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ABSTRACT
Bidirectional communication between BLE/FSK devices and
WiFi access points (APs) combines the benefits of long bat-
tery life, low device cost, and ubiquitous Internet access.
However, prior cross-technology communication (CTC) so-
lutions require transmission mixers inside FSK chips, thus
not applicable to newer ultra-low-power (ULP) BLE chips,
which removes these mixers to conserve power. Furthermore,
throughputs of prior CTC solutions are limited to 1Mbps.

We present DREW that fundamentally overcomes these lim-
itations. It is designed to effectively transmit WiFi packets
by only controlling the power amplifier (PA), and is thus
applicable to mixer-less ULP BLE chips. We also propose
an innovative use of BLE’s IQ sampling capability to re-
ceive standard WiFi packets. We design efficient algorithms
with SIMD (Single Instruction Multiple Data) acceleration
to detect, synchronize and demodulate WiFi packets from
IQ samples in real time. DREW also implements WiFi’s CS-
MA/CA and timing, thus adding direct WiFi connectivity to
ULP BLE devices. Unlike prior work, DREW uniquely supports
QPSK and therefore doubles the downlink throughput. This
2x throughput increase is crucial for new applications that
prior work cannot support. In particular, DREW can stream
lossless, HiFi-quality audio from WiFi to ULP BLE chips.
Since stereo audio requires a throughput of 1.411Mbps, no
prior work can support this important application due to
their 1Mbps limitation.
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1 INTRODUCTION
Cross-technology communication (CTC) enables direct com-
munication between heterogeneous wireless devices, such
as between WiFi and Bluetooth devices. With the ubiquitous
usage and wide deployment of WiFi and Bluetooth around
the world, the WiFi–Bluetooth CTC creates highly useful
connectivity applicable to tens of billions of devices. The
state of the art (and DREW) enable end-to-end WiFi connec-
tivity by transforming Bluetooth chips to fully-operational
WiFi chips.

One practical application of this new connectivity is for
the Internet of Things (IoT). For IoT, each device should be
low-cost and highly energy-efficient in order to facilitate
massive deployment and support ultra-long battery life. To
meet these requirements, Bluetooth Low Energy (BLE) is
a popular, widely-deployed technology. BLE chips cost as
low as $0.99 apiece [1, 2]. In addition, the latest BLE chips
use ultra-low-power (ULP) designs that consume as little
as 6mA [3, 4], and 10 years of battery life can be achieved
with a single coin-cell battery [5]. However, the BLE protocol
alone cannot provide Internet connectivity, and additional
gateways are required to bridge the communication and
forward the packets to/from the Internet. These IoT gateways
incur additional costs to users, which are substantially higher
than the price of individual IoT devices. Moreover, unlike the
WiFi infrastructures (such as WiFi APs and routers), these
IoT gateways have a much smaller installed base and do not
have the same global adoption and coverage as WiFi. The
necessity to use IoT gateways is thus a major obstacle to the
widespread adoption of IoT [6, 7].

WiFi–Bluetooth CTC eliminates the need for gateways
and thus effectively overcomes this obstacle. The state-of-
the-art CTC solutions, FLEW [8] and Unify [9], achieve bidi-
rectional communication between FSK (BLE modulation)
and WiFi. With these solutions, IoT devices can use low-cost
and energy-efficient FSK/BLE chips while having direct In-
ternet access and global routability via the ubiquitous WiFi
infrastructures.

https://doi.org/10.1145/3636534.3649388
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Figure 1: DREW is a end-to-end (e2e) system for ULP BLE
devices to have standard WiFi connection.
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Figure 2: Streaming lossless, Hi-Fi quality audio from
WiFi to ultra-low-power BLE chips
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Figure 3: Architecture of ULP BLE chips [3, 4].

