
RT-BEV: Enhancing Real-Time BEV Perception for
Autonomous Vehicles
Liangkai Liu∗, Jinkyu Lee†, and Kang G. Shin∗

∗Department of Computer Science and Engineering, University of Michigan, USA
†Department of Computer Science and Engineering, Sungkyunkwan University, Republic of Korea

https://github.com/Torreskai0722/RT-BEV

Abstract—Vision-centric Bird’s Eye View (BEV) perception has
become popular for enhancing the situational awareness of au-
tonomous vehicles (AVs). It uses multiple cameras to create a 360◦

view, capturing essential details for the vehicle’s navigation and
decision-making. However, reducing the end-to-end (e2e) BEV
perception latency without sacrificing accuracy is challenging
due to the lack of co-optimization of message communication
and object detection. Prior work either compresses the dense
detection model to reduce computation which can hurt accuracy
and assume images are well synchronized, or focuses on worst-
case communication delay without considering the characteristics
of object detection.

To meet this challenge, we propose RT-BEV, the first frame-
work designed to co-optimize message communication and object
detection to improve real-time e2e BEV perception without
sacrificing accuracy. The main insight of RT-BEV lies in gener-
ating traffic environment- and context-aware Regions of Interest
(ROIs) for AV safety, combined with ROI-aware message commu-
nication. RT-BEV features an ROI-aware Camera Synchronizer
that adaptively determines message groups and allowable delays
based on ROIs’ coverage. We also develop a ROIs Generator to
model context-aware ROIs and a Feature Split & Merge com-
ponent to handle variable-sized ROIs effectively. Furthermore,
a Time Predictor forecasts timelines for processing ROIs, and
a Coordinator jointly optimizes latency and accuracy for the
entire e2e pipeline. We have implemented RT-BEV in a ROS-
based BEV perception pipeline and evaluated it with the nuScenes
dataset. RT-BEV is shown to significantly enhances real-time BEV
perception, reducing average e2e latency by 1.5×, maintaining
high mean Average Precision (mAP), doubling the number of
processed frames, and improving the frame efficiency score (FES)
by 2.9× compared to the existing approaches. Moreover, RT-BEV
is shown to reduce the worst-case e2e latency by 19.3×.

Index Terms—BEV perception, region of interests (ROIs)

I. INTRODUCTION

The popularity of vision-centric Bird’s Eye View (BEV)
perception has surged, enhancing the situation-awareness of
autonomous vehicles (AVs) [1]–[3]. BEV perception uses
multiple cameras to generate a comprehensive 360◦ view, cap-
turing crucial details for the vehicle’s navigation and decision-
making [4], [5], significantly improving AV navigation and
decision-making processes [6]. However, achieving real-time
BEV perception is challenging due to the high computational
demands of processing high-resolution images from multiple
cameras [7]–[9]. Real-time processing is crucial for AV safety,
as delays can raise safety risks [10], [11]. Innovative solutions

are needed to balance real-time performance and accuracy in
BEV perception [12].

State-of-the-art (SOTA) approaches often use model com-
pression to trade off some accuracy for speed [13], [14].
Methods like SparseBEV employs sparsity to compress the
dense model to be sparse [15], [16], while FastBEV and
SparseViT optimize input resolution and network structures
for faster processing [13], [17]. However, these methods often
suffer from degraded accuracy [18], [19] and overlook the
communication delays associated with multi-camera synchro-
nization [20], [21]. Assuming pre-synchronized images is
impractical, as each camera’s trigger time and communica-
tion delays are significant [20]. Other works recognize the
importance of message communications, investigating worst-
case communication delays [22], [23], but fail to guarantee
end-to-end (e2e) BEV perception latency by ignoring the
characteristics of object detection.

Considering these issues, we pose a critical question: Can
we co-design message communication and object detection in
BEV perception to improve real-time e2e performance without
compromising accuracy? We propose focusing on Regions of
Interest (ROIs) processing and enhancing system coordination
to optimize the use of computational and communication
resources dynamically. Our key insight lies in context-aware
generation and processing of ROIs, coupled with ROI-aware
message communication of multi-camera inputs. By dynami-
cally adjusting ROIs based on environmental contexts, we can
prioritize critical areas and ignore less relevant data, improving
efficiency for the e2e pipeline.

Several technical challenges must be addressed. First, the
multi-camera system introduces significant delays in syn-
chronizing captured images for BEV perception, potentially
causing higher communication delays. Second, modeling ROIs
for complex traffic environments must maintain detection
accuracy. Third, ROIs in different traffic environments and
contexts have variable shapes across cameras, which could
incur extra overheads on resource-limited GPU platforms.
Lastly, making the trade-off between latency and accuracy is
essential to guarantee AV safety.
RT-BEV addresses these technical challenges by designing

and using several innovative components. The ROI-aware
Camera Synchronizer reduces synchronization delays by ad-
justing queues and allowable delays based on ROIs. The ROIs

https://github.com/Torreskai0722/RT-BEV

Generator is designed to generate ROIs based on driving
context and previous detection results from BEV perception.
The adaptive Feature Split & Merge module enhances pro-
cessing efficiency by focusing on critical ROIs and using the
previous frame’s feature maps for less important areas. The
Time Predictor calculates time-to-collision (TTC) and predicts
inference times for varying ROI sizes, ensuring timely system
adjustments. The central Coordinator manages keyframe fre-
quency and synchronization strategies, balancing latency and
detection accuracy for e2e BEV perception.

Our comprehensive testing and evaluation of RT-BEV using
a GPU desktop setup and the nuScenes dataset [20] demon-
strated its effectiveness. RT-BEV significantly reduces both
communication and detection delays, achieving an average
e2e latency of 377.6ms, a 1.5× speedup over the 580.6ms
in base settings. Additionally, RT-BEV reduces the worst-
case e2e latency by 19.3×. For detection accuracy, RT-BEV
nearly doubles the number of processed frames of traditional
methods, maintaining high mean Average Precision (mAP) and
Average Multi-Object Tracking Precision (AMOTP) across
various object classes. Furthermore, the frame efficiency score
(FES) of RT-BEV shows a 2.9× improvement over SOTA
approaches. To the best of our knowledge, RT-BEV is the first
framework for BEV perception that significantly enhances e2e
real-time performance without sacrificing accuracy.

Overall, this paper makes four main contributions:
• A novel approach to the generation and processing of

ROIs in BEV perception. This approach dynamically ad-
justs ROIs based on environmental and driving contexts,
which significantly enhances processing efficiency by
focusing on the most critical areas for the AV’s navigation
and decision-making.

• A flexible synchronization mechanism tailored to dy-
namic ROIs. This design enables the synchronization
of multi-camera images to be flexible and adaptive to
dynamically changing ROIs.

• An adaptive BEV perception framework that co-designs
communication and computation to balance e2e latency
with detection accuracy. The adaptive Feature Split &
Merge module, combined with the Time Predictor and
Coordinator, focuses computational and communication
resources on dynamically determined ROIs.

• Comprehensive evaluation, demonstrating the effective-
ness of RT-BEV in real-world scenarios. Implemented in
a ROS-based system and evaluated using the nuScenes
dataset, our results significantly reduce e2e latency (1.5×)
while maintaining a high mAP and AMOTP. Moreover,
it achieves a substantial improvement for worst-case e2e
latency (19.3×) and frame efficiency score (FES) (2.9×)
over SOTA approaches.

II. BACKGROUND, MOTIVATION, AND PROBLEM
STATEMENT

A. BEV Perception
Multi-camera BEV perception is vital for AV due to its 360-

degree overhead view, enhancing navigation and situational

awareness [1], [2], [4], [5], [14], [15]. By integrating multiple
cameras, BEV perception provides clear visibility of surround-
ings, including hidden lanes, obstacles, and pedestrians, thus
improving AVs’ awareness and decision-making [1].

