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Abstract—Time-sensitive networking (TSN) has been widely
used in industrial automation and automotive applications by
precisely opening and closing the gates of packet queues. How-
ever, both clock drift and network congestion will likely result
in timing misalignment when the clock synchronization protocol
gPTP (802.1 AS) is used. This timing misalignment may, in turn,
cause failure in forwarding packets at scheduled times and hence
unexpected delay jitters, or even miss application deadlines. To
address this acute problem, we propose a novel TSN scheduling
algorithm, called SDT-TSN (Synchronization-Deviation-Tolerant
TSN), to ensure that packets can still arrive on time and be
transmitted deterministically even in the presence of inexact time
synchronization. First, we formalize the linear constraint model
of flow scheduling to maximize the tolerance of inexact time
synchronization. Then, we propose an optimal algorithm based
on SMT (Satisfiability Modulo Theories) and a fast heuristic
algorithm to solve the packet scheduling problem under inexact
network synchronization. SDT-TSN is the first to derive the
maximum tolerable time-synchronization deviation. Finally, we
evaluate SDT-TSN, demonstrating its capability of eliminating
packet-forwarding failures due to the commonly-used/assumed
constant time-synchronization deviation and increasing the tol-
erable synchronization deviation from 140us to 480us.

Index Terms—Time-Sensitive Networking (TSN), Time-Aware
Shaper (TAS), Network Synchronization Deviation, Clock Drift

I. INTRODUCTION

In the era of Industry 4.0, various industrial applications,
such as factory automation and equipment control, require
highly deterministic data transmission services [1]. Such appli-
cations must communicate flows of data with precise timing to
meet their specific timing requirements. Traditional switched
Ethernet lacks deterministic packet-forwarding services due to
non-deterministic queueing delays. Time-Sensitive Network-
ing (TSN) [2] has been developed and deployed to meet
the stringent requirements for deterministic packet delivery
of these applications. By integrating time synchronization and
traffic shaping mechanisms, TSN traffic may coexist with other
network traffic while ensuring the timely transmission of time-
critical traffic.
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The IEEE 802.1 Qbv standard introduces a Time-Aware
Shaper (TAS) [3] to provide time isolation for deterministic
packet transmission. The core of TAS is the time-aware gating
mechanism that controls the transmission gate of a queue.
When the gate of a queue is “Open”, packets in the queue can
be transmitted. When the queue’s gate is “Closed”, packets
must wait until its gate’s state changes to “Open”. The gate
of a packet queue is controlled periodically according to a
time-based Gate Control List (GCL). So, TAS requires time
synchronization across the entire network including switches
and terminals to open and close the gates at scheduled precise
time instants [4].

TSN clock synchronization is specified in the IEEE 802.1
AS, which is the generic Precision Time Protocol (gPTP)
standardized by IEEE 802.1 TSN Working Group [5]. The
gPTP protocol is to designate a node as the master clock in
the system to broadcast the reference clock value periodically,
and other nodes take the master clock as the root to form
a tree structure to receive clock values/signals and align
them with the master clock to achieve time synchronization.
The master clock in gPTP can be specified by default or
dynamically selected by the Best Master Clock Algorithm
(BMCA) [6]. Clock drift is the change of a device clock
gradually deviating from the master clock time. This deviation
can be due to various factors, such as oscillator ageing,
changes in temperature, humidity, or atmospheric pressure,
which are, by nature, unavoidable. Depending on network
load, the time-synchronization packets may be delayed or
even lost, thus failing timely compensation for clock drift and
causing synchronization accuracy to change dynamically [7].

Conventional TSN scheduling methods usually constrain the
time slot with a constant synchronization deviation known
a priori [8], and transmit packets in different time slots to
achieve conflict-free transmission of time-critical data flows. If
the constant deviation is set too large, the time slot that can be
allocated will be reduced, thus making the flow unschedulable.
If it is set too small, the network will not be able to cope with
the dynamic change of synchronization deviation, creating
flow conflicts. Therefore, how to maximize the tolerable time-
synchronization deviation subject to the constraints of network
resources and flow requirements is an important problem and



hence the focus of this paper.
This paper makes the following contributions:

e SDT-TSN scheduling model that maximizes the net-
work’s tolerance of time-synchronization deviations.

o Two solution algorithms: One is the SMT-based optimal
algorithm for static/offline flow scheduling and the other
is the heuristic fast scheduling algorithm that can handle
a large number (thousands) of flows.

o Improved tolerance of time-synchronization devia-
tion: SDT-TSN eliminates packet-forwarding failures
of conventional methods that rely on a constant time-
synchronization deviation. SDT-TSN is also the first
to provide the maximum tolerable time-synchronization
deviation. Our evaluation results demonstrate SDT-TSN’s
increase of the tolerable time-synchronization deviation
from 140us to 480us in various application scenarios.

The rest of this paper is organized as follows. We introduce
background and motivations in Section II and present a novel
Time-Triggered (TT) scheduling model in Section III. The
implementation and evaluation of the proposed algorithms
are detailed in Sections IV and V, respectively. Section VI
discusses the related work, followed by the conclusion in
Section VII.

