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Abstract—The Controller Area Network (CAN) is widely
deployed as the de facto global standard for the communication
between Electronic Control Units (ECUs) in the automotive
sector. Despite being unencrypted, the data transmitted over
CAN is encoded according to the Original Equipment Man-
ufacturers (OEMs) specifications, and their formats are kept
secret from the general public. Thus, the only way to obtain
accurate vehicle information from the CAN bus is through reverse
engineering. Aftermarket companies and academic researchers
have focused on automating the CAN reverse-engineering process
to improve its speed and scalability. However, the manufacturers
have recently started multiplexing the CAN frames primarily
for platform upgrades, rendering state-of-the-art (SOTA) reverse
engineering ineffective. To overcome this new barrier, we present
CAN Multiplexed Frames Translator (CAN-MXT), the first tool
for the identification of new-generation multiplexed CAN frames.
We also introduce CAN Multiplexed Frames Generator (CAN-
MXG), a tool for the parsing of standard CAN traffic into
multiplexed traffic, facilitating research and app development on
CAN multiplexing.

I. INTRODUCTION

CAN is a message-based protocol which allows ECUs
inside vehicles to communicate with each other without relying
on a central bus master [18], [19], [20]. The popularity of CAN
has soared to the point of becoming the de facto world standard
for in-vehicle communication. The CAN communication data
is not encrypted and no authentication is implemented for the
ECUs. However, the CAN data is encoded in different formats
that depend on the specific design choices made by the OEM
and are kept secret to the general public.

Companies that offer aftermarket solutions and consumers
are interested in using automotive data as an enabler of safety,
convenience and infotainment features. However, given the
OEMs’s unwillingness to disclose the formats of most CAN
signals of commercial vehicles (passenger cars in particular) to
the general public, a common way to acquire such information
is through reverse engineering. The state-of-the-art (SOTA)
CAN reverse-engineering methodologies [22], [26], [25], [30],
[17], [38], [32], [9], [15] have achieved good performance in
terms of speed, accuracy and coverage.

Recently, however, OEMs have been investigating the
multiplexing of CAN frames, enabling ECUs to send mes-
sages with the same CAN frame ID but carrying different
payloads/signals [13], [37]. In other words, frame multiplexing

is the process of combining multiple data frames into a single
frame. As recognized by the world leading suppliers of in-
vehicle networking software [3], [6], this frame multiplexing
enables system designers to provide sufficient headroom for
future platform upgrades. In fact, a new network design,
including the assignment of frame IDs, is only implemented for
significant platform revisions. However, many vehicle models
undergo periodic facelifts, which are incremental updates that
involve the replacement of some ECUs.

OEMs are moving from a centralized architecture to toward
a zonal architecture that divides a vehicle’s electrical and
electronic systems into distinct zones or domains [7]. Since
the zonal architecture allows for greater control over the
vehicle’s hardware and software, these facelifts will likely
occur frequently in the future. Frame multiplexing is thus
expected to play a significant role in the future of CAN
communications.

The surge in physical and remote attacks on CAN threatens
vehicle and driver/passenger safety, with proven efficacy [23],
[27], [28], [40], [21]. While the automation of CAN reverse-
engineering is essential for research and business, by granting
fast and easy access to in-vehicle data, it also exposes vulnera-
bilities, potentially enabling attacks involving multiple vehicles
and automated driver fingerprinting at scale [12].

Multiplexing data in each CAN frame can greatly af-
fect the effectiveness of SOTA CAN reverse engineering, in
particular, tokenization. This paper explores the feasibility
of reverse-engineering multiplexed CAN frames with SOTA
methodologies. In particular, this paper makes the following
contributions:

1) Development of CAN-MXT, a translator of multi-
plexed CAN frames. This is the first algorithm capa-
ble of identifying multiplexed CAN frames and can
be integrated in any reverse-engineering tool between
the data collection and the tokenization step;

2) Development of CAN-MXG, a generator of multi-
plexed CAN frames. This is a tool for generating
realistic multiplexed CAN traffic based on real CAN
traces collected from vehicles;

3) Evaluation of CAN-MXTon multiplexed CAN traces
generated with CAN-MXGfrom standard CAN traces
gathered in real-world scenarios. The evaluation
dataset is made publicly available;

4) Identification of the security threats associated with
the automation of CAN reverse engineering.

II. BACKGROUND

This section introduces the preliminary concepts and no-
tions necessary for understanding the technical details about
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CAN-MXT and CAN-MXG.

A. Controller Area Network

Inter-ECU communication is achieved via messages/frames
over the CAN bus. Each ECU periodically transmits a CAN
frame, which, in the absence of collision, reaches all ECUs.
While an ECU may receive or transmit frames with distinct
IDs, all the frames with the same ID are transmitted by
the same ECU. The frames contain no information about its
originator or receiver ECU.

A CAN frames is composed of multiple fields: 1) Start
of Frame 2) ID, 3) RTR (Remote Transmission Request) bit,
3) Control Field, 4) Data Field, or Payload, 5) CRC Field
- Checksum, 6) EOF (End of Frame). The two fields that
are most pertinent to our work are the ID and the payload.
The ID uniquely identifies the frame and carries the frame’s
priority used to resolve collision with other frames. An ECU
can transmit or receive CAN frames with different IDs, but
different ECU cannot send frames with the same ID.

The actual data contained within the frame is found in
the payload. In the standard version of the CAN protocol, the
payload of messages that are sent with the same ID always
has the same length, which is specified by the Data Length
Code (DLC). One or more signals may be contained within a
payload. A signal is a portion of the payload that completely
encapsulates a vehicle function.

B. CAN Reverse Engineering

In CAN, finding the boundaries of the signals contained
within a frame payload is the first step in the process of
reverse engineering. This step is referred to as tokenization.
It is followed by the decoding of the signals’ formats (such
as scale factor and offset) and their semantic meanings (i.e.,
what vehicle function they encapsulate), known as translation.
The process of manual reverse engineering is carried out by a
human operator, who physically connects and disconnects the
ECUs and monitors the CAN transmission in order to identify
changes in the payload [33]. Injecting diagnostic messages
through the On-Board Diagnosticss (OBD-IIs) port in order
to generate a response from the CAN bus is another method
that can be used to retrieve certain signals.

By contrast, in automated reverse engineering, the tok-
enization is accomplished in the majority of cases by studying
the flipping of the bits that compose the frames over the
time [30], [25]. Following the process of tokenization, the
tokens are typically compared with GPS/IMU data, which
provides a ground truth about the current status of the vehicle
while it is being driven, in order to discover correlations [32].
It is a common practice to automate not only the injection
of particular diagnostic messages but also the analysis of
consecutive responses from the CAN bus.

The translation, or at least part of it, can be accomplished
with a variety of different approaches that span from using
commercial companion apps [39] to Machine Learning (ML)
[29], as described in [12]. For example, in ML-based ap-
proaches, a classifier is trained to recognize the characteristics
(or features) of each signal in CAN traces from known
vehicles, so as to exploit this knowledge later on an unknown

vehicle. Note that the level of automation as well as the
equipment and time required for the reverse engineering vary
greatly across the SOTA methodologies.

