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Paralfetch: Fast Application Launch on Personal
Computing/Communication Devices
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Abstract—Paralfetch speeds up application launches on per-
sonal computing/communication devices, by means of: 1) accurate
collection of launch-related disk read requests, 2) pre-scheduling
of these requests to improve I/O throughput during prefetching,
and 3) overlapping application execution with disk prefetching for
hiding disk access time from the execution of the application. We
implemented Paralfetch under Linux kernels on a desktop/laptop
PC, a Raspberry Pi 3 board, and an Android smartphone. Tests
with popular applications show that Paralfetch significantly re-
duces application launch times on flash-based drives and hard
disk drives, and it outperforms GSoC Prefetch Lichota et al. 2007
and FAST Joo et al. 2011, which are representative application
prefetchers available for Linux-based systems.

Index Terms—Application launch, application prefetch, disk
prefetch.

I. INTRODUCTION

QUICK app launches are of great importance to user ex-
perience on personal computing/communication devices

such as laptop/tablet PCs, single-board computers, and smart-
phones [14], [15], [19], [21], [23], [30], [43], [44]. The latency
incurred by the launch of an application mainly depends on the
performance of the underlying CPU and disks. Despite con-
tinuing improvements in the performance of these components,
launch times, especially of large applications and games, remain
an important problem, for three reasons.

First, the performance of flash storage does not always meet
expectations. For example, it has been predicted [53] that in 2025
around 50% of the data on flash will be stored in QLC (quad-level
cell) flash, which has 2.1× slower read and 5.7× slower write
times than TLC (triple-level cell) flash [3]. The use of affordable
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QLC SSDs was found to extend the launch time of Blade and
Soul, a popular game, from 91s to 114s [45], and that of Horizon
Zero Dawn from 15.7s to 21.4s [46], compared to high-end
SSDs. Many Windows applications launched from Samsung
QLC SSDs show launch times similar to those launched from
Intel X25-M G2 SSD, which was released back in 2009 [47].
Furthermore, recent entry-class SSDs widely adopt DRAM-less
architecture [5], which leads to additional flash accesses in trans-
lating logical addresses into physical addresses. A Raspberry Pi
is also widely used to run desktop applications [56], [57], but it
only supports the sluggish MicroSD.

Second, the complexity of apps is continuously growing due
to the addition of new features and functionality to software [49].
Unfortunately, complex software also requires higher-level pro-
gramming languages and libraries, generating slower code, thus
extending their launch latencies [54].

Third, although parallelism (i.e., multicore platforms, internal
parallelism on SSDs [6], and command queuing features) is
effectively utilized in modern multicore CPUs and disk drives,
app launches can seldom exploit existing sources of parallelism.
Moreover, it has been shown [22] that CPUs and disks are
seldom utilized simultaneously during a launch because syn-
chronous disk reads are dominant. Making better use of paral-
lelism is, therefore, a major consideration in the design of app
prefetchers [21].

Launch latencies depend on the previous state of the system,
especially the disk cache. A cold start occurs when the disk
cache does not hold any data required by an app, either because
it is the first time the app is launched, or because all of the app’s
data has been evicted since its last run (e.g., after a large file
copy, video play, or heavy game play). A system cold start is a
special case of cold start, which occurs when no user-launched
app is running. On the contrary, a warm start occurs when an
app being launched ran recently, so the disk cache still holds all,
or most, of the data that it needs.

An app prefetcher [4], [8], [26], [31], [34], [38], [39] can
reduce the time needed for a cold start: during learning phase,
which corresponds to the first launch of an app, the prefetcher
collects launch-related blocks and optionally their access se-
quences (the term launch sequence is used interchangeably).
This is usually achieved by monitoring disk reads and/or page
faults. A prefetching phase occurs during subsequent launches
of the app, in which case the learned launch sequence is used
for disk prefetching to accelerate loading. A well-designed
prefetcher can reduce the time needed for a cold start, so that it
approaches the time for a warm start.
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Different prefetching strategies are required for the differ-
ent seek characteristics of mechanical and flash disks. These
storage devices have different performance bottlenecks which
have been addressed in well-known ways. Threaded prefetching
is designed for SSDs. A dedicated thread is used to prefetch
blocks in the order of their collection during monitoring. The
prefetching thread runs concurrently with the app, reducing the
launch time. On the other hand, Sorted prefetching is designed
for HDDs. Data is read from the disk in the logical block address
(LBA) order to reduce seek times [40], [41], [42], which account
for most of the launch time. Sorted prefetching is not done con-
currently with the app because the app’s disk I/O would disrupt
prefetching in the LBA sequence. In order to avoid long disk
seek operations caused by I/O contention between them, sorted
prefetching is performed within the context of launching app.

In this paper, we define three fundamental challenges to
reaping the potential speed-up with an app prefetcher, and
then explain how Paralfetch addresses them that previous
approaches fail to tackle. Overall, this paper makes the following
main contributions:
� Accurate tracking of launch-related blocks: Most monitor-

ing methods fail to locate a significant number of blocks
during the learning phase [20]. In threaded prefetching on
SSDs, an access tracer should collect not only accessed
blocks but their access order. To do this, a viable solution
is to monitor disk requests at the disk I/O level after
performing the invalidation of unused entries in the disk
cache. Unfortunately, metadata and data blocks would not
be detected by imperfect OS-level disk cache invalidation.
To address this problem, Paralfetch introduces a file-
system-level block dependency check and low-overhead
page-fault monitoring.

� Pre-scheduling of traced blocks to increase prefetch
throughput: Although the I/O involved in prefetching fre-
quently becomes a bottleneck in threaded prefetching on
commodity SSDs, prior work does not address this issue.
We observe I/O dependencies between prefetch blocks
that significantly hinder the asynchrony of I/O requests
and reduce prefetch throughput. We address this problem
with a new I/O reordering method called metadata shift
that places more I/O requests between dependent I/O re-
quests, enabling more asynchronous I/O requests. A range
merge is also introduced to combine nearby I/O requests
into one large request, improving I/O throughput. For
HDDs, Paralfetch employs a new LBA sorting method
that streamlines disk head movements, even on aged
file systems.

� Tailored overlapping of application execution with
prefetching: We find that aggressive prefetching with
excessive pre-scheduling can actually increase launch
latencies because of I/O contention between the app
and prefetching threads. Modern SSDs’ reordering of
outstanding I/O operations can aggravate this con-
tention [35]. We vary the amount of I/O optimization in
response to a prefetching bottleneck. This avoids the I/O
contention caused by an excessive optimization, and thus
helps Paralfetch find a better optimization level.

Fig. 1. I/O Stack in Linux. Linux includes three disk caches: page cache for
regular files, slab (or slub) cache for metadata objects, and buffer cache for
metadata blocks. The slab is used as an object-granular metadata cache for
buffer cache. There are different paths to populate page cache in accordance
with an access method: read system call explicitly fills page cache based on
its arguments, while page cache for mmaped files is populated through page
fault mechanism. Readahead framework is responsible for filling the contents
of page cache, and it determines the number of blocks to be prefetched based
on the access sequentiality.

� Implementation and evaluation of Paralfetch: We eval-
uate Paralfetch in the launch of common apps on a
laptop PC, a Raspberry Pi 3, and an Android smartphone.
With the aforementioned features, Paralfetch achieves
launch performance close to the warm start: On a PC,
Paralfetch reduced the average system cold start time of
16 benchmark apps by 48.0% , this number corresponds
to 11% and 22% further reductions from the results of
FAST and GSoC Prefetch, respectively. Paralfetch also
reduced the average app launch time on a Raspberry Pi 3
by 31% , and on an Android phone by 11% .