II. BACKGROUND AND MOTIVATIONS

A. Basic Terminology

The topology of a network can be formally described as
an undirected graph G(V, E), where the terminal devices and
switches are vertices V' and the links between two physical
devices are edges E. The link between two physical devices
defines the data link in both directions. Let L denote the set
of data links:

Yor,v2€V i {v1, v2}€E=[v1,v9)EL, [V2, v1]EL.

where {v1,vs} is the undirected physical link and [vy,v9] is
the directed data link from vy to v5. A sequence of data links
forms a datapath which is a directed path from a sender device
to a receiver device. A datapath p; for flow f; from the sender
device vy to the receiver device v, 41 can be expressed as:

Pi = H’UO7U1L sy [Unavn+1]]-
The datapath contains n  devices/switches, i.e.,
V1,V2,...,VU,. Vo 1 the sender device and wv,i; is the

receiver device. Let F' denote the set of all flows and f; be
the i-th flow in F. fl-[”’“"vl] denotes flow f; transmitted over
the data link [vg,v]. offset(f/”*"') is the sending time of
flow f; from vy, to v;. Thus, a flow can be represented as:

fi = {period(f;),length(f;)} U {offset (/") |[vx, v] € pi}-

This describes the sending period, the packet length of flow
fi,» and its sending time along the datapath in each node.

fi
e o o o

%1 VU, U3 Uy

Fig. 1: An example (line) network.
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Fig. 2: Examples of TT flow scheduling in the presence of time-
synchronization deviation.

B. Motivation

Time synchronization is fundamentally important for de-
terministic transmission in TSN, and addressing time-
synchronization deviation/skew is, therefore, essential for en-
suring communication reliability.

Fig. 1 provides an illustrative example with a periodic
flow, fi sent from v; to wvy. Assuming oﬁset(fl[vl’v?])#o,
offset(f1"*"*))=t,. If the time-synchronization deviation be-
tween vy and v is larger than oﬁset(fl[vz””3])—offset( 1[U1 vl ),
flows cannot be transmitted at scheduled time instants due
to untimely opening of gates in the presence of time-
synchronization deviation as illustrated in Fig. 2. If v has a
faster clock, the gate in v will open earlier at the slot tg ~ %1,
but during that slot, the packets of f; will not arrive at vy. As
a result, f; will miss its own slot, and take up the subsequent
slot that may have been allocated to other flows. On the other
hand, if vs has a slower clock, the gate of f; will open late at
the slot t4 ~ ts5, thus delaying the transmission of f; from
ve. Such delayed packets may overflow the limited switch
memory or violate the end-to-end (E2E) deadline. So, the
time-synchronization deviation will destroy the determinism
of time-critical flows.

To maximize the deviation tolerance, we again use flow f;
to demonstrate between which devices time-synchronization
deviations should be considered. Let u[V=vv] represent the
time-synchronization deviation between v, and wv,. First, we
need to consider the synchronization deviation between two
adjacent nodes/devices due to their sequential timing depen-
dencies for forwarding packets, such as V102l plv2vsl jn
the flow fi, while M[US’“] need not be maximized because
vy is a terminal device and does not transmit/forward pack-
ets. Second, it is also necessary to maximize the plv1:vs]
because the E2E delay is calculated by subtracting the send-



ing time of the first hop from that of the last hop, plus
the transmission delay on the last hop. In summary, for a
certain datapath p; of any flow from vy to v,4+1, the time-
synchronization deviations that need to be maximized include

M[vo,v1]7ﬂ[v1,v2] . .u[vnq,vn], M[UO)UH]'

III. SDT-TSN SCHEDULING MODEL

This section details the time-triggered scheduling model of
SDT-TSN.

A. Linear Constraints With Time-Synchronization Deviation

We introduce the time-synchronization deviation as a vari-
able in the linear constraints of Steiner’s TT scheduling
model [9]. The use of ,u[”m’”y] allows for a more realistic
description of the synchronization deviation between every
pair of devices, rather than simply setting it to be a constant
as in the prior work. In what follows, we, therefore, introduce
the constraints on offset( f, [”T’Uy]) and plve-vol,

1) Contflict-Free Constraint : Packets of any two distinct
flows f; and f; cannot be sent on a link [vg, v;] at the same
time; a conflict will otherwise occur on the link. We are only
concerned with the offset of vy, in data link [vg, v;], and hence
there is no need to consider the synchronization time deviation
between nodes/devices. This constraint can be formalized as:
V[’Uk,vl] S L7Vfi,fj er,

((fi # i) A Hf.[”k*’“l] A gf[vwz]) N

a x period(f;) + offset(f; floewl
b x period(f;) + oﬁ"qet(f[v" vl
)
)

b x period(f;) + oﬂset(f[” vl
a x period(f;) + offset(f; [vev1]
(D
where LCM(f;, f;) represents the least common multiple
(LCM) of the periods of f; and f;.
One way to reduce the scheduling complexity is to divide
the timeline into equal-sized slots and then schedule a packet
per slot. The simplified equation is presented as:

V[U/mvl} € L7vfz~fJ € F?

LCM(f;, f;) LOM(fi, f;) _
Va e {0 (per(f;_lﬂ Vb e {o (mq)} .
(Wi # gy A3 A af[-”“”)

a x period(f;) + offset(f[“ vl ) # b x period(f;) + 01°fset(f[1 ko 7”])
2)

2) Path-Dependency Constraint: For any flow f; traversing
two adjacent links [v;, v;] and [v;, v, ], its packets are always
received and then forwarded by node v;. When there exists a
time-synchronization deviation p[V+:%s], v;’s forwarding time
after deducting plv=v3) is still after v;’s receiving time. So,
the constraint with (V=% is formalized as:

V[’Um,’uﬂ [vja Uy] € pi:
offset(1") + pdelay*=* + fdelay®)  3)
< Offset(fi[vj’vy]) _ M[vm,vj]

where fdelay!V=vi] is the forwarding delay at node v,, and
pdelay!’=s] is the propagation delay on the link [v,, v;].