The output of a reverse engineering process is typically
stored in a Database CAN (DBC) file. The DBC file format is
widely accepted as the standard for storing data that facilitates
the interpretation of CAN signals from their raw format into a
version that is easily comprehensible to humans. DBC files can
be used as input to a variety of CAN diagnostic tools, which
are used by OEMs and aftermarket companies to interpret the
data exchanged via the bus in real time or offline.

C. Multiplexing CAN Frames

In traditional CAN traffic, the number of signals that can be
allocated in a frame is bounded by the DLC field. The purpose
of multiplexing frames in CAN is to overcome this restriction,
thus allowing frames to carry more signals than their DLC
usually permits. At the time of this writing, multiplexed CAN
frames have not yet been deployed in commercial vehicles on
the road. However, according to the information we obtained
from a prominent supplier of in-vehicle networking software,
one of the primary German OEMs is currently in the testing
phase for CAN frame multiplexing. Moreover, some of widely-
used commercial CAN traffic analyzers [3], [4], [2] now
support CAN frame multiplexing and provide a means to
represent multiplexed CAN frames in the DBC format. We,
therefore, expect CAN frame multiplexing to be implemented
and deployed in commercial vehicles in the near future.

CAN frame multiplexing can be either simple or extended.
In the former, the value of a reference signal, called multi-
plexor, is used to identify the set of signals that can be found
in the frame. We define the frame associated with a specific
multiplexor value as a subframe. The number and the position
of the signals in each subframe are independent of the other
subframes. Similarly to the standard frames, subframes are sent
periodically. However, to avoid collisions, each subframe is
sent after a certain delay relative to the base period of the
cycle [13]. The base period of the cycle indicates how long it
takes for the first subframe in the sequence to be sent again.

In the case of extended multiplexing, there are multiple
hierarchically-ordered multiplexors that define the content of
the frame. Figure 1 shows an example of extended multiplexed
frame with 4 subframes and 2 multiplexors. Besides the
multiplexors, the frame contains 7 signals. The base period of
the cycle is 100 µs and the subframes are sent with separation
of 20 µs from each other. Note that there is a time gap of
40 µs between the transmission of the 4-th subframe and the
start of the following cycle. As illustrated in the example, the
extended multiplexing allows multiplexor S0 to have the same
value in different subframes by virtue of the fact that S1 is the
distinguishing element of the payload contents. Note that the
3rd and 4th subframes could also share the same value for S0
(different from the first two subframes). In such a case, a 3rd
multiplexor would be required to distinguish the contents of
the two subframes. Finally, we define the temporally-ordered
sequence of subframes associated with the same multiplexor
value (and hence, payload content) as subframe series. Figure 2
shows an example series of subframes.
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Multiplexors: S0, S1 

S7

S5

S5

S1 = 0 S3

S4

S6

S2

S1 = 1

S0=00

S0=00

S0=01

S0=10 S7 S8

Delay = 0 µs

Delay = 20 µs

Delay = 40 µs

Delay = 60 µs

Base Period = 100 µs 

Fig. 1: An example of extended multiplexing. S0 and S1
correspond to the multiplexor signals. Each combination of
values uniquely identifies a subset of signals.

# Ts (μs) Payload

0 20 00000010 01… 

1 40 00010010 01… 

2 60 00100010 01… 

3 80 00000010 01… 

4 100 00010010 01… 

5 120 00100010 01… 

6 140 00000010 01… 

…

Subframe A

Series 

Subframe B 

Series

Subframe C 

Series

Simple multiplexing, base period 60 μs,

3 multiplexor values

Fig. 2: An example series of subframes. Each color indicates
a different subframe series. The red rectangle in the payload
identifies the bits corresponding to the multiplexor.

III. CAN-MXT

This section presents the technical details of Multiplexed
CAN Frames Translator (CAN-MXT), and discusses its under-
lying objective and assumptions.

A. Objective

As mentioned in Section I, multiplexing does not allow
SOTA tokenization algorithms to identify the boundaries of
signals within a frame’s payload. However, we argue that
SOTA tokenization algorithms can be efficiently adapted to
deal with the frame multiplexing. The first step is to split
the target CAN trace in subtraces each of which is a series
of frames associated with an ID. Then, each subtrace is pro-
cessed independently to check whether it is multiplexed and,
if yes, locate the multiplexor signal(s). Once subframes are
known, it suffices to reverse-engineer each series of subframes
independently. CAN-MXT is an algorithm that can identify
multiplexed CAN frames. Its goal is to enable SOTA reverse-
engineering algorithms to work on multiplexed CAN traffic.

B. Assumptions

Based on the documents related to CAN multiplexing
published thus far by prominent software suppliers for in-
vehicle networks utilizing CAN Multiplexing [37], [13], we
design CAN-MXT under the following assumptions.

A1. The multiplexors are located in the first byte of the
payload, as their purpose is to indicate the content of the rest
of the payload.

A2. In the case of extended multiplexing, distinct multi-
plexors are placed consecutively in the payload and ordered
according to the multiplexing hierarchy, as shown in Figure 1.

Given that the purpose of Multiplexing is to enable ECUs
to transmit more signals subject to the stringent payload
constraints, and based on the available documents, we infer
multiplexing to be applied only to cyclic frames, not event-
driven frames. In this scope, we consider only the case without
any time gap between the sending of the last subframe in
a cycle and the subsequent cycle. In other words, given a
multiplexed frame M of N subframes and a base period P ,
the time gap between two consecutive cycles is equal to the
delay between subframes, i.e., P /N .

The reason for placing this constraint is that we want
to build CAN-MXT to identify multiplexed frames under the
most challenging scenarios. As an example, consider a CAN
trace composed of all standard frames, but one multiplexed
frame, with ID A, a base period of 100 µs and 4 subframes
with a delay of 20 µs. Given that the standard frames are sent
periodically, it would be easy to label ID A as multiplexed,
since it is the only frame in the trace with a cyclic time gap
between the sending of consecutive frames. By contrast, if the
delay was 25 µs, there will not be a time gap, and hence will
not be possible to identify the multiplexed frame without a
further analysis of the payload, such as the one provided by
CAN-MXT.

C. Overview

Algorithm 1 describes the main steps of CAN-MXT. It
requires in input a CAN trace T . Initially, T is split in N
subtraces, one for each CAN ID (Step 1). Each subtrace
corresponds to the time-series of frames associated with the
same ID.

Each subtrace ST is then evaluated independently (Steps
2–8). The mean period P of ST is calculated (Step 3).
Then, the function identify multiplexing tests whether ST is
a sequence of multiplexed frames (Step 4). This is done by
iteratively assuming cycles with different base periods and
verifying that there is a signal within the first byte of the
payloads that meet the conditions to be a multiplexor. The
function outputs the base period B and the list of candidate
multiplexors CM .

If CM is not null, the subframes of ST undergo additional
processing to extract information regarding the multiplexing
type MT , as well as defining the final set of multiplexors M ,
i.e., a refined version of CM (Steps 5–7).

