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Abstract—The Controller Area Network (CAN) has been the
de facto in-vehicle network protocol since the 1980s, despite lack-
ing essential security principles like authenticity, confidentiality,
integrity, and availability. CAN is especially vulnerable to Denial-
of-Service (DoS) attacks, threatening the availability of safety-
critical functions. Existing countermeasures have seen limited
adoption due to challenges in real-time detection, prevention, and
high overhead on Electronic Control Units (ECUs). To address
these issues, we propose MichiCAN, a distributed, backward-
compatible, real-time defense against DoS and spoofing attacks.
MichiCAN leverages integrated/on-chip CAN controllers in mod-
ern MCUs, enabling bit-level access to CAN messages. This
allows MichiCAN to detect DoS attacks during the arbitration
phase and neutralize them by bussing off the attacker ECU
swiftly. Experiments on a CAN bus prototype and a real vehicle
demonstrate MichiCAN’s effectiveness in enhancing automotive
network security.

I. INTRODUCTION

The Controller Area Network (CAN) is an inexpensive,
message-based and de-facto in-vehicle network (IVN) protocol
serving for over three decades, facilitating communication
among various Electronic Control Units (ECUs). Initially de-
signed without security considerations, CAN’s vulnerabilities
have been exploited as modern vehicles’ complexity exposes
the driving functions to cyber-physical attacks [1]–[3]. In
response, researchers soon started to develop countermeasures
to address CAN security, aiming to provide essential security
properties such as confidentiality, authenticity, integrity, and
availability. However, the foundational CAN protocol lacks
inherent security features as all traffic traverses the network
in plaintext, without sender or message authentication mech-
anisms. Consequently, CAN remains highly susceptible to
availability-based attacks, including Denial-of-Service (DoS).

Previous research has extensively investigated message au-
thentication codes to ensure message integrity and anomaly
detection approaches to identify malicious messages [4]–[6].
However, authentication techniques often require resource-
intensive cryptographic computations, potentially introducing
performance overhead [7]. Intrusion detection systems (IDS),
while capable of identifying attacks, typically operate reac-
tively, detecting anomalies only after disrupting bus com-
munications [8]. Additionally, certain CAN spoofing preven-
tion frameworks [9]–[12], while aiming to mitigate attacks,

may impose significant network overhead or lack real-time
detection capabilities, limiting their effectiveness in rapidly
evolving threat scenarios. Furthermore, Bozdal et al. [13] show
how an encrypted CAN payload can prevent sniffing attacks.
These schemes use cryptography, imposing heavy computation
loads on resource-constrained ECUs and incurring a significant
computation delay. Furthermore, some standardization for se-
cure onboard communication is provided by the AUTOSAR
consortium [14], although it mainly deals with protecting
integrity, authenticity and confidentiality.

DoS attacks target the CAN message identifier (CAN ID)
by injecting CAN messages with low CAN IDs which indicate
higher priority. They will always win arbitration and be
allowed to transmit before higher ID messages on the CAN
bus. By “continuously” sending CAN messages with a low
ID, higher ID messages will always lose arbitration and thus
become unavailable on the CAN bus. Attackers can choose
to make the transmission of all ECUs unavailable (traditional
DoS) or selectively choose which ECUs to silence (targeted
DoS). For instance, a traditional DoS attacker continuously
injects CAN messages with ID 0x0 and blocks other ECUs’
communications on CAN. The major impact of a DoS attack
could be safety-critical, mainly when the vehicle can no
longer perform certain powertrain control functions. However,
vehicles implement a limp mode, which still allows certain
safety-critical ECUs to work with limited functionality in the
event of losing CAN communication [23].

TABLE I: Comparison of countermeasures against CAN DoS

Backward
Compatibility

Real-Time
Capability

Network
Overhead

Prevention
Capability

IDS [15]–[17]
Parrot+ [18]
CANSentry [19]
CANeleon [20]
CANARY [21]
ZBCAN [22]
MichiCAN

No, Unknown, Yes
None, Negligible, Medium, Very High



Literature on detecting and preventing DoS attacks has been
scarce (see Table I). Moreover, all of them come with their
own limitations, such as lack of backward compatibility, real-
time capability or heavy CAN traffic overhead.

No backward compatibility. Ideally, the countermeasure
against DoS attacks should be software-based. Any addi-
tional hardware or modifications of existing hardware are not
backward-compatible with existing cars. Original Equipment
Manufacturers (OEMs) and their supply chain would have to
produce or modify their products to add this countermeasure,
which is not viable for cost reasons. CANSentry [19] is
a hardware-based message firewall that can defend against
various spoofing and DoS attacks. However, CANSentry intro-
duces a stand-alone device deployed between a high-risk ECU
(i.e., the ECU with the highest risk to be compromised) and
the CAN bus which limits its backward compatibility. Also,
CANeleon [20] is limited in its applicability to the classical
CAN protocol with baseline message identifier and payload
of 0-8 bytes. Furthermore, CANARY [21] presents a defense
system with physical relays on the CAN bus.

No real-time capability. Since DoS attacks may impact
driving safety, they must be detected and prevented as quickly
as possible, preferably in real time. The surveyed IDS mech-
anisms [15]–[17] cannot detect attacks in real time. CANSen-
try [19] incurs an additional propagation time because the
intermediate hardware must decode and re-encode the message
before passing it to the main bus. Parrot [18] is a distributed
spoofing detection and prevention framework where each ECU
is responsible for monitoring the bus to detect frames sent by
other ECUs that contain its own CAN ID. Parrot will then
launch a counterattack to bus off the attacking ECU. However,
it incurs an additional delay in launching a counterattack (i.e.,
bus-off time) because it only starts destroying an attacker
message after its second instance, with the first instance used
for detection. Parrot was not designed for DoS prevention, but
can effectively be used as such.

Traffic overhead on the network. The CAN bus load
defines how busy the bus is at any given time. It must be
kept as low as possible to avoid the difficulty of scheduling
messages (with safety-critical implications), with 80% being
the recommended upper bound [24] and observed bus load
of 40% in real vehicles [18]. When Parrot [18] launches the
counterattack, it must start at the same time as the second
instance of the attacker’s CAN message. As a result, Parrot
floods the CAN bus with counterattack messages to collide
with the attacker’s CAN messages in a brute-force fashion.
The bus load can reach 100% during those times, making
Parrot unusable in real vehicles. In addition, ZBCAN [22],
which utilizes zero bytes of the message fields in CAN frames,
introduces a minimal increase in bus load due to propagation
delays. While seemingly insignificant, this increase may im-
pede the transmission of safety-critical messages.

Eradication. Just detecting a DoS attack is not helpful as
all subsequent communications will be halted. It is imperative
to counter the DoS attack. This is especially important due to
possibly safety-critical consequences of a DoS attack. IDSes

usually detect DoS attacks, but do not have any means to
eradicate them. Furthermore, even their detection capabilities
can be questionable since most IDSes are generally centralized
and susceptible to a single point of failure.