The remainder of this paper is organized as follows: In the
next section, we briefly present the background and motivation
for this work. In Section III we introduce Paralfetch, and
describe its three main components. In Section IV we describe
the implementation of those components on a Linux platform
using EXT4 file system. In Section V we evaluate Paralfetch
on a laptop PC, a Raspberry Pi 3, and an Android smartphone.
In Section VI we discuss the deployment and limitations of
Paralfetch. In Section VII, we present prior work related to
Paralfetch, and finally, we conclude the paper in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Disk Caching in Linux

Fig. 1 provides a brief summary of the Linux I/O stack from
disk caching perspectives.

Page cache and buffer cache: The Linux kernel provides two
cache mechanisms for disk blocks in terms of API and unit
size [12]: The page cache holds file pages, whereas the buffer

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2025 at 00:59:36 UTC from IEEE Xplore.  Restrictions apply. 



618 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 4, APRIL 2025

Fig. 2. Cold start scenarios with and without Paralfetch on SSDs and HDDs. Si is the i-th block requested from the SSD, and Ci is the corresponding CPU
computation. Paralfetch expedites an application launch by exploiting parallelism of each resource (i.e., multicore activation and internal parallelism on SSDs)
and utilizing these resources concurrently. Hi is the i-th block requested from the HDD. On systems based on HDDs, the benefit from threaded prefetching is
limited because an application launch on HDDs is mostly disk bound and reducing disk time mainly comes from generating a sorted I/O prefetching pattern.

cache contains data blocks corresponding to block devices. The
contents and lookup spaces of these caches are managed using
a radix tree for each regular file or block device file.

In EXT4 file system, blocks of data from regular files are
cached in the page cache, while the buffer cache is used for
caching metadata blocks (e.g., inode table blocks, directory
blocks, and extent blocks). The contents of regular files can
be prefetched using a combination of device number, inode
number, offset, and size. On the other hand, metadata blocks
can be prefetched using a combination of device number and
block number.

Slab for caching file system metadata at object granularity:
Metadata objects in EXT4 file system, namely, the inode, direc-
tory entry, and extent, are smaller than a file system block but
must nevertheless be managed individually so that important
objects are kept in memory, even when the memory is under
pressure. Therefore, the Linux slab object allocator caches these
objects without reference to the context of the buffer cache. As
a result, an inode can be simultaneously stored in both the slab
and buffer caches.

Page cache accessing methods: A process can copy the con-
tents of the page cache into a user buffer using a read or a
file-related system call. Alternatively, a process can map the
extent of a file to its virtual address space using the mmap
system call. In the latter case, attempting to access an unmapped
address in the page table causes a page fault. To reduce the
number of page faults, Linux employs an interesting feature,
called faultaround [33], which pre-faults a 64KB-aligned chunk
of the address space around the fault address.

Disk cache invalidation: The Linux kernel provides functions
to invalidate disk caches. A user or process with root permission
can invalidate these caches by writing a predefined value (“1”

for the page and buffer caches, “2” for the slab cache, and “3” for
all) to the /proc/sys/vm/drop_caches proc file. This method
can only invalidate unused entries with zero reference counts.
Because of this, the invalidation of these caches is not perfect.

Command queuing at disk level: The majority of today’s
commodity disks supports command queuing (CQ). For
example, native command queuing (NCQ) in the AHCI interface
for SATA drives supports up to 32 outstanding commands in only
one queue; the NVMe interface theoretically allows up to 64 K
commands in each of 64 K queues. Even a USB-connected
storage device can exploit CQ if the storage controller in
the enclosure supports USB attached SCSI protocol (UASP).
Outstanding commands in the command queue can be processed
out of order, optimizing disk head movements on HDDs. On
SSDs, CQ enables SSD controllers to accept multiple commands
and leverage their parallelization [6]. For mobile storage,
UFS, eMMC 5.1, and Application-class MicroSD cards also
support CQ.

B. Representative Application Prefetchers

We briefly introduce alternative schemes, focusing on the
reduction of launch time. Moreover, we discuss related studies
leveraging different approaches in Section VII.

Windows prefetcher [17]: Since XP, Windows has included a
prefetcher for launch and system boot. The Windows prefetcher
is customized for HDDs, but can also be used with SSDs,
although user configuration is required to make the best use
of more capable SSDs. In its learning phase, the copies of
file-backed memory pages which are required by an application
are identified by the Windows working-set manager. The gen-
erated information, which is file-level data, determines the disk
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blocks to be prefetched during subsequent application launches.
By defragmenting these blocks to make their file-level prefetch
blocks correspond to their LBA order, the Windows prefetcher
optimizes the disk head movements of HDD. The resulting data
is file-level information, which determines the disk blocks that
will be prefetched in subsequent application launches. Unfor-
tunately, the defragmentation procedure is time-consuming and
scheduled to happen every three days.

GSoC Prefetch [18], which was selected for the Google Sum-
mer of Code 2007, is a Linux-based prefetcher for HDDs. It
obtains launch-related block information in its learning phase
by first clearing the bit in every OS-managed page descriptor
(i.e., struct page) which indicates that the page has been
referenced. After a predefined monitoring period (10 seconds
by default), GSoC Prefetch traces referenced pages with the
‘referenced’ bits on. It then extracts a file identifier (i.e., device
number, inode number, and offset) from each of the traced pages.
Next, GSoC Prefetch sorts the pages based on these identifiers
and stores the sorted pages in a file. On subsequent launches,
launch-related blocks are prefetched in the order recorded in the
file. This reduces both seek and rotational latencies in HDDs.
GSoC Prefetch also has a defragmentation tool similar to that in
the Windows prefetcher.

FAST [21] is a recent Linux-based prefetcher for SSDs. In
the learning phase, FAST invalidates the slub, buffer, and page
caches. Then, it executes the target app and creates a prefetch
program by monitoring the LBAs of blocks using the blktrace
tool and converting them to prefetchable system calls with
arguments. On subsequent launches, FAST executes this prefetch
program at the same time as the application launch. FAST
prefetches disk blocks in the order of their accesses without
any I/O optimization.

C. Cold Start With Paralfetch

On SSDs: Fig. 2(a) shows a cold start scenario without and
with Paralfetch. As shown in the figure, the scenario with
Paralfetch runs the application concurrently with a prefetch
thread. The computations run on multiple CPU cores, in parallel
with SSD access, which are issued in a way that exploits the
internal parallelism of the SSD. This is effected by issuing
concurrent asynchronous I/O requests using CQ. If an SSD does
not support CQ, Paralfetch merges I/O requests that have
consecutive LBAs and are close in the block access sequence,
so as to promote internal parallelism.

On HDDs: Fig. 2(b) shows a launch scenario on an HDD
without and with Paralfetch. The app launch on an HDD
is usually I/O bound because of heavy disk head movements.
To reduce the mechanical access time, ‘Binary Loader’ first
performs sorted prefetching without creating a prefetch thread,
which also stops loading the binary of the target application until
sorted prefetching is completed. Next, Paralfetch performs
threaded prefetching for loading a small portion of blocks that
are accessed late (we refer to these blocks as late-deadline
blocks) by the target application to overlap the computation with
HDD access. On the other hand, early-deadline blocks should be
prefetched during the sorted prefetching and within the context
of the launching process; otherwise, these blocks could delay
the target application.

III. PARALFETCH DESIGN AND PRELIMINARY RESULTS

In this section, we describe the design and preliminary anal-
ysis of the three major components of Paralfetch.

A. Accurate Tracing

The benefit from application prefetching is limited by the
tracing accuracy of launch-related blocks. In particular, accurate
tracing is essential to prevent a launching application from wait-
ing for missing blocks from disk when several concurrent threads
cause lots of I/O contention. Note that threaded prefetching can
marginally benefit from Windows prefetcher or GSoC Prefetch
which cannot trace the block access sequence because they rely
on a snapshot of the working set or the referenced pages after a
launch.