D. Calculate Period

To calculate the period of a list ts diff containing the
differences between the timestamps of consecutive frames in
ST is calculated. Then, the raw period Praw is computed
as the mean of ts diff. Finally, the reference period P is
obtained by rounding Praw to its order-of-magnitude. For
instance, if the calculated Praw is 101.3 µs, P is rounded
to 100 µs. This step is necessary to identify the actual sending
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Algorithm 1 CAN-MXT
Require: CAN Trace T
Ensure: Base Period B, Multiplexors M , Multiplexing Type

MT
1: subtraces ← extract subtrace(T )
2: for ST in subtraces do
3: p ← calculate period(ST)
4: B, CM ← identify multiplexing(ST, p)
5: if CM is not null then
6: M , MT ← extract info multiplexing(ST, CM )
7: end if
8: end for

period P of the frames associated with the current ID as the
manufacturer intended. According to our experience with more
than 450 CAN traces [9], the manufacturers define the period
of the CAN IDs as a multiple of 10 µs. However, due to
the imprecision of the quarz clocks installed in the ECUs, the
actual sending period recorded in the traces typically drifts
away from the intended sending period.

E. Identify Frame Multiplexing

Algorithm 2 illustrates how to assess whether the current
subtrace ST is a sequence of multiplexed frames.

Algorithm 2 identify multiplexing

Require: Subtrace ST , Period P , Max number of subframes
N

Ensure: Candidate Multiplexors CM , Base Period B
1: CM ← []
2: for n in range(2, N ) do
3: for start frame in range(0, n-1) do
4: start ts ← timestamp(start frame)
5: curr series ← extract series(ST , n, start ts, P )
6: xnor res ← XNOR(curr series)
7: c mux value ← extract seq(xnor res)
8: if eligible sequence(c mux value, CM ) then
9: CM .append(c mux value)

10: else
11: break
12: end if
13: end for
14: if is complete(CM , n) then
15: B ← info baseperiod(ST , n)
16: break
17: end if
18: end for
19: if multiple candidate sets(CM ) then
20: CM ← longest candidate(CM )
21: end if

First, CM is initialized (Step 1). CM is the list that will
contain output of this function, i.e., the first byte of each
subframe, if ST is found to be multiplexed.

Then, the algorithm iteratively tests the assumption that
ST contains n subframes (Steps 2–17). n ranges from 2 to
N , which is defined by the user. Under the assumption A1
in Section III-B that the first byte of the payload is reserved

False False True True True False True False

X X 1 0 0 X 1 X

Xnor_res

C_mux_value

Fig. 3: Example of the XNOR’s output and the extract seq
functions. The rectangles indicate the positions occupied by
static bits.

for multiplexing CAN frames, N can be at maximum 256.
Hence, 256 is the theoretical upper bound of the number of
distinct multiplexor values associated with ST . However, it is
reasonable/practical to assume that the number of multiplexor
values is much lower. Thus, it is logical to set N few orders-
of-magnitude smaller than the theoretical maximum to reduce
the computation time.

An internal loop is used to iterate over ST and identify
subframe series (Step 3). In particular, for each iteration, the
timestamp start ts of the frame at position start frame is
retrieved (Step 4). Subsequently, the function extract series
outputs a series t series containing all frames whose timestamp
is start ts + c*n*P , where c serves as a counter for the cycles
(Step 5).

Inspired by the READ algorithm [25], the algorithm then
performs an XNOR operation between the initial byte of the
first payload and the corresponding byte of the second payload
in the t series. The XNOR operation is then repeated between
the outcome of the preceding XNOR and the initial byte of the
subsequent payload. This iterative process continues until the
conclusion of the t series. The aim is identify identifying static
bits, i.e., bits which never flip (change value) throughout the
series (Step 6). The output of the XNOR operation, xnor res,
is passed to the function extract seq (Step 7).

This function outputs the list c mux value, which displays
the value of the static bits within the byte. For ease of
understanding, an example of the difference between xnor res
and c mux value is shown in Figure 3. A check is performed
on c mux value (Step 8) to verify that it meets all of the
following requirements:

R1. There is a sequence of consecutive static bits whose
length is at least log2(n). The existence of such a sequence
indicates that the t series may be a subframe series. On
the other hand, its absence validates that the t series under
consideration is not a subframe series.

R1. The position of the sequence is overlapping with the
other sequences in CM . Based on the assumption A2 in
Section III-B, multiplexors in different subframes are located
in the same portion of the payload.

R3. The sequence is not yet present in CM . Given that a
distinct multiplexor value is associated with each subframe,
a unique sequence of static bits for each c mux value is
necessary for ST to be multiplexed.

If the above check is successful, the current c mux value
is appended to CM . At the end of the inner loop (step 14),
the algorithm verifies that:

1) There is a fully formed set of subframes that identify
ST as potentially multiplexed;
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2) The set CM does not consist of counter signals.
Counter signals and multiplexors can be mistakenly
identified as each other because of their cyclic be-
havior. This verification is made by comparing the
Bit Flip Rate (BFR) [25], [32], [9] of the payload
sequence linked to each element in CM with the BFR
of all payloads in ST . If the BFR of each individual
element in the set CM consistently deviates from the
overall BFR, the signals found in CM are more likely
multiplexors rather than counters.

If both conditions are met, the information related to the
base period B is inferred from ST and n (Step 16). Then, the
outer loop is interrupted (Step 17).

Finally, if more than one sequence meet the condition to
be considered as a multiplexor, only the longest one is chosen
(Steps 20–21). This criterion was designed solely to ensure
a deterministic single output. Nevertheless, the presence of
sequences that satisfy all inclusion criteria for CM other than
the multiplexor is highly improbable. In fact, our evaluation of
CAN-MXT found that this final check was not necessary for
all of the multiplexed frames we tested.

F. Extract Information on Multiplexors

After assessing the multiplexing of a subtrace ST ,CAN-
MXT analyzes the output, CM , of Algorithm 2 to find the
multiplexing type (i.e., simple or extended) and obtain more
details of the multiplexors.

Algorithm 3 initially computes the minimum number of
bits min bits necessary to represent the multiplexor values in
the case of simple multiplexing (Step 1). This number can be
calculated as log2(CM .length). min bits is then employed to
generate the target, a list of multiplexor values we expect to
find in the case of simple multiplexing. Based on assumption
A3 in Section III-B, the target is the binary representation
of numbers between 0 and N , where N is the number of
subframes.

Algorithm 3 extract information multiplexing

Require: Candidate Multiplexors CM
Ensure: Multiplexors M , Multiplexing Type MT

1: min bits ← compute minbits(CM )
2: target ← generate target(min bits)
3: MT , M ← match(target, CM )

Finally, CM and the target are inputted to the match
function, whose purpose is to identify a match between the
target and any portion of CM . The function adopts a sliding
window approach, i.e., it scans CM from the start bit of
the candidate multiplexor and iteratively checks if the current
window matches the target. Figure 4 illustrates how the match
function works, based on two example multiplexed frames,
each with 3 subframes. In these examples, the target is [00, 01,
10]. In Example A, a match is found. Hence, the multiplexing
is simple, and all of the static bits which do not belong to the
multiplexor are discarded from the final set of multiplexors
M . In Example B, no match with the target is identified. In
this case, M = CM .

Note that in the case of extended multiplexing, the algo-
rithm cannot identify the boundary between the multiplexors.