To overcome all these limitations, we propose MichiCAN,
a distributed software solution that can run on any modern
ECU. It does not only detect DoS attacks, but can also
be used for spoofing prevention. Each ECU equipped with
MichiCAN stores a list of legitimate CAN IDs from the set E
of all participating ECUs in the IVN. A CAN node ECUi ∈ E
can detect a spoofing attack if another node transmits their own
CAN ID. ECUi can also flag CAN messages with lower IDs
as a DoS attack if the CAN ID is not part of its stored list E
and thus not a legitimate CAN ID. After marking the incoming
CAN message as malicious, ECUi will start a counterattack.
It exploits CAN’s error handling flaws to force the attacking
ECU into bus-off, halting its communication. Forcing ECUs
into bus-off state is not new as previous work [25] has
shown. In fact, there is a growing literature on bus-off attacks
to silence legitimate ECUs [26], [27] which leverage the
aforementioned vulnerabilities in the CAN’s error handling.
The main challenge in busing off an attacker is the timing
of counterattack. Since the application software can only
send and receive complete CAN frames, the “defender" ECU
needs to know precisely when to start the counterattack so
its message can exactly synchronize with the attacker’s CAN
message. This was a major deficiency of Parrot [18], as well as
others, such as the one proposed by Cho et al. [25]. In contrast,
MichiCAN is leveraging the integrated CAN controller of
modern ECUs, allowing the software to gain direct read/write
access to each bit of a CAN frame. This technique is called bit
banging. Recently, bit banging is shown to be accomplishable
using such protocols as SPI, UART and I2C [28]. Unlike Par-
rot, which floods the bus, MichiCAN remains synchronized,
allowing for precisely timed counterattacks without adding to
the bus load. Furthermore, by sampling the CAN ID bit-by-
bit, MichiCAN will also be able to detect a spoofing or DoS
attack before the end of the 11-bit CAN ID field in most
cases. This allows quicker counterattacks, reducing the time
needed to bus off an attacking ECU. It is the first practical
DoS protection for production vehicles. Although it demands
more CPU time from ECUs, it is still deployable in modern
units. Our evaluations confirm that MichiCAN has minimal
network overhead and effectively eradicates attackers without
affecting critical vehicle communication. Finally, we deployed
MichiCAN on other MCUs and a real vehicle, corroborating
our experimental findings.

The software artifact for MichiCAN is publicly available
at https://github.com/tigerseclab/DSN25_MichiCAN.

II. BACKGROUND

A. CAN Primer

Vehicular sensor data is collected from ECUs located within
a vehicle. These ECUs are typically interconnected via an in-
vehicle network (IVN), with the CAN bus being the most
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widely-deployed technology in current vehicles. Fig. 1a de-
picts the structure of a CAN 2.0A data frame — the most
common data-frame type used in CAN:

SOF: The start-of-frame (SOF) bit indicates the beginning
of a new CAN frame/message and is always set to 0.

CAN ID: CAN is a multi-master, message-based bus where
frames lack source or destination information, using unique
IDs to represent meaning and priority. Lower IDs have higher
priority and "win" arbitration when multiple messages com-
pete, thanks to CAN’s wired-AND logic, where a dominant
"0" overwrites a recessive "1." An ECU can send or receive
messages with different IDs. CAN 2.0A supports 11-bit IDs,
allowing up to 2,048 unique messages.

RTR, IDE & Reserved: Remote transmission request
(RTR), identifier extension (IDE), reserved (r0) bits are 0.

DLC: This field specifies the number of (up to 8) bytes in
the payload (data) field of the message.

Data: This is the payload field of a CAN message contain-
ing the actual 0–8 bytes of message data.

CRC-15: To detect transmission errors, a cyclic redundancy
check (CRC) is calculated over all previous fields.

ACK & EOF: The first bit of the acknowledgment (ACK)
field is called ACK slot and the second bit ACK delimiter.
The ACK slot is always set to 1 for the transmitting ECU.
If the receivers do not observe any errors in the frame, they
send a 0 during this slot. Due to the wired-AND logic, at
least one receiver needs to transmit a 0, acknowledging the
correct receipt of the CAN frame. If the transmitter (which
reads back this slot) detects that nobody acknowledged this
frame by sending a 0, it will retransmit the frame. The ACK
delimiter, as well as the end-of-frame (EOF) is always 1. After
the transmission of a CAN frame, the next CAN frame has to
wait another 3 bits (not depicted in Fig. 1a) which is called
inter-frame spacing (IFS). As a result, the next CAN message
can only be transmitted after at least 11 recessive bits.

B. CAN Error Handling

There are 5 CAN error types: (i) bit monitoring, (ii) bit
stuffing, (iii) frame check, (iv) acknowledgment check, and
(v) cyclic redundancy check. For our purposes, we focus on
the first two. A bit monitoring error occurs if the bit read
on the CAN bus by an ECU is different from the bit level
that it has written. Obviously, no bit errors are raised during
the arbitration process. A bit stuffing error is caused by 6
consecutive bits of the same logic level. According to the
CAN protocol, when 5 consecutive bits of the same logic level
have been transmitted by a node, it will pad a sixth bit of the
opposite level to the outgoing bit stream. The receiving ECUs
will remove this sixth bit before passing it to the application.

Each ECU on the CAN bus has a transmit error counter
(TEC) and a receive error counter (REC). In this paper, we
focus mainly on transmission errors. A transmission error
occurs when a transmitting ECU observes an error frame sent
by a different ECU during its transmission of a CAN message
on the bus. In such a case, a CAN-compliant node will do
one of two things depending on the current value of its TEC.

Each ECU starts in the error-active state. When the counter
is between 0 and 127 (in the error-active state), the node that
detects the error will transmit an active error flag consisting
of 6 dominant (logical 0) bits followed by 8 recessive (logical
1) bits as an indication to all other nodes that the transmitted
frame had an error and should be ignored. If the node’s TEC is
in the error-passive state (when the TEC exceeds 127), it will
transmit a passive error flag consisting of 14 recessive bits.
Note that the passive error does not destroy other bus traffic,
and hence the other nodes will not hear “complaint” about bus
errors. In both cases, the node will increment its TEC by 8 and
then retransmit the message. The minimum separation between
the original transmission and retransmission are 11 recessive
bits (8 bits from error flag + 3 bits from IFS) in the error-active
state and 25 recessive bits (14 bits from error flag + 3 bits
from IFS + 8 bits from additional transmission suspension) in
the error-passive state. When the TEC reaches 256, the node
enters bus-off mode and will no longer participate in CAN
traffic. According to CAN protocol, a device in bus-off mode
is allowed to recover into the error-active state after observing
at least 128 instances of 11 recessive bits on the bus.

It is also crucial to note that the TEC decreases after each
successful transmission, reducing by one for each message that
was successfully transferred. This method ensures the robust-
ness of CAN by enabling nodes to recover from momentary
errors and return to an error-active state (see Fig. 1b).

C. CAN Hardware

We refer to ECU as CAN nodes, typically consisting of an
MCU, CAN controller, and CAN transceiver. The MCU han-
dles applications, while the controller and transceiver manage
communication.

CAN controllers operate at the data link layer, building
CAN frames (from ID, DLC, Data) and performing bit stuff-
ing, as well as error handling. It interfaces with the physical
layer via CAN_TX (outbound) and CAN_RX (inbound).

CAN transceivers, or PHYs, operate at the physical layer
and convert digital signals to analog voltages (0-5V) and vice
versa, using differential signaling (CAN_H and CAN_L).

In the last decade, the internal design of CAN nodes had
been gradually changing and an overview of this evolution
is depicted in Fig. 1c. In early CAN nodes (A), the MCU,
CAN controller and transceiver were separate chips, such as
Microchip’s MCP2515 [29] and MCP2551 [30]. The MCU/ap-
plication would send and receive CAN frames from the
controller via SPI. CAN node B is a slightly modified version
of CAN node A, with the CAN controller and the transceiver
combined in a single chip, mainly to reduce cost and space.
One example for this is the MCP25625 [31] . The main novelty
lies in CAN Node C which represents novel ECUs. It consists
of an MCU with an integrated/on-chip CAN controller. The
latter are embedded in MCUs and allow memory-mapped
access to CAN bus functions. In many MCUs, this involves
access to interpreted CAN data, configuration of filters, and
access to interrupts on arrival of new messages. Further, MCUs
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Fig. 1: Background on CAN

tend to allow pin multiplexing within the hardware at run-
time, e.g., allowing the software to directly read and write
each bit of the CAN_RX and CAN_TX lines. In Nodes A
and B, the application could only pass certain CAN message
fields such as CAN ID, DLC and data to the CAN controller
which would be responsible for generating a complete CAN
frame. The application could also only process the data from
an incoming CAN message after successful receipt of the
entire frame. MichiCAN exploits the MCUs with integrated
CAN controllers to detect and prevent DoS attacks as fast as
possible (see Sec. IV). On-chip CAN controllers are already
widely used by major ECU manufacturers such as NXP, ST or
Renesas [32]–[34]. One example is Renesas V850ES/FJ3 [34]
which was used in the Jeep hack [3] in 2015.