Figure 1 presents a detailed e2e pipeline for BEV per-
ception utilizing multi-camera systems [6], [12]. The process
initiates with the autonomous vehicle’s cameras capturing
panoramic images [20], [21]. These images are collected in
a queue for each camera and synchronized based on their
timestamps [24], [25]. This initial phase of capturing and
synchronizing images is termed the communication delay.
Following synchronization, the images are processed through
an image feature extraction stage, incorporating a backbone
and neck architecture to produce image feature maps [6], [26],
[27]. These maps are then inputted into a BEV encoder, which
translates them into a BEV perspective and constructs BEV
feature maps [4], [13], [14]. The last stage involves a detection
head that utilizes these BEV feature maps to detect and track
objects within the environment. The time taken from image
feature extraction to object detection by the detection head
constitutes the detection delay. The sum of the communication
and detection delays represents the total e2e latency for BEV
perception.

B. Motivation

Time Constraints. The BEV perception system processes ex-
tensive visual data to create an overhead view, which is time-
consuming [13], [15], [16]. This challenge is critical in time-
sensitive applications where e2e latency can impact safety.

Variable Significance of Raw Data. Not all sensor data in BEV
perception are equally important [15], [17]. Dynamic objects
like vehicles and pedestrians are more critical than static
objects. Focusing on regions of interest (ROIs) can enhance
real-time performance, but SOTA systems fail to differentiate
data significance, leading to inefficiencies and unnecessary
consumption of computational resources.

C. Problem Statement

The challenge in BEV perception for AVs is optimizing
real-time performance and maintaining prediction accuracy
on resource-limited embedded platforms. SOTA methods con-
sume excessive time and memory by blindly processing all
raw images, regardless of relevance, and ignoring the online
synchronization of high-frame-rate camera inputs. This paper
aims to develop a technique for efficient ROI processing
through communication and computation co-design to enhance
real-time capabilities and ensure accurate perception.

III. EMPIRICAL STUDIES

Through detailed analysis using real-world BEV perception
models and datasets, we have made two key observations es-
sential for achieving real-time BEV perception. First, the ROIs
that are crucial for autonomous vehicle safety are determined
by the driving context and traffic environment, while ROIs’
variable sizes also bring challenges for real-time processing.

2

Capturing Feature extraction BEV encoder Detection headSynchronization

Communication delay Detection delay

message queue

End-to-end latency

C5

C4

C3

C2

C1

P5

P4

P3

backbone & neck

X

Y ego vehicle

BEV feature maps

Fig. 1. End-to-end pipeline for BEV perception.

Second, effective multi-camera BEV perception requires time-
synchronized images, but the associated capturing and syn-
chronization delays are non-negligible.

A. Environment-Aware ROIs

SOTA BEV perception models tend to process sensory
input uniformly throughout the visual field, which can be
computationally expensive and inefficient [4], [5], [28], [29].
In reality, not every pixel is equally important for AV’s
safety [17], [30]. From comprehensive experiments, we found
the ROIs that are essential to AV’s safety are environment-
and context-aware.

In urban environments with complex intersections and heavy
pedestrian traffic, the focus should be on crosswalks and
sidewalks, while on highways, attention may shift toward the
front and nearby vehicles. Additionally, during forward driv-
ing, attention is primarily directed toward the front, whereas
side views become crucial during lane changes, and rear
views are considered when driving in reverse. This observation
of regional importance aligns with typical human driving
behaviors. Figure 2 illustrates an example region of interest
(ROI) using the UniAD model with the nuScenes dataset [6],
[20]. The left side of the figure displays the BEV perception
results as the ego vehicle moves forward through a parking
lot, with another vehicle driving behind. The right side of the
figure shows the ROI in each camera to cover all objects,
which is less than half of the original size. Considering the
vehicle is moving forward and all surrounding vehicles are
static, the actual ROI can be reduced to half of the front
camera’s view (1/12 of the original size). This example clearly
illustrates how ROIs can be dynamically adjusted based on
traffic environment and driving context.

Timing Benefits with ROIs. The environment-aware ROI
ensures that the perception system conserves computational
resources by avoiding irrelevant or static areas that do not
influence the vehicle’s operational decisions. To demonstrate
the potential timing benefits of processing ROIs instead of
the entire frame, we cropped synchronized images from the
nuScenes dataset and fed them into UniAD’s feature extraction
module to measure the inference time. The UniAD’s feature
extraction module with ResNet101 and FPN is widely used

Detections in BEV Surrounding cameras with ROI

Front Left Front Front Right

Back Right Back Back Left

Fig. 2. An example of environment-aware ROI.

in BEV perception models [4], [6], [13], [14], [26], [27].
Here we assume each camera only has one ROI and all ROIs
have the same square shape and size. Figure 3 illustrates the
inference latency results when ROIs are set at different pixel
dimensions with the number of cameras ranging from one to
six. Using ROIs can significantly reduce the inference time,
with processing time reductions varying between 2x and 35x.
Direct cropping of images may cause performance degradation
if the cropping area is not carefully designed.

200 300 400 500 600 700 800
Crop Width/Height (pixels)

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

ec
on

ds
)

ROI Processing Time vs. Crop Width/Height.

of Cameras
1
2
3
4
5
6
No ROI

Fig. 3. Potential time savings for ROIs.

ROIs Variability. In practice, the ROIs for each camera often
vary in size rather than being uniform. In diverse driving
contexts, some cameras might not even be included in the
ROI selection. However, DNN inference on GPUs typically
requires that tensors within a batch maintain the same shape
to optimize throughput [31], [32]. This uniformity is crucial
for efficient processing using the Single Instruction, Multiple
Thread (SIMT) architecture, which leverages thousands of
GPU cores [33]. Consequently, the batch-processing approach
is to resize all ROIs to the smallest coverage size of them. This

3

method allows for batching multiple images’ ROIs together
at the cost of increasing the ROI size, thereby introducing
overhead. An alternative approach is to forego batching and
process each ROI sequentially for each camera.

1 2 3 4 5 6
Number of Cameras

0.00

0.05

0.10

0.15

0.20

0.25

0.30

La
te

nc
y

(s
ec

on
ds

)

Batch Processing vs. Sequential Processing
Batch
Sequential

Fig. 4. Comparison of latency for batch and sequential processing with ROIs.

This situation poses an interesting question: should we
process variable-sized ROIs sequentially, or batch process
uniformly sized ROIs? To evaluate the impact of different
processing strategies, we compared the inference times of
both approaches using UniAD’s feature extraction module.
Figure 4 presents an inference latency box plot for batch
and sequential processing using the same ROIs. We observe
that the latency distribution for both processing strategies
is quite similar. The latency primarily depends on the ROI
sizes for each camera. For ROIs covering just one camera,
sequential processing has a slightly lower average latency
compared to batch processing. As the number of cameras
increases, batch processing demonstrates a smaller average
latency. Interestingly, sequential processing can outperform
batch processing when ROIs include six cameras if five have
small ROIs and one has a large ROI. Consequently, the choice
between batch processing and sequential processing requires
careful consideration of the ROIs’ characteristics.

Insight 1: ROIs for BEV perception models in autonomous
vehicles are environment-aware. This approach can potentially
reduce detection delay by decreasing the amount of data that
needs to be processed. However, the variable ROI sizes require
careful modeling to avoid timing overhead when integrated
with BEV perception pipelines on GPUs.

B. Multi-Camera Data Synchronization

To support dynamic ROI sizes for BEV perception, multi-
camera data synchronization is another essential aspect. In
AVs equipped with several cameras, the timestamps for each
camera that captures the environment can vary greatly [20],
[21]. In addition, the BEV perception model requires a batch
of synchronized frames, which is usually handled by commu-
nication middleware with an approximate time synchronization
policy [24], [25]. The actual time difference for synchronized
frames could vary from tens to hundreds of milliseconds. Here
we discuss the capturing time variations and synchronization
time variations separately.