X X 1 0 1 1 0 X

X X 0 1 0 0 X X

X X 1 0 0 1 X X

CM[0]

CM[1]

CM[2]

CM[0]

CM[1]

CM[2]

X X 1 1 0 1 0 X

X X 0 1 0 0 X X

X X 1 0 0 1 X X

X X X 0 0 X X X

X X X 0 1 X X X

X X X 1 0 X X X

A)

B) X X 1 1 0 1 0 X

X X 0 1 0 0 X X

X X 1 0 0 1 X X

Target = [00, 01, 10]

M

M

Fig. 4: Two examples showing the functioning of Algorithm 3.
On the left, the target is matched against CM . In scenario A,
the red rectangle indicates that a match is found between the
target and CM . On the right, the final set of multiplexors M .

This is a limitation of the current CAN-MXT, and addressing
it is part of our future work.

This section presents CAN-MXG, a tool to generate syn-
thetic traces with multiplexed frames from real traces of non-
multiplexed frames.

G. Objective

Comma AI was the first to release an extensive dataset
of DBC files. While the collection of DBC files contained in
Comma AI’s open repository OpenDBC [1] is impressive, no
CAN trace is present in its dataset. Hence, it is up to the
researchers to collect the data from the vehicle model related
to the DBC file of interest.

Zago et al. [41] released a dataset consisting of several
hours of CAN traces related to 5 vehicle models suitable for
reverse engineering. Nonetheless, no ground truth is associated
with the traces, as the repository does not contain any DBC file.
Unfortunately, OpenDBC does not contain any DBC related to
the vehicle models present in this dataset. As a result, it is not
possible to use these two datasets jointly.

At the time of this writing, none of the publicly available
CAN traces or DBC files are related to multiplexed CAN
traffic. Given the unavailability of real multiplexed data to
evaluate CAN-MXT, we implemented CAN-MXG, a software
tool that can generate multiplexed CAN traffic frames from
standard CAN traces.

H. Overview

Algorithm 4 provides an overview of CAN-MXG. The
algorithm receives in input a standard CAN trace T and
the parameters described in Table I, which are set by the
user. Through the configuration of these parameters, users
can simulate a wide range of scenarios that an OEM might
contemplate when multiplexing the frames. The first step is
to identify IDs whose frames can be used as subframes for
the multiplexed traffic (Step 1). The output of this operation
is the list E of IDs whose frames are eligible for the task.
Subsequently, the IDs in E are divided into groups or pools
based on the common characteristics of the frames associated
with them (Step 2). Finally, the pools PL are used to generate
the multiplexed trace MT (Step 3).
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TABLE I: CAN-MXG Parameters

Parameter Description

Percentage of el-
igible frames to
multiplex

The percentage of frame IDs to multiplex over the
total number of eligible frame IDs present in the
original trace.

Multiplexing
Type

Simple or extended multiplexing.

Max number of
subframes

The maximum number of subframes.

Bits behavior The behavior of the other bits in the bytes containing
the multiplexors, where static corresponds to bits that
never change throughout the trace and dynamic are
bits that change randomly. Half dynamic indicates
that 50% of the bits other than the multiplexor are
static, while the other 50% are dynamic.

Algorithm 4 CAN-MXG
Require: CAN Trace T , Percentage of eligible frames to

multiplex P , Max number of subframes M , Multiplexing
Type MT , Bits Behavior BB

Ensure: A multiplexed trace MT
1: E ← identify eligible frames(T , P )
2: PL ← pool frames(T , E, M )
3: MT ← generate mux trace(T , M , BB, PL)

I. Identification of Eligible Frames

This phase is concerned with the identification of frames in
the original trace that are eligible for multiplexing. CAN-MXG
aims at preserving the information contained in the original
trace, i.e., the set of signals contained in the payload. For
this reason, frames whose DLC is maximum (i.e., the payload
is 8 bytes long) should in principle not be considered for
multiplexing. Given that the first byte of the payloads in the
generated multiplexed frames will contain the multiplexors,
there would be only two ways to generate such a payload:

1) Produce a 9-byte payload, thus exceeding the max-
imum payload length (=8 bytes) imposed by the
standard CAN;

2) Remove one byte from the original payload, in order
to allocate the necessary space for the multiplexors.
This would normally result in loss of information.
Alternatively, the removed byte could be appended
to frames with a different IDs in the generated trace.
However, this could be realistically done only for
other frames sent by the same ECU, if any, and would
alter the original stream of information.

Nonetheless, as reported in [32], [9], the frames’ payloads
can also contain bits which are unused, i.e., they neither
flip nor contain any information, but rather function as a
buffer between signals. In this regard, CAN-MXG can remove
bytes containing only unused bits to allocate space for the
multiplexors. In such a case, even frames with 8-byte payloads
are eligible for multiplexing.

The pseudocode related to this phase is presented in
Algorithm 5. The algorithm requires in input a CAN trace
T . It initially identifies as eligible only the IDs whose DLC
is less than 8, and insert them in a list E (Step 1). Then, the
algorithm searches for frames whose payload contains at least

a byte composed of unused bits only and appends them to E
(Steps 2–3). In our implementation of CAN MX-Multiplexor
this operation is hard-coded. However, it can be easily modified
to function as an optional feature.

Finally, the algorithm reduces the number of eligible frames
by removing 1−P randomly selected elements from E. Note
that if P = 1 then no element is removed from E (Step 4).

Algorithm 5 identify eligible frames

Require: CAN Trace T , Percentage of eligible frames to
multiplex P

Ensure: List of eligible IDs E
1: E ← eligible IDs(T )
2: U ← unused first byte(E)
3: E.extend(U )
4: E ← remove(T , P )

J. Pooling Frames

The goal of this phase is to identify groups of IDs which
will constitute the new multiplexed frames, based on the char-
acteristics that their frames have in common. The algorithm
receives a CAN trace T , the list of eligible frame IDs E
identified in Algorithm 5, and the max number of subframes
M .

Initially, the mean sending periods P of the frame se-
quences associated with each ID in T are extracted (Step 1).
The IDs in E are initially divided into G groups based on
the DLC (Step 2). The IDs in each group are then sorted
in ascending order according to P (Step 3). A data structure
PL is initialized in Step 4. The purpose of PL is to contain
subgroups of IDs whose frames will be blended to form a
multiplexed frame, which we call pools. Operations are then
performed independently on each group Gi of G (Steps 5–
14). For each Gi, the IDs in position 0 to N are extracted
iteratively, inserted into PL and removed from Gi (Steps 8–
9). N is randomly generated between 2 (the minimum number
of frames to form a multiplexed frame) and M . Let l be the
length of Gi, if l ≥ M , a pool is generated considering the
whole Gi. Therefore, the number of pools per Gi lies between
1 and l/M .

Note that in the current implementation of CAN-MXG,
the parameter Multiplexing Type determines all the eligible
frames in a given run to be processed according to either
simple or extended multiplexing. Given that 3 subframes are
the minimum set to form an extended multiplexed frame,
the pools composed of 2 subframes are always processed as
simple-multiplexed, regardless of the Multiplexing Type.

Finally, the mean period associated with the first ID, i.e.,
the lowest mean period in the pool, is selected as a reference
to calculate the base period of the cycle (Step 11). The reason
for taking this approach is detailed in Section III-K.