However, FLEW and Unify are both based on older FSK
chips, which have several key differences from the latest
ultra-low-power (ULP) BLE chips. Specifically, older FSK
chips use transmission mixers to modulate signals. Mixers
have high insertion loss (passive mixers) or have high power
consumption (active mixers). Newer BLE chips instead use
direct modulation [3, 4, 10], where the signal is directly
modulated by the PLL (phase-locked loop) and then ampli-
fied by the power amplifier (PA) (Fig. 3). Eliminating mixers
between the PLL and PA is crucial for enabling ultra-low
power consumption with more than 10 years of battery life.
Such ULP chips only consume 6.1mA at 3.6V (KW41Z [3])
or 6.1mA at 3V (CC2650 [4]), whereas the CC2541 [11] chip
used in Unify consumes ∼12mA at 3.6V. On the other hand,
FLEW and Unify require using mixers to flip the phase of the
carrier for implementing the phase-shift keying modulation
of WiFi. Therefore, they are not applicable to ULP BLE chips.
Another limitation of prior WiFi–Bluetooth CTC solu-

tions is the 1Mbps throughput limitation. In particular, these
WiFi–Bluetooth CTC works [8, 9] rely on the similarity be-
tween the WiFi BPSK and 1Mbps FSK waveforms in order

to demodulate standard BPSK waveforms using FSK hard-
ware. However, this similarity does not exist in WiFi’s QPSK
waveforms. In particular, QPSK is not BPSK clocked at twice
the speed. In fact, QPSK is two orthogonal BPSK transmis-
sions while keeping the same symbol rate. It is much more
challenging for FSK hardware to receive WiFi’s QPSK modu-
lation, since QPSK cannot be demodulated by clocking the
receiver twice faster. As a result, the state-of-the-art CTCs
[8, 9, 12–16] focus exclusively on BPSK waveforms, which
limits their maximum physical-layer throughput to 1Mbps.

In this paper, we propose DREW (Double-thRoughputEmulated
WiFi), which enables conventional WiFi connectivity on
newer, ULP BLE chips. Because their hardware is signifi-
cantly different, DREW addresses new challenges while explor-
ing and leveraging new opportunities. DREW is an end-to-end
WiFi system containing several key technical innovations:
Specifically, we

• Propose and demonstrate new use of BLE’s IQ sam-
pling to receive standard, unmodified WiFi packets;
• Devise efficient algorithms, with SIMD parallel pro-
cessing, for detecting and demodulating WiFi packets;
• Double the downlink throughput (compared to prior
work) by uniquely supporting QPSK demodulation;
• Transmit WiFi packets by carefully controlling the PA
on mixer-less BLE chips, which consumes ultra-low
power; and
• Coordinate Tx/Rx to emulate WiFi’s CSMA/CA and
timing, specifically on ULP BLE chips.

The key design requirements – QPSK demodulation and
mixer-less transmission – lead to brand-new designs for both
WiFi-to-BLE and BLE-to-WiFi communications, which are
very different from all prior work. Our WiFi-to-BLE design
is based on an innovative use of the IQ sampling feature on
modern BLE chips. Specifically, Bluetooth localization is a
key feature on modern BLE chips, and the localization relies
on processing the Angle-of-Arrival (AoA) of the incoming
signal. The AoA is estimated by processing the IQ samples
from the receiver. Therefore, modern BLE chips are capable
of IQ sampling where the IQ samples are exposed to the
processor core for post-processing. This feature has been
incorporated into the standard since Bluetooth 5.1 [17]. For
DREW, the key idea is that we can use this feature for data
communication (instead of localization) to capture standard
WiFi signals.

The IQ samples collected are relatively narrow-band and
we design special algorithms to detect, synchronize and de-
modulate standard WiFi packets. Furthermore, we aim to
process the IQ samples in "real time" with an ARM Cortex-
M0 core at 48MHz, since Cortex-M0 is the smallest ARM
processor [18] and its nominal speed is 48MHz. To meet
this goal, we come up with a special design that leverages
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the SIMD parallel processing. We also design algorithms to
support QPSK and double the downlink throughput.
This real-time processing of IQ samples is important for

DREW to behave and coexist like a typical WiFi chip. If the
processing is not done in real time, the demodulation lags
behind the waveform coming from the antennas, which re-
sults in processing delays at the end of a WiFi packet. Any
such delays directly decrease transport-layer throughputs.
More importantly, since the WiFi standard requires immedi-
ately sending an acknowledgement packet after receiving a
packet, the processing delay prevents sending ACKs within
the time limit, which makes such a design incompatible with
off-the-shelf WiFi devices.
The challenge in the opposite direction is enabling BLE-

to-WiFi communication with ULP BLE chips. Since ULP BLE
chips do not have transmission mixers, we must generate
the waveforms using only the PLL or the PA. We overcome
this challenge by proposing a novel way of controlling the
PA for BLE-to-WiFi communication. It is applicable to ULP
BLE chips as it only relies on changing PA’s power level.
In order for BLE chips to interoperate with unmodified

WiFi devices, DREW must follow the timing and medium ac-
cess mechanism of the WiFi standard. DREW also coordinates
packet transmission and reception, and overcomes the timing
challenges of ULP BLE chips.
As a complete system, DREW follows the WiFi standard,

including probing, authentication, association and encryp-
tion. DREW uses the 4-way handshake andWPA2-CCMP (AES
encryption), and is secured against eavesdropping.