III. THREAT MODEL

Consistent with prior work on CAN security [2], [3], [22],
[35]–[38], we assume a remote attacker who has compromised
an ECU remotely via Bluetooth, WiFi or cellular. The attacker
can execute arbitrary code on the compromised operating
system of the ECU but cannot modify the protocol controller
or violate protocol specifications. The adversary is able to re-
ceive and send crafted CAN messages, fabricating commands
such as unintended acceleration, suspending engine control,
or masquerading sensor data to manipulate critical functions
like steering, braking, and engine performance. While physical
access might seem improbable, the attacker may also have
physical access to the vehicle and therefore connect external
hardware to the CAN bus through the OBD-II port [39], [40].
Under the above threat model, the adversary is able to conduct
the following attacks:

Fabrication attacks inject spoofed CAN messages with
valid IDs but arbitrary data. Without message authentication,
ECUs accept them as legitimate. To override real messages,
the attacker must transmit at a higher frequency.

Suspension attacks silence victim ECUs by preventing them
from sending messages, effectively causing a DoS, which can
be traditional (using lowest-priority ID 0x0 to block all ECUs),
random, or targeted (disrupting specific ECUs) [15]. We focus
on traditional and targeted attacks (see Fig. 2).

Masquerade attacks combine both fabrication and suspen-
sion by first suspending a legitimate ECU’s CAN broadcast
and then fabricating its data. They demonstrate why preventing
DoS attacks is of utmost importance for a secure CAN bus.

Alice
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0x100
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CAN ID 
0x000
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CAN ID 
0x200

Eve

(a) Traditional DoS
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(b) Targeted DoS

Fig. 2: Different types of DoS attacks [15]

Attacker Limitations. On the flip side, the ability to use
integrated CAN controllers (used in MichiCAN as a de-
fense mechanism) can be exploited to perform CAN injection
attacks, since an attacker who compromises the MCU has
direct read and write access to the CAN_RX and CAN_TX
lines. As a result, it is of utmost importance to prevent
a compromised ECU to access its CAN controller/protocol
functionality. However, this can be mitigated on modern ECUs
since a compromised operating system will not expose the
CAN controller to the attacker as explained in the following.

The application of isolation techniques such as virtualization
architectures on ECUs to run multiple operating systems —
a current industry trend — is a possible way of solving this
problem [41]. For instance, the in-vehicle infotainment (IVI)
ECU may run a Virtual Machine (VM) with Android Automo-
tive, which is vulnerable to remote compromise, alongside a
separate VM running RTOS to implement CAN functionality
(including MichiCAN). The hypervisor allows multiple VMs
to run in parallel (see Fig. 3). Only the RTOS VM is allowed
to access the CAN bus directly. Both VMs can communicate
with each other using inter-VM communication. However, a
compromised IVI VM will not be able to access CAN func-
tionality directly to inject CAN data or misuse MichiCAN.
Android Automotive, a popular IVI OS, is already supporting
virtualization technology [42]. Android does not implement
any CAN functionality itself, but exposes sensor data through
a generic, hardware-agnostic Vehicle Hardware Abstraction
Layer (VHAL) using VirtIO drivers [43]. IVI and RTOS
VMs communicate with each other over GRPC-vsock. For
instance, Android writes the AC fan speed by specifying the
abstract sensor name and value which is transmitted to the
RTOS VM using GRPC. The CAN logic in RTOS then builds
a CAN frame with this information. However, the IVI VM can
never access any advanced CAN functionality directly.

Although we highlight hypervisors and Memory Man-
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agement Units (MMUs) as effective tools to isolate CAN
functionality from application code in high-end ECUs that
run multiple VMs, lower-end ECUs typically rely on Mem-
ory Protection Units (MPUs) to separate memory regions.
Increasingly, ECUs also support hardware security features
such as ARM TrustZone [44]. For example, a Cortex-M3
(e.g., AT91SAM3X8E) uses only an MPU for basic isolation,
while upgrading to Cortex-M33 enables TrustZone + MPU for
stronger separation. Thus, a range of isolation options exist
depending on budget, demonstrating that current automotive
ECU technology can already address this challenge.

IV. SYSTEM DESIGN

MichiCAN operates in five phases: Initial Configuration
is done offline and only once by the OEM at the time of
manufacturing, Synchronization and Detection are performed
for each received CAN message, whereas Pin Multiplexing and
Prevention get engaged only for malicious CAN messages.

A. Initial Configuration

As mentioned in the introduction, MichiCAN is a dis-
tributed solution and can be implemented on every ECU
on the IVN. Suppose there are N ECUs on the IVN, all
of which are equipped with integrated CAN controllers as
described in Sec. II. We define an ordered list of all ECUs
as E = {ECU1, . . . , ECUN} where ECUi ∈ E represents
its CAN ID. In the scope of MichiCAN, it is assumed that
each unique CAN ID is tied to a specific ECU and is not
transmitted by other nodes. Although not specified by ISO
11898 standard [45], this aligns with technical guidelines
highlighting the importance of unique CAN IDs within a
CAN bus network for error-free transmission [46], [47]. The
reasons for this include ensuring consistent communication,
avoiding compatibility concerns (e.g., with legacy ECUs that
cannot be updated at all), and avoiding functional safety issues
(changing a CAN ID would require a new ISO 26262 impact
analysis and potentially re-certification). Additionally, publicly
available communication matrices such as OpenDBC [48]
which include information about CAN IDs, transmitters and
signal definitions, demonstrate that a CAN ID can only be
uniquely emitted by one specific ECU.

In this ordered list of ECUs, ECU1 would have the lowest
CAN ID and thus the highest priority, whereas ECUN has the
highest CAN ID and the lowest priority.

Similar to Parrot, ECUi ∈ E detects a spoofing attack if it
observes a CAN message with CAN ID ECUA (injected by
the adversary) that is equal to its own CAN ID:

Definition IV.1 (Spoofing Attack). ECUi = ECUA.

ECUi detects a DoS attack if it observes a message with a
lower CAN ID ECUA than its own ID that does not originate
from any other legitimate ECU:

Definition IV.2 (DoS Attack). ECUA < ECUi, ECUA ∈
E \ ECUj ∀j ∈ [1, N ] ∧ i ̸= j.

For instance, if there are N = 2 ECUs in the IVN with E =
{0x005, 0x00F}, the ECU transmitting CAN ID 0x00F will
detect all CAN IDs between 0x000 to 0x004 and 0x006 to
0x00F (including its own which would be a spoofing attack)
as malicious. It cannot make a detection decision for CAN
ID 0x005 since it can be a legitimate transmission from the
other ECU. Only the ECU transmitting CAN ID 0x005 can
decide whether a message on the CAN bus with its own ID
is legitimate or not.

Furthermore, an attacker can inject a message with CAN
ID ECUA higher than ECUN which is equal to the highest
CAN ID in the IVN. This is called a miscellaneous attack:

Definition IV.3 (Miscellaneous Attack). ECUA > ECUN .