There are also issues with the tracing method used by GSoC
Prefetch. Since it only traces pages for regular files, missing
metadata limits the benefit of prefetching. Furthermore, a sig-
nificant number of pages are accessed more than once during a
launch. This is problematic because the Linux memory manager
tracks the importance of a page based on both activeness and
reference bits (stored in page descriptors). When a page with its
reference bit set on is accessed for the second time, the Linux
kernel turns off the bit and promotes the page from the inactive
list to the active list. As a result, some pages are never traced. In
the case of Eclipse, we found 2,782 file-backed pages not traced.

Potentially, the highest accuracy would be achieved by mon-
itoring page faults and data accesses at all disk caching layers
(i.e., slab, page, and buffer caches). But such exhaustive tracing
would produce significantly more data than I/O-level monitoring
(37× during an Eclipse launch), incurring unacceptable memory
and computation overheads. Furthermore, a log of I/O operations
obtained by monitoring disk cache accesses is likely to include
many useless cached entries created by I/O operations of back-
ground tasks.

This issue is successfully mitigated by monitoring I/O re-
quests: In the learning phase, Paralfetch invalidates unused
entries in the disk cache, so that Paralfetch collects a proper
set of blocks for subsequent launches of the application. It then
records I/O requests for blocks not found in these caches by
instrumenting file system functions with I/O logging codes, and
these logs are used to prefetch corresponding blocks during
subsequent launches. In this paper, we use the term log entry to
refer to a log of I/O request collected during a launch, while the
term prefetch entry refers to an entry used for prefetching disk
blocks. The latter includes arguments for prefetching function
calls.

As mentioned earlier, the invalidation of disk caches (slab,
page, and buffer caches) is not perfect because only unused
entries can be invalidated; a working set of running applications
is always retained. This issue has been overlooked in previous
schemes (including FAST), i.e., their evaluation was restricted to
system cold start scenarios. Table I classifies traced blocks with
Paralfetch. Note that metadata blocks and mmaped file blocks
are potential missing blocks when using FAST.

Since many user and system processes can run in the back-
ground, it can significantly degrade tracing accuracy. For exam-
ple, 225 files of this kind were accessed by both LibreOffice
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TABLE I
METADATA AND DATA BLOCK REQUESTS REQUIRED TO LAUNCH APPLICATIONS

Impress and LibreOffice Writer (on a laptop) during a launch of
either. Thus, an attempt to trace launch blocks for LibreOffice
Writer just after LibreOffice Impress launched (and started run-
ning in the background) returns only 700 log entries (27,688 KB)
compared with 1,281 log entries (86,624 KB) during a system
cold start. We conducted further experiments by substituting
Android Studio, Chromium Browser, Eclipse, and GIMP for
LibreOffice Impress. Surprisingly, imperfect cache invalidation
still resulted in many missing data and associated metadata
blocks: 5.0% , 12.0% , 14.4% , and 6.6% of the total in each
case, respectively.

We have therefore developed two methods to detect missing
metadata and data blocks.

Finding missing metadata blocks: We first introduce a file
system-level dependency check, called missing metadata block
detection, which identifies launch-related metadata blocks (i.e.,
inode and extent blocks) that have not been traced due to the
imperfect invalidation of the slab and buffer cache, but never-
theless share a dependency with traced data blocks. To address
this issue, Paralfetch implements a function (Section IV-B)
that tracks associated metadata blocks for each log entry for a
regular file. Table I shows that 15–58 missing metadata blocks
were found during launches, and these numbers vary with the
number of irreclaimable entries in the disk caches under use
by other running applications. When these missing blocks are
found, Paralfetch inserts new prefetch entries for them just
before other log entries of associated data blocks.

A log entry for data blocks is contiguous in terms of file-level
block numbers but may consist of non-contiguous blocks in

LBA. During the process of detecting missing metadata blocks,
Paralfetch identifies this type of log entry and splits it into
multiple LBA-contiguous entries (or extents). Otherwise, inter-
mixed chunks can interfere with LBA sorting.

Page fault monitoring: Page cache invalidation is also imper-
fect because file-backed pages that are dirty, under writeback,
or accessed through mmap, are not invalidated. To trace pages
which are dirty or under writeback, Paralfetch flushes them
out via a sync operation before the disk cache is cleared.
However, pages accessed through mmap, such as shared library
files, are more challenging to monitor. When these are shared
with running applications, tracing accuracy is compromised.
To address this issue, we arranged for Paralfetch to trace
previously untraced blocks accessed through mmap calls by in-
strumenting the faultaround [33] handler with page fault tracing
code. By default, the faultaround handler proactively maps 16
boundary-aligned page-cached pages around the page-faulted
address.

Missing blocks: Despite efforts to collect an accurate set
of launch-related blocks, Paralfetch still misses a few, as
indicated by the number of missing I/Os in Table I: First, an
application may perform metadata-only access when reading:
1) directory blocks to search for a file, 2) an inode block to
access file statistics, or 3) extent blocks to retrieve the logical-
to-physical mapping of a file (e.g., using fiemap). If the missing
metadata blocks are accessed solely for metadata purposes,
Paralfetch’s detection feature cannot identify them. Second,
files in a user’s home directory frequently change, modifying
both associated metadata and data blocks. Applications like
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Android Studio, LibreOffice, GIMP, and Xilinx ISE read the
home directory during the final stage of launch to display files
or classify application-relevant files stored in the directory.
Paralfetch is inadequate at tracking these dynamic changes
in real time after generating the prefetch file.

Incorrect prefetch entry removal: Paralfetch has a special
provision for finding incorrect information in prefetch entries,
such as entries generated by irrelevant applications running in
the background, or by changes to files used by the application
being launched. At predefined intervals (10 days by default),
a daemon process of Paralfetch checks the prefetch entries
in all the <app_name>.pf files to see whether each entry is
obsolete: the daemon compares the time of the latest access to
<app_name>.pf with the corresponding access time for each
regular file that is referred to in the <app_name>.pf file. If
the regular file corresponding to prefetch entry has not been
accessed more recently than the <app_name>.pf file itself,
Paralfetch removes the corresponding prefetch entry from the
<app_name>.pf file.

This technique can be readily applied when the mount option
of the file system is configured as atime, causing the access time
to be updated each time a file is read through system calls. Thus
we know that a file has been accessed by an application if the
access time in its file metadata has been updated. This is effective
because the access time of a file is not updated via prefetching
functions used by Paralfetch.

However, if the mount option is relatime, the access time of
a file is updated during a file read only if it precedes modified
time, or the access time was updated a long time ago (one day
by default). To avoid being misled by this feature of the Linux
kernel, the daemon checks whether the file to be updated was
last accessed over 24 hours ago.

B. Prefetch Scheduling

Upon completion of collection of disk I/O requests during an
application launch, Paralfetch pre-schedules these requests
to speed up the prefetching phase. In doing so, Paralfetch
merges and reorders those requests so as to exploit the internal
parallelism of an SSD. In the case of an HDD, Paralfetch
sorts I/O requests by their logical block addresses to reduce disk
head movement, which is further optimized by hardware-level
reordering.

Range merging: Merging small I/O requests into a single large
request enhances the throughput of an SSD [9], [25], [29], [37].
Fig. 3(b) shows a range merge in which two requests for blocks
with consecutive LBAs that are within a predefined I/O distance
threshold are combined where the I/O distance is defined as the
difference in the locations of blocks in the launch sequence. This
threshold prevents merging of far-apart log entries in the launch
sequence, as they can hinder timely prefetching of subsequent
blocks. Fig. 4 shows plots of prefetch time against the I/O dis-
tance threshold on SSD, UFS, and MicroSD. The performance
gain from range merging tails off as the threshold increases,
mainly because EXT4 tries to locate metadata and data blocks
for related files close together in terms of LBA. This nature
of block allocation policy results in range-merging candidates
adjacent to each other. In addition, overly aggressive merging

Fig. 3. Range merging. Merging nearby I/O operations into a single large
operation improves throughput while keeping changes to the I/O order within
a predefined limit so that the target application and prefetch thread can run
concurrently. Range merge combines LBA-contiguous I/O requests of the same
type (e.g., metadata or data block) into the preceding one.

can be bad especially for applications with CPU-bound launches,
in which I/O optimization has less impact on timely prefetching.