3) Bounded Switch Memory Constraint: In practice, a
flow f; cannot occupy v;’s cache for too long. Hence,
we set the maximum time for a flow to occupy wv;’s
cache as memboundtimel’-vs]. In the presence of time-
synchronization deviation (V=3 v;’s forwarding time even
after adding p[U=*s] must still be within the cache’s occupancy
time limit. So, the constraint with ,u[“m*”-f I is formalized as:

Vv, Uj]v [Uja Uy] €Epi:
offset(fi[vj’”“]) + plv=val — (offset(fi[%’”j]) + pdelay!V=3)
+ fdelay[v“”’vj]) < memboundtimel?i vl
“)
4) Simultaneous Relay Constraint: In the case of multicast
[10], a flow f; is sent from v; to multiple links at the same
time where we only focus on the sending time from v;. The

time-synchronization deviation does not affect multicast, and
hence the constraint is formalized as :

V[vj, vp] € i, [vj,va] € ps :
offset(fi[vj’vb]) = offset(fi[vj’vd])
5) End-to-End Deadline Constraint: The E2E delay cannot
exceed the worst-case delay, deadline( f;), required by the un-
derlying application. In the presence of time-synchronization
deviation pl"=%l v,’s forwarding time even after adding

plv=vk]l should not exceed deadline(f;), and hence the con-
straint with p[V»>¥3) is formalized as:

V[Uwvvj] € fiTSt(fi)av[vk>vl] € last(fz),sz ceF
oﬂ’set(filaSt(fi)) + pdelay'®*) + fdelay'*stf) (6)
- offset(fzfiT'St(fi)) + plv=vel < deadline(f;)

(&)

where first(f;) is the first link in the datapath p; of flow f;,
and last(f;) is its last link.

B. Objective Function

There are two types of variables in the above constraints.
offset( fi[vw’vy]) is the correct time of opening a gate to send a
packet. ul¥=¥] is the time-synchronization deviation in which
a packet can still be sent through the gate successfully.

We want to tolerate a time-synchronization deviation as
large as possible. If we use the sum of deviations as the ob-
jective function to maximize the tolerance, it may cause some
synchronization deviations to be too large or too small. As
a result, those small synchronization deviations will become
bottlenecks and will likely lead to the failure of their tolerance.
So, we would like to maximize the minimum synchronization
deviation as:

min

b.va — 3 [”mv”y] 7
obiso =mar{ min {ut=eihy @)

IV. IMPLEMENTATION

We propose two solution algorithms for the TT scheduling.



A. SMT-Based Scheduling

The SMT (Satisfiability Modulo Theories) solver is com-
monly used to check the satisfaction of first-order logic
formulas. It can handle complex logical formulas with boolean
variables, functions and predicate symbols, and determine if
there is a set of assignments that make the entire formula true.

Each SMT-based scheduling method requires two stages [9]:
(a) generating scheduling constraints and adding them to the
“logical context” of solver; (b) calling the solver. Therefore,
the degree of design freedom of the TT-scheduler is de-
termined by the inter-relationship of these two stages. Our
approach is to perform incremental scheduling, frequently
alternating phases (a) and (b), dealing with only a portion
of the constraints at a time. In particular, the SMT solver we
use is the z3-solver [11].

For incremental scheduling instead of generating scheduling
constraints for all packets at once, only a small subset is
generated at a time and then the SMT solver is called. Each
time when the solver returns successfully, the scheduled results
from this solution are added to the logical context. In the
case of a failed solver’s return, we backtrack and increase
the size of the subset of flows to be scheduled by merging
them with the flows in the previous step. When the SMT
solver does not terminate within a given timeout, or the size
of the subset grows beyond a pre-defined limit, we abort the
scheduling method. The incremental TT scheduler maximizing
time-synchronization deviation is described in Algorithm 1 and
follows the formal steps as:

(i) Initialize the z3 solver.

(i) Add the constraints of a batch of flows, set the objective
to be maximized, and begin solving the constrained
optimization problem.

(iii) If the constraints within this batch can be successfully

solved, update the batch to the next one, and store the
results in answers.
If the constraints within this batch cannot be solved,
take out the results of the previous batch from answers
and move the current batch_start back to merge with the
flows in the previous step, re-initializing the z3 solver.
Add offset and time deviation obtained from the con-
straints that have been solved so far to the z3 solver,
and repeat steps (ii)—(v) until all flows are scheduled or
timeout.

The larger the batch size Batch Num, the more constraints
are added into the SMT solver, and thus the more difficult
to solve, the closer it will degenerate into the basic SMT
scheduling. The worst case of the incremental algorithm is
the basic SMT scheduling that solves all constraints of flows
at once. The SMT-based incremental algorithm is optimal,
but since the problem is NP-complete, it is necessary to set
a timeout for the incremental algorithm. Such an optimal
algorithm is suitable for offline scheduling.