If the attacker injects this message at the same time as
another ECU, it will lose arbitration. If the message is in-
jected during bus idle, i.e., when there are no other CAN
messages transmitted on the bus, the attacker will naturally win
arbitration and broadcast its message. Since no other ECUs
know (or listen to) this CAN ID, there will be no perceivable
impact on the vehicle’s operation. The only drawback is that
a higher-priority CAN message will need to wait until the
attacker’s message has completed transmission. Given that
an average CAN frame consists of 125 bits, the blocking
time at a 500 kBit/s bus speed is 250 µs. The higher-priority
message which has been buffered by the legitimate ECU will
then start its transmission after 11 recessive bits on the bus.
Even if the attacker repeats its attack and finds a suitable
bus-idle time, the maximum blocking delay for the legitimate
ECU is much smaller than the deadline for safety-critical
CAN messages which stands around 10 ms [49]. As a result,
miscellaneous attacks can never interfere with legitimate CAN
communications and thus do not pose a serious threat. Thus,
we will focus on spoofing and DoS attacks. Each MichiCAN-
equipped ECUi ∈ E needs to store the detection ranges D of
CAN IDs that it needs to mark as malicious:

Definition IV.4 (Detection Range D). D = {j | 0 ≤ j ≤
ECUi ∧ j ̸= ECUk ∧ 0 ≤ k < i}.

Since integrated CAN controllers allow direct read access
to every bit of the incoming CAN frame C during its trans-
mission, the detection ranges D can be encoded as a finite



state machine (FSM). In effect, the FSM is a binary tree since
each transition "input" can be either 0 or 1. The root of the
tree is the start-of-frame (SOF) bit since the 11-bit CAN ID
C = c0|| . . . ||c10 will immediately follow that bit. The FSM
is run for each bit individually and needs to traverse all 11
bits only in the worst case. If a decision can be made after
the 11-th bit or earlier, it will terminate since C ∈ D and
set the malicious flag to true. Alternatively, if C /∈ D, the
FSM will set the flag to false. The initial setup is a one-
time, offline process by OEMs or Tier-1 suppliers. Unique
FSMs are generated and patched into each ECU’s source
code. The patched firmware binaries are then distributed to
the respective ECUs via software update which is getting
increasingly common in vehicles [50], [51].

While MichiCAN can be implemented on all ECUs in the
IVN, such a broad application might be practically difficult
due to lack of integrated CAN controllers in all ECUs, com-
putational resource limitations, as well as cost restrictions by
OEMs. Currently, each ECUi ∈ E will detect both spoofing
and DoS attacks. This improves reliability and robustness,
since each ECUi will detect a malicious transmission simul-
taneously. This is very beneficial in case legitimate ECUs fail.
Even if |E|−1 ECUs fail (which is highly unlikely), one ECU
can still detect the attack. Alternatively, if the IVN consists of
a large number of ECUs, we can split E equally into two
subsets E1 and E2 of size |E|

2 each, with the former subset
containing the lower half of CAN IDs and the latter the upper
half. E2 will run the original procedure. In contrast, E1 will
only detect spoofing attacks (on their own respective CAN
IDs), significantly reducing the computational overhead on the
respective ECU. However, the network will still be protected
from DoS attacks since all ECUs in E2 will still run the DoS
protection routine. We define this as light scenario, whereas
every ECU that runs the original FSM is called full scenario.

To further save cost, we would like to add that not every
ECU necessarily has to be equipped with MichiCAN. DoS
detection will be provided by any MichiCAN-equipped ECU,
while spoofing detection requires updating any ECU that wants
to implement this feature. If the OEM decides to save cost
and only equip ECUs with safety-critical functionality, this is
possible and does not break any assumptions in this paper.
However, this comes at the expense of the unpatched ECUs
not being able to detect spoofing attacks any longer.

B. Pin Multiplexing

MCUs interface outside/peripheral components using their
peripheral I/O (PIO) controller. Broadly speaking, there are
two categories of PIO pins: System I/O (SIO) and general-
purpose I/O (GPIO). For instance, an ECU features SIO pins
to connect to the CAN transceiver (also called CAN PHY).
By default, these pins are usually only read by the CAN
controller (a system component of the MCU package) since
the application software does not need access to this low-
level bitstream. The application can interact with peripheral
I/O using its GPIO pins. Nevertheless, the PIO controllers of
modern MCUs have multiplexing capabilities which allow a

GPIO pin to be multiplexed to a SIO pin. As a result, the PIO
controller can be configured such that the ECU’s application
software has direct access to the CAN_{TX,RX} lines, which,
in turn, allows the ECU to directly read and write every single
bit on the CAN bus. Pin multiplexing is depicted in Fig. 4a.

Pin multiplexing can be configured dynamically in software,
i.e., can be done once at boot time or anytime while the
MCU is running. MichiCAN requires read access to the
CAN_RX line once booted up, but write access to CAN_TX
only when it starts a counterattack. After the counterattack has
been completed, MichiCAN will deactivate the multiplexing.
Pulling the bus low after the counterattack would destroy
all traffic on the bus and pulling it high would cause issues
with benign CAN messages, as each CAN controller has to
acknowledge the receipt of a well-formed message by writing
a dominant bit to the ACK bit in the CAN trailer.

C. Synchronization

To avoid errors, ECUs on the CAN bus must synchronize
their clocks for reliable sampling, especially during arbitration.
Since all ECUs operate on the same bus speed (e.g., 500
kBit/s), their nominal bit time is fixed (e.g., 2 µs). During
that bit time, either a logical 0 or 1 will be observed by all
ECUs on their CAN_RX pin. Due to bit transitions (e.g., from
1 to 0) and hardware imperfections, sampling the bit right at
the beginning of the bit time might result in sampling a wrong
logical value. To avoid this problem, CAN controllers usually
sample the bit at 70% within the nominal bit time. CAN
controllers continuously re-synchronize due to clock drifts. A
hard synchronization is done at each SOF bit, i.e., when a
transition from 1 to 0 occurs after at least 11 recessive bits
during the idle bus.
MichiCAN has to replicate the synchronization process in

software since we are circumventing the CAN controller. One
simple way is to trigger timer interrupts every bit time (e.g.,
2 µs) and then read in the value from CAN_RX. However,
there are two issues with this straightforward approach: (i) we
cannot guarantee where each bit is sampled and (ii) due to
oscillator drift of the clock that the timer interrupts use, the
interrupts will not be triggered at the same location within each
bit time. To overcome this, we perform a hard synchronization
by attaching an interrupt on the first falling edge on CAN_RX
after at least 11 recessive bits (which is the SOF of a new CAN
message). When this interrupt is triggered, MichiCAN will
restart the main timer interrupt to trigger at 70% of the bit
time (and thus reset accumulated jitter). For a 500 kBit/s CAN
bus, the timer interrupt would first activate after 1.4 µs. Since
we also reset the FSM and some other counter variables at
the beginning of each CAN frame (which takes a constant
number of clock cycles), we need to account for this when we
restart the timer interrupts. As a result, we will first trigger
the interrupt at a constant delta (called fudge factor) less than
1.4 µs. This can be determined empirically since the required
clock cycles (and thus execution time) for the fudge factor will
always be constant. Since we already know that the current
bit is the SOF, we can just skip this bit and restart the timer



Algorithm 1 Main interrupt handler
1: function INTERRUPT_HANDLER()
2: value← Read CAN_RX register with PIO controller
3: if sof == True then
4: cnt← cnt+ 1
5: if cnt < 25 then
6: if frame[cnt-2] != value and stuff == 5 then
7: stuff ← 0
8: cnt← cnt - 1
9: if stuff < 5 then

10: frame[cnt-1]← value
11: if !start_counterattack then
12: state_machine_run(value)
13: if frame[cnt-2] == value then
14: stuff ← stuff + 1
15: else stuff ← 0
16: if cnt == 20 then
17: Disable CAN_TX Multiplexing
18: sof ← False
19: cnt← 0
20: else if cnt == 13 then
21: start_counterattack ← False
22: Enable CAN_TX Multiplexing
23: Pull CAN_TX Low
24: else
25: if value == 1 then cnt_sof ← cnt_sof + 1
26: else if value == 0 and cnt_sof <11 then cnt_sof ← 0
27: if value == 0 and cnt_sof ≤ 11 then
28: sof ← true
29: cnt_sof, frame[0]← 0
30: stuff, cnt← 1
31: reset_state_machine()

interrupts for the first bit of the CAN ID. When we execute
the main interrupt handler for the first time (during the first bit
of the CAN ID), we disable the interrupt timer and restart it to
trigger every 2 µs since there will be no additional operations.