Metadata shifting: Every file system has its own particular
I/O dependencies for prefetching between metadata and data
blocks (and between metadata blocks). In EXT4, a request for
a data block can only be issued after the associated metadata
block, which contains the LBA of that data block, has been read.
The metadata for a data block is often requested just before
the corresponding data block. Thus this dependency tends to
limit the number of commands that can be queued, and this in
turn limits the effectiveness of command queuing, which yields
maximum benefit when there are many commands in the queue
that can potentially be executed in parallel [24].

This issue can be addressed by bringing forward requests
for metadata blocks. This can be facilitated in EXT4, as there
are no read dependencies among buffer-cached (metadata)
blocks, while I/O requests for page-cached data blocks can only
be issued after associated metadata blocks are buffer-cached.
Fig. 5(a) shows the processing of an example prefetch thread,
in which dependencies cause the command queue to become
empty on two occasions. Fig. 5(b) shows how Paralfetch
brings forward metadata block requests in the prefetch thread
to increase the interval between requests for dependent blocks.
Fig. 6(a) shows that the prefetching time on a CQ-enabled SSD
was reduced by 21.6% on average through shifting metadata
block requests by 128 KB, when combined with the tracing
of missing metadata blocks. Similarly, the prefetching time
on a UFS storage was incrementally reduced as the shift size
increases, which is shown in Fig. 6(b).

An SSD without CQ support can also benefit from shifted
metadata (Fig. 6(c)). For example, requests to the I/O scheduler
can be issued in advance, so that the storage driver receives
requests earlier from the I/O scheduler queue, than later from the
application. And an MMC/SD driver (for eMMC flash and SD
cards) overlaps flash access for the current I/O request with DMA
preparation for the next I/O request. In Fig. 6(c), a metadata shift
of 4 KB reduced prefetch times by 19.3% on average on the
Raspberry Pi 3 using a MicroSD.

LBA sorting: Random I/O requests during an app launch
result in heavy disk head movements of an HDD [28], [40].
A well-known way to optimize disk head movements is to
reorder I/Os by their LBAs [8] and reorganize disk blocks to
be close together in order to reduce seek distance [40], [41].
Previous prefetch schemes for HDDs, including GSoC prefetch
and Windows prefetcher, employ file-level I/O sorting that uses
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Fig. 4. Normalized prefetching times with varying range merge thresholds.

Fig. 5. Metadata shifting to boost the outstanding I/O size in the command
queue of an SSD controller. An I/O request for data blocks should wait for the
associated metadata blocks to be read. By left-shifting I/O requests for metadata,
more I/O requests can be issued asynchronously. The shift size controls the extent
to which metadata blocks can be left-shifted.

device number, inode number, and offset as sorting keys, but this
still incurs unnecessary disk head movements during prefetching
since this ordering is not the same as the LBA order [20]. To
address this problem, Paralfetch explicitly monitors and sorts
I/O requests by their LBAs. Unlike Windows prefetcher and
GSoC prefetch, Paralfetch performs LBA-sorted prefetching
without disk defragmentation. As shown in Fig. 7, a large
proportion of disk prefetching time (75.2% on average) can be
reduced by minimizing disk head movements.

Infill option: Infill merge [34] was initially invented to avoid
unnecessary disk rotations on HDDs by reading extra blocks.
And we have found that the throughput of an SSD can also be im-
proved by merging I/O operations with infilling: for example, the
bandwidth of random reads of 128 KB on the MicroSD we used
is 6.7× higher than that of 4KB. Therefore, there is significant
room for reducing the prefetch time via merging I/O requests.
Experimental results in Figs. 8 and 9 show the effectiveness of
infill merge on flash and rotational disks, respectively. A user can
adjust the allowable infill size in the unit of file system block.

The infill option consumes more memory for reading extra
disk blocks. To avoid this, Paralfetch provides an option that
these extra blocks are freed by the prefetcher right after complet-
ing the prefetch (at the cost of adding a log entry to describe infill
range). However, Paralfetch disables this option by default
because clean page cache pages are reclaimed preferentially by
the Linux kernel with little cost.

In our experiments, there was no noticeable improvement in
prefetch throughput when we applied an infill option simulta-
neously with metadata shifting on an SSD with CQ support.
Therefore, Paralfetch applies the infill option only on the
SSD without CQ support and the HDD. It is noted that we used
empirical values for infill sizes: 32 KB for SSDs and 64 KB
for HDDs. As shown in Figs. 8 and 9, with these infill sizes,
the average disk prefetching times on the SSD and HDD were
reduced by 4.8% and 5.3% , respectively. The figures also show
that the benefit of infill merging varies depending on the app, as
the impact is largely influenced by the on-disk layout of each
app’s launch sequence. For instance, in the case of Scratch 2
(Fig. 8), infill merging with a 32 KB threshold merges only
1.2% of the prefetch entries from the original sequence. In
contrast, the same threshold merges 8.5% of the prefetch entries
for Chromium Browser.

Correctness: The read requests from the prefetch thread go
through disk caches, and hence reordering and merging of a
launch sequence have no implications on correctness. Even if a
prefetch entry is outdated, it only affects the launch performance.

C. Parallelized Execution: Overlapping Application
Execution With Disk Prefetching

Timely prefetching can better overlap application execution
with prefetching. Reordering or merging blocks far apart could
improve prefetch throughtput but could also hinder timely
prefetching. Experimental results in Figs. 10 and 11 substantiate
the claim by showing prefetching throughput does not always
correspond to launch performance. Paralfetch avoids this
pitfall by tailoring metadata shift and range merge dynamically.
Here a challenge is how to find near-optimal threshold values
in an automatic manner. To address this, Paralfetch employs
dynamic scheduling which reschedules prefetch entries with an
increased I/O distance threshold and/or a metadata shift size
when a prefetching bottleneck is detected.

On SSDs: The ability of shifting metadata and merging nearby
requests to reduce prefetching time on SSD-based systems is
limited by contentions between I/O requests from the prefetch
thread and I/O requests which must be issued by the application
because they were omitted from the prefetch thread. As shown
in Table I, we found that an average of 2.8% of requested
blocks were not traced despite the improved tracing capabil-
ity of Paralfetch. These missing blocks are inevitably to be
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Fig. 6. Normalized prefetching times for different metadata shift sizes.

Fig. 7. Disk times in the cold start and prefetching times with LBA sorting on
an HDD-based Laptop, normalized to the disk time in the cold start.

Fig. 8. Prefetching times for different allowable infill sizes on a MicroSD-
based Raspberry Pi 3 board, normalized to the prefetch time with range merging.
All test cases set a range merging with an I/O distance threshold of 16.

Fig. 9. Prefetching times for different allowable infill sizes on an HDD-based
laptop, normalized to the prefetch time with LBA sorting.

requested by the application, which has to wait until the blocks
are loaded from the disk.

Contention between the application and the prefetch thread
becomes critical when there are too many I/O requests in the
I/O scheduler or the command queue [10] in an SSD. This can
occur when metadata blocks are shifted too far, or when an
oversized I/O request is created by range merging with a large
threshold. From an experiment with Eclipse, we found that the
effect of missing blocks on latency was increased by 3.2× and
8.7× when the largest allowable shifts were 128KB and 256KB,
respectively.

To avoid the need to optimize the thresholds for meta-
data shifting and range merging over a number of trial runs,
Paralfetch gradually increases the thresholds if prefetching

TABLE II
DEFAULT CONFIGURATION FOR PREFETCH OPTIMIZATION

is not effective. Next, we describe how to control the extent of
dynamic scheduling and how to measure the effectiveness of
prefetching.