K. Generation of Multiplexed Traces

The goal of this phase, as described in Algorithm 7, is
to generate the final trace MT of multiplexed frames. The
algorithm requires in input the CAN trace T , the pools PL
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Algorithm 6 pool frames

Require: CAN Trace T , Set of eligible IDs E, max number
of subframes M

Ensure: Pools PL
1: P ← calculate base periods(T )
2: G ← divide on length(E)
3: G ← sort groups(G)
4: PL ← {}
5: for Gi in G do
6: j ← 0
7: while Gi is NOT empty do
8: N ← random(2, M )
9: PL[j] ← pop(Gi, N )

10: PL[j].period ← assign period(PL[j])
11: j++
12: end while
13: end for

Algorithm 7 generate mux trace

Require: CAN Trace T , Pools PL, Bits behavior BB
Ensure: Multiplexed Trace MT

1: list MFS ← []
2: for pl in PL do
3: FS ← extract series(T , pl)
4: eq FS ← equalize length(T , FS)
5: timestamped FS ← assign timestamps(pl, eq FS)
6: MFS ← form mux frame series(timestamped FS)

7: mux values ← create mux values(MFS)
8: MFS with mux← add first byte(MFS, mux values,

BB)
9: final MFS ← assign ID(MFS with mux)

10: list MFS.append(final MFS)
11: end for
12: MT ← produce mux trace(T , list MFS)

extracted in Algorithm 6, and the bits behavior BB defined
by the user.

Initially, the list that will contain all the multiplexed frame
series list MFS is initialized (Step 1). Operations are then
performed independently on each pool pl (Step 2). The first
step is to extract all frame series associated with each ID in
the pl (Step 3). The output of this operation is a list of frame
series FS. Then, for each series in FS, all the frames after
position N are discarded, where N is the length of the shorter
sequence (i.e., the one with the highest mean period in the
original trace, thus less frames in the same time span) (Step
4). This way, we obtain equal-length series.

Subsequently, new timestamps are assigned to all frame
series in FS based on the period identified in Algorithm 6
for the pool from which FS was extracted. In this step, each
frame series in FS is treated as a subframe series and the
timestamps are assigned to form cycles accordingly. Then, all
the timestamped FS are concatenated together, and the frames
are sorted according to the new timestamps (Step 6). The
result, MFS, is a new series of multiplexed frames. MFS
does not yet contain the multiplexor signals, which are created
by the function create mux value (Step 7).

In create mux value, the multiplexors are assigned as
follows. A new empty byte is added at the beginning of each
frame’s payload in MFS. In the case of simple multiplexing,
a list of binary values representing decimals between 0 and
N is created, where N is the number of subframes. Note that
this is the same process adopted for the creation of the target
in Algorithm 3. In the case of extended multiplexing, a binary
tree data structure with branches of different lengths is created.
Each node in the tree, except for the root (which is null),
corresponds to a bit. Each path from the root to the leaves
corresponds to a multiplexor value or the concatenation of the
values of hierarchically-ordered multiplexors. Starting from the
root, the tree is created randomly until it has N leaves, where
N is the number of subframes in the current multiplexed frame.
In the current implementation of CAN-MXG, in order not to
create trees which are heavily unbalanced, the maximum length
of the longest branch is limited to the length of the shortest
branch +2.

Once the multiplexor values have been created, they are
inserted into an empty byte at a random position (Step 8). The
value of the other bits in the byte are assigned according to the
bit behavior BB. The thus-formed bytes are added in front of
all payloads in the current multiplexed frame series. The ID of
the newly-formed multiplexed frame series is then randomly
chosen among the IDs of the original frames that compose it
(Step 9). The output, final MFS, is then appended to list MFS
(Step 10). Figure 5 illustrates an example output produced in
Steps 4–9 of Algorithm 7. In this example, a multiplexed frame
series is generated from the frames belonging to 3 different
IDs.

Finally, when list MFS is complete, it is passed to the trace
T to the function produce mux trace, along with the trace T .
The output is the final trace containing multiplexed frames
MT (Step 12).

IV. PERFORMANCE EVALUATION

We now evaluate the performance of CAN-MXT on a set
of traces generated with CAN-MXG. Both CAN-MXT and
CAN-MXG were implemented in Python 3.10. All the tests
presented hereafter were run on a Dell Latitude 5490 laptop,
equipped with Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz,
1800 MHz, 4 Core(s) with 8 Logical Processor(s).

A. Dataset

The dataset utilized in this study comprises traces obtained
from a total of seven real vehicles. Specifically, three of them
were sourced from ReCAN [41], while the remaining four
traces were collected by us. Our data was obtained utilizing a
Raspberry Pi 3 device, which was equipped with a PiCAN2
Duo shield and connected to the OBD-II port of various
commercial vehicles.

The data-collection process involved driving each of the
following commercial cars: Peugeot 108, Peugeot 208 and
Renault Captur for a duration of 60 seconds. The ReCAN
repository utilizes two traces pertaining the following vehicles:
Alfa Romeo Giulia and Opel Corsa. To ensure a fair evaluation
and maintain consistency in trace length, we truncated the
collected traces to the initial 60 seconds.
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# ID Payload

0 1A 00101…

1 1A 00101…

2 1A 00111…

…

140 1A 10101…

141 1A 10111…

…

# ID Payload

0 36 10000…

1 36 10001…

2 36 10000…

…

140 36 10111…

141 36 11111…

…

# ID Payload

0 2B3 00000…

1 2B3 00000…

2 2B3 00100…

…

140 2B3 00100…

Equalize length of frames series (step 4)

# Ts ID Payload

0 10 1A 00101…

1 20 36 10000…

2 30 2B3 00000…

3 40 1A 00101…

4 50 36 10001…

…

422 4230 2B3 00100…

# Ts ID Payload

0 10 1A 00010000 00101…

1 20 36 00100000 00101…

2 30 2B3 00000000 00000…

3 40 1A 00010000 00101…

4 50 36 00100000 10001…

…

422 4230 2B3 00000000 00100…

# Ts ID Payload

0 10 1A 00010000 00101…

1 20 1A 00100000 00101…

2 30 1A 00000000 00000…

3 40 1A 00010000 00101…

4 50 1A 00100000 10001…

…

422 4230 1A 00000000 00100…

Create multiplexed

frame series (steps 5-6)

Add multiplexors (steps 7-8) Assign new ID (steps 9)

Fig. 5: An example of simply-multiplexed traffic generated by CAN-MXG from the frames belonging to 3 different IDs. The
figure illustrates the output generated by Steps 4–9 of Algorithm 7.

The traces we extracted were collected in two different
locations capturing distinct traffic and environmental scenarios.
Each car was driven by a distinct driver to ensure that different
driving styles and habits were included in the dataset.

Fig. 6: Dongle used for data collection — a Raspberry Pi 3,
equipped with a PiCAN2 Duo shield.

As to the traces from ReCAN [41], the dataset has numer-
ous traces for each individual vehicle. In this study, we utilize
the first trace (Exp-1) that is available for each vehicle. Note
that ReCAN includes data pertaining to three other vehicles,
namely, an Isuzu M55, a Mitsubishi Fuso Canter and a Piaggio
Porter. The Isuzu M55 was not considered in our evaluation
due to its lack of frames with a DLC < 8, while the Mitsubishi
Fuso Canter only has one frame with a DLC < 8. Finally, the
Piaggio Porter trace has too few unique IDs (19) to perform a
comprehensive evaluation based on the parameters presented
in Section IV.