Capturing Time Variations. To show the effect of time
discrepancies in data capturing, we use the nuScenes dataset as

an example. This dataset includes cameras operating at 12Hz
and a LiDAR sensor functioning at 20Hz. In the nuScenes
calibration setup, the camera’s exposure is triggered when
the top LiDAR beam intersects the center of the camera’s
field of view [20]. As a result, the actual capture times for
each camera vary. Figure 5 displays the scatter of maximum
time differences for synchronized keyframe images in the
nuScenes dataset. Although the keyframes in the nuScenes
dataset are largely synchronized, there is still a maximum
time deviation of 39ms to 46ms. This time variance is a direct
outcome of the 20Hz operation of the LiDAR and the camera’s
exposure mechanism, which has a theoretical maximum time
difference of exactly 50ms. This time difference is fine since
the keyframe in the nuScenes dataset is 2Hz and frames
are synchronized offline. In practice, AV-equipped cameras
operate at 10-30Hz and require online time synchronization.
Therefore, SOTA approaches cannot handle it.

0 250 500 750 1000 1250 1500 1750 2000
Sample Index

41

42

43

44

45

Ti
m

e
Di

ffe
re

nc
e

(m
s)

Time Differences Among Cameras on nuscenes dataset

Fig. 5. Time difference on synced nuScenes dataset.

Online Synchronization Time Variations. At runtime, a
sweep of image frames is captured and stored in message
queues within communication middleware like ROS. ROS
synchronizes the cameras’ frames using an approximate time
method, which tolerates a maximum allowable discrepancy in
timestamps between the sensors [24]. For each synchronization
cycle, it first determines a pivot, which is the newest image for
all cameras, and then generates a candidate group of images
from all cameras where the maximum time difference is below
the allowable value [25].

This approach can result in dropping images and increasing
synchronization delays if one camera’s image arrives late.
The issue is even more critical for ROI processing, as not
all cameras would be included in the ROIs under certain
traffic environments and contexts. To illustrate the effect of
communication delay on multi-camera image synchronization,
we use the nuScenes dataset’s sweep data, which includes
12 Hz camera images, and apply ROS message_filter’s
Approximate Time Policy for synchronization [25]. The max-
imum allowable time difference is set to 200 ms. Figure 6
shows the synchronization time differences with and without
considering capturing time. Without considering capturing
time, synchronization time varies from 40 ms to 110 ms,
changing gradually because ROS handles multiple topics se-
quentially. When capturing time is considered, with the mes-
sage header timestamp set to the actual capturing timestamp,
the final synchronization time difference ranges between 40 ms

4

Fig. 6. Synchronization time difference with and without capturing time.

to 200 ms. This range includes both capturing time and ROS
communication time. The synchronization time difference
changes dramatically, as the camera’s capturing time varies
across samples. Integrating ROI information with the message
synchronization process could potentially reduce the number
of message queues, thereby increasing the synchronization
success rate.

Insight 2: Time synchronization is critical to BEV perception.
The time difference for synchronized images can reach hun-
dreds of milliseconds due to camera exposure time differences
and communication delays. An ROI-aware message synchro-
nizer is essential for achieving real-time BEV perception.

IV. SYSTEM DESIGN

This section details the design of RT-BEV. Based on the
insights gained in Section III, RT-BEV achieves real-time
BEV perception through environment-aware ROI coordinated
processing (by addressing Insight 1) and ROI-aware sensor
synchronization (by addressing Insight 2). We begin with
an overview of RT-BEV, followed by a discussion of the
technical challenges and the corresponding research questions.
Finally, we introduce the functionality of each component in
RT-BEV.

A. System Overview

Figure 7 provides an overview of RT-BEV, a novel frame-
work designed to enhance real-time BEV perception in AVs.
The Camera Synchronizer ensures precise time synchroniza-
tion across multiple sensors 1 , where the synchronization
is ROI-aware and TTC-aware to reduce communication de-
lay. Following synchronization, the Feature Split & Merge
module processes synchronized camera frames with ROIs
4 . It divides model inference between ROI and non-ROI

regions, applying intensive feature extraction to ROI regions
via the backbone and neck modules, while non-ROI regions
utilize temporal locality for feature generation. The extracted
features are then seamlessly integrated. The ROIs Generator
supplements this process by creating potential ROI proposals

based on detection outputs and contextual data from traffic
and the environment 2 , focusing computation on critical
areas to drive decisions. Additionally, the Time Predictor en-
hances system responsiveness by monitoring time-to-collision
(TTC) and predicting the inference times for dynamically
changing ROI inputs 3 , facilitating preemptive operational
adjustments. At the heart of RT-BEV is the Coordinator 5 ,
which plays a pivotal role in managing keyframe frequency
and ROI regions, and in controlling synchronization and ROI
processing strategies to minimize e2e latency while ensuring
accuracy. Together, these components ensure that the RT-BEV
system delivers reliable, real-time data crucial for advanced
AV applications.

Multi-
Camera

BEV
Encoder

Detection
Head

Time
Predictor

BEV
features

Camera
Synchronizer

image
streams

ROIs
Generator

Feature
Split & Merge

Coordinator
bboxes

bboxes, latency

frequency ROIs
candidates

feature
maps

TTC

ROIs
1

2

3

4

5

Fig. 7. RT-BEV system overview.

B. Technical Challenges

To support real-time BEV perception, RT-BEV addresses
the following challenges:
C1: Mitigating Synchronization Delay: How to reduce syn-
chronization delays for the multi-camera system? RT-BEV
employs a Camera Synchronizer with a novel approximate
time synchronization mechanism that is aware of ROI selection
and supports flexible runtime reconfiguration.
C2: Modeling the Traffic Environment: How to model the
traffic environment and driving context to generate ROIs
for each camera to maintain detection accuracy? RT-BEV
includes the ROIs Generator that constructs ROI proposals for
each camera by leveraging the locality of detected moving
objects and view transformation.
C3: Processing Variable ROIs: How to design a BEV per-
ception pipeline to handle variable ROI sizes efficiently?
RT-BEV uses a Feature Split & Merge module that supports
the generation and updating of feature maps with variable-
sized ROIs. The Time Predictor also models ROI timing with
batching or sequential processing and time-to-collision (TTC).
C4: Balancing Real-Time and Accuracy: How to trade-off
between real-time processing and accuracy to ensure the safety
of autonomous vehicles? RT-BEV includes a Coordinator that
collects intermediate results on ROI proposals, TTC, and
keyframe frequency to determine the best trade-off between
real-time performance and accuracy.

C. Camera Synchronizer

The Camera Synchronizer is designed to support the
FlexibleTimeSync policy which has two novel designs:
flexible and ROI-aware synchronization queues, and adap-
tive allowable maximum time difference. Figure 8 provides
a schematic comparison of the FlexibleTimeSync in

5

RT-BEV and ApproximateTimeSync in ROS when han-
dling the same message groups [24], [25]. Both approaches
depict a central pivot point coordinating the synchronization
of messages from multiple cameras labeled cam1 through
cam6. The ApproximateTimeSync policy searches im-
ages from all six cameras and synchronizes them based on
approximate time. We can find three synchronized groups
(T1, T2, T3) with the corresponding time differences (∆t1,
∆t2, ∆t3). In contrast, FlexibleTimeSync takes an
adaptive approach that determines which cameras to syn-
chronize based on ROIs. Therefore, we can observe the
FlexibleTimeSync policy only covers three cameras for
synchronized groups T ′

2 and T ′
3. Moreover, the time differ-

ences (∆t′2, ∆t′3) under FlexibleTimeSync are much
smaller than ApproximateTimeSync. Synchronizing with
a smaller group reduces the probability of excessive delays.

cam1
cam2

cam6

cam3
cam4
cam5

∆𝑡!"

pivot

cam1
cam2

cam6

cam3
cam4
cam5

∆𝑡! ∆𝑡# ∆𝑡$ ∆𝑡#" ∆𝑡$"

𝑇#"𝑇!" 𝑇$"𝑇!	 𝑇#	 𝑇$	

(a) ApproximateTimeSync (b) FlexibleTimeSync

Fig. 8. An illustration of the FlexibaleTimeSync policy in RT-BEV.