(iv)

)

B. Heuristic Scheduling Algorithm

Since the SMT-based scheduling scheme has an inherent
performance bottleneck, we propose a heuristic scheduling

Algorithm 1: TT-SMT-Tolerance

input : FlowSet F',BatchNum num
output: Offset,Clock Deviation

1 answers <— empty stack;

2 batch_start + 0;

3 batch_end < batch_start + num;

4 solver < z3.solver ();

s while not all flows are scheduled Or not timeout do
6 add_constraints (batch_start,batch_end,
7 scheduled_flows) ;

8 scheduled_flows < F[0:batch_end 1,

9 solver.maxmize(get_aim_val);

10 if solver.check() == z3.sat then

11 answer <+ solver.model();

12 Push answer to answers;

13 batch_start < batch_end;

14 batch_end + batch_end + num;

15 else

16 answers.pop;

17 answer < answers.top;

18 batch_start < batch_start- num,

19 if batch_start < 0O then

20 L Exception(schedule error!)

21 solver < z3.solver ();

22 Delete scheduled_flows[batch_start:]
23 for decl in answer.decls() do

24 symbol < decl.name();

25 result < answer [decl];

26 if symbol is about Offset then

27 L add_constraint (symbol==result);
28 if symbol is about Time Deviation then
29 L add_constraint (symbol<result);

algorithm for a large number (thousands) of flows.

For each flow, the total amount of time that can be deferred
is its E2E deadline minus its transmission delay. To maximize
the minimum time-synchronization deviation, we need to
evenly divide and distribute the total amount of time that can
be deferred over all the links of the flow.

1) Definition of Clock Tolerance Window: To tolerate the
time-synchronization deviation, we define a Clock Tolerance
Window (CTW) at each hop/link as the amount of time of a
flow that can be deferred without violating its E2E deadline.
In general, the CTW is composed of two parts: (i) the evenly
distributed delay margin across all hops (ECTW), and (ii) ad-
ditional slack time gained from underutilized clock windows at
previous hops (Untapped). ECTW of f;, denoted as ectw(f;)
is defined as:

_ deadline(f;) — delay(f;)

ectw(f;) = o )

(®)
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Fig. 3: The evolution illustration of untapped values across hops.

where delay( f;) is the minimum E2E transmission delay of f;:

delay(f;) = Z (pdelay*i) + fdelay-vi).  (9)

[vi,vj]€p;

Thus, the actual CTW on each hop [v,v;] € p; is com-
puted as:

ctw(f-[v’“’m]) = ectw(f;) + untapped(f-[vk’w]),

2 K2

(10)

where untapped(f["*""!) represents the cumulative unused
time from the source of f; up to node wvg. This CTW
is recursively updated based on the remaining time in the
synchronization window from the previous hop, as illustrated
in Fig. 3. The difference in the CTW across hops primarily
depends on the evolution of the untapped clock window.

To illustrate the untapped CTW, let us consider a flow whose
offset on hop [v1,vs] is set to to. Suppose the ECTW is 2
slots and the initial untapped value is also 2 slots. At each
hop, the untapped value is updated according to the portion
of the CTW that was not consumed at the previous hop. For
example, if the transmission time at node v is scheduled at o,
and its allocated CTW spans from ¢, to t4, then 2 slots (¢5 to
t4) remain unused, and hence the untapped value for the next
hop, v3, is updated to 2. Similarly, if the transmission time at
vg is set to tg, and the CTW at v ranges from t5 to tg, then
only 1 slot remains unused (ts to tg), and the untapped value
for node v, is updated to 1.

In summary, as long as each node defers the transmission
within its allocated CTW, the accumulated delay will not
violate the E2E deadline constraint of a flow. This mechanism
also maximizes the minimum time-synchronization deviation
between devices. For any flow f;, the maximum theoretical
value of the minimum tolerable time-synchronization deviation
is ectw(f;).

2) Offset Allocation based on CTW: For each flow f;, the
sending time instant at the first hop [vg,v;] is initialized to
0. For the subsequent hops, suppose the offset of the previous
hop [vs, v] has already been determined to be offset (f."**")).
Then, the earliest possible sending instant at the next hop
[vg, v;] can be computed as:

Oﬁsctst(fi[’ukﬁvl]) _ Oﬁ-sct(fi[v;,;,vk]) +pdelay['”m’”’€] + fdelay[”’“"‘”].

(11
The latest allowed sending instant offset,q( fi[v’“’”l]) is deter-
mined by the size of CTW at the current hop:

offseteq (f.[vk’vl]) = Offsetst(f.[vk’vl]) + CtW(f-[vk’m])

K3 ? ?

(12)

Algorithm 2: Hop-Based Scheduling
input : Hop h,FlowSet F
output: Schedule Table
1 flows < get_flows_on_hop (F,h);
2 compute_ctw(flows);
3 sort_with_ctw(flows);
4 for f in flows do
5
6
7

h_pre <« get_hop_pre (f,h);
offsetyy < f[h_pre].offset+1;
offseteq < offsets; + get_ctw (f,h);

for o = offset.q to offsety; do

9 f[h].offset < o;

10 if f is not conflicts with lower-ctw flow then
1 L break;

12 if f is out of constraints then

13 | Set f to be unschedulable;

14 else

15 L fluntapped] < offseteq - f[h].offset

16 return Schedule Table

Therefore, the valid range for assigning the sending offset
at hop [vg,v;] lies between offsets; and offsetoq. To achieve
the objective of maximizing the minimum synchronization
deviation, the available CTW at each hop should be utilized
as fully as possible. Thus, for each hop, we search backward
within the offset range to find the latest available valid time
slot (i.e., a slot not occupied by other flows), and assign it as
the transmission offset.