Table II illustrates the composition of the test traces in
terms of the number of unique IDs and the total number of
frames. As shown in the table, the number of IDs and frames
varies consistently across the test traces, despite the fact that
they were all collected during the same time interval.

Figure 7 shows the percentage of eligible frames in the
original CAN traces extracted from the test vehicles. The figure
highlights a high variance in the percentage of eligible frames
in the test set.

In this work, we used CAN-MXG to generate 10 distinct
multiplexed traces for each combination of parameter values
indicated in Table III. Note that the maximum number of
subframes is limited to 8. This limitation arises from the fact
that CAN-MXG was unable to discover more than 8 IDs that

TABLE II: Test traces overview

Vehicle N. IDs N. frames

Peugeot 108, 2010 79 61468
Peugeot 208, 2011 51 90411
Renault Captur, 2013 72 61863
Alfa Romeo Giulia 76 158316
Opel Corsa 78 122112

Alfa Romeo Giulia

Opel Corsa

Peugeot 108

Peugeot 208

Renault C
aptur

0%

20%

40%

60%

Pa
rs

ed
 fr

am
es

Fig. 7: Percentage of frames eligible for multiplexing in the
tested vehicles.

could be grouped together in the same multiplexed frame for
any of the tested traces. The size of this dataset is comparable
with that of the datasets utilized in related studies on CAN
reverse engineering.

8 provides an overview of the characteristics of the test set
used for the evaluation of CAN-MXT.

Chart a) in Figure 8 shows the composition of the test
set in relation to the number of subframes associated with

TABLE III: Range of parameter values used for our evaluation

Parameter Considered parameter range

Percentage of eligible frames
to multiplex

[0.1-1], step 0.1

Multiplexing type simple or extended
Max number of subframes [2-8]
Bits behavior Static, dynamic, half dynamic
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2: 34.65 %
3: 31.12 %
4: 15.87 %
5: 12.76 %
7: 3.11 %
6: 1.87 %
8: 0.62 %

(a) Percentage of frames in the test set
with the same number of subframes.

extended
38.7%

simple
61.3%

(b) Percentage of frames
in the test set belonging to

each type.

Fig. 8: Composition of the generated multiplexed traces.

each multiplexed frame. The chart highlights that the majority
of frames in our test set are composed of 5 subframes or
less. In fact, as described in Section III-H, Max number of
subframes only represents an upper bound of the number of
subframes. Therefore, there may be only n frames associated
to a certain DLC in the original trace, where n <Max number
of subframes. The lower bound, instead, is the minimum
number of bits required for multiplexing, i.e., 2 for simple
multiplexing, and 3 for extended multiplexing.

Chart b) shows the composition of the test set in relation to
the multiplexing type. According to the figure, approximately
two thirds of the multiplexed frames in the test set were
generated according to simple multiplexing. This is due to the
fact that even in the case of creation of traces based extended
multiplexing, pools composed of 2 subframes are treated as
simple multiplexing, as explained in Section III-J.

Finally, from a preliminary analysis, we discovered that
the percentage of eligible frames to multiplex does not affect
the performance of CAN-MXT. Thus, we set this parameter
to 1, i.e., all eligible frames are transformed into multiplexed
frames. As a result, CAN-MXT was evaluated on 1,920 gen-
erated traces. The various combinations of parameters tested
in this work reflect the choices available to a manufacturer for
multiplexing frames, thus enabling us to provide a generalized
assessment of CAN-MXT performance.

We made the generated traces publicly available on
the Github repository Reverse Engineering of
Multiplexed CAN Frames [5].

B. Evaluation Metrics

CAN-MXG outputs a ground truth file containing the
information necessary to identify and interpret the newly-
generated multiplexed trace. For each multiplexed frame, the
ground truth contains the information on i) a mapping between
its ID and the IDs of the original frames that compose it, ii)
the multiplexing type, iii) the start position of the multiplexor,
and iv) all the values of the multiplexors. To evaluate the
performance of CAN-MXT on each tested trace, we compare
the output it produced, with the trace’s ground truth.

multiplexed IDs will henceforth refer to IDs whose asso-
ciated frames are multiplexed, as opposed to standard IDs,
whose associated frames are not multiplexed. Let the True
Positives (TPs) be the multiplexed IDs correctly identified as
multiplexed by CAN-MXT; the False Positives (FPs) be the
IDs corresponding to standard IDs incorrectly identified as

Alfa Romeo Giulia

Opel Corsa

Peugeot 108

Peugeot 208

Renault C
aptur

90.0%

92.5%

95.0%

97.5%

100.0%

Recall
Precision
Base Period Accuracy

Fig. 9: Recall, Precision, and Base Period Accuracy achieved
by CAN-MXT for each test vehicle.

multiplexed by CAN-MXT; the True Negative (TN) be the
standard IDs frames correctly identified as non-multiplexed by
CAN-MXT; and the False Negatives (FNs) be the multiplexed
IDs incorrectly identified as non-multiplexed by CAN-MXT.

Then, we evaluate CAN-MXT using the following metrics:

• Recall: is equal to TP
TP+FN ;

• Precision: is equal to TP
TP+FP ;

• Base Period Accuracy: the percentage of IDs whose
base period has been correctly identified, over the total
number of TPs. Note that this metric also implies
the accuracy in identifying the correct number of the
subframes, given that this information is necessary to
calculate correctly the base period;

• Multiplexor Type Accuracy: the percentage of IDs
whose multiplexor’s type bit has been correctly iden-
tified, over the total number of TPs.

C. Results

Figure 9 shows the mean Recall, Precision, and Base
Period Accuracy achieved on each vehicle by CAN-MXT. The
average Recall of 98.4% indicates that almost all multiplexed
frame IDs are correctly labeled, while the Precision of 99.3%
indicates that few standard IDs are incorrectly identified as
multiplexed. Based on these results, Algorithm 2 is determined
to be highly reliable. Furthermore, Algorithm 2 achieves a high
Base Period Accuracy of 99.2%.

Figure 10 illustrates the Multiplexor Type Accuracy
achieved by CAN-MXT on each of the tested vehicles, divided
according to the dynamicity. A confidence interval of 95% is
reported for each measurement.

As expected, the Multiplexor Type Accuracy reaches the
highest (> 95%) when all the other bits in the byte are
dynamic. By contrast, it attains the lowest (80%-94%) when a
half the bits are dynamic. In fact, Algorithm 3 is designed to
distinguish stationary bits that are not part of the multiplexors
in addition to excluding bits with a dynamic behavior that is
obviously distinguishable from the behavior of multiplexors.
As a consequence, the algorithm performs worse when bits
adjacent to the multiplexors have mixed behaviors. This is also
demonstrated by the wide confidence interval associated with
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Fig. 10: Multiplexor Type Accuracy achieved by CAN-MXT
for each test vehicle and according to the dynamicity of the
bits other than the multiplexors.

TABLE IV: DBC trace coverage

Vehicle % of IDs covered % of eligible IDs covered

Peugeot 108 10.1% 9.5%
Peugeot 208 29.4% 16%
Renault Captur 27.8% 13.6%

the case when a half of the bits exhibit dynamic behavior,
showing a high variance in the results. The additional results
provided in Section A serve to further our understanding of
the aforementioned findings.

