i
+]∑N+

i+ Di+

−
∑N−

i− ẑ
(d)′

tar,k[i
−]∑N−

i− Di−

∣∣∣∣∣ , (27)

where we standardize the predictions ẑ(d)tar,k[i] to get ẑ(d)
′

tar,k[i] by
the mean and the standard deviation of the prediction for the
entire testing set. Note that if the prediction ẑ

(d)
tar,k[i] significantly

underestimates the ground-truth, we will get a small L′
res, but it

does not reflect the decrease of the resource unfairness. There-
fore, by standardization we can reduce the impact of prediction
accuracy on the fairness metric. The decrease in (24) and (27)
indicates a reduction of unfairness of the bike sharing system.
• Evaluation Settings: We evaluate GRAPE and the related

schemes with the datasets presented in Section II-A. We take
into account the taxi systems as an auxiliary system. For all
the schemes evaluated, we leverage the historical data of the
past 24 hours to predict that of the next following hour. Our
bike sharing studies focus on a total of 454 stations in NYC
that have bike usage every day and have not been relocated or
removed throughout the year of 2019, and a total of 417 stations
in Chicago that have bike usage every week and have not been
relocated or removed during 2019/01 – 2019/09. We consider
50% of the user trip data for the model training and the rest half
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for the model testing. To construct the auxiliary graph nodes of
the taxi systems, we select those regions that have their bounding
boxes overlap with a 500 m×500 m grid area around each bike
station. We note that the zones or areas are processed by the city
data portal for the local planning and the analytics purposes, and
the taxi pick-ups and drop-offs from the non-fixed regions are
not available. Despite this, our approach and framework design
is general enough to be extended to the actual GPS coordinates
when the relevant data becomes available.

Our model is built and evaluated on TensorFlow 2.4.0 with
CUDA 11.1. All experimental evaluations are conducted upon a
server with Ryzen Threadripper 3960X 24-Core CPU and four
Nvidia GeForce RTX3090 24 GB GDDR6X GPUs. It takes
about 20 min and 10 min to train GRAPE for NYC and Chicago,
respectively.
• Parameter Settings: Unless otherwise stated, we use the

following parameters by default. The embedding size of output
embeddings ((8)) at each hierarchical level is set to f

(p)
tar =

f
(p)
aux = 1. We use two-level hierarchical graphs for represen-

tation learning of both bike graph and taxi graph, i.e., P = 2,
and set the number of nodes at the second level to be 7 for NYC
and 4 for Chicago, respectively. For NYC, we use 3× 1 kernel
filters with 3 channels for the convolutional fusion component
(Section IV) where 3× 1 denotes 3 time intervals and 1 node.
For Chicago, we use 2× 1 kernel filters with 2 channels. For the
spatial attention mechanism (Section IV), we set the channel size
of the Conv1D as 516 for NYC and 254 for Chicago.

We empirically set the coefficients λMSE = 1 and λtra = 0.01
for the two prediction accuracy metrics in (20) and (21). As
(22) and (23) have different magnitudes, we adapt λres and
λper in order to obtain the similar scales in (25) and (26). For
resource fairness, we set λres = 0.015 for NYC and λres = 0.001
for Chicago regarding all three socioeconomic attributes. For
performance fairness with respect to social ethnicity, income,
and education, λper is (0.015, 0.018, 0.018) in NYC, and (0.075,
0.075, 0.16) in Chicago. We set the size of hidden states of
LSTM, h, as 64 for NYC and 32 for Chicago. GRAPE is trained
with a learning rate of 0.005 and a batch size of 64 by the Adam
optimizer for 5,000 iterations.

B. Experimental Results

• Overall Model Performance: We first demonstrate the over-
all prediction performance in the two cities in Table I. We
can observe that GRAPE substantially outperforms the baseline
models in the prediction accuracy. Existing approaches like HA,
RNN, GRU, and LSTM can only capture temporal characteristics
of bike usage. CNN only encodes the bike usage sequence rather
than geographic information, and hence CNN and its combina-
tions with the RNN, GRU, and LSTM may not fully capture the
spatial correlations across stations and thus perform poorly in
our settings.