D. Detection

Since the CAN_RX can be read directly and we are properly
synchronized to the CAN bus, MichiCAN can start with the
detection routine. The latter is described in the first half of
Algorithm 1. The main interrupt handler will trigger for the
first time at the first bit of the CAN ID. At the very beginning
of the interrupt handler, we read the bit from CAN_RX. Since
we are using a PIO controller for pin multiplexing, we can
directly read the value of CAN_RX from the MCU’s registers
(line 2). This avoids using an external read function from the
MCU’s libraries, which would add unnecessary computational
overhead. Then, we increment a counter to track which bit
position within a CAN frame MichiCAN is located. Since
the interrupt is triggered every bit time, each execution of the
interrupt handler will correspond to a new bit in the frame.
As mentioned in Sec. II, CAN_RX will contain stuff bits
which are automatically inserted by the CAN controller if
there are more than 5 bits of the same polarity. As a result,
we need to detect and identify these stuff bits (lines 6-15).
While we are reading the 11-bit CAN ID, MichiCAN needs
to remove those before appending them to a frame array.

For each bit (that is not a stuff bit), MichiCAN runs the
FSM that is outlined in Sec. IV-A. Once the FSM determines
that the CAN ID indicates a spoofing or DoS attack, the
malicious flag start_counterattack will be set to true. To
reduce computational overhead, MichiCAN will then stop
running the FSM for the remaining bits of the CAN ID (line
11) and continue monitoring stuff bits.

E. Prevention

Once MichiCAN sees that the start_counterattack flag
has been raised, it starts its prevention routine. The goal of
attack prevention is to bus off the attacker’s ECU by triggering
an error in its transmission, as per CAN error-handling rules
(see Sec. II-B). The two error types we exploit are bit and stuff
errors which can be achieved by transmitting a sequence of
dominant bus levels. Note that we are not sending a complete
CAN message from the legitimate node, but merely pulling the
bus low for a period of time. Thus, the legitimate node’s TEC
remains unaffected by the counter-attack. Dominant bus levels
override recessive ones, causing bit errors for the adversary. If
the attacker sends 5 consecutive dominant bits, a recessive stuff
bit follows. Since we are pulling the bus low by transmitting
dominant bus levels, the stuff bit will be overwritten by another
dominant bit which results in a stuff error. Fig. 4b depicts
the prevention routine. Two major questions to address are (i)
when to start injecting a dominant bit sequence, and (ii) how
many dominant bits to inject.
MichiCAN cannot inject dominant bits during arbitration,

as it would cause the attacker to lose it without generating an
error frame. MichiCAN injects dominant bits right after the
CAN ID field to bus off the attacker effectively, i.e., during
the RTR bit (see Fig. 1a). Since this bit (and the following
IDE and r0 bits) is already dominant, no bit error will be
generated. The following DLC field is usually encoded as
"1000" (since CAN messages mostly consist of 8 data bytes),
so the earliest bit error can be caused at the fourth bit. Hence,
the minimum duration that MichiCAN needs to pull the bus
low to cause a bit error is four bits. However, if the least-
significant bits (LSB) of the CAN ID consist of consecutive
dominant levels, a stuff error can be caused as early as in the
RTR bit. For this to happen, the five LSBs of the CAN ID
need to be dominant. It will be sufficient for MichiCAN to
just transmit one dominant bit during the RTR slot to raise an
error frame. In the worst case, if the CAN data field consists
of only one byte, causing a stuff error will require to inject 6
dominant bits if the LSB of the CAN ID is recessive. To sum
up, an error frame can be caused by MichiCAN injecting 1–6
dominant bits. Since this will depend on several factors (such
as the DLC length) that are unpredictable during sampling
the CAN frame, MichiCAN needs to make sure to inject 6
dominant bits. The worst-case scenario is depicted in Fig. 4b.
As described in Sec. IV-B, the CAN_TX pin is disabled by
default. At frame position 13 (1 SOF + 11 CAN ID + 1
RTR), MichiCAN will enable CAN_TX multiplexing, pull
the pin low and set the start_counterattack flag to false
(lines 20-23 in Algorithm 1). At frame position 20, it will
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then disable CAN_TX multiplexing which will automatically
stop pulling the bus low, set the start-of-frame flag to false and
the frame counter to 0 since MichiCAN is done processing
the frame (lines 16-19). The attacker (who has to comply
with the CAN protocol) will immediately raise an active
error frame consisting of six dominant bits followed by eight
recessive bits. Even if MichiCAN would have succeeded in
only transmitting one dominant bit (in the best-case scenario),
five additional dominant bits will not do any harm due to
the six-bit dominant error flag. The transmission error counter
(TEC) of the attacking ECU will be increased by 8 and it
will attempt a retransmission after a total of 11 recessive bits
(lines 24-31). At the SOF bit, several variables, as well as
the FSM will be reset. MichiCAN will repeat the detection
procedure and start another counterattack. After a total of
15 retranmissions, the attacking ECU will transition into its
error-passive region and start transmitting passive error frames.
After another 16 retransmissions (summing up to a total of
32 attempts), the attacking ECU will be confined into bus-off
state. Additionally, although MichiCAN could potentially flag
a legitimate node as an attacker due to a bit flip, a node needs
to encounter 32 consecutive errors for the TEC to reach a level
that would trigger a bus-off condition. In case of sporadic
errors, the likelihood of hitting this threshold is near zero,
effectively eliminating the chance of false positives.

We have assumed that retransmissions will not be inter-
rupted by other CAN messages. However, a message with a
lower CAN ID could win arbitration during an 11-bit idle
period and disrupt the sequence. This comes at the expense
of increasing bus-off time, an important metric evaluated in
Sec. V-C. However, since MichiCAN compares the CAN ID
of a frame even for a retransmission, it still works as expected,
even in the presence of multiple concurrent attackers.

V. EVALUATION

A. Experimental Setup

To evaluate MichiCAN, we can choose from different
evaluation boards that come with integrated CAN controllers
and either resemble the specifications of automotive ECUs
or are specifically built for it. One prominent and afford-
able platform is the Arduino Due which features an Atmel
SAM3X8E Cortex-M3 CPU [52] clocked at 84 MHz. Since
the Arduino only provides CAN_TX and CAN_RX lines and

comes without a CAN transceiver, we can use separate CAN
PHY breakout boards [53] in conjunction to build a CAN bus.