Algorithm 1 Camera Synchronization in RT-BEV.
1: Input: Topic-specific queues queues, keyframe frequency kf ,

ROI cameras C, last published set S
2: Output: Published set T
3: function SYNCHRONIZER(queues, kf , C)
4: for each cam topic in queues and ROI cameras C do
5: Discard messages older than the last message in set S
6: Insert new messages into queues[cam topic]
7: end for
8: Wait until each queue contains at least one message
9: pivot← latest message among the first in each queue

10: candidateSet ← messages with time differences from
pivot lower than 1/kf

11: while new messages arrive do ▷ Optimize and Publish Set
12: Update candidateSet with new messages
13: if a better set is found or end of queue is reached then
14: T ← candidateSet
15: Publish T
16: break
17: end if
18: end while
19: end function

Algorithm 1 describes the overall process. If some (back,
back left, back right) cameras are not included in the ROIs,
then the Camera Synchronizer skips these cameras and focuses
only on the front three cameras (Lines 4–7). Synchronization
with a smaller number of messages increases the possibility
of better and faster time alignment. The Camera Synchronizer
updates the ROIs and uses them to determine which camera
frames to be included in the synchronization at runtime.
Furthermore, if the keyframe frequency is low for certain

driving contexts (e.g., driving at low speed) then the allowable
maximum time difference would be higher, else it would be
lower. The Camera Synchronizer takes updates on the time-
to-collision (TTC) and adjusts the allowable maximum time
difference, consistently with the timing requirements of the
traffic environment (Lines 9–10). When new messages arrive,
the candidate set is updated (Lines 11–12). When it finds an
optimized set or reaches the end of the queue, it assigns this
set to T , publishes it then exits the loop (Lines 13–19).

D. ROIs Generator

To ensure real-time and accurate BEV perception, it is
essential to select those ROIs that cover critical segments and
exclude unnecessary ROIs. There are two key components in
the ROIs Generator: (i) a context filter for determining the
vehicle’s driving state and selecting relevant cameras, and (ii)
a runtime traffic environment analyzer for generating ROIs
based on BEV perception results.

The context filter identifies the vehicle’s driving status
(moving forward, turning/changing lanes, or moving back-
ward) and selects the corresponding cameras as ROIs. Fig-
ure 9 illustrates the context-related cameras. Moving forward
uses the front cameras; turning/changing lanes uses the front
and side cameras; moving backward uses the rear cameras.
Driving status is primarily based on the global planner and
the vehicle’s speed, which generates the route from the AV’s
current position to the destination, just like Google Maps.

front
front
right

front
left

back

back
left

back
right

front
front
right

front
left

back

back
left

back
right

front
front
right

front
left

back

back
left

back
right

front
front
right

front
left

back

back
left

back
right

Moving forward Turning left Turning right Moving backward

Fig. 9. The context-related cameras for ROIs.

The traffic environment analyzer generates ROIs using BEV
perception results from the detected keyframes to guaran-
tee perception accuracy. Figure 10 shows the workflow for
generating ROIs. The analyzer processes bounding boxes,
scores, and labels to transform BEV data to align with the
vehicle’s perspective. This involves transformations from BEV
to Ego view and then to Sensor view, using LiDAR and
camera intrinsics for accurate mapping. The ROIs are refined
to ensure minimum 2D coverage in the camera view, crucial
for environmental awareness. Algorithm 2 details the ROI
generation process. It takes BEV bounding boxes, labels,
scores, driving commands, and sample indices as inputs.
The context analyzer determines relevant cameras (Line 4),
and bounding boxes are filtered based on a score threshold
of 0.5, which follows the general setting in Non-Maximum
Suppression (NMS) to filter out low-probability objects (Line
5) [34]. For each ROI camera, bounding boxes are transformed
and projected to image UV coordinates (Lines 6–10). The
algorithm then computes the minimum bounding box covering
all boxes (Lines 11–18), updating the ROIs for each camera
to ensure precise ROI generation (Lines 19–21).

6

Context filterBEV Perception
Model

bboxes,
scores,
labels

BEV to Ego
Transform

Ego to Sensor
Transform

LiDAR intrinsic

Camera intrinsic Check In
Camera View

Minimum 2D
Coverage

ROIs

Fig. 10. The ROI generation process.

Algorithm 2 ROI Generation Process for Each Camera
1: Input: BEV bounding boxes bboxes, labels, scores, ego vehicle

driving commands (vx, vy)
2: Output: Updated camera bounding boxes rois box
3: function ROIGENERATOR(bboxes, labels, scores, vx, vy)
4: cam rois← context analyzer with (vx, vy)
5: Filter bboxes and labels where scores > 0.5
6: for each camera in cam rois do
7: cam intrisic ← Calibration data for camera
8: boxList = [] ▷ initialize empty list for UV boxes
9: for each bbox in bboxes do

10: bbox = bbox.transform ▷ Transform from BEV to
camera’s coordinates

11: if box in image(bbox, cam intrisic) then
12: bbox ← bbox.project(cam intrisic) ▷ project

to image UV coordinates
13: boxList.append(bbox)
14: end if
15: end for
16: if boxList is not empty then
17: bounding uv ← boxList ▷ Get minimum box to

cover all boxes
18: end if
19: rois box[camera] = bounding uv
20: end for
21: return rois box
22: end function

E. Time Predictor

The Time Predictor is designed to monitor the timeline of
BEV perception and consists of two components: predicting
(a) inference time for ROIs and (b) Time-to-Collision (TTC).

The first component of the Time Predictor focuses on calcu-
lating the time required to process images for BEV perception,
which utilizes dynamic ROIs tailored to each camera and
varying in size. For CNN-based models, the inference time
has a direct relationship with the ROIs’ height h and width
w [11], [35], [36]. Here we predict the inference time of ROIs
with sequential or batch processing. In sequential processing,
the total inference time Tseq is the sum of the inference times
for each of the six cameras, where f(hi, wi) is the inference
time for the i-th camera’s ROI:

Tseq =

6∑
i=1

f(hi, wi) (1)

In batch processing, the ROIs are resized to a unified height
and width, represented by the maximum dimensions among
all cameras in ROIs. The total inference time Tbatch for this
unified size is:

Tbatch = f ′(b, h′, w′) (2)

b is the batch size, while h′ and w′ are the minimum height
and width to cover all the camera’s ROI.

The second component of the Time Predictor estimates the
TTC based on the objects detected in the BEV space, which
corresponds to the keyframe time interval. This prediction is
crucial for proactive vehicle control and safety measures. The
TTC calculation utilizes the minimum distance (dmin) between
the ego vehicle and any detected object along its projected
path. Given that the BEV perception bounding boxes are in a
3D space, the distance can be accurately calculated. The TTC
is then computed using the vehicle’s current speed (v) and the
directional commands (dcmd), where TTC is dmin

v·dcmd
. A static

time (Toffset), required for the vehicle’s planning and control
algorithms to react, is subtracted from this estimated collision
time to provide a more accurate prediction of when corrective
actions need to be initiated.

F. Feature Split & Merge
With ROIs generated from each camera, it is crucial to

apply them to the BEV perception to save inference time
without losing accuracy. RT-BEV focuses on feature extraction
which is widely used in the vision-centric BEV perception
models [4], [6], [13], [14], [26], [27]. The Feature Split &
Merge module is designed based on the observation of spatial
and temporal locality in streaming perception. Figure 11
illustrates the general process of feature split and merge. First,
there is a high similarity between the (N−1)-th frame and the
N -th frame, indicating high temporal locality. The (N − 1)-
th frame, considered a keyframe, undergoes the whole-frame
feature extraction. In contrast, the N -th frame uses an ROI
to crop data, which is then processed by a CNN backbone
for feature extraction. Comparing the feature maps of the
(N−1)-th and N -th frames shows that the spatial information
is maintained, and the ratio of feature map size and similar
areas is consistent with the ROI.

N-th Feature Map

(N-1)-th frame

Cropped N-th frame

CNNs

CNNs

+

ROI Feature Map

Keyframe Feature Map

Merge

Fig. 11. An illustration of the feature split & merge process.