Finally, the time taken by CAN-MXG for generating
multiplexed traces and the time taken by CAN-MXT for
translating the multiplexors were also measured. These results
are provided in Section B.

D. Multiplexed Frames Reverse Engineering

As described in Section III-A, the ultimate purpose of
CAN-MXT is to enable SOTA tokenization algorithms on
multiplexed frames. Thus, we compare the results obtained
with the tokenizer from CANMatch [9] on multiplexed frames
alone vs. using CAN-MXT as a preliminary step. As a ground
truth, for each of the three vehicles whose traces were collected
by us, we have a DBC file generated by a human operator
with expertise in manual reverse engineering. No DBC file
is publicly available for the two traces from ReCAN. It is,
therefore, not possible to benchmark the results with a ground
truth for these two traces, and hence we exclude them from
this evaluation.

Note that the DBC files used in this test cover only partially
the signals that can be found in the traces, as reported in
Table IV. As shown in the table, this also means that only a
part of the IDs eligible for multiplexing with CAN-MXG can
be matched against our DBC files. So, our evaluation of the
tokenization exclusively relies on the signals which are present
in the ground truth and found in eligible IDs. Let CE be the
correctly extracted tokens and TDBC be the total number of
signals in the DBC file, then we use the ratio CE/TDBC as
a metric to evaluate the outcome of the tokenization for each
tested vehicle [32], [9].

The results in Figure 11 show that without CAN-MXT the
tokenization produces spurious results (i.e., a CE
TBDC close or equal to 0). In fact, the chosen tokenization

Peugeot 108 Peugeot 208 Renault Captur
0%

20%

40%

60%

80%

C
E

/T
B

D
C

Tokenization results

Mux frames w/o CANMXT Mux frames with CANMXT Original trace

Fig. 11: Results obtained by the CANMatch’s tokenization
algorithm when CAN-MXT is not employed vs when CAN-
MXT is employed. The performance of the algorithm on the
same frames in the original frames is also reported to serve as
a benchmark.

algorithm tries to identify consistency in the behavior of
consecutive bits, based on their flipping across consecutive
frames in the trace. However, no consistency can be found
given that consecutive frames do not carry the same sig-
nals. Therefore, in the context of multiplexed frames, the
tokenization method mostly generates tokens that consist of
a single bit. In contrast, the utilization of CAN-MXT allows
for the independent processing of each frame series within the
multiplexed frame by the tokenization method. This enables
the algorithm to achieve a performance comparable to that
obtained for the target frames in the original trace.

V. SECURITY THREATS ASSOCIATED WITH CAN
REVERSE ENGINEERING

An alarming number of physical and remote attacks against
CAN posing a serious threat to the safety of vehicles and
passengers have been shown to be feasible [23], [27], [28],
[40], [21]. The automation of CAN reverse-engineering, while
being an essential tool for research and businesses, can also
be exploited by adversaries. In fact, granting easy and fast
access to cleartext in-vehicle data in Connected and Automated
Mobility (CAM) scenarios may enable large-scale attacks and
driver fingerprinting [12], [14]. As discussed in [12], the
ability to reverse-engineer CAN data formats in less than one
minute may enhance the adversaries’ capabilities in congested
environments, such as parking garages and road intersections.
In particular, CAN-MXT requires a negligible amount of time
to reverse-engineer CAN frames while allowing adversaries to
exploit the new generation of (multiplexed) CAN frames.

A variety of countermeasures have been proposed to secure
CAN, often using cryptographic algorithms [31], [36], [24] and
Intrusion Detection System (IDS) [34], [16], [35]. However,
cryptographic algorithms usually incur significant resource and
latency overheads, and hence may not be practicable for the
cost-conscious automotive industry. In contrast, IDS do not
affect bandwidth and latency significantly and may thus seem
to meet the OEMs’s financial concerns. However, they are
ineffective against most reverse-engineering approaches, as
they are passive processes which do not alter the traffic and
are, therefore, undetectable.
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To counter the reverse engineering of multiplexed CAN
frames, a first intuitive solution is to anonymize the IDs of
the frames. However, as shown in [10], anonymizing IDs is
insufficient to prevent reverse engineering, since they can be
successfully de-anonymized through ML classification. A sub-
sequent work [11] attempts to counter this de-anonymization
through traffic mutation techniques, such as padding and mor-
phing. The results show that the de-anonymization accuracy
can be halved, but at the cost of a consistent traffic overhead.
In addition to traffic mutations, we need to investigate the
prevention of automated reverse engineering in the case of
multiplexed CAN traffic, including:

1) Place the multiplexors in bytes of the payload other
than the first, with the aim of making the identification of
multiplexed frames harder;

2) In extended multiplexing, place the multiplexors in non-
contiguous positions, in order to make their location more
difficult;

3) At the time of this writing, OEMs have exploited
endianness to encode CAN payloads only at byte level. As an
alternative to the conventional use of bit-level big endianness,
the byte that contains the multiplexors might be encoded also
using bit-level little endianness (i.e., ordering the bits from the
least to the most significant) As a result of this, the process of
reverse-engineering multiplexed frames would become more
difficult.

The main objective of this study was to assess the impact
of multiplexing on reverse-engineering processes, with a focus
on the potential enhancement of security provided by this
mechanism. As illustrated in , without the integration of the
proposed tool, CAN-MXT, state-of-the-art algorithms fail to
reconstruct the underlying data structures embedded within
the multiplexed payloads. However, the introduction of CAN-
MXT provides a viable solution, demonstrating the possibility
to circumvent these limitations and enhance the efficiency of
reverse engineering in the presence of multiplexed frames.

In conclusion, our research on reverse-engineering multi-
plexed CAN frames is a double-edged sword. On one hand, it
provides potential adversaries with the knowledge and means
to exploit CAN data, even in the context of future multiplexed
frames. On the other hand, our research functions as a warning
to OEM, underscoring the limitations of multiplexing as an
additional security layer. By doing so, it encourages OEMs
to further bolster the security of CAN systems, fostering con-
tinuous improvement in safeguarding the integrity of vehicle
communication and control.

VI. CONCLUSION

OEMs have recently been conducting tests on multiplexed
CAN frames to support upcoming vehicle platform upgrades.
These upgrades will occur more frequently as in-vehicle net-
works transition from a centralized to a zonal architecture.
However, SOTA CAN reverse-engineering tools are shown to
achieve good performance on standard CAN traffic, but are
not effective in handling multiplexed CAN frames. Given the
current security and privacy risks associated with automated
CAN reverse engineering, multiplexed CAN frames are likely
to enable further protection to the vehicle.

We are the first to investigate the feasibility of reverse-
engineering this new type of multiplexed CAN frames which
are expected to be deployed in near-future vehicles. CAN-
MXT identifies multiplexed CAN frames and translates their
multiplexors. It can handle both simple and extended frame-
multiplexing, and is easily integrateable with SOTA CAN
reverse-engineering schemes between the data collection and
the tokenization phases.

We tested CAN-MXT on a set of 1,920 distinct traces
containing multiplexed frames which were generated by an-
other tool, CAN-MXG, we developed from standard non-
multiplexed real traces collected from 5 distinct vehicles.
CAN-MXG can parse standard CAN traces into multiplexed
traffic in real-world settings and according to multiple parame-
ters that can be set by the user. The numerous parameter com-
binations evaluated in this study provide the options available
to a manufacturer for multiplexing frames according to our
comprehensive evaluation of CAN-MXT performance.