Optimizing prefetch entries with dynamic scheduling. Ini-
tially, Paralfetch uses default thresholds for metadata shift
and range merge shown in Table II. It subsequently increases
the threshold for only one of these methods, depending on the
availability of CQ support. The metadata shifting threshold is
increased in 16 KB increments and the I/O distance threshold in
4 increments.

The best combination of scheduling methods depends on the
type of disk. For example, on a CQ-supported SSD, range merg-
ing gains little beyond the threshold of 8, which can therefore be
used as a default during the learning phase. Similarly, metadata
shifting yields little benefit on MicroSD-based devices without
CQ support beyond the threshold of 4 KB.

Detecting prefetch bottleneck: An application experiences
more context switches when it has to wait for the blocks
requested by the prefetch thread, implying that the prefetch
thread is not prefetching in time. As such, the prefetch thread
collects the number of context switches made by the launching
application during the prefetching period. Paralfetch ends
dynamic scheduling if the quantity of context switches is be-
low a user-defined threshold (by default, 5% of the number of
prefetch entries). To exclude warm cache results, Paralfetch
only admits the case where the overall disk read size is larger
than a predefined threshold, 90% of disk reads in the cold start
in our setting.

On HDDs: LBA sorting is a main contributor to reduce an
app launch time on HDD-based systems. We also found that the
launch times can be further reduced by prefetching late-deadline
blocks with the prefetch thread.

A challenge is to find the largest quantity of prefetch en-
tries that does not incur prefetch bottleneck with threaded
prefetching. To address this, dynamic scheduling is applied with
two empirical rates. Paralfetch allots 12% (by default) of
late-deadline blocks to the threaded prefetching phase at the
pre-scheduing stage. If the prefetch bottleneck is detected in the
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Fig. 10. Normalized launch times with varying I/O distance thresholds.

Fig. 11. Normalized launch times for different metadata shift sizes.

threaded prefetching phase, Paralfetch incrementally moves
3% (by default) of prefetch entries from the threaded prefetching
phase to the sorted prefetching phase. When a user does not set
to use dynamic scheduling, whole log entries are sorted at the
pre-scheduling stage.

D. Summary of the Paralfetch Design
� Paralfetch traces the launch sequence at the disk I/O

level, imposing minimal overhead. However, this method
is affected by imperfect disk cache invalidation. To miti-
gate this issue, Paralfetch incorporates missing metadata
block detection and page fault monitoring. These features
enable Paralfetch to trace I/Os and their sequence more
accurately. Additionally, Paralfetch removes outdated
prefetch entries that are fetched but not accessed by the app.

� Slow prefetch throughput often limits the benefits of app
prefetching. Paralfetch improves prefetch throughput by
using pre-scheduling techniques, such as range merging
and metadata shifting, that exploit the internal parallelism
of SSDs. In contrast, FAST does not reorder or merge
prefetch sequences, even though these techniques have
been shown to be crucial for SSD performance. For ro-
tating disks, Paralfetch performs LBA sorting without
requiring disk defragmentation. On the other hand, Win-
dows Prefetcher and GSoC Prefetch rely on file-level block
sorting combined with periodic block defragmentation to
ensure that the file-level order matches the LBA order

� The primary benefit of app prefetching on SSDs comes
from the parallel utilization of the CPU and disk. However,
excessive pre-scheduling can hinder timely prefetching
by causing reordering of prefetch I/Os. To find a near-
optimal pre-scheduling strength,Paralfetchdynamically
adjusts the pre-scheduling with enhanced optimization lev-
els, retrying as long as slow prefetching delays the launch
procedure.

IV. IMPLEMENTATION OF PARALFETCH

This section details the workflow of Paralfetch and the
interaction among its main components described in Fig. 12.

A. Launch Phase Management

Native Linux: The next launch type for each appli-
cation is determined by reading the ninth byte of the
header of its executable and linkable format (ELF) bi-
nary file. This byte (referred to as the phase byte) is nor-
mally used for memory alignment (padding), and has a de-
fault value of 0. It is set to PHASE_LEARNING (3) for the
learning phase, and PHASE_THREADED_PREFETCHING (1) and
PHASE_SORTED_PREFETCHING (2) for the prefetching phase. A
user can also set this value to PHASE_DISABLE (9) to disable
prefetching altogether, for small applications or utilities that
frequently experience warm starts or whose I/O patterns highly
depend on input arguments. The phase byte is passed to the ELF
binary loader (load_elf_binary).
Paralfetch supports two modes for launch phase man-

agement. In manual mode, a user explicitly selects applica-
tions that will use Paralfetch, by calling pfsetmode, which
takes a value for the phase byte and an ELF binary path as
arguments.

Android: zygote is a process that creates a native Android
application in Java by forking and loading the main class of a
program [27]. zygote invokes the handleChildProc method
to create and run a new Android application. To reduce launch
times, zygote preloads classes and resource files used by many
applications, quickly creating a process which shares these
preloaded classes. However, this scheme cannot cover all class
and resource files, thus leaving significant room for further
launch time reduction with Paralfetch.

Unlike native Linux processes, a native Android process
remains in the background even after a user quits the application,
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Fig. 12. Paralfetch workflow. Boxes with dotted edges denote threads, and
boxes with solid edges identify the three major components of Paralfetch. During
a learning phase, Paralfetch records an I/O as a form of log entry, which
contains device number, inode number, offset (start_blk), and size. Upon the
completion of the launch, collected log entries are passed to missing metadata
detector, generating additional log entries for missing metadata. The output is a
list of (extended) log entries, each of which has additional four fields: sequence
number, LBA (start_lba), and two tree nodes for two redblack trees sorted by
sequence number and LBA, respectively. Then, redblack trees are passed to
pre-scheduling functions, the details of which are described in Algorithms 1, 2,
and 3.

and can be resumed by moving the process to the foreground
(the resuming procedure). However, when free memory is in
short supply, Android wakes up the low memory killer (LMK)
to reclaim memory space by removing less important processes
completely. Paralfetch does not begin prefetching for a re-
suming procedure that does not invoke handleChildProc.

To interface Paralfetch with the Android platform, we
created a file named fetch_app using sysfs, which provides
a communication interface between the Linux kernel and a user
process. On Android, Paralfetch automatically tailors each
launch to the type of application. When the main class name of
an application is written to the fetch_app file, Paralfetch de-
termines how to perform the launch phase based on the following
rules: if there is no corresponding <class_name>.pf file1 in
the /persist/paralfetch directory, then Paralfetch starts
a learning phase for that application; but if the file exists, then
Paralfetch performs prefetching. To implement this, we aug-
mented the handleChildProc method to write the main class
name of the application being launched to the fetch_app file.

1<class_name>.pf file is equivalent to <app_name>.pf in native Linux.

B. Learning Phase

I/O logging: To collect blocks required for a launch,
Paralfetch first invalidates unused entries in the slab (for
file system objects), the buffer cache, and the page cache.
Then Paralfetch temporarily disables the inode read-ahead
functionality of EXT4 so as to prevent I/O contention resulting
from unnecessary inode blocks being read during the prefetching
phase. Next, Paralfetch sets a trace timeout, with the default
value (30 seconds for SSDs and 60 seconds for HDDs), and
also sets trace_flag to true to activate logging. Paralfetch
then resumes loading and execution of the application. During
the execution, the I/O requests for buffer-cached blocks caused
by disk cache misses are logged by code introduced into the
metadata access function (submit_bh_wbc). Similarly, code in-
troduced into the functions ext4_readpage, ext4_readpages,
and filemap_map_pages logs read requests associated with
page-cached blocks.

Page fault monitoring: The filemap_map_pages function
is called by the OS when a page fault occurs. It pre-faults
16 boundary-aligned pages which contain the faulting page,
provided that these pages are in the page cache [33]. This feature
reduces the overhead of tracing page faults.