DREW uses WiFi DSSS waveforms because DSSS provides
the highest reliability and robustness. Since no other WiFi
waveforms match the same reliability and because of WiFi’s
backward compatibility, DSSS is an important baseline mod-
ulation for current and future WiFi standards and the latest
WiFi devices are still required to support it.

DREW’s novel algorithm and use of IQ sampling achieve a
physical-layer downlink bit rate of 2Mbps (= 2x the rate of
FLEW and Unify). This enables new applications and bene-
fits a wide variety of BLE systems, including IoT, wearable,
and other ULP devices. For example, DREW can be used for
delivering audio and short video messages to wearable de-
vices. With the new transmission design, DREW (908kbps) also
provides about 26% higher uplink throughput than FLEW
(721kbps), which is particularly useful for IoT applications.

Another important application is high-quality audio stream-
ing. We demonstrate that DREW can directly stream lossless
stereo audio from WiFi to BLE devices (Fig. 2). This stan-
dard audio stream has a bit rate of 1.411Mbps, which well
exceeds the throughputs of FLEW and Unify. In fact, even
conventional Bluetooth headphones cannot stream lossless,
uncompressed audio because Bluetooth can only support
compressed audio streams (e.g., SBC, AAC, aptX), which

degrade audio quality (typically 4x compression) and intro-
duce latencies. In contrast, DREW leverages audio over IP (i.e.,
WiFi), and thus audio is not compressed by Bluetooth trans-
mitters. Without compression, DREW offers a bit-accurate,
wire-equivalent audio experience with ultra-low power con-
sumption of BLE chips.
2 SYSTEM DESIGN
2.1 WiFi to BLE

DSSS WaveformPSK
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Figure 4: The DSSS modulation process in WiFi.
2.1.1 Observation. To design the WiFi-to-BLE communi-
cation, we start by looking into a key block in the WiFi
transmitters. For an 802.11 waveform, a WiFi packet (after
scrambling and differential coding) is converted to a BPSK or
QPSK bitstream with a symbol rate of 1MSym/s. Each PSK
symbol is then multiplied by the 11-chip Barker sequence
to generate the waveform, as shown in Fig. 4. The spectrum
of a periodic 11-chip Barker sequence is 11 impulses located
at ±1,±2, . . .MHz. Since multiplication in the time domain
corresponds to convolution in the frequency domain, the
result of the DSSS process is replication of the original PSK
spectrum at ±1,±2, . . .MHz. If we capture the waveform at
-1MHz and calculate its phase, we can recover the PSK sym-
bols. By leveraging the close relationship between BPSK and
FSK, prior work [8] subsequently recovers the BPSK sym-
bols with an FSK demodulator operating at an additional
frequency shift. However, since there is no similar relation-
ship between QPSK and FSK, this design cannot be extended
to QPSK demodulation.

Our key idea is to leverage the IQ sampling capability on
modern BLE chips to capture the PSK spectrum. By process-
ing the IQ samples, both BPSK and QPSK demodulations
become possible, and thus we can double the throughput.
Since BLE chips are designed to receive FSK waveforms
at 1MSym/s, the IQ sampling works well for receiving BP-
SK/QPSK waveforms at 1MSym/s.
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Figure 5: Utilizing BLE’s IQ sampling to receive stan-
dard WiFi waveforms.
As a real example, we use an off-the-shelf BLE chip to

perform IQ sampling on BPSK and QPSK WiFi packets. The
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WiFi packets are sent at 2452MHz and the BLE chip operates
at 2451MHz. Figs. 5(a) and 5(b) show the phase of the IQ
capture. The IQ sampling runs at 4MHz, and thus each WiFi
symbol is represented by 4 data points. In Fig. 5a, the phases
change by either 0◦ or 180◦ in groups of four. Similarly for
QPSK, the phases change by 0◦, 90◦, 180◦ or 270◦ in Fig. 5b.
The figure also illustrates we should ideally select the phases
near the center of each symbol for accurate sampling.