Since multiple flows may traverse the same hop, the order
of scheduling these flows also impacts the utilization of
available slots. Those flows scheduled later will have fewer
remaining valid time slots. Therefore, to minimize conflicts
and improve overall schedulability, we prioritize flows with
smaller CTWs, as they are more constrained and benefit from
being scheduled earlier. The detailed hop-level scheduling
procedure is described in Algorithm 2.

3) Hop Order Decisions Based on CTW: To determine
the transmission offsets and CTWs for flows traversing a
given hop [vg,v;], we must first identify the order in which
hops are scheduled. This order depends on the relative timing
dependencies between hops and can be represented using
a precedence diagram. Based on this diagram, we apply
topological sorting [12] to derive a valid scheduling sequence,
enabling hop-based scheduling to proceed in a way of satis-
fying dependencies.

Flow Precedence Diagram. For each flow f; € F,
suppose its routing path is p;, = [[vg,v1],.. ., [Vk, V1],
[V, Vm], ..., [vj—1,v5]]. We construct a directed graph
G'(V', E’) based on the routing paths of all flows in F. The
graph is constructed as follows:

(i) Each hop [vg, v,] in the path of a flow is represented as
a vertex v’ € V' in the precedence graph and v’ can be
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represented as vY.

(ii) For any two consecutive hops of a flow, such as
vl = [vg,v] and v, = [y, v,], a directed edge
¢/ = [v),v;] € E' is added to indicate that v/, must
be scheduled before vj.

Fig. 4 illustrates an example of a thus-constructed prece-

dence diagram.

Hop Topological Sorting. A directed edge [v;,v,] in the
precedence diagram G’ indicates that the scheduling of hop
v, depends on the completion of hop v,. In other words, v,
can only be scheduled after v,.

We employ topological ordering to resolve the path de-
pendency constraints while scheduling flows. At each step
of topological sorting, we select a node v € V' with no
incoming edges (i.e., no unscheduled predecessor). Each such
node corresponds to a hop in the original flow graph and
is scheduled using the hop-based scheduling described in
Algorithm 2. The overall topological scheduling based on the
precedence diagram is illustrated in Fig. 5.

Loop Breaking. In order to obtain a complete topological
sequence from topological sorting, no loops can appear in the
precedent diagram, and if loops appear, we need to break them.

Fig. 6 shows an example loop in a precedence diagram,
where the first step represents the original graph information,
the second step constructs the precedence graph, the third step
schedules the node with a O in-degree, and the fourth step
breaks the loop.

There may be more than one loop in the precedence
diagram, so there may be multiple loop-breaking operations,
each of which will select a certain edge, and the flows involved
in that edge will be marked as loop-broken. In Fig. 6, selecting
¢'[v?,v3] and €'[v3,v]] to break, fi will be marked as loop-
broken. Loop-breaking becomes successful when a complete
topological sequence can be obtained.

For loop-breaking, we need to (1) consider the number of
flows to be used for loop-breaking and (2) maximize the
minimum time-synchronization deviation (indicated by the
CTW value). For (1), we use as few flows for loop-breaking as
possible to reduce the scheduling overhead. For (2), we give
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Fig. 6: An example of loop breaking.

priority to a large CTW value for loop-breaking, because the
broken edges will be scheduled at the end. When the broken
edges begin to be scheduled, the majority of available time
slots have already been assigned to schedulable flows. The
flow with a large CTW is easier to schedule and will make less
impact on maximization of the minimum time-synchronization
deviation. So, we synthesize (1) and (2) as:

min
Ji€Fn, n,

cost = argmin

{w ] — (1~ w)
[hk,h]€G(E7)

Fn,n, = FOF"nEM,

(et}

where Fj, is the set of flows that go through hop Ay, F}, p, is
the set of flows that go through both h; and h;, and w indicates
the weights of the two loop-breaking factors mentioned above.
Selecting the edge with the smaller cost is preferred to break
loops.

4) Analysis of Time Complexity: Algorithm 3 outlines
our heuristic strategy to maximize the minimum time-
synchronization deviation. The formal steps are as follows:

(i) Construct the precedence diagram G'(V', E').

(ii) Begin topological sorting, adding vertices v’ with 0 in-
degree to Q.

(iii) If @ is empty, representing the existence of a loop in G,
then execute a loop-breaking operation, add loop-broken
flows to S, and update G’.

(iv) If Q is not empty, begin hop-based scheduling with v’
in @, and then delete v" and the directed edge ¢’ starting
from v’ in G'.

(v) Repeat steps (ii) - (iv) until all vertices are scheduled.

(vi) Schedule the loop-broken flows.