Tracing missing metadata blocks: Block tracing ends when it
is timed out, and the launch is deemed to be complete when fewer
than 10 block read requests occur in one second [22]. We refer to
the corresponding last block of an application as the completion
block. To detect missing metadata blocks, we implemented the
ext4_fiedep function, a variant of the ext4_fiemap function
that must in any case access metadata blocks associated with file
blocks during the mapping of logical-to-physical extents. Unlike
the original version that returns file extents for arguments (i.e.,
a file and query range of the file), the ext4_fiedep function
returns a list of associated metadata blocks along with the file
extents.

As shown in Fig. 12, Paralfetch builds two redblack binary
search trees for log entries that are used for prefetch scheduling:
Paralfetch reads log entries in their access order and inserts
each of them to the trees. It invokes the ext4_fiedep function
for each log entry for a regular file. If the corresponding metadata
blocks are missing from the tree, Paralfetch allocates and
inserts new log entries for them right before the data block
entry.

In the pre-scheduling phase, Paralfetch uses the LBAs of
data blocks obtained using theext4_fiedep function. It is noted
that the LBAs of metadata blocks are easily calculated by adding
the block number of the log entry to starting block number of
the partition.

Missing metadata detection using the ext4_fiedep function
consumes little CPU time (17 ms for Android Studio) and incurs
no disk I/Os because the procedure runs in the warm cache
condition (i.e., after the completion of a launch process).

Pre-scheduling: Paralfetch schedules the collected log en-
tries. To do this, as discussed earlier, Paralfetch builds two
redblack binary search trees for log entries, each of which uses
the starting LBA and the access order of each log entry as the
sort key, respectively. Paralfetch uses the LBAs of data blocks
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Algorithm 1: Metadata Shift Procedure.

Algorithm 2: Range Merge Procedure.

obtained during the detection of missing metadata. Paralfetch
classifies disks into three types: CQ-enabled SSD, SSD without
CQ support, and HDD. This classification is performed auto-
matically through sysfs-managed files exposed by mounted
devices.2 To optimize prefetching time, Paralfetch performs
I/O scheduling based on the type of the disk.

Algorithm 1 describes the procedure of metadata shift:
Paralfetch accesses log entries in their access order (lines 1,
11). A log entry for metadata blocks moves right away to the
MS queue3 (lines 4–5), while a log entry for data blocks remains
in the wait queue until enough subsequent metadata blocks (at
least the metadata shift size) are moved to the MS queue (lines

2The value of /sys/block/<device>/queue/rotational is
“0” in the case of an SSD and “1” in the case of an HDD.
The CQ support is determined by the value of /sys/block/
<device>/device/queue_depth.

3The MS queue stores the metadata-shifted order of log entries.

Algorithm 3: LBA Sort Procedure.

9–10) in order to left-shift metadata I/O requests. When enough
metadata blocks are left-shifted, the accompanying wait queue
log entries are transferred to the MS queue (line 7). Finally,
the redblack tree rbtree_seq is rebuilt with the metadata-shifted
order (line 13) once the remaining log items in the wait queue
are transferred to the MS queue (line 12).

To perform range merge (as described in Algorithm 2),
Paralfetch accesses log entries in their LBA-sorted order.
This makes it easy to detect log entries that have consecutive
LBAs (lines 5–6) of the same inode (line 4). Range merge then
combines consecutive I/O operations (lines 9–12 for back merge
or lines 14–20 for front merge) that are within a predefined
threshold for I/O distance in the launch sequence (line 7).

Different pre-scheduling methods are applied in accordance
with the device type ((i.e., rotational media or not), and different
thresholds of metadata shift and range merge are used for SSDs
with and without CQ. To discover device type and command
queuing support (in case of SSDs), the Paralfetch initial-
ization process, executed by the systemd daemon or a startup
script (e.g., rc.local), examines sysfs files. For example, the
CQ support for an SATA SSD is determined by the value of
/sys/block/<root device>/device/queue_depth.

Algorithm 3 describes the procedure of lba sorting:
Paralfetch accesses log entries in their LBA-sorted order
(lines 1–3, 21 and 22), and it merges log entries (lines 8–11
or lines 13–19) that have consecutive LBAs (lines 4–7, 12) of
the same inode (line 4).

The implementation of infill option is rather simple;
Paralfetch checks that two consecutive log entries in the
LBA-sorted red-black tree have consecutive LBAs with an infill
of an allowable size. To do this, lines 5–6 in Algorithm 2 and
lines 5–6 in Algorithm 3 are modified correspondingly.

Storing scheduled log entries: Scheduled log entries (i.e.,
prefetch entries) are stored in the file <app_name>.pf (e.g.,
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eclipse.pf for Eclipse). This file consists of a 24-byte
Paralfetch header, followed by prefetch entries. The header
contains the version number, the inode number of the exe-
cutable file, the metadata for dynamic scheduling, the number
of obsolete entries, and the number of prefetch entries. Each
prefetch entry contains the device number, the inode number,
its offset and size. The inode number for a metadata block is
set to 0. The size of each prefetch entry is 20(24) bytes on
a 32(64)-bit system. Finally, Paralfetch changes the launch
phase of the target application from the learning phase to the
prefetching phase by updating the value of the phase byte of the
application.

C. Prefetching Phase

During the prefetching phase, Paralfetch creates the
prefetch thread, following the sequence stored in the
<app_name>.pf file.

For EXT4 file system, Paralfetch uses the
__breadahead function to prefetch metadata blocks, and
the force_page_cache_readahead function to prefetch data
blocks for regular files. While these functions try to perform
block caching asynchronously (or in a non-blocking manner),
data blocks can be prefetched asynchronously only when the
associated metadata blocks are ready. Paralfetch uses explicit
I/O plugging [48] to merge contiguous metadata (bio) requests
into a single request, which is then delivered to the dispatch
queue of device drivers. This reduces the amount of computation
required for dispatching and completing I/O requests.

Changing from prefetching back to the learning phase: The set
of blocks required for the first launch of some applications is sig-
nificantly different from that required for subsequent launches.
For example, Eclipse and GIMP only configure their environ-
ments on their first launch: Paralfetch detects this behavior
by counting I/O requests issued by an application during its
launch, which is easily done by counting synchronous readahead
requests [32] in the Linux readahead framework [12]. If the
count is greater than 10% of the total number of prefetch entries,
Paralfetch returns to the learning phase. If this situation occurs
repeatedly, Paralfetch sets the phase value to PHASE_DISABLE
(9) to disable prefetching for applications.

V. EVALUATION

We first describe how we measure the launch time of an appli-
cation and how we compare Paralfetchwith other prefetchers.
We then present the results of performance evaluations on a PC,
a Raspberry Pi 3 board, and a Google Pixel smartphone.

A. Methodology

Launch time measurement: Like [21], we measure the launch
time of an application between two events: in the case of Linux,
the launch is deemed to start when the load_elf_binary func-
tion is called, and to finish when the completion block request
has itself completed. To identify the latter event, we remove
the completion block request from the prefetch file, allowing
it to be issued by the application. After a warm start, we call

posix_fadvise with the argument POSIX_FADV_DONTNEED to
evict the completion block request from the page cache.

Comparisons with other prefetchers: We ported the GSoC
Prefetcher to the Linux kernel 5.4.51 and set its trace timeout
to the value used by Paralfetch. We temporarily modified
Paralfetch to bring its operation in line with three key features
of the GSoC Prefetcher: 1) the way in which it traces referenced
file pages during an application launch, 2) its method of pre-
scheduling disk I/O using inode numbers and in-file offsets as
sort key, and 3) the way in which it holds an application until
prefetching is completed, rather than allowing the application
and the perfetcher thread to compete.
FAST only supports EXT3 file system, so we temporarily mod-

ified Paralfetch’s function for detecting missing metadata to
support EXT3. We could only compare FAST with Paralfetch
on a PC because the Android and Raspbian OS do not support
EXT3 file system.