We evaluate MichiCAN under six experiments featuring
one or multiple attackers and real-world vehicle CAN traffic
(called restbus simulation) to assess key metrics. The experi-
ments will be introduced in Sec. V-C. Fig. 5 shows our testbed
consisting of a CAN bus with the MichiCAN ECU and four
attacker ECUs, as well as benign CAN traffic replayed from a
production vehicle using a USB-CAN interface (PCAN) [54].
For certain metrics we need to measure the execution time of
MichiCAN. To minimize the overhead on the Arduino Due
and report accurate numbers, we use ESP8266 as external
timer [55]. We have also connected a logic analyzer to the
breadboard so as to monitor the CAN traffic and obtain other
time measurements for other evaluation metrics.

We evaluate MichiCAN using CAN messages collected
from real production vehicles of the same OEM manufactured
between 2016 and 2019: Veh. A is a luxury mid-size sedan,
Veh. B a compact crossover SUV, Veh. C a full-size crossover
SUV, and Veh. D a full-size pickup truck. All of these vehicles
have two CAN buses each. For the restbus simulation, we
randomly selected Veh. D to inject benign CAN traffic from.

In our setup, each CAN controller can be configured to
transmit messages at up to 1 Mbit/s, although all ECUs on a
CAN bus need to share the same bus speed. This is fixed by
the OEM at production time and cannot be altered afterwards.
Although MichiCAN can run at 250 kbit/s and 500 kbit/s,
our online evaluation will be based on 50 and 125 kbit/s
bus speeds due to the processing power limitations of the
used Arduino Dues. However, we implemented MichiCAN on
different, more powerful hardware from NXP (see Sec. VI-B)
to demonstrate that it can indeed run at higher bus speeds.
Furthermore, we make direct comparisons of two crucial
metrics — bus-off time and bus load — of MichiCAN with
the closest related prior work, Parrot [18]. Finally, we install
MichiCAN on a real production vehicle, the 2017 Chrysler
Pacifica Hybrid, where we succeed at preventing a DoS attack
on the park assist system of the test vehicle.

B. Detection Latency

Detection latency is calculated by multiplying the detection
bit position with the nominal bit time. That position is where
MichiCAN stops its FSM within the CAN ID and sets the
counterattack flag. Although the earliest the counterattack



Fig. 5: Experimental CAN bus prototype

can start is after finishing the arbitration (as discussed in
Sec. IV-E), stopping the FSM early can be beneficial to
avoid using additional CPU cycles which will be evaluated
in Sec. V-D. As the size of IVN E grows, the detection bit
position rises. Our evaluation with 160,000 random FSMs
yielded a mean detection bit position of 9 bits. Furthermore,
the evaluation confirmed a 100% detection rate, verifying the
correctness of our FSM generation algorithm.

C. Bus-off Time

MichiCAN begins bussing off the attacker’s ECU by gen-
erating error frames after the CAN ID field, requiring 31
retransmissions after the initial malicious ID transmission.
Note that no complete CAN frames are sent since the attacker
will retransmit its CAN message after the 14-bit error frame
and 3-bit inter-frame space (IFS) in its error-active region
and an additional 8-bit suspend period in its error-passive
region. The total time from the first bit of a malicious CAN
message to the last bit of the passive error frame in the 31st
retransmission is called the bus-off time. Depending on the
attacker’s CAN ID, MichiCAN has to inject one dominant bit
in the best case, whereas in the worst case, it has to inject 6
dominant bits to trigger an error frame (see Sec. IV-E). In what
follows, the best-case and worst-case bus-off time calculations
are presented if there is only one attacker ECU transmitting a
single CAN ID and one MichiCAN-equipped ECU.

Best-Case Scenario. MichiCAN injects the dominant bit
during the RTR bit. As a result, the error frame starts at the
14th bit position within the CAN frame (1 SOF + 11 CAN ID
+ 1 RTR). The error flag itself consists of 14 bits, in addition
to the 3 bit IFS, so the (re-)transmission of an error-active
attacker takes 30 bits. Note that this calculation excludes stuff
bits which depends on the most-significant bits of the CAN
ID. For the error-passive attacker, this number stands at 38
bits including the additional suspend period.

Worst-Case Scenario. MichiCAN injects 6 dominant bits
(see Fig. 4b). The error frame starts at the 19th bit within the
CAN frame. The bus-off time stands at 35 bits and 43 bits for
the error-active and error-passive attacker, respectively.

By busing-off attacking ECUs, MichiCAN intrinsically
increases the traffic overhead on the bus. This overhead can
be captured by measuring the bus-off time. From a safety
standpoint, MichiCAN must not disrupt regular CAN bus
communication, especially time-sensitive messages. Commu-
nication analysis of production vehicles (see Sec. V-A) shows
that the minimum deadline for periodic messages on a 500
kBit/s bus is 10 ms. This translates to a maximum of 5000
bits that the bus-off time might take. In the following, we
focus on bit counts rather than time, as bus-off time equals
the number of bits multiplied by the nominal bit time.

So far, we only focused on the presence of one attacker and
one defender (i.e., MichiCAN-equipped ECU). To generalize
the deployment of MichiCAN in the presence of (i) benign
vehicular traffic and (ii) multiple attackers in our threat model,
we define six distinct experiments that cover all scenarios on
the CAN bus. We evaluated the prevention of these six attack
scenarios on a MichiCAN-equipped ECU that is configured
to send CAN ID 0x173. Table II displays the measurements of
the bus-off time for each experiment. During each experiment,
we recorded the CAN bus for 2s which includes multiple bus-
off attempts, and report the mean µ, standard deviation σ and
maximum bus-off time. All experiments were conducted on a
50 kBit/s CAN bus. The maximum bus-off time reported in
Table II indicates 2929 bits of added overhead. As a result,
MichiCAN is feasible under all experiments.

Table III shows theoretical bus-off times for all experiments,
confirming empirical data in Table II. ta defines the error-
active time (in bits), and tp defines the error-passive time
in each row of experiments. ch,a represents the count of
high-priority benign messages that win arbitration when the
attacker is in an error-active state. In contrast, ch,p denotes
high-priority benign messages that win arbitration during the
error-passive period. In the error-passive region, low-priority
messages may also intervene in the attacker’s retransmissions
in certain experiments. In this context, cl,p represents low-
priority benign messages during this error-passive phase. On
the other hand, zh,a defines the count of adversarial high-
priority messages that intervenes when the node is error active.
When the node is in error-passive mode, zl,p represents the
count of low-priority adversarial messages that intervene and
zh,p defines the count of high-priority messages that intervene
with the current node, respectively.

Experiments 1 & 2. These experiments assume a single
attacker that sends a CAN message with CAN ID 0x173.
MichiCAN on the legitimate ECU that is transmitting 0x173
will detect a spoofing attack and raise a flag for the prevention
routine to kick in. Experiment 1 considers restbus simulation,
i.e., benign CAN traffic from other ECUs in the IVN E. This
is a more realistic and generalized version of Experiment 2
which only analyzes the presence of a single attacker, but no
other ECU on the bus. We injected real CAN traffic from
Veh. D (see Sec. V-A) using a PCAN-USB interface [54]
with SocketCAN [56]. Assuming the worst-case scenario
from above and lack of any benign traffic, each error-active
(re)transmission will consist of 35 bits and each error-passive
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TABLE II: Empirical Bus-off Time for All 6 Experiments

Exp.
Number

Attacker
CAN ID

Restbus
Simulation

µ of Bus-off
Time (in ms)

σ of Bus-off
Time (in ms)

Max. Bus-off
Time (in ms)

1 0x173 ✓ 24.6 2.64 58.6
2 0x173 × 24.2 0.27 25.2
3 0x064 ✓ 25.1 1.39 38.3
4 0x064 × 24.9 0.45 25.2