The time complexity of this procedure is analyzed as
follows. The number of vertices in G’ is |E|, since the two
adjacent edges of each flow have one edge, the number of
edges is |E| - | F|. So, the construction of precedence diagram
has a time complexity of O(|F| - |E|) and the topological sort




Algorithm 3: TT-Fast-Tolerance
input : Network G,FlowSet F’
output: Schedule Table
@ <+ empty FIFO queue;
S < empty stack;
D;,, + empty array;
G'(V',E") + CreatePreGraph (G,F);
for v' € V' do
if D;, [v']=0 then
L Add v’ to Q;

NS R W N =

while not all V’ are scheduled do
9 while Q is empty do

=)

10 e’ + LoopBreaking (E');

1 Push ¢’ to S

12 while Q is not empty do

13 v’ < (Q.remove;

14 Update D;,;

15 Update @ with D,,, =0;

16 HopBasedScheduling (v, F);

17 while S is not empty do
18 e’ «+ S.pop;
v | LoopBreakingScheduling(e’)

20 return Schedule Table;

requires O(V' + E’) = O(|F| - |E|). Then, we begin hop-based
scheduling: for each node v’ corresponding to a hop in the
original graph, the algorithm calculates the CTW of flows and
sorts flows by CTW with O(| E|-(|F|+|F|-log(|F|)) = O(|E|-
|F'|-log(|F|)). Scheduling them in the range of size CTW and
resolving any conflicts require a computation complexity of
O(|F|-CTW | F|- 222 elo) ) = O F2-CTw - 220 o)),
where {fq, fo} = argmaxy, r er izj LCM(f;, f;). Finally,
we manage loops in the precedence diagram with O(|F|-|E|)
to find which edge to break. So, the TT-Fast-Tolerance algo-
rithm maximizes the minimum time-synchronization deviation
with a polynomial-time complexity.

V. EVALUATION

A. Simulation Setup

1) Topology Selection: We consider two typical classes of
topologies. One is the basic topologies of industrial control
networks, including linear, ring, and snowflake, as shown in
Figs. 7a, 7b, and 7c. In a linear topology, traffic flow can
traverse in both directions, while a ring topology restricts
traffic to either clockwise or counter-clockwise direction. The
maximum hop count is 15 for both linear and ring topologies.
The snowflake topology has the same port count for all but
edge switches, and the maximum hop count is set to 17. The
other is the complex topologies, e.g., the typical Orion Crew
Exploration Vehicle (CEV) [13]. It employs a hybrid network
topology, combining elements of star, tree, and ring structures

(a) (b) (0) (d)

Fig. 7: Network topologies used in evaluation.

as shown in Fig. 7d. This network interconnects a total of 31
end-devices and 13 switches.

2) Resource Setting: The transmission delay over a data
link consists of forwarding delay and propagation delay which
is defined as 20us. The maximum packet length is configured
to be 1518 bytes, and the network link operates at a line
speed of 1000 Mbps. In switches, the limit of the bounded
cache, memboundtime is set to 280ms. We set the slot size
to 20us that equals to the transmission delay and the timeout
to 1000s.

3) Flow Requirements: All TT flows in the simulation are
randomly generated and follow the IEC/IEEE 60802 industrial
automation networking requirements [14]. For each TT flow,
a source terminal is randomly selected from the set of all
terminals in the network. A destination terminal is then ran-
domly selected from the remaining terminals. Packet lengths
are chosen randomly between 64 and 1518 bytes. The traffic
cycle is randomly selected from {2ms, 4ms, 8ms, 16ms,
32ms, 64ms, 128ms, 256ms, 512ms}. The E2E deadline for
each flow is randomly selected between 2ms and 256ms. The
E2E deadline should be less than, or equal to the traffic cycle.

4) Compared Methods:

o TT-SMT: A traditional scheduling scheme that models
the scheduling constraints as Satisfactory Modulo Theory
(SMT) problems and uses the Z3-solver to solve them.

o TT-SMT-Tolerance: SMT scheduling that maximizes the
tolerance for time-synchronization deviation and was
introduced in Section IV-A.

o TT-FAST-Tolerance: Fast scheduling using heuristic
strategies to maximize the synchronization-deviation tol-
erance and was described in Section IV-B.

B. Comparison of TT Scheduling Algorithms

We evaluate the traditional scheduling schemes and those
that maximize the tolerance of time-synchronization deviation
in terms of time cost, runnable flows and the value of the
tolerable time-synchronization deviation.

Fig. 8 shows the time cost on different topologies. TT-SMT
and TT-SMT-Tolerance are easier to hit a timeout. Within
1000s, TT-SMT can schedule 400, 564, 504, and 700 flows
in linear, ring, snowflake, and CEV topologies, respectively,
while TT-SMT-Tolerance can schedule 315, 505, 475, and 850
flows respectively. In the CEV topology, a larger number of
flows can be scheduled within the timeout period thanks to the
network’s extended scale that inherently reduces the probabil-
ity of flow collisions compared to other topologies. Further-
more, TT-SMT-Tolerance demonstrates superior performance
to TT-SMT despite the additional computational overhead
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Fig. 9: The runnable flows with actual time deviations on different topologies with 300 flows. The constant deviation is set to 1us for
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Fig. 10: The runnable flows with actual time deviations on different topologies with 300 flows. The constant deviation is set to the optimal

objective value for TT-SMT.

introduced by the variable ul=¥s! because more even offset
selection by maximizing the minimum time-synchronization
deviation reduces backtracking operations significantly. Con-
sequently, TT-SMT-Tolerance achieves faster execution than
TT-SMT when handling traffic loads of >600 flows. However,
when the load is higher than 850 flows, TT-SMT-tolerance will
time out. But, TT-Fast-Tolerance achieves superior scheduling
efficiency and can schedule 1000 flows within 0.5s on any of
the tested topologies.