The spatial and temporal locality in consecutive frames
in BEV perception offers a unique advantage for detection
accuracy [4], [37]. The feature split & merge approach lever-
ages temporal locality between consecutive frames and spatial
locality of ROIs to generate ROI-processing feature maps.
Algorithm 3 provides the detailed feature split & merge
process. Cameras without ROIs will be skipped (Lines 8–
9). Data padding is added to ROI to handle offset between
consecutive frames (Lines 11–13). The image will be cropped
based on refined ROI and applied to the backbone (Lines 14–
15). For areas outside these ROIs, the system uses features

7

extracted from previous frame analyses to predict the current
non-ROI features. The predicted non-ROI features are then
seamlessly merged with the freshly processed ROI features
to create a unified feature map (Lines 16–21). The size of
the feature map in the FPN is halved after each convolution
layer, so we adjust the feature map sizes accordingly. This
integrated feature map ensures complete scene understanding,
enhancing the vehicle’s navigation capabilities and overall
safety in diverse driving conditions.

Algorithm 3 Image ROIs Split and Merge
1: Input: List of images imgs, ROIs bounding boxes rois box,

previous keyframe features pre key feats
2: Output: Features from images imgs feats
3: function ROISSPLITMERGE(imgs, rois box, pre key feats)
4: imgs feats ← pre key feats
5: Initilize divisible size ds, data padding size data padding
6: for each img in imgs do
7: xmin, ymin, roi w, roi h = rois box[img.cam]
8: if roi w == 0 or roi h == 0 then
9: continue

10: else
11: ▷ Add data padding and make size divisible by ds
12: roi w = ((roi w+data padding+ds−1)//ds)∗ds
13: roi h = ((roi h+data padding+ds−1)//ds)∗ds
14: img cropped = img[, ymin:roi h, xmin:roi w]
15: feats ← IMAGEBACKBONE(img cropped)
16: px, py ← xmin / 8, ymin / 8
17: for each feature map feat from feats do
18: hf , wf ← feat.size()
19: imgs feats[..., py:py + hf , px:px + wf]
20: px, py ← px / 2, py / 2
21: end for
22: end if
23: end for
24: return imgs feats
25: end function

G. Coordinator

The coordinator is the central component in RT-BEV de-
signed to achieve a trade-off between real-time processing and
accuracy. It collects all intermediate results, including ROI
proposals, predicted times for the ROIs, and time-to-collision
(TTC) estimates. The coordinator manages BEV perception
with two modes: keyframe and ROI modes. In keyframe mode,
the model processes images from all six cameras to generate
a complete feature map and detection results. In ROI mode,
the model processes only the data within the ROIs.

Algorithm 4 presents the overall coordination process. The
counter is initialized outside the function as zero. The fre-
quency of keyframes is determined by the TTC (Line 4).
ROIs and their corresponding cameras (rois and rois cam)
are generated by the ROIs Generator based on previous de-
tection results (Line 5). These ROIs, along with the keyframe
frequency Kf and rois cam, are then used for further pro-
cessing. For non-keyframes, the feature split & merge module
is invoked along with the predicted processing times Tseq

and Tbatch (Lines 7–8). If the current frame is a keyframe,
the entire image is fed into the backbone network. (Lines

9–10) Subsequently, feature maps are processed through the
neck, BEV encoder, and detection head to obtain the current
detection results curr res (Lines 12–14). The counter is reset
to zero to indicate a keyframe (Lines 15–17).

Algorithm 4 The Coordination Process
1: Input: Image queue queue, previous detection results res, time-

to-collision TTC, predicted times Tseq , Tbatch, counter
2: Output: Current detection results curr res
3: function COORDINATOR(img, queue, res, TTC, Tseq , Tbatch)
4: Kf = 1

TTC
5: rois, rois cam← ROIGENERATOR(res)
6: img ← SYNCHRONIZER(queue, Kf , rois cam)
7: if counter ̸= 0 then
8: img feats ← ROISSPLITMERGE(img, rois, Tseq ,

Tbatch)
9: else

10: img feats← IMAGEBACKBONE(img)
11: end if
12: img feats← IMAGENECK(img feats)
13: bev feats← BEVENCODER(img feats)
14: curr res← DETECTIONHEAD(bev feats)
15: if counter % Kf == 0 then
16: counter = 0 ▷ Signal for keyframe
17: end if
18: return curr res
19: end function

V. IMPLEMENTATION

We integrate RT-BEV’s implementation into UniAD’s per-
ception pipeline based on ROS in a resource-limited GPU
desktop [6], [24]. UniAD’s feature extraction with ResNet
and FPN is widely used for vision-centric BEV perception
models [4], [6], [13], [14], [26], [27].

/front, /front_left,
/front_right, /back_left
/back, /back_right
command

Synchronizer

ROS Parameters slop, topics, ttc, infer_time, rois, command

Coordinator

Sensor Sync

Message QueueCamera Image
Publisher

Feature Split &
Merge

ROI Generator

Time Predictor

Detector/imgs
/img_metas

/bboxes

rois

ttc
infer_time

rois

slop, topics

Fig. 12. ROS framework for RT-BEV.

ROS Framework. Based on the BEV perception pipeline
illustrated in Figure 1, we developed a ROS framework for
its perception system (Figure 12). This framework consists
of three ROS nodes (Publisher, Synchronizer, and
Detector), nine ROS topics, and six ROS parameters.

TABLE I
COMPARISON OF SYNC POLICIES.

Feature ApproximateTimeSync FlexibleTimeSync
Topics Fixed topics number and name reconfigurable through topics
Slop Fixed maximum time difference reconfigurable through slop

8

The Publisher node publishes the NuScenes dataset
across /front, /front_left, /front_right,
/back_left, /back, /back_right and the driving
command (command), indicating the vehicle’s direction.
The Synchronizer node includes a message queue, a
custom Camera Synchronizer, and a coordinator. The Camera
Synchronizer implements FlexibleTimeSync policy
which supports runtime reconfiguration of synchronization
slop and topics. Table I compares the FlexibleTimeSync
policy with the default ApproximateTimeSync
policy [25]. The coordinator checks slop and topics
every second to determine if reconfiguration is needed.
The Detector node processes synchronized image data
from /imgs and metadata from /img_metas, applying
feature split and merge operations followed by detection. The
bounding boxes (/bboxes) generated are sent to the ROIs
Generator to create ROIs, shared via the parameter rois.
Additionally, the time predictor uses the bounding boxes
and ego vehicle velocities from /img_metas to calculate
the time-to-collision (ttc) and predicted inference time for
batching and sequential processing (infer_time). The
coordinator reconfigures the synchronizer’s slop based on
ttc, updates topics based on rois and command, and
adjusts rois based on infer_time.

Baseline. UniAD is used as the baseline for comparison.
RT-BEV optimizes feature extraction, making UniAD rep-
resentative because its feature extraction with ResNet and
FPN has been widely used in vision-centric BEV perception,
including BEVformor, UniAD, Fast-BEV, and Simple-BEV.
The novelty of RT-BEV lies in two main aspects: flexible
time synchronization for multi-camera BEV perception data
and adaptive ROIs for BEV perception. To demonstrate the
effectiveness of these features, we designed four testing cases.
Table II describes each testing case.

TABLE II
DESCRIPTIONS OF TESTING CASES

Testing Cases Descriptions

NR+ATS (SOTA) No ROIs + ApproximateTimeSync
NR+FTS No ROIs + FlexibleTimeSync
AR+ATS Adaptive ROIs + ApproximateTimeSync

AR+FTS (RT-BEV) Adaptive ROIs + FlexibleTimeSync

VI. EVALUATION

We evaluate the effectiveness of RT-BEV in guaranteeing
the real-time and accuracy of BEV perception through com-
prehensive experiments and ablation studies.