5 0x066 × 39.0 0.79 48.6
0x067 × 35.4 0.60 44.0

6 0x050
0x051 × 24.9 0.01 25.4

retransmission of 43 bits. There are 16 retransmissions for
each error mode. The total bus-off time can be calculated
as 16 · (ta + tp) = 1248 bits using the aforementioned
nomenclature. Considering restbus simulation, benign CAN
messages can interrupt retransmissions and thus extend the
total bus-off time by the length of a CAN frame. Each CAN
frame consists of 125 bits on average (including stuff bits), i.e.,
sf = 125. In the error-active region, only higher-priority CAN
messages can interrupt a retransmission attempt since they
would win arbitration. On the other hand, in the error-passive
region, any CAN message can interrupt a retransmission due
to the additional suspend period and passive error flag totaling
25 bits. Recall that a CAN message can be retransmitted
on a CAN bus after seeing 11 recessive bits. As a result,
the error-active time of a bus-off attempt will increase to
35+sf ·ch,a and the error-passive time to 43+sf ·(ch,p+cl,p).
Theoretically, the total bus-off time can go to infinity in this
case if every retransmission attempt gets interrupted by a
benign message. However, our actual measurements in Table II
confirm that only few benign messages from the restbus
simulation interrupt the bus-off attempt. As a result, the mean
bus-off time for Experiments 1 and 2 are comparable, with a
slightly higher variance in Experiment 1 as expected.

Experiments 3 & 4. These experiments are very similar in
nature to the previous experiments. A single attacker transmits
0x064 which constitutes a DoS attack. Only the detection
routine is different and the prevention is identical to a spoofing
attack. As a result, the theoretical bus-off time calculations in
Table III are identical to the previous experiments. The actual
measurement in Table II confirms that the mean and standard
deviation values are comparable to Experiments 1 & 2 and
within the worst-case bound of 1248 bits.

Experiment 5. This experiment features 2 attacking ECUs
that transmit 2 distinct CAN IDs 0x066 and 0x067, respec-
tively. As a result, this experiment constitutes 2 DoS attacks
on the CAN bus. We selected 0x066 and 0x067 randomly
and confirmed that choosing other CAN IDs did not make a

TABLE III: Theoretical Bus-off Time Calculation

Exp.
Number Scen. Error-Active

Time (in bits ta)
Error-Passive
Time (in bits tp)

Total Bus-off
Time (in bits)

1, 3 All 35+sf · ch,a 43+sf · (ch,p + cl,p)
∑16

i=1(ta,i + tp,i)
2, 4, 6 All 35 43 1248

5 H.P. 35 43+sf,a · zl,p 560+
∑16

i=1 tp,i
L.P. 35+sf,a · zh,a 43+sf,a · zh,p

∑16
i=1(ta,i + tp,i)

difference to our evaluation since the prevention routine only
depends on the malicious flag set by the detection part of
MichiCAN. There are 2 distinct patterns that can emerge in
this experiment: (i) CAN ID 0x067 does not interrupt the bus-
off attempt of 0x066 (or vice versa) because their periods are
large. The same behavior as in Experiment 4 can be observed
in this case. (ii) However, if 0x067 is scheduled to transmit
shortly after the start of 0x066 (or vice versa) which is getting
bused-off, both bus-off attempts will get intertwined.

The behavior observed in this experiment is shown in Fig. 6.
The brown signal denotes the transmission of attack message
with CAN ID 0x066 while yellow signals are representing
attack messages with CAN ID 0x067. 0x066 goes error-passive
after its active error flag is sent for the 16th time, and because
it was transmitting the current frame, it is suspended for an
additional 8 bits after IFS. Since it cannot assert a SOF bit
after IFS due to the suspend period, this lets 0x067 win
arbitration. 0x067 then gets attacked by MichiCAN for the
first time and raises an active error flag. 0x066 will still
have its TEC at 128. Since 0x066 was the transmitter of
the previous frame, it still has a suspend transmission active
according to the ISO 11898 standard [45]: "An error-passive
node, which is the transmitter of the current frame or has
been transmitter of the previous frame, may access the bus
as soon as its suspend transmission time is finished, provided
that no other node has started transmission meanwhile". The
next time, the suspend transmission time is lifted, and it
can assert SOF after IFS, the same as 0x067, and it then
wins arbitration. This frame is destroyed, and it then has
suspend transmission activated again. As a result, there will be
only 8 error-passive retransmissions for 0x066 during the 16
error-active retransmissions of 0x067. After this, both 0x066
and 0x067 are error-passive, with the TEC of 0x066 at 192
and TEC of 0x067 at 128, respectively. Since both have an
additional suspend period, both retransmissions will toggle
from now on. After another 8 retransmissions, 0x066 will go
bus-off and 0x067 will finish its remaining 8 retransmissions.
Looking at the results from Table II, we observe that the mean
bus-off time grows by around 50% due to the retransmissions



getting intertwined. Since 0x067 can transmit during the error-
passive region of 0x066, the bus-off time does not double.
The bus-off time of 0x067 is slightly smaller since its bus-off
finishes 8 retransmission times less than that of 0x066 (see
Fig. 6). Table III summarizes our findings and distinguishes
an additional case to cover all possibilities. In our example,
the higher-priority (HP) CAN message starts its transmission
first. In this case, it cannot lose arbitration to the lower-priority
(LP) message in the error-active region. However, this changes
in the error-passive region as explained above. We named
this scenario HP in Table III. If the LP message starts its
transmission before the HP message, the LP message can get
interrupted since it will lose arbitration to the HP message.
This scenario is summarized as LP in Table III and has a
higher total bus-off time compared to the HP scenario.

Experiment 6. This experiment features one attacker again.
However, the attacker node is sending two different CAN
IDs consecutively, e.g., toggling between 0x050 and 0x051.
An ECU adds each message that it schedules for transmis-
sion in a buffer until it is successfully transmitted. After
32 (re)transmissions of either 0x050 or 0x051, the attacking
ECU will go into bus-off. Bused-off ECUs will recover after
observing 128 instances of 11 recessive bits. After its recovery,
the other CAN message will be transmitted (and the ECU will
be bussed-off again). Since both CAN messages are bused-off
separately, the bus-off time is identical to Experiment 4.

Experiments with more than two attackers: Since previ-
ous experiments only analyzed a maximum of A = 2 attackers
(behavior with more attackers is analog to Experiment 5), we
wanted to determine the maximum number of attacking ECUs
before the CAN bus becomes fully inoperable due to deadline
misses. We already know that the bus-off time does not double
with the number of attackers. We repeated Experiment 5 with
A = 3 and A = 4 (see Fig. 5) attacking ECUs. The total
bus-off time consists of 3515 and 4660 bits, respectively.
MichiCAN is effective against up to four attackers, as A ≥ 5
would render the CAN bus inoperable. This is a realistic limit
given the difficulty of compromising even one ECU.

D. CPU Utilization

We envision MichiCAN as a software patch to existing
application software running on MCUs; hence, a minimal
overhead is desired. We measure the overhead by measuring
the execution time of the interrupt handler and dividing it by
the nominal bit-time. Although there is an external interrupt
for re-synchronization at the SOF, the CPU cycles consumed
by this step are negligible compared to the main interrupt.
With a 160 MHz clock, the ESP8266 captures the start and
end of MichiCAN’s interrupt handler by monitoring toggled
pins. It counts clock cycles between these events, multiplied
by the 6.25 ns resolution gives us the handler’s execution time.

CPU utilization for full and light scenarios varies in two
key periods during CAN_RX reading. In the bus-idle state,
only line 23 of Alg. 1 executes, resulting in low and constant
execution time. CPU utilization consists of idle load when no
CAN frame is processed (lines 3-21) and active load during

frame processing. The combined load is the average CPU
overhead on the Arduino, varying between these two states.