Fig. 9 shows the number of runnable flows. For TT-SMT, we
use 1us as the constant synchronization deviation, because the
synchronization process of gPTP ensures that the synchroniza-
tion error is kept within 1us in a network with the theoretic
maximum hop count of 7. But, in reality, the hop count may
be larger than 7 and the frequency of time synchronization
may be smaller. Assuming the real synchronization accuracy
is selected from {1us, 100us, 200us, 300us, 400us, 500us},
when the actual synchronization deviation exceeds the objec-
tive function value shown in Table I, the number of runnable
flows will decrease. As illustrated in Fig. 9, TT-SMT can run
0 flows when the real synchronization accuracy is larger than

1ps. But both TT-SMT-Tolerance and TT-Fast-Tolerance can
ensure that most of the flows are runnable even if the time-
synchronization deviation is up to 500us because they both
maximize the tolerance of time-synchronization deviation.
Besides, they demonstrate comparable performance in terms
of runnable flows, as both methods achieve similar levels of
tolerable time synchronization accuracy. Table I presents the
optimal and heuristic values of tolerable time-synchronization
deviation. TT-Fast-tolerance is close to the optimal value of
TT-SMT-tolerance.

Furthermore, we set the constant time-synchronization de-
viation of TT-SMT to a higher value, e.g., setting it to
the optimal tolerable values {156.83us, 441.33us, 322.21us,
492.86ps} in Table I for linear, ring, snowflake, CEV topolo-
gies, respectively. With this setting, Fig. 10 shows the number
of runnable flows using different algorithms. TT-SMT has
a very similar number of runnable flows to that of our
two algorithms, but we cannot predict the optimal objective
function value and set it to TT-SMT without using SDT-TSN.
So, we still rely on the commonly used or experience-based
time-synchronization deviation, typically 1us, to use TT-SMT,



leading to the failure of many flows as illustrated in Fig. 9.

These results demonstrate that SDT-TSN can eliminate flow
failures caused by the commonly-used/experience-based time-
synchronization deviation.

C. Simulation

We have built an OMNeT++ simulation environment with
the INET 4.4.1 framework [15] and simulated PTP pack-
ets interfered with BE (Best-effort) traffic in the network.
Table II shows the simulation setup on OMNeT++. The
maximum time-synchronization deviation between any two
devices occurs just before their resynchronization when the
time synchronization is done correctly. So, AT = |drift(v,) —
drift(vp)| X Tsyne, and thus the estimated time-synchronization
deviation is 500us according to Table II.

Each egress port maintains three priority queues that corre-
spond to different traffic classes. Incoming packets are classi-
fied and placed into these queues based on their Priority Code
Point (PCP) using the flow identification specified in IEEE
802.1CB [16]. TT flows are assigned to the highest-priority
queue. The other two priorities are assigned to BE and PTP
flows using different PCP values. We evaluate both cases when
PTP flows are given higher priority than BE flows, and vice
versa. When the priority of PTP flows is higher than that of BE
flows, the time synchronization can be completed correctly,
so the time deviation between devices will be corrected in
time. Fig. 11 shows that the affected flows of both TT-SMT
and TT-SMT-Tolerance remain unchanged, because the time-
synchronization deviation is always less than 500us. If the
priority of PTP flows is lower than that of BE flows, timely
synchronization becomes unachievable. This leads to time-
synchronization deviations exceeding 500us, the deviation will
become larger as the BE bandwidth increases. So, the number
of flows affected increases with the increase of BE traffic. But
in both cases, TT-SMT-Tolerance has fewer flows affected by
the time-synchronization deviation caused by BE traffic, than
TT-SMT. That is, TT-SMT-Tolerance ensures that more flows
are sent in their scheduled time slots even in the presence
of inexact time synchronization because TT-SMT-Tolerance
maximizes the tolerance for time-synchronization deviation.

The above results demonstrate that our SDT-TSN maintains
deterministic transmission for most of TT flows, under the
imperfect synchronization caused by the background traffic.

TABLE I: The optimal objective value(us) of the tolerable
time-synchronization deviation on different topologies with
300 flows.

Topology Linear Ring Snow CEV

TT-SMT 1 1 1 1
TT-SMT-Tolerance | 156.832 | 441.33 | 322.21 | 492.86
TT-Fast-Tolerance 140 420 300 480

TABLE II: Simulation Setup

Topology CEV
Number of Flows 30
Clock Drift [-500ppm,500ppm]
Synchronization Interval 500ms
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Fig. 11: The number of flows that are affected under different
background traffic.
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Fig. 12: The performance of TT-Fast-Tolerance on different topolo-
gies.

D. Scalability of TT-Fast-Tolerance

We randomly generate multiple sets of flows (each set with
thousands of flows) on different topologies to evaluate the
scalability of the TT-Fast-Tolerance.

Fig. 12 illustrates the scheduling results of TT-Fast-
Tolerance as the number of flows increases from 0 to 5000.
In terms of schedulability, it achieves full scheduling for up
to 3550, 3950, 3700, 4600 flows in linear, ring, snowflake,
and CEV topology, respectively, with the scheduling time
cost no more than 2.5s. The rising trend in time cost with
increasing traffic is polynomial-time and is similar to linear-
time as illustrated in Fig. 12a. This demonstrates the high
efficiency of TT-Fast-Tolerance in handling large-scale traffic.

VI. RELATED WORK

TSN depends on time-synchronization to precisely open
and close the gates of different packet queues, and thus
ensures deterministic transmission. So, most of works focus
on scheduling TT flows to generate the gate configuration, and
improving time synchronization for accuracy and reliability.