A. Experimental Setup

Hardware and software setup. The GPU desktop has 24
12th Gen Intel® Core™ i9-12900K CPUs with the high-
est frequency of 3.3GHz. The platform has an NVIDIA
GeForce RTX 3080 GPU providing 29.8 teraFLOPS for FP32.
The GPU card has 10GB GDDR6 memory. In addition,

the platform has 32 GB DDR4 memory. The libraries in-
stalled for ML-related applications include CUDA Driver
545.29.06, CUDA runtime 12.3, torch v1.9.1+cu111,
torchvision v0.10.1+cu111, mmcv-full v1.4.0, mmdet
v2.14.0, and mmdetection3d v0.17.1. ROS Melodic is
deployed as the communication middleware.

Dataset. The nuScenes dataset is used as the input to the
perception pipeline [20]. The dataset includes 11,628 images
with a resolution of 1600x928 covering six cameras and 10
traffic scenarios. Images are published as ROS Image at 12Hz.

Metrics. We evaluate the testing cases using latency, accuracy,
and frame efficiency score (FES) as metrics. We also measure
communication delay, detection delay, and e2e latency. For
accuracy, we assess cosine similarity at the feature map level,
mean Average Precision (mAP) for object detection [38], and
Average Multi-Object Tracking Precision (AMOTP) for object
tracking [20], [39]. AMOTP represents the average localization
error of tracked objects across multiple recall levels, where di,t
denotes the position error for object i at time t, and TP t is the
number of true positives at time t. A lower AMOTP indicates
better tracking performance.

AMOTP =
1

n− 1

∑
r∈{ 1

n−1 ,
2

n−1 ,...,1}

∑
i,t di,t∑
t TP t

(3)

Additionally, we define the FES, which integrates both
latency and accuracy. The frame efficiency score (FES) is
a measure of the efficiency of a system by considering
its processing time and the effectiveness of synchronization
and accuracy, defined as Eq. (4). The average accuracy is
calculated as the average mAP over all classes.

FES =
processed frames × average accuracy

average latency
(4)

B. Latency Reduction

The evaluation of latency reduction includes the communi-
cation delay, the detection delay, and the end-to-end latency.

Communication Delay. As presented in Figure 1, the com-
munication delay describes the time from camera exposure
until the synchronized images are fed into the BEV perception
pipeline. Table III shows the synchronization and commu-
nication delay. The communication delay is defined as the
timestamp difference between two consecutive synchronized
images. This includes both the sync delay and queuing delay,
reflecting the predictability of the synchronization process.
From Table III, we can observe that RT-BEV reduces the aver-
age sync delay from 72.4ms to 64.9ms. Regarding the commu-
nication delay, RT-BEV reduces it from 151.7ms to 110.7ms
on average (a 1.4× speedup). This reduction is primarily due
to the introduction of FTS (FlexibleTimeSync). FTS also
helps to reduce the maximum (worst-case) communication
delay. NR+FTS and RT-BEV show maximum communica-
tion delays of 251.4ms and 288ms, respectively, which is
a significant improvement (48×-55× speedup) compared to
NR+ATS (14071.3ms). This substantial communication delay

9

TABLE III
COMPARISON OF SYNC DELAY AND TIMESTAMP DELTA

Cases Sync Delay
(ms)

Communication
Delay (ms)

Min Communication
Delay (ms)

Max Communication
Delay (ms)

NR+ATS 72.4 151.7 103.7 14071.3
NR+FTS 71.3 110.7 50.2 251.4
AR+ATS 65.4 131.5 104.3 15251.8

RT-BEV 64.9 110.7 23.7 288.0

in NR+ATS occurs when there is a high time difference
between queues, resulting in no candidate for synchronization.
The reconfigurable design in the FTS policy addresses this
issue by adjusting the number of synchronization topics and
time difference slops, increasing the likelihood of successful
synchronization. The Camera Synchronizer shows effective
performance in reducing worst-case communication delay and
it makes the synchronization process more predictable.

Detection Delay. The detection delay covers the time from
receiving synchronized images until the detection process is
complete. Therefore, RT-BEV also includes the ROIs genera-
tor, time predictor, and feature split & merge in the detection
delay. Figure 13 shows the boxplot for detection delay under
four cases. We can observe that the introduction of adaptive
ROIs significantly decreases the detection delay, although
some outliers exist due to keyframe detection. Tables IV and V
show detailed comparisons of the average, minimum, and
maximum delays for feature extraction and detection.

Fig. 13. Boxplot of feature extraction and detection latency.

For feature extraction, adaptive ROIs help reduce the
latency from approximately 285ms to 123ms, achieving a
2.3× speedup. Regarding the minimum latency, RT-BEV and
AR+ATS show a 6.5-7.3× speedup since RT-BEV processes
smaller ROIs rather than the entire frame when there is high
locality. In terms of detection delay, which includes feature
extraction and additional overhead from generating ROIs and
conducting time prediction, RT-BEV and AR+ATS still show
much lower latency with around a 1.6× speedup. The introduc-
tion of adaptive ROIs is highly effective in reducing detection
latency based on the similarity of consecutive images.

End-to-end latency. As for the end-to-end latency which
covers both communication and detection. Table VI shows
the e2e latency for four cases. We can observe that RT-BEV
shows 1.5× speedup in average e2e latency, 2.6× speedup in
minimum e2e latency, and 19.3× speedup in maximum e2e
latency. Overall, the FTS reduces the communication delay
while the adaptive ROIs reduce the detection delay.

TABLE IV
COMPARISON OF FEATURE EXTRACTION TIME METRICS

Cases Average
(ms) Speedup Min

(ms) Speedup Max
(ms) Speedup

NR+ATS 284.9 - 277.8 - 300.5 -
NR+FTS 285.4 1.0× 276.9 1.0x 295.9 1.0×
AR+ATS 125.1 2.3× 42.6 6.5× 298.3 1.0×

RT-BEV 123.0 2.3× 38.1 7.3× 290.3 1.0×

TABLE V
COMPARISON OF DETECTION DELAY

Cases Average
(ms) Speedup Min

(ms) Speedup Max
(ms) Speedup

NR+ATS 429.0 - 419.3 - 464.7 -
NR+FTS 428.7 1.0× 419.6 1.0× 464.7 1.0×
AR+ATS 269.7 1.6x 187.1 2.2× 447.1 1.0×

RT-BEV 266.9 1.6× 181.5 2.3× 466.2 1.0×

TABLE VI
COMPARISON OF END-TO-END LATENCY

Cases Average
(ms) Speedup Min

(ms) Speedup Max
(ms) Speedup

NR+ATS 580.6 - 523.0 - 14536.0 -
NR+FTS 539.4 1.1× 469.8 1.1× 716.1 20.3x
AR+ATS 401.2 1.5× 291.4 1.8× 15698.8 0.9×

RT-BEV 377.6 1.5x 205.2 2.6× 754.2 19.3×

C. Detection Accuracy

In addition to latency, detection accuracy is an essential
aspect. We mainly discuss the evaluation of detection accuracy
in three aspects: the number of synchronized and processed
frames, feature map correctness, and accuracy for object
detection and tracking.

Synchronized and Processed Frames. When integrating the
BEV perception into a ROS-based pipeline, not every frame
from the camera is processed by the detector due to the
communication middleware, which only filters synchronized
data. Therefore, there is a difference in the number of syn-
chronized and processed frames under the four cases. This
frame number difference indeed impacts detection accuracy.
Table VII compares the number of synchronized and processed
frames. We observe that the default ATS policy only syn-
chronizes 70-80% of frames, and the BEV perception model
processes 14-22% of frames. In contrast, the FTS improves the
synchronization percentage to 97%, and RT-BEV processes
26 % of frames, which is a 1.8x speedup compared with
NR+ATS. This improvement is mainly due to the ROIs-aware
reconfiguration of the synchronization process, which allows
more frames to get synchronized.