Given the lack of publicly available DBC files and mul-
tiplexed CAN traces, we released the dataset used for our
evaluation on Github [5]. We also plan to open-source CAN-
MXG with the aim of providing the research and business
communities with a useful tool to investigate CAN frame
multiplexing.

These results show that, while CAN-MXT is a useful
resource for the reverse engineering of the new generation and
type of CAN traffic, it can also be exploited by adversaries to
gather/extract information about the target vehicle’s data. This
information can then be exploited to mount tailored attacks.
Finally, we discussed potential countermeasures against CAN-
MXT’s identification of multiplexed frames. In future, we
would like to:

1) distinguish multiplexors in extended multiplexing –
CAN-MXT can identify the start and the end position
of the multiplexor signals but, in the case of extended
multiplexing, it cannot distinguish the boundary be-
tween two multiplexors in the same subframe. In
practice, this is not required for reverse engineering
on the remainder of the payload (see Section III-A),
but it is necessary to complete the understanding of
the frame’s content;

2) extend our data-collection capabilities, thus enabling
CAN-MXG and CAN-MXT to process traces col-
lected with a variety of dongles;

3) perform a comparative analysis of protocols em-
ployed to enhance CAN’s data throughput and their
impact on reverse engineering (see Section C).
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[31] PESÉ, M. D., SCHAUER, J. W., LI, J., AND SHIN, K. G. S2-can:
Sufficiently secure controller area network. In Annual Computer Se-
curity Applications Conference (New York, NY, USA, 2021), ACSAC,
Association for Computing Machinery, p. 425–438.

[32] PESÉ, M. D., STACER, T., CAMPOS, C. A., NEWBERRY, E., CHEN,
D., AND SHIN, K. G. LibreCAN: Automated CAN Message Translator.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2019), ACM, pp. 2283–2300.

[33] QUIGLEY, C., CHARLES, D., AND MCLAUGHLIN, R. CAN Bus
Message Electrical Signatures for Automotive Reverse Engineering,
Bench Marking and Rogue ECU Detection. In SAE Technical Paper
(04 2019), SAE International.

[34] SAGONG, S. U., YING, X., CLARK, A., BUSHNELL, L., AND
POOVENDRAN, R. Cloaking the clock: emulating clock skew in con-
troller area networks. In 2018 ACM/IEEE 9th International Conference
on Cyber-Physical Systems (ICCPS) (2018), IEEE, pp. 32–42.

[35] SEO, E., SONG, H. M., AND KIM, H. K. Gids: Gan based intrusion de-
tection system for in-vehicle network. In 2018 16th Annual Conference
on Privacy, Security and Trust (PST) (2018), IEEE, pp. 1–6.
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APPENDIX A
ADDITIONAL RESULTS

In this appendix, we aim to further explain the results
presented in Section IV-C. Specifically, let us consider the
extended multiplexors as the positives, and the simple mul-
tiplexors as the negatives. As shown in the confusion matrix
on the left, when the dynamicity mode is static, the results are
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Fig. 12: Confusion matrices illustrating the type of errors made
by CAN-MXG in identifying the multiplexing type according
to the division of bits behavior defined in the input.
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Fig. 13: Impact of the number of subframes on Recall, Base
Period Accuracy and Multiplexing Type Accuracy achieved by
CAN-MXT.

penalized by False Negative Rate (FNR) (i.e., FN/(TP+FN)) of
almost 20% and False Positive Rate (FPR) (i.e., FP/(TP+FN))
of almost 3%. By contrast, when the dynamicity mode is half-
dynamic, the FNR is around 15%, while the FPR is around
3%. As highlighted in Figure 8, around two thirds of the total
multiplexors in our test set are simple, the FPR makes a more
significant impact on the overall accuracy than FNR.

Finally, Figure 13 illustrates the impact that the number
of multiplexors have on CAN-Multiplexor performance with
respect to the metrics considered thus far. As shown in the
figure, the number of multiplexors does not affect Precision,
Recall and Base Period Accuracy much. In contrast, the
Multiplexing Type Accuracy decreases with the number of
multiplexors, from 100% when the subframes are 2, to 92.5%
circa when the subframes are 4, and it is stable between 90%
and 92% for a higher number of subframes.

APPENDIX B
CAN-MXT AND CAN-MXG EXECUTION TIME

Here we analyze the time required for CAN-MXG and
CAN-MXT to, respectively, generate and identify multiplexed
frames. A confidence interval of 95% is reported for each
measurement.

Figure 14 illustrates the mean execution time of CAN-
MXG for each test vehicle. Every multiplexed trace is gen-
erated between 2 and 4s. Based on the figure and Table II,
there appears to exist a positive linear correlation between the
execution time and the number of frames in the original trace.
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Fig. 14: Time required to generate multiplexed traces for each
test vehicle.
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Fig. 15: Time required to translate multiplexed frames for each
test vehicle.

Figure 15 illustrates the mean execution time of CAN-
MXT for each test vehicle, which spans between 5 and 10s.
Similarly to the generation of the multiplexed traces, CAN-
MXT’s execution time seems to be linearly correlated to the
number of frames in the original trace.

Figure 16 shows the mean execution time of CAN-MXG
with respect to the dynamicity and the multiplexing type. As
highlighted in plot a), CAN-MXG is the fastest in creating
traces where the other bits in the multiplexor’s byte are
static, and slowest when they are dynamic. In contrast, the
multiplexing type does not seem to impact the runtime of
CAN-MXG, as shown in plot b).

Section B shows the mean execution time of CAN-MXT
based on the dynamicity and the multiplexing type. As shown
in plot a), CAN-MXT gets slowest when translating multi-
plexed frames whose multiplexor is inserted in a half-dynamic
context, whereas it gets fastest when the multiplexor is in a
strictly dynamic context. In contrast, the multiplexing type
does not make any discernible difference.
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Fig. 16: Time required to generate multiplexed traces with
respect to the dynamicity and the multiplexing type.
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Fig. 17: Time required to translated multiplexed frames with
respect to the dynamicity and the multiplexing type.

APPENDIX C
ALTERNATIVES TO CAN MULTIPLEXING

In the scope of our research, we have focused on exploring
and developing techniques for the reverse engineering of CAN
multiplexed traffic. However, it is important to acknowledge
that there are other protocols that, similarly to frame mul-
tiplexing, also aim at increasing the traffic throughput on
CAN networks. Two notable examples in this regard are CAN
Flexible Data-Rate (CAN FD) – ISO11898-1:2015 [18] – and
CAN Transport Protocol (CANtp) –AUTOSAR CP R21-11
[8].

CAN FD is an extension of the traditional CAN protocol
and introduces higher data rates, larger frame (up to 64 bytes),
and enhanced error handling capabilities. CANtp is designed
primarily for applications requiring deterministic, time-critical
communication. It facilitates the transmission of larger data
payloads by segmenting and reassembling them efficiently.

In future work, we aim at comparing CAN multiplexing
with CAN FD and CANtp. More specifically, our goal is to
evaluate how these protocols affect reverse engineering and
security.
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