B. On a PC

We conducted experiments on a laptop PC equipped with an
Intel Core i5-8265 CPU and 16 GB of RAM, running Linux
kernel 5.4.51. This PC has a 1 TB Samsung 860 QVO QLC SSD,
which uses native command queuing. We tested Paralfetch,
GSoC Prefetch and FAST on 16 applications, 6 of which were
games. The 10 non-game applications were Android Studio,
Chromium Browser, Eclipse, GIMP, LibreOffice Impress, Li-
breOffice Writer, Okular, Scribus, VLC player, and Xilinx ISE;
and the 6 games were Ancestors Legacy, Atom RPG, Battle
Tech, Pillars of Eternity 2, Tyranny, Witcher 3.

QLC SSDs typically employ a small pseudo-SLC (single-
level cell) cache. To reduce the effects of this cache, we con-
ducted evaluation after installing all benchmark apps.

Comparison with the GSoC prefetcher: Fig. 13 shows
Paralfetch to reduce the average launch time of these 16 appli-
cations by 44.2% with pre-scheduling alone. After four launches
of each application, a 1.8% more reduction was achieved on av-
erage by using dynamic scheduling to increase prefetch through-
put.

It should be noted that the naïve use of excessive metadata
shift (of 256 KB) led to a 3.8% increase in average launch time:
as previously shown in Table I, Paralfetch fails to trace a few
launch blocks. A launching application should wait for these
missing blocks to be read while a large number of outstand-
ing I/O requests due to excessive metadata shift increase the
waiting time.

Fig. 14 shows experimental results with WD Black 2.5” 7200
RPM 1 TB HDD (WD10JPLX). Because Paralfetch performs
LBA sorting and accurate tracing of launch-related blocks, it
outperforms GSoC prefetch, which implements file-level
I/O sorting without prefetching metadata blocks explicitly.
Paralfetch shows an additional 24.9% reduction in launch
time. LBA sorting of Paralfetch reduces 73.1% of visible disk
time in the cold start, and infill merge reduces the launch time
further up to 3.6% in Eclipse with a threshold value of 128 KB.

Comparison with FAST: FAST is the closest to ours in that its
target media is SSDs. In Section III-A we described how disk
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Fig. 13. Launch times on a laptop equipped with a QLC SSD, normalized to cold start times. Optimizations for Paralfetch are incrementally applied.

Fig. 14. Launch times on a laptop equipped with an HDD, normalized to cold start times. Optimizations for Paralfetch are incrementally applied.

Fig. 15. Comparison of Paralfetch and FAST launch times on a laptop
PC, normalized to cold start times. Tracing of each application is performed
when LibreOffice Writer is running in the background. The results show that
running applications can significantly degrade tracing accuracy of FAST and its
performance benefit.

Fig. 16. Comparison of launch times with Paralfetch and FAST on a laptop
PC, normalized to system cold start times (cold 1). Aside from the cold 1
scenario, each application’s launch was traced and evaluated while five other
applications ran in the background.

cache clearing affects tracing accuracy. The most serious draw-
back of FAST seems to be that the accuracy of its tracing depends
greatly on the other applications that are running, because files
accessed by these applications throughmmap are not traced. Also,
metadata used by the applications are not traced. We believe
that this issue is frequently occurred in common scenarios.
Fig. 15 shows the significance of this issue. Conversely, the
page fault monitoring and detecting missing metadata used by
Paralfetch leads to launch times similar to that of a warm start.

Although the primary goal of application prefetchers is to
reduce launch times during system cold starts, many applications
typically run in the background. Fig. 16 illustrates the launch
times of each test application when five other apps are running

in the background. In this situation, many I/O requests are
served by disk caches, limiting the improvements provided by
application prefetchers. As mentioned earlier, LibreOffice Im-
press and LibreOffice Writer share 68% of commonly accessed
blocks, significantly reducing the launch time of one when
the other is already running. For disk-intensive applications
like the Chromium Browser, FAST performs noticeably slower
than Paralfetch due to its slower prefetch throughput. FAST
prefetches metadata blocks one at a time, using synchronous sys-
tem calls. Even worse, it responds to directory data requests by
prefetching every block of the directories the target application
accesses, further slowing down the process.

Although launch sequence tracing under a system-cold state
favors FAST, the launch times averaged across all 16 applications
were 11% less with Paralfetch than with FAST as shown
in Fig. 17. The relatively poor performance of FAST can be
attributed to its reliance on system calls, which limits both the
accuracy of tracing and its scheduling options, in particular, its
use of synchronous I/O for prefetching metadata blocks makes
it difficult to exploit parallelism.

Limitations: For some applications, it is challenging to
achieve a launch time close to warm start time even with aggres-
sive dynamic scheduling. Chromium Browser in Fig. 13 is an
application where most of launch times are spent on I/O instead
of CPU. It is challenging to make their launch times close to a
warm start because even for SSD with command queueing, too
many I/O commands will trigger its internal reordering, which
will, in turn, destroy timely prefetching (simultaneous usage of
CPU and SSD).

C. Raspberry Pi 3

Our second evaluation of Paralfetch was conducted on a
Raspberry Pi 3 running the Raspbian OS (Linux kernel 4.9.56)
with a Samsung 16 GB MicroSD (class 10). This flash storage
does not support CQ (although more recent A2-class MicroSD
has both CQ and an SLC cache).

We used 13 applications, 8 of which were games: Frozen
Bubble, GIMP, LibreOffice Writer, Chromium browser, Scratch
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Fig. 17. Launch times on a Raspberry Pi 3, normalized to cold start times. Optimizations for Paralfetch are incrementally applied.

Fig. 18. Average launch time for 16 apps on a laptop equipped with a QLC
SSD, normalized to cold start times.

2, Xpdf, 0 A.D., Extreme Tux Racer, LinCity, Mindcraft, Open
Arena, Quake 3 Arena, and Xmoto. The launch times in Fig. 18
show that frequent flash accesses contribute about 45% of the
delay in application launches. This provides a considerable op-
portunity for I/O scheduling. After four launches with dynamic
scheduling, launch times are further reduced by an average of
6.5% and 2.3% compared to Paralfetch with pre-scheduling
and pre-scheduling with a 64 KB infill option, respectively. We
attribute this reduction to: 1) an application launch on a Rasp-
berry Pi 3 board is a disk-bound process, and 2) the throughput
of a MicroSD is usually improved by merging I/O operations:
for example, the bandwidth of random reads of 128 KB on the
MicroSD we used is 28.6 MB/sec, which is 6.7× higher than
that of 4KB (only 4.3 MB/sec).

Limitations: Chromium Browser and Xpdf application launch
times are more heavily influenced by disk performance than by
CPU performance. Especially for SSDs without command queu-
ing, prefetch time reduction with pre-scheduling is significantly
limited. Due to the limitations of timely prefetching, it is difficult
to achieve warm start launch performance.

D. Google Pixel (Android)

Paralfetch can be easily ported to Linux variants, such as
Android. Android has its own launch mechanism, and hence
we needed to modify 180 lines of the Android source code to
accommodate Paralfetch.

To test Paralfetch on Android, we used a new set of seven
games: Asphalt 8, Devil May Cry, Dragon Quest 8, FIFA 16 UT,
GTA SA, The War of Mine, and Truck Pro. We measured the
launch times for these games on a Google Pixel XL smartphone
with UFS (which supports CQ) running Android 8.0 (Oreo)
with the Linux kernel 3.18.52. As shown in Fig. 19, the pre-
scheduling performed by Paralfetch reduced launch times
by 11% on average, which equates to as much as 3.5 seconds
for Dragon Quest 8. However, dynamic scheduling offers little
benefit because 1) application launches are CPU-bound (86%
on average in our benchmarks) rather than disk-bound, and 2)

Fig. 19. Launch times on an Android smartphone (Google Pixel XL), normal-
ized to cold start times.

launches encounter little dependencies between metadata and
data blocks.