Feature Maps Correctness. To evaluate the correctness of
object detection at the feature map level. We utilize the Feature
Split & Merge to process images with ROIs, yielding a feature
map A. For comparison, we apply model inference to whole
images to obtain feature map B. The similarity between

10

TABLE VII
COMPARISON OF SYNC FRAMES AND PROCESSED FRAMES

Cases Sync Frames Sync
Ratio (%)

Processed
Frames

Processed
Ratio (%)

NR+ATS 1375 70.9 (–) 275 14.2 (–)
NR+FTS 1886 97.3 (1.4×) 356 18.4 (1.3×)
AR+ATS 1569 81.0 (1.1×) 432 22.3 (1.6×)

RT-BEV 1886 97.3 (1.4×) 508 26.2 (1.8×)

feature representations derived from the backbone model is
assessed using cosine similarity. Figure 14 presents the cosine
similarity comparison of whole-frames and ROIs processing.

200 300 400 500 600 700 800
Crop Width/Height (pixels)

0.96

0.97

0.98

0.99

1.00

C
os

in
e

S
im

ila
rit

y

Cosine Similarity vs. Crop Width/Height.

of Cameras
1
2
3
4
5
6

Fig. 14. Cosine similarity for original and ROI-based feature maps.

High cosine similarity scores are observed even when the
ROI size is 800x800 (half of the original size), indicating
high locality. This is because there are limited and predictable
movements of pixels in high FPS camera data, enhancing the
efficiency of ROI-based processing. This result demonstrates
the locality in consecutive frames for autonomous driving and
reflects the effectiveness of feature split & merge.

Object Detection and Tracking. The final step is to evaluate
the performance of BEV perception in object detection and
tracking. To demonstrate the effectiveness of the proposed
ROIs processing compared with processing the whole frame,
we conduct an offline test where every synchronized frame
is fed into the BEV perception pipeline. We collect the final
results to calculate the mAP and AMOTP. Another baseline
that applies static ROIs is also implemented for comparison.
Figure 15 shows the results under NR-ATS and RT-BEV.

For object detection, we observe that RT-BEV shows com-
parable performance to NR+ATS, with slightly better perfor-
mance in detecting trucks, buses, and traffic cones, which
are relatively large and static objects. The average mAP for
NR+ATS and RT-BEV is almost the same. Regarding object
tracking, static ROIs show much better performance than both
RT-BEV and NR+ATS. The potential reason is that fixed
ROIs maintain spatial information while filtering out unrelated
objects for tracking. On average, RT-BEV and NR+ATS show
comparable AMOTP.

D. Frame Efficiency Score

FES is designed to show the combined performance in
latency and accuracy. Therefore, we collect the average e2e

m
A
P

0.00

0.20

0.40

0.60

0.80

car truck bus pedestrian motorcycle bicycle traffic cone Average

NR-ATS RT-BEV

Fig. 15. mAP for object detection and AMOTP for object tracking.

latency, processed frames, and average detection accuracy
to compare FES. The results are shown in Table VIII. As
a comparison, we found that RT-BEV achieves lower e2e
latency, a much better number of processed frames, and a
comparable detection accuracy. The final FES of RT-BEV
achieves 2.9× speedup compared with the NR+ATS.

This significant speedup demonstrates RT-BEV’s efficiency
in handling computational resources and optimizing the pro-
cessing pipeline. By increasing processed frames, maintaining
high accuracy, and reducing latency, RT-BEV greatly enhances
the real-time performance crucial for AV operations.

TABLE VIII
COMPARISON OF VARIOUS METRICS

Metrics NR-ATS NR-FTS AR-ATS RT-BEV

Average e2e latency (ms) 580.6 539.4 401.2 377.6
Processed Frames 275 356 432 508
Average accuracy (%) 0.369 0.369 0.37 0.37

FES (speedup) 0.175 (–) 0.244 (1.4×) 0.398 (2.3×) 0.498 (2.9×)

E. Alternative Heuristics for ROI Generation

Besides RT-BEV’s method for generating ROIs, we have
implemented and evaluated alternative heuristics, including
static, dynamic, and unified ROIs. For static ROIs, batch
processing is applied to a fixed region of each image, which
is set to cover half of the image in our implementation.
In contrast, dynamic ROIs are designed with variable sizes
for each camera and sequential processing is used to handle
dynamically changing regions. The unified ROI approach
resizes the generated ROIs and conducts batch processing.

To assess the impact of these ROI-generation strategies on
perception accuracy, we have used the same camera frames
across all approaches and collected results for both object
detection and tracking. Tables IX and X present the cor-
responding mAP and AMOTP metrics for each class. The
“Base” strategy refers to using the entire image for perception.
For object detection, the base strategy is observed to outper-
form all the others, while the dynamic ROI approach exhibits

11

TABLE IX
COMPARISON OF MAP FOR DIFFERENT ROI-GENERATION STRATEGIES

mAP Unified ROIs Dynamic ROIs Static ROIs Base

car 0.636 0.605 0.578 0.665
truck 0.492 0.473 0.365 0.535
bus 0.554 0.487 0.360 0.503
pedestrian 0.519 0.390 0.420 0.524
motorcycle 0.462 0.426 0.422 0.487
bicycle 0.270 0.305 0.418 0.287
traffic cone 0.564 0.122 0.578 0.685

Average 0.499 0.401 0.449 0.527

TABLE X
COMPARISON OF AMOTP FOR DIFFERENT ROI-GENERATION

STRATEGIES

AMOTP Unified ROIs Dynamic ROIs Static ROIs Base

bicycle 1.427 1.583 1.479 1.436
bus 1.050 1.134 1.464 1.135
car 0.873 0.928 0.991 0.833
motorcycle 1.449 1.492 1.383 1.313
pedestrian 1.148 1.354 1.243 1.120
truck 1.067 1.087 1.316 0.984

Average 1.169 1.263 1.313 1.137

a significant drop in performance. This is likely due to its
reliance on previous frames for ROI generation, where missed
detections in one frame can result in missed regions containing
objects in subsequent frames. For object tracking precision,
the “Base” strategy again demonstrates the best performance,
while the static ROIs strategy shows the worst.

VII. DISCUSSION

A. Generality of RT-BEV

RT-BEV is designed as a versatile solution for multi-
camera, end-to-end BEV perception, encompassing both com-
munication and detection tasks. The proposed flexible time-
synchronization policy is built on top of ROS, making it
applicable to any ROS-based system, and can also be extended
to ROS2 with minimal effort.

For the detection task, RT-BEV is based on UniAD, the
state-of-the-art vision-centric BEV perception. RT-BEV en-
hances UniAD’s feature extraction, making RT-BEV a rep-
resentative solution. Its use of ResNet and FPN for feature
extraction is common in vision-centric BEV perception mod-
els, such as BEVFormer, UniAD, Fast-BEV, and Simple-BEV.

B. How Does RT-BEV Guarantee Safety?

To guarantee the safety of AVs, RT-BEV’s ROI generation
is designed to be lightweight, taking less than 30ms. When
image frames are generated and processed at 12–30Hz, the
actual movement of objects between two consecutive frames
is limited and predictable by the law of physics, allowing us
to perceive an object’s location differences and movements.
We also introduced a TTC model that predicts potential
collisions. When TTC decreases, RT-BEV adds keyframes
from all cameras into the perception pipeline. Our design

ensures critical information is not missed, and the system can
respond to potential hazards timelily and effectively.

VIII. RELATED WORK

Vision-centric BEV perception has been widely studied for
its unique ability to provide a comprehensive view that aids
vehicle navigation [1], [2], [14], [15]. BEV perception captures
essential details for navigation and decision-making, thereby
enhancing AV navigation and decision-making processes [6].
The accuracy of BEV perception models has significantly
improved with the use of vision transformers and cross-
attention across multiple cameras and time [4], [5], [40].

However, achieving real-time end-to-end (e2e) BEV per-
ception remains a significant challenge due to the compu-
tational demands of high-resolution cameras [12]. Previous
work has either designed more lightweight model structures
or leveraged model compression to trade-off accuracy for real-
time performance [13], [15], [17]. For instance, SparseBEV
employs a sparse model design to accelerate inference speed,
while SparseViT applies different pruning ratios for regions of
varying importance [15], [17]. These approaches, however, can
lead to accuracy degradation and overlook the communication
delays introduced by the multi-camera system, which are
significant in practice [20], [21]. Alternatively, researchers
have studied communication middleware to bound worst-case
communication delays [22], [23]. However, these methods also
fall short of achieving real-time e2e BEV perception due to the
lack of integration with detection characteristics. For real-time
e2e BEV perception, both communication and computation
need to be co-optimized.