We have also demonstrated that our proposed GRAPE out-
performed the other state-of-the-art spatio-temporal prediction
approaches. In particular, while TPA-LSTM, GCNN-DDGF,
GCN-LSTM, DeepST, LSTNet, GAAN, GraphWaveNet,

TABLE I
PERFORMANCE ON NYC AND CHICAGO DATASETS

FairST, Ada-STNet, and other transformer-based ap-
proaches (such as CrossFormer and iTransformer) cap-
ture the spatio-temporal characteristics, they formulate the bike
usage prediction as a single-modality problem. In addition, while
FairST takes into account the system equity, it may under-
estimate the station correlations as it leverages the heatmaps
as inputs, each entry of which is aggregation of total bike
usage in a region. Therefore, FairST yields the lower accu-
racy for station-based bike usage predictions than our proposed
approach.
GRAPE captures the spatial and temporal characteristics via

the combination of GCN and LSTM, while the taxi system as
an auxiliary graph provides additional spatial and temporal
knowledge for the target graph. Such comprehensive spatio-
temporal knowledge introduced by the auxiliary graph improves
the accuracy of mobility prediction for the target (bike) system
in our studies.

In addition to each individual attribute, i.e., social ethnicity,
income, and education, we have also shown the performance
combining all the three socioeconomic attributes, denoted as
“all”, in (25) or (26). The accuracy of our GRAPE with fairness
regularization, denoted as “GRAPE w/o fairness”, outperforms
all the baselines, despite the negligible accuracy degradation
compared with the one without regularization, i.e., on average
2.81% lower in NYC and 5.49% lower in Chicago.

The performance of the models varies across the two cities,
likely due to their large difference in the total number of
bike usage and resultant bike mobility patterns as discussed in
Section II-A. Despite this variation, GRAPE can still achieve
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Fig. 11. Hourly bike-usage (departures and arrivals) prediction from July 8th

to July 14th for a station at Manhattan, NYC.

TABLE II
VALUES OF L′

RES WITH THREE SOCIOECONOMIC ATTRIBUTES

TABLE III
VALUES OF LPER WITH THREE SOCIOECONOMIC ATTRIBUTES

excellent accuracy for both cities. Fig. 11 also shows GRAPE’s
accurate hourly bike-usage predictions at a station at Manhattan,
NYC during a week.
• Fairness Evaluation: We further evaluate fairness in re-

sources and model performance by (27) and (24) regarding
each of the three socioeconomic attributes considered. This
way, we can specifically evaluate the interaction of the model
with each socioeconomic attribute. The results are shown in
Tables II and III. GRAPE with resource fairness (“w/ R”) and
the GRAPE with performance fairness (“w/ P”) are compared
with GRAPE without consideration of fairness (denoted as “w/o
R” and “w/o P”, respectively). Combined with Table I, we can
see that GRAPE reduces the inequity in resources and model
performance of the systems while maintaining the prediction
accuracy for all the three socioeconomic attributes in NYC and
Chicago.

The difference of the same fairness metric between the at-
tributes may result from the diverse socioeconomic character-
istics of bike stations. For example, as we recall from Fig. 7,
some stations are overlapped by disadvantaged communities in
terms of education and the advantaged communities in terms
of income. Comparing the fairness performance of GRAPE
between the two cities, we find that all metrics of Chicago are

Fig. 12. L′
res and Lper w.r.t. social ethnicity in NYC for (a) GRAPE,

(b) GraphWaveNet, (c) DeepST, (d) GAAN, and (e) LSTNet.