Limitations: Although the launch procedures of most An-
droid apps are highly CPU-intensive, their launch times with
Paralfetch are still not comparable to warm start scenarios.
This is primarily due to a unique characteristic of Android app
launches: multiplewrite andfdatasync system calls are issued
by SQLite during the process [58]. These synchronous writes
compete with disk prefetch requests, causing delays. In contrast,
no such synchronous write or fdatasync system call is issued
during the launch of the PC and Raspberry Pi apps listed in
Table I.

E. Overhead

We measure Paralfetch’s overheads on a laptop PC from 4
aspects: tracing, pre-scheduling, prefetching and storage.

Tracing overhead: The I/O-based tracing used by
Paralfetch has a low instrumentation overhead, and in
most cases log entries are relatively short (e.g., less than 3000
entries). Android Studio is an exception, as it creates lots of log
entries. Nevertheless, the difference in cold start launch time
with and without Paralfetch was only 136 ms. Disk cache
invalidation can produce some latency, but this does not affect
the working set of pages. Thus, it should not affect the users. In
any case, the cache is only invalidated during the learning phase.

Pre-scheduling overhead: In our experiments, the time re-
quired by the background jobs which perform pre-scheduling,
including missing metadata detection, metadata shift, and range
merge, varied between 42 ms for VLC Player and 153 ms for
Android Studio, whereas FAST took 21 seconds to generate the
prefetch program for Android Studio. When there is an idle CPU
core, pre-scheduling delays can be hidden from users because
Paralfetch creates a dedicated thread for that.

Prefetching overhead: On SSDs, Paralfetch employs
threaded prefetching, imposing extra overhead from the manage-
ment perspective. However, we observed that threaded prefetch-
ing can reduce CPU usage for an application launch in the cold
start. As shown in Fig. 2, a synchronous I/O incurs two context
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switches. On the other hand, the asynchronous I/O requests
issued by the prefetch thread significantly reduce the overall
number of context switches. In our sampling-based CPU uti-
lization measurement [19], we found that the number of context
switches during a launch of Android Studio with Paralfetch
was reduced from 9,902 to 1,035, resulting in a 3.2% reduction in
CPU usage. On HDDs,Paralfetch gets a similar benefit via I/O
merging (after LBA sorting) and asynchronous I/O operations.

In the warm start where prefetching is unnecessary,
Paralfetch on SSDs still runs the prefetch thread, but this
only incurs a delay of hundreds of microseconds if an available
CPU core exists. Even if there was no available CPU core,
where prefetching overhead could not be hidden, Paralfetch
extended Android Studio launch by only 2.8 ms for (Eclipse
by 3.1 ms, which was the worst case). On HDDs, Paralfetch
performs sorted prefetching which delays the launch procedure.
In our experiments, sorted prefetching in the warm start required
only 4 ms for Eclipse, which was the worst case.

Storage overhead: Paralfetch used 672 KB of SSD to store
the <app_name>.pf files for the 16 applications, whereas
FAST required 8.2 MB. On HDDs, Paralfetch used only
326 KB of disk space for the same applications. This is because
prefetch entries are easily merged after LBA sorting.

VI. DISCUSSION

Applicability to other file systems: Key features of
Paralfetch, such as finding missing metadata blocks and
metadata shifting, rely on file system-level block dependencies.
Since most file systems used by major operating systems have
their own block dependencies, the core concepts of Paralfetch
can be extended to other file systems, even though it is built
on EXT4. For example, F2FS [50], a popular file system for
Android platforms, has its own block dependencies that can
be leveraged to detect missing metadata and perform metadata
shifting. In F2FS, the node allocation table (NAT) contains the
addresses of all node blocks, meaning a node block can only be
prefetched after the corresponding NAT entry is loaded. Simi-
larly, a data block depends on the node block that references it.
Notably,Paralfetch explicitly invokes the readahead functions
of the mounted file system, meaning it operates independently
of the readahead policy implemented by that file system. Even
if the on-disk layout of prefetch entries is altered or split by
file system-level garbage collection, the changes can easily be
reflected in the <app_name>.pf file using the f2fs_fiemap
or f2fs_fiedep function.

Effectiveness of Paralfetch on a newer Linux kernel: Slow
application launches, even on newer Android smartphones or
Raspberry Pi boards, remain problematic due to the ever in-
creasing complexity of software and the minimal improve-
ments in flash access latency for secondary storage, particularly
with small synchronous random I/O requests. In contrast, SSD
throughput has significantly improved with newer interfaces,
such as the latest PCIe generation. Paralfetch can take ad-
vantage of this increased throughput through its pre-scheduling
feature. Additionally, recent Linux kernels have shifted the I/O
scheduling burden from software to hardware [59], opening

up further optimization opportunities for Paralfetch’s pre-
scheduling capabilities. Despite the presence of an I/O scheduler,
I/O merging rarely occurs at the scheduler level unless explicit
I/O plugging [48] is used. When an SSD has an available slot in
the command queue, the scheduler immediately inserts the re-
quest into the hardware queue without delay. For SSDs without a
command queue, dependencies between mergeable I/O requests
can prevent their merging. This makes pre-scheduling essential
for improving prefetching throughput.

VII. ADDITIONAL RELATED WORK

Previous application prefetchers are discussed in Section II.
We now summarize various other approaches to reducing appli-
cation launch times, which are orthogonal or complementary to
Paralfetch.

Predictive disk prefetchers, such as Preload [11] and Windows
Superfetch [17], analyze the pattern and frequency of application
usage, predict the applications that are likely to be loaded soon,
and then preload them. Falcon [36] is a predictive prefetcher
that considers mobile context such as location and battery state.
Falcon launches an application in advance rather than merely
prefetching launch-related blocks. Obviously, the merit of this
strategy depends heavily on the accuracy of the prefetcher’s
predictions [30].

General-purpose disk prefetcher: It has been demonstrated
that general-purpose prefetching [8], [26] can also be beneficial
in reducing application launch times. However, it can limit the
accuracy of tracing launch-related blocks because block-level
I/O patterns depend greatly on the contents of disk caches.

A block I/O cache provides another way of reducing la-
tency. Intel Turbo Memory [28], Intel Smart Response Technol-
ogy [51], AMD StoreMI [52], and Solidigm Fast Lane [55] store
delay-sensitive data in a relatively fast SSD (or pseudo-SLC
space) and other data in a larger region of slower storage. A sim-
ilar behavior is provided by software caching methods, which
operate in the device mapping layer [1] and the block layer [2].

I/O scheduling can reduce I/O contention between a launch
process and background processes. Several schemes have been
proposed: FastTrack [13] prioritizes I/O requests generated by
the foreground application, and the BFQ I/O scheduler [7] gives
new processes extra I/O bandwidth. Boosting the priority of
an I/O request, which is issued asynchronously but results in
blocking the issuing process, can also expedite a launch [16].

Memory management can also reduce latency. Re-assigning
pages from background apps to foreground apps can improve
user experience of mobile operating systems [43]. Similarly,
pre-swapping of unused memory can reduce delays by avoiding
page reclamation latencies [44]. These schemes can reduce app
launch times by timely provision of memory when it is under
pressure.

VIII. CONCLUSION

We have presented Paralfetch, which achieves launch per-
formance close to the warm start through more accurate tracing,
pre-scheduling for fast I/O reads, and prefetch thread over-
lapping. Paralfetch incurs negligible overhead in terms of
CPU, memory, and storage. We have also shown Paralfetch to
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significantly outperform existing prefetchers on various personal
computing/communication devices running Linux.
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