IX. CONCLUSION

In this paper, we have presented RT-BEV, a novel frame-
work that co-designs communication and computation to en-
hance real-time e2e BEV perception tailored for autonomous
vehicles. RT-BEV leverages dynamic ROI processing and en-
hanced system coordination to optimize computation and com-
munication resources to reduce latency and maintain detec-
tion accuracy. Comprehensive evaluations using the NuScenes
dataset have shown RT-BEV to reduce e2e latency by 1.5×
and the number of processed frames by nearly 2× while
maintaining high mAP and AMOTP. Furthermore, RT-BEV
reduces the worst-case e2e latency by 19.3× compared to
SOTA approaches, corroborating its effectiveness in enhancing
real-time e2e BEV perception.

ACKNOWLEDGMENTS

This work was supported in part by the Office of
Naval Research under Grant No. N00014-22-1-2622. Jinkyu
Lee’s sabbatical with the University of Michigan was sup-
ported in part by the Korean National Research Founda-
tion (NRF) grant funded by the Korea government (MSIT)
(2022R1A4A3018824, RS-2024-00438248).

12

REFERENCES

[1] H. Li, C. Sima, J. Dai, W. Wang, L. Lu, H. Wang, J. Zeng, Z. Li, J. Yang,
H. Deng, H. Tian, E. Xie, J. Xie, L. Chen, T. Li, Y. Li, Y. Gao, X. Jia,
S. Liu, J. Shi, D. Lin, and Y. Qiao, “Delving into the devils of bird’s-eye-
view perception: A review, evaluation and recipe,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 46, no. 4, pp. 2151–
2170, 2024.

[2] Y. Ma, T. Wang, X. Bai, H. Yang, Y. Hou, Y. Wang, Y. Qiao, R. Yang,
D. Manocha, and X. Zhu, “Vision-centric bev perception: A survey,”
2023.

[3] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[4] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai,
“Bevformer: Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers,” in European conference on
computer vision. Springer, 2022, pp. 1–18.

[5] C. Yang, Y. Chen, H. Tian, C. Tao, X. Zhu, Z. Zhang, G. Huang,
H. Li, Y. Qiao, L. Lu et al., “Bevformer v2: Adapting modern image
backbones to bird’s-eye-view recognition via perspective supervision,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 17 830–17 839.

[6] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du,
T. Lin, W. Wang et al., “Planning-oriented autonomous driving,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 17 853–17 862.

[7] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[8] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi,
“Computing systems for autonomous driving: State of the art and
challenges,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6469–
6486, 2020.

[9] D. Kang, S. Lee, H. S. Chwa, S.-H. Bae, C. M. Kang, J. Lee, and
H. Baek, “Rt-mot: Confidence-aware real-time scheduling framework
for multi-object tracking tasks,” in 2022 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2022, pp. 318–330.

[10] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015.

[11] L. Liu, Z. Dong, Y. Wang, and W. Shi, “Prophet: Realizing a predictable
real-time perception pipeline for autonomous vehicles,” in 2022 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2022, pp. 305–317.

[12] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. L. Rus, and S. Han,
“Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view
representation,” in 2023 IEEE international conference on robotics and
automation (ICRA). IEEE, 2023, pp. 2774–2781.

[13] Y. Li, B. Huang, Z. Chen, Y. Cui, F. Liang, M. Shen, F. Liu, E. Xie,
L. Sheng, W. Ouyang et al., “Fast-bev: A fast and strong bird’s-eye view
perception baseline,” arXiv preprint arXiv:2301.12511, 2023.

[14] A. W. Harley, Z. Fang, J. Li, R. Ambrus, and K. Fragkiadaki, “Simple-
bev: What really matters for multi-sensor bev perception?” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 2759–2765.

[15] H. Liu, Y. Teng, T. Lu, H. Wang, and L. Wang, “Sparsebev: High-
performance sparse 3d object detection from multi-camera videos,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 18 580–18 590.

[16] Y. Zhang, Z. Dong, H. Yang, M. Lu, C.-C. Tseng, Y. Du, K. Keutzer,
L. Du, and S. Zhang, “Qd-bev: quantization-aware view-guided distilla-
tion for multi-view 3d object detection,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 3825–3835.

[17] X. Chen, Z. Liu, H. Tang, L. Yi, H. Zhao, and S. Han, “Sparsevit: Revis-
iting activation sparsity for efficient high-resolution vision transformer,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 2061–2070.

[18] F. Dellinger, T. Boulay, D. M. Barrenechea, S. El-Hachimi, I. Leang, and
F. Bürger, “Multi-task network pruning and embedded optimization for
real-time deployment in adas,” arXiv preprint arXiv:2101.07831, 2021.

[19] J. Li, Y. Zhao, L. Gao, and F. Cui, “Compression of yolov3 via
block-wise and channel-wise pruning for real-time and complicated
autonomous driving environment sensing applications,” in 2020 25th

International Conference on Pattern Recognition (ICPR). IEEE, 2021,
pp. 5107–5114.

[20] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[21] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2446–2454.

[22] R. Li, X. Jiang, Z. Dong, J.-M. Wu, C. J. Xue, and N. Guan, “Worst-
case latency analysis of message synchronization in ros,” in 2023 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 185–197.

[23] J. Sun, T. Wang, Y. Li, N. Guan, Z. Guo, and G. Tan, “Seam: An optimal
message synchronizer in ros with well-bounded time disparity,” in 2023
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 172–184.

[24] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[25] “message filters,” http://wiki.ros.org/message_filters.
[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[27] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[28] R. M. Haralick and L. G. Shapiro, “Glossary of computer vision terms.”
Pattern Recognit., vol. 24, no. 1, pp. 69–93, 1991.

[29] W. Kang, S. Chung, J. Y. Kim, Y. Lee, K. Lee, J. Lee, K. G. Shin,
and H. S. Chwa, “Dnn-sam: Split-and-merge dnn execution for real-
time object detection,” in 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2022, pp.
160–172.

[30] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” Advances in
neural information processing systems, vol. 29, 2016.

[31] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008.

[32] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE micro,
vol. 30, no. 2, pp. 56–69, 2010.

[33] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.

[34] P. Developers, “Faster r-cnn model in torchvision,” https://github.com/
pytorch/vision/blob/33e47d88265b2d57c2644aad1425be4fccd64605/
torchvision/models/detection/faster rcnn.py#L194, 2024, accessed:
2024-09-10.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[36] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138,
2016.

[37] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in Proceedings of the 24th annual
international conference on mobile computing and networking, 2018,
pp. 129–144.

[38] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[39] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,” in
European conference on computer vision. Springer, 2020, pp. 474–490.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

13

http://wiki.ros.org/message_filters
https://github.com/pytorch/vision/blob/33e47d88265b2d57c2644aad1425be4fccd64605/torchvision/models/detection/faster_rcnn.py#L194
https://github.com/pytorch/vision/blob/33e47d88265b2d57c2644aad1425be4fccd64605/torchvision/models/detection/faster_rcnn.py#L194
https://github.com/pytorch/vision/blob/33e47d88265b2d57c2644aad1425be4fccd64605/torchvision/models/detection/faster_rcnn.py#L194

	Introduction
	Background, Motivation, and Problem Statement
	BEV Perception
	Motivation
	Problem Statement

	Empirical Studies
	Environment-Aware ROIs
	Multi-Camera Data Synchronization

	System Design
	System Overview
	Technical Challenges
	Camera Synchronizer
	ROIs Generator
	Time Predictor
	Feature Split & Merge
	Coordinator

	Implementation
	Evaluation
	Experimental Setup
	Latency Reduction
	Detection Accuracy
	Frame Efficiency Score
	Alternative Heuristics for ROI Generation

	Discussion
	Generality of RT-BEV
	How Does RT-BEV Guarantee Safety?

	Related Work
	Conclusion
	References