Fig. 13. Ablation study of GRAPE.

smaller than that of NYC. This is likely due to the overall much
lower bike usage in Chicago than in NYC. With lower bike
usage, we see that the (un)fairness metrics of resources (based
on (23) and (27)) as well as the performance in Chicago are
overall smaller than in NYC.

We further compare the fairness metrics, L′
res and Lper,

of GRAPE with the four state-of-the-art baselines, Graph-
WaveNet, DeepST, GAAN, and LSTNet, for social ethnicity
in NYC as an example which is illustrated in Fig. 12. We can
see that GRAPE obtains a significant improvement of equity of
social ethnicity in the city compared to other traditional models
which fail to consider system fairness and, therefore, generate
biased predictions. The results demonstrate the effectiveness of
GRAPE’s equity-aware designs.
• Ablation Study: We have further conducted ablation studies

by comparing GRAPE with complete modules (denoted as (a))
with the following two major variations:
� Without temporal and spatial learning (denoted as (b)):

We omit the temporal and spatial learning module while
keeping other parts of the model the same as GRAPE.

� Without auxiliary system learning (denoted as (c)): We
remove the fusion of auxiliary (taxi) system inputs based
on graph differentiable pooling and convolutional fusion.

We evaluate these variants of GRAPE for the datasets of
NYC and Chicago without considering fairness regularization.
Fig. 13 shows the MSEs of the studied schemes. From the
figure we observe a better performance of GRAPE than the
variants, demonstrating the effectiveness of the temporal and
spatial learning and the auxiliary system.
• Sensitivity Studies: We first demonstrate in Table IV the

performance of all the schemes during weekdays and weekends
without considering fairness for one week’s data of Chicago.
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Fig. 14. The sensitivity studies of GRAPE: (a) length of future time intervals; (b) MSE and fairness vs. λres; and (c) MSE and fairness vs. λper.

TABLE IV
WEEKDAY/WEEKEND PERFORMANCE (CHICAGO)

We note that the negative R2 of weekend prediction by ARIMA
indicates its prediction does not reflect the trend of the bike-
usage patterns. We can observe that GRAPE outperforms all
baselines for usage predictions of both weekdays and weekends,
demonstrating the effectiveness of our model designs in handling
both weekday and weekend dynamics. We also observe overall
lower errors for weekdays than weekends for all the schemes.
This is due mainly to the potentially higher complexity of
human mobility patterns during weekends (e.g., people may
have various travel or entertainment activities) than on weekdays
(e.g., major activities related to commute routines).

Fig. 14(a) further illustrates the impact of the length of future
time intervals F upon GRAPE (without fairness metrics). From
the figure, we can see that as the length of predicted intervals
increases, the overall prediction accuracy decreases. This is
because the correlations between the target intervals in a far pre-
diction horizon and the past ones in the input are more complex
than those between the intervals in a near future. GRAPE can
still achieve reasonable accuracy for the far prediction horizon.

Using NYC as an example, we have conducted a sensitivity
study on MSE, L′

res and Lper with respect to their coefficients in
(25) and (26). For resource fairness, we study Chicago’s social
ethnicity and vary λres to be 0.0005, 0.001, 0.0015, 0.002, and
0.0025, with a default setting of λper as 0.015 (Section VI-A). For
performance fairness, we study NYC’s social ethnicity and vary

Fig. 15. Probability distribution of bike station assignment to two different

hierarchical nodes, i.e., the transition matrix at the input level, T(1)
tar,k (7), on

12pm, 2019/09/01.

λper to be 0.01, 0.015, 0.02, 0.025, and 0.03, with a default setting
of λres as 0.015 (Section VI-A). Fig. 14(b) and (c) show that
increasing the weight of resource or performance fairness loss
reduces the corresponding metric, with a slight increase in the
prediction error. For the performance fairness, we can observe
an increase of the metric as the coefficient increases, which is
likely due to large errors in model performance. Considering
both prediction accuracy and fairness metrics, we pick 0.001 for
λres and 0.015 for λper by default to maintain the accuracy of
prediction while improving the fairness.
• Result Visualization and Case Studies: We have conducted

the following studies to further understand the model behaviors
of GRAPE.