A. Scheduling TT flows

[9] pioneered the use of SMT solvers to schedule transmis-
sion time slots for TT flows along their paths. However, it faces
scalability issues in large networks due to NP-Completeness
of TT scheduling. The IEEE 802.1Qch standard simplifies
TAS by introducing the CQF model, employing two ping-
pong queues that alternate periodically for data transmission,
instead of gate control of eight queues. [17] translated the



CQF model into multiple constraints and proposed a heuris-
tic scheduling algorithm based on Injection Time Planning
(ITP) for resource allocation to TSN flows. [18] proposed a
scheduling algorithm based on deep reinforcement learning,
which combines the Markov Decision Process (MDP) [19]
with Deep Neural Networks (DNN). It uses DNN [20] to make
routing and time-slot allocation decisions in the MDP, enabling
dynamic scheduling of thousands of TT flows in several
hundred seconds. Recently, TSN and 5G are moving towards a
converged network. [21] presents a novel way to integrate 5G
and TSN by a Double Q-learning based hierarchical particle
swarm optimization algorithm (DQHPSO).

These previous scheduling approaches assumed that time
synchronization was established well. They considered time-
synchronization deviation as constant, typical value 1lus ac-
cording to IEEE 802.1AS [5], and aim to address such issues
as load-balancing, schedulability, or efficiency of TT flows,
without addressing dynamic time-synchronization deviations.
When the dynamic deviations are larger than the commonly-
used/assumed constant, the deterministic transmission of TT
flows will fail due to the timing misalignment of gates.

B. Improving Time Synchronization

On the one hand, to improve the reliability of time syn-
chronization, IEEE 1588 [22] broadcasts its sync messages
to maintain time synchronization as long as a network is
connected. When a master clock fails, the IEEE 1588 suggests
use of the BMC algorithm to select a new master clock. How-
ever, it is time-consuming to re-establish time synchronization.
IEEE 802.1AS-rev [5] decreases the re-establishment latency
by setting up multiple time domains based on multiple master
clocks. Upon detection of the failure of a master clock, a
device immediately selects the next time domain via register
configuration. Besides, to cope with arbitrary abnormal actions
of a device such as generating random-content messages, the
aerospace standard AS6802 [23] is designed to support both
single- and dual-failure cases.

On the other hand, to improve the accuracy of time syn-
chronization, IEEE 1588 [22] suggests adjusting the frequency
offset or using a better oscillator such as an oven-controlled
crystal oscillator (OCXO) to reduce clock drift between the in-
tervals of time synchronization. However, adjusting frequency
offset consumes resources and an OCXO is too expensive to
use in industrial embedded devices. [24] designed a Kalman
filter-based cooperative synchronization tracking algorithm to
accurately tracks both clock offsets and drifts. [25] used a
neural network model to reduce the impact of node clock
drift on TSN time synchronization. [26] proposed a software-
defined time synchronization framework, so-called Network
Clock Ensemble to obtain stable time accuracy by a synergistic
effect between clocks in a packet network. Recently, in the
converged network, [27] enhanced the accuracy of 5G-TSN
time synchronization by overcoming multi-gNB contention
and mobility challenges in industrial environments.

These works improve synchronization accuracy or relia-
bility, and thus alleviate time-synchronization deviation, but

when the dynamic deviation is greater than the commonly
used/assumed constant, the deterministic transmission will fail.
In other words, they still do not consider how to tolerate the
residual deviation at the scheduling level.

C. Joint TT scheduling and Time Synchronization

Few existing studies consider both TT scheduling and
time synchronization together. [28] analyzes the impact of
time-synchronization deviations on TT scheduling by deriv-
ing tight E2E latency bounds, enabling performance evalu-
ation under clock drifts. However, it did not propose any
scheduling solution to the synchronization-deviation problem.
In contrast, SDT-TSN proactively tolerates such deviations
through a practical scheduling scheme that ensures determin-
istic transmission. While [28] provides a theoretical analysis,
SDT-TSN makes an important, complementary contribution
with a concrete solution. [29] first assumed the worst-case
time-synchronization deviation as a constant, and then based
on the assumed constant, designed a shadow gate queue as a
supplementary of a regular gate queue to receive the packets
impacted by the time-synchronization deviation, which is
called the robust TAS (RTAS). The constant deviation decided
the length and time-slot co-configuration of the shadow queue
with its regular queue. So, RTAS can only tolerate the assumed
synchronization deviation and will cause the overhead of
the complex gate co-configuration and management. That is,
RTAS still considered the time-synchronization accuracy as
a commonly-used/assumed constant. Such a design requires
to modify the hardware design and thus cannot be used for
the off-the-shelf TSN devices. Furthermore, how to get the
worst-case accuracy remains an open problem. In contrast,
SDT-TSN is the first to derive the maximum tolerable time-
synchronization deviation subject to network resource con-
straints and flow requirements at the scheduling level.

VII. CONCLUSION

In this paper, we have formulated and solved the problem
of maximizing the tolerance of time-synchronization deviation
to ensure the deterministic transmission of TT flows. Specif-
ically, we have proposed SDT-TSN, a novel time-triggered
scheduling model with time-synchronization deviations, and
then designed an optimal SMT-based solving algorithm for
static/offline scheduling, and a heuristic fast solution algorithm
that scales up to thousands of flows. Our extensive evaluation
results demonstrate that the heuristic algorithm has good
scalability and its performance is close to that of the optimal
SMT-based algorithm. The proposed methods eliminate the
failure of flows due to the conventional use of a constant time-
synchronization deviation, and increase the tolerable time-
synchronization deviation from 140us to 480us in various
application scenarios.
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