The evaluation was conducted using the eight CAN buses
E of the four production vehicles from Sec. V-A. For each
E, we deployed the FSM for ECUN on the Arduino for
maximum testing coverage and then calculated MichiCAN’s
CPU utilization overhead by measuring the execution time of
the interrupt handler. We make the following observations:

CPU load depends on bus speed. Higher bus speeds
elevate CPU usage; a 125kbit/s bus averages 40% CPU load,
implying an 80% load for a 250kbit/s bus, not accounting for
jitter. This explains why MichiCAN does not always reliably
work on higher bus speeds than 125kbit/s on Arduino Dues.

CPU load depends on MCU. On repeated testing with
more powerful hardware, namely the NXP S32K144, the bus
load was much lower for a 500kbit/s bus, standing at 44%.
Most production ECUs in real vehicles use MCU like the
aforementioned platform. In fact, NXP is currently the second
largest Tier-2 supplier to the automotive industry [57]. These
results underline the practical deployability of MichiCAN.

CPU load depends on FSM complexity. A larger FSM
increases clock cycle usage; 125kbit/s full scenario uses about
40% CPU, while the light version uses 30%.

E. Bus Load
The bus load b is calculated as b =

sf
fbaud

∑
m∈M p−1

m [58],
where sf is the frame length, fbaud the bus speed, and pm the
period of a CAN message m. The bus-off time introduced
by MichiCAN’s prevention routine affects the overall bus
load. One CAN message at 50 kBit/s is transmitted within
2.5 ms. Table II shows that if this message is counterattacked
by MichiCAN, it will be on the bus for 25 ms in the worst
case including retransmissions and in the absence of higher-
priority CAN messages. In theory, we increase the bus load
by 10x. Since the attacking ECU can recover from bus-
off, the bus-off attempt will repeat. Using a persistent bus-
off attack [38], the attacker will be bused off once and the
remaining CAN communications will continue normally. As a
result, there will only be a short spike in the bus load during
the counterattack for around 25 ms. As discussed in Sec. V-C,
the bus-off time during which the bus load will peak is smaller
than typical message deadlines. Low-priority messages have
deadlines standing at 500 or 1000 ms (at 50 kBit/s). As a
result, the bus-off attempt will incur a bus load overhead of
2.5–5%. For high-priority messages with deadlines around 100
ms (at 50 kBit/s), the bus load overhead stands at 25%. Given
that the bus load will never exceed 80% [24] (real observed
bus load 40% in real vehicles [18]), the overhead is considered
negligible. Parrot [18] transmits frequent defensive messages
to collide with an attacker, requiring a 3-bit gap equal to the
IFS, thus incurring a bus load overhead of 125

128 ≈ 97.7%. In
contrast, MichiCAN has no such overhead, and its bus load
is at least 2x lower than Parrot’s during bus-off attempts.

F. On-Vehicle Testing
To both stress-test MichiCAN with real CAN traffic and

demonstrate how a DoS attack can be prevented in practice,



Fig. 7: Attack device and MichiCAN connected to OBD-II

we deployed MichiCAN in a 2017 Chrysler Pacifica Hybrid.
We launched a targeted DoS attack to disable the park assist
system called ParkSense [59]. Our DoS attack is similar to
the one of Palanca et al. [27] who also targeted the park
assist system of a 2012 Alfa Romeo Giulietta. To launch
the DoS attack on the test vehicle, we extracted all relevant
CAN IDs for this feature from a publicly available CAN
communication matrix [48]. The lowest CAN ID that was
relevant for ParkSense was 0x260. As a result, we injected
CAN messages periodically with a CAN ID of 0x25F using
a USB-CAN interface (PCAN [54]) from the OBD-II port.
Without the Arduino Due running MichiCAN attached to
the OBD-II port, the DoS attack will disable ParkSense in
accordance with the observed results from the related Alfa
Romeo Giulietta [27]. The dashboard of the vehicle was stating
"PARKSENSE UNAVAILABLE SERVICE REQUIRED" after
we started injecting CAN messages, indicating the success of
the DoS attack. This attack might also have safety-critical
implications since "automatic brakes will not be available
if there is a faulty condition detected with the ParkSense
Park Assist system" according to the vehicle manual [59].
After connecting an Arduino Due with MichiCAN using an
OBD-II splitter cable (also called Y-cable), as depicted in
Fig. 7, the DoS attack was eradicated within 32 transmission
attempts, restoring the park assist system. A DoS attack never
disables the park assist if the Arduino Due with MichiCAN is
connected to the car at the same time as PCAN.

VI. DISCUSSION

A. Prevalence of integrated CAN controllers

MCUs with on-chip CAN controllers have been in produc-
tion vehicles for years, but MichiCAN is the first to use them
for attack detection and prevention. While researchers have
explored bypassing CAN controllers for bus-off attacks since
2017, these approaches lacked integrated controllers. Palanca
et al. [27] used an Arduino Uno with an MCP2551 PHY, re-
implementing the CAN protocol due to the absence of a built-
in controller. Murvay et al. [26] advanced this with a more
sophisticated attacker model using an NXP S12XD512 MCU
but still without an integrated CAN controller.

An ECU enters a bus-off state when its TEC or REC
reaches 256. Although meant for fault confinement, this can
be exploited by attackers to disable benign ECUs [25], [60].
Defenses are limited, often relying on detecting the attack
and busing off the attacker first [61], [62]. Since these attacks
generate error frames, tracking their frequency and associated
CAN IDs may help identify malicious patterns [63].

The most sophisticated work that actually mentions inte-
grated CAN controllers and uses them to launch a stealthy
bus-off attack was proposed by Kulandaivel et al. [64]. Their
CANnon attack can inject single bits and force the victim
to generate error frames until it is bused off. Instead of pin-
multiplexing, they deploy a peripheral clock gating technique
to arbitrarily pause and resume the clock of the CAN con-
troller. While their method manipulates the CAN controller
and is hard to detect, MichiCAN adds software redundancy
for CAN features, ensuring full backward compatibility.

Finally, CANflict [28] utilizes pin conflicts on an MCU
to inject arbitrary bits to the CAN network using other
existing peripherals such as SPI, UART and I2C. In contrast,
MichiCAN is a defense tool that is using regular GPIO pins
without underlying protocol assumptions.

B. Replicability on other MCUs
In this paper, we used an Arduino Due based on the

AT91SAM3X8EA MCU. Kulandaivel et al. [64] present an
overview of automotive MCUs with integrated CAN con-
trollers, including the Microchip SAM V71 Xplained Ul-
tra (150 MHz) and the STMicro SPC58EC Discovery (180
MHz). MichiCAN was implemented on a comparable NXP
S32K144 [65] (112 MHz) with integrated CAN controllers.
We could confirm that MichiCAN works as intended on this
MCU as well, and even exceeds the Arduino by fully working
on a 500 kbit/s CAN. Due to high overhead (i.e., additional
CPU cycles) to enter and exit the interrupt handler on the
Arduino Due compared to other comparable MCUs [66], a
more optimized code together with a more powerful MCU
will run MichiCAN on bus speeds up to 1 Mbit/s.

VII. CONCLUSION

In this paper, we have developed MichiCAN which is a
practical and backward-compatible spoofing and DoS detec-
tion and prevention framework for CAN. By using integrated
CAN controllers deployed in many modern ECUs, we can
solve various issues of prior work, such as lack of real-time
detection and prevention, as well as reduce network overhead.
Our evaluation demonstrated the efficacy of MichiCAN using
multiple metrics. Since DoS attacks are an overlooked but
important threat vector in automotive security standards [14],
we envision MichiCAN to be a compelling and practical
security enhancement for OEMs.
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