(a) Node Assignment: We visualize in Fig. 15 the transition
matrix at the input level, i.e.,T(1)

tar,k in (7), to show the probability
values of assigning bike stations to two hierarchical nodes.
The darker color represents the higher probability values that
an input graph node to a node in higher hierarchy. We can
see that bike stations across NYC are grouped together into
different regions, each of which is represented by a hierarchical
node. Such a node assignment behavior help GRAPE capture
the shared spatio-temporal correlations among the bike sharing
station nodes, yielding better accuracy in the cross-modality
modeling.

(b) Equity-Awareness: Taking a station within an educational
disadvantaged community in Manhattan, NYC as an example,

Fig. 16(a) illustrates its hourly per capita demand,
ẑ
(d)
tar,k[i

−]
∑N−

i− Di−
,

over 12 hours of a day. We compare the per capita demand
calculated by GRAPE (in red solid lines) with that of GRAPE
without fairness consideration (in blue dashed lines). Recall that
the per capita demand of a station is used in (27) to calculate
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Fig. 16. The interaction comparison of (a) forecasted per capita demand
(along with ground-truth) and (b) the prediction MSE weighted by population
as a function of time with and without considering (a) resource fairness and
(b) performance fairness for two stations on 2019/07/12 (Friday) within the
educational disadvantaged communities in NYC.

Fig. 17. Station-level resource unfairness reduction for stations around disad-
vantaged communities in NYC. Each dot represents a station and warmer colors
imply more reduction.

the fairness metric. With the regularized predictions, one may
expect that more bike resources can be allocated to these stations
within disadvantaged communities (as illustrated in Fig. 7(b))
via the equity-aware city planning. Fig. 16(a) further shows a
higher per capita demand with the regularized predictions, cor-
roborating the effectiveness of GRAPE in improving the equity
of resource distribution. In addition, we can also observe that
the predicted per capita demand of GRAPE (in red solid lines)
captures the overall trends of the ground-truth (in green dashed
lines), demonstrating the effectiveness of GRAPE in learning the
per capita demands.

Similarly, Fig. 16(b) illustrates MSEs weighted by population
over 12 hours of a day for a bike station near the disadvantaged
communities in terms of education around Brooklyn, NYC, i.e.,

Di−
2E[Di− ]

∑
q∈d,r(ẑ

(q)
tar,k[i

−]− z
(q)
tar,k[i

−])2. One can observe that
the lower weighted MSEs of those stations than the prediction
without fairness regularization, leading to an increase of model
performance for those stations in the disadvantaged community,
demonstrating the effectiveness ofGRAPE in reducing the model
performance unfairness.

We finally visualize the reduction of resource unfairness in
Fig. 17 at those bike stations around the disadvantaged commu-
nities in terms of education level (a) and social ethnicity (b) in
NYC. The warmer colors indicate a larger reduction in the un-
fairness. We can observe the unfairness reduction by introducing
our fairness regularization, demonstrating the spatial resource
fairness improvements in different communities.

VII. DISCUSSION

• Integrating Other Mobility Modalities: In the current pro-
totype study, we only consider taxi as the auxiliary systems and
bike sharing as the target system for predicting bike usage due
to the lack of data of other transportation platforms. As the
transportation system of a city contains many other platforms
such as ride sharing and public transits like bus and subway, other
transportation systems may also provide useful spatio-temporal
information to the target system and benefit the prediction tasks
as well as the entire city planning. The framework designs
in GRAPE can easily incorporate other types of transportation
platforms [49], [50], [51], [52], [53] into the target system for
mobility prediction tasks when available. Many cities like NYC
and Chicago are embracing the open data initiatives to coor-
dinate release of multi-source mobility data (e.g., bike sharing
and taxis). Our research here can provide new insights when
integrated with these emerging efforts for greater good of the
urban transportation network.
• Inclusion of Additional Socioeconomic Attributes: While

our study focused on the three socioeconomic attributes of
social ethnicity, income, and education, our model is general
enough to be extended to other important factors such as age and
gender. In future, we would like to further investigate the impacts
of multiple socioeconomic attributes for broader application
scenarios.

VIII. RELATED WORK

• Bike Usage Prediction: Bike-usage prediction is essential
for the bike sharing system management [17], [18], [54]. How-
ever, the station-level prediction is challenging due to the com-
plex spatio-temporal characteristics at a large number of stations
in a city. Prior studies [1], [2], [3], [4], [40], [55], [56], [57] did
not consider incorporation of the mobility of other modalities
of transportation. While information retrieval and time series
analysis based on multiple modalities have been explored [58],
[59], [60], [61], [62], [63], [64], [65] through various learning
paradigms, how to realize the fine-grained station-based bike
usage prediction, particularly through a paradigm of fusing the
constructed graphs, remains largely under-explored.

Different from these prior studies, our work here focuses
on a novel cross-modality graph fusion design that leverages
the spatio-temporal correlations between taxi and bike sharing
networks and constructs the auxiliary graph feature to enhance
the target bike sharing prediction at the finer granularity, i.e.,
station level or hourly basis. Specifically, we have designed a
novel cross-modality graph fusion mechanism with the target
and auxiliary graphs, which combines the graphs at the hierarchi-
cal levels, extracts their mobility patterns by graph differentiable
pooling [28], and thus yields the high usage prediction accuracy.
• Mobility Fairness: Besides operational efficiency, the fair-

ness of the mobility systems such as bike sharing has also be-
come an important factor that many city planners must consider.
Like other applications such as classification, fairness in ma-
chine learning has attracted significant attention recently [66],
[67], [68], [69], [70], [71], [72], [73], [74], [75], where the mod-
els were usually developed in a multi-task fashion to maintain
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the utility while preventing discrimination [67] regarding sen-
sitive socioeconomic attributes. Specifically, in spatio-temporal
settings such as dockless bike-usage prediction [25], [33], [76]
and e-scooter sharing [5] fairness is considered as the closeness
of the prediction results for the advantaged and disadvantaged
communities, and the variance in demand across the two groups
is considered to be the effect of social inequity.

However, these prior studies did not consider differentiating
the regional disparities in model performance based on the
population ratio to mitigate the potential biases towards pop-
ulated regions. Furthermore, how the fairness metrics interact
with the spatial and temporal dynamics of mobility predictions,
particularly in the station-based bike sharing systems, remain
largely unexplored [12], [13]. Our studies here further fill the
above-mentioned research gaps by integrating the regional dis-
parity with differentiation of population ratio, as well as in-depth
spatial and temporal interaction analysis. Our experimental stud-
ies (Section VI) have further corroborated the effectiveness and
accuracy of our proposed designs.

IX. CONCLUSION

In this paper, we have proposed GRAPE, an equity-aware
graph-fusion differentiable pooling network, to jointly predict
station-level bike usage and improve the bike sharing system so-
cial equity. We have incorporated the taxi network as an auxiliary
system to the target bike sharing network through a graph-fusion
differentiable pooling algorithm, where two hierarchical graph
networks extract the spatial characteristics of the target and the
auxiliary graphs, and the extracted embeddings are fused via a
novel convolutional fusion design. The temporal characteristics
of the fused embeddings are further captured by an LSTM
network. To mitigate the unfairness of the bike sharing networks,
we have proposed fairness metrics in terms of resources and
performance. Extensive experiments on the real-world datasets
from NYC and Chicago have shown that GRAPE predicts the
bike usage with high accuracy and substantially improves the
resource and performance fairness.
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