𝜃[0]𝜃[1]𝜃[2]𝜃[3]

𝜃[4]𝜃[5]𝜃[6]𝜃[7]

𝜃[4𝑛]𝜃[4𝑛 + 1]𝜃[4𝑛 + 2]𝜃[4𝑛 + 3]

⋮

Word #0:

Word #1:

Word #n:

Figure 6: Packing phases into 32-bit words.
2.1.2 Processing Phases. To process the collected phases,
we first pack them into 32-bit words, as illustrated in Fig. 6.
We use 32-bit words because they are the intrinsic unit for
most arithmetic and logical operations on ARM microcon-
trollers. Since each WiFi symbol spans 4 phases and WiFi
uses differential coding, we calculate the phase difference be-
tween WiFi symbols. Let the phases be 𝜃 [0], 𝜃 [1], 𝜃 [2], · · · .
We calculate 4 sets:
• {𝜃 [4𝑛] − 𝜃 [4𝑛 − 4], 𝑛 ∈ N}
• {𝜃 [4𝑛 + 1] − 𝜃 [4𝑛 + 1 − 4], 𝑛 ∈ N}
• {𝜃 [4𝑛 + 2] − 𝜃 [4𝑛 + 2 − 4], 𝑛 ∈ N}
• {𝜃 [4𝑛 + 3] − 𝜃 [4𝑛 + 3 − 4], 𝑛 ∈ N}.

These sets represent the phase differences sampled at slightly
different time instants withinWiFi symbols, and the one with
the optimal sampling instant will have the best estimates.
Fig. 7 shows an example of using IQ sampling to capture
an actual QPSK WiFi packet (with a BPSK header and a
QPSK payload). In Fig. 7, {𝜃 [4𝑛 + 2] − 𝜃 [4𝑛 + 2 − 4]} has
the best estimates. For the BPSK header (𝑛 < 127), the phase
differences between symbols are 0◦ (bit ‘0’) or 180◦ (bit ‘1’).
For the QPSK payload (𝑛 ≥ 127), the phase differences are
0◦ (bits ‘00’), 90◦ (bits ‘01’), 180◦ (bits ‘11’) or 270◦ (bits ‘10’).
For each phase within a word, we use 5 bits to represent

the range [0, 360). The overflow and underflow properties of
integers map nicely to the fact that the phase wraps around
every 360◦. That is, if we add or subtract two phases, the
lower 5 bits will represent the principal angle of the result
(even when an overflow or underflow occurs).

By packing multiple phases in a 32-bit word, we can use
one instruction to perform the same arithmetic operation on
4 phases simultaneously. This type of parallel computation is
known as Single Instruction Multiple Data (SIMD). Although
ARM has an official SIMD implementation ("NEON" [19]), it
is usually not available on low-end ARM microcontrollers.
However, we can still apply SIMD with only conventional
instructions (such as ADD or SUB). In Fig. 6, if we calculate
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Figure 7: Phase changes between WiFi symbols.
Word[1]−Word[0], the upper 8 bits will be 𝜃 [7] − 𝜃 [3] and
the next 8 bits will be 𝜃 [6] − 𝜃 [2], etc. However, if 𝜃 [6] <
𝜃 [2], the upper 8 bits will be 𝜃 [7] − 𝜃 [3] − 1 because of
borrowing. To account for this, we can instead calculate
Word[1]+0x80808080−Word[0] so that the borrowing will
never occur across byte boundaries and we will take the
lower 5-bits of each byte as results.

2.1.3 BPSKDemodulation. For BPSK demodulation, we need
to determine whether the phase difference is 0◦ or 180◦. Tak-
ing the first half of Fig. 7(c) as an example, we can make
a bit decision by first adding a constant 90◦ to the phase
difference and then determining whether the result has a
principal angle in [0◦, 180◦) or in [180◦, 360◦).
This process can be implemented very efficiently using

SIMD and leveraging the property of binary representation.
With the phase format we use, 360◦ corresponds to a value
of 32, and thus adding 90◦ to each phase difference is adding
8 to each byte. We use SIMD and add 0x08080808 to each
32-bit word. We can further merge two additions and simply
calculate Word[i]−Word[i-1]+0x88888888. Within this 32-
bit result, the principal angles are the lower 5 bits of each
byte and the most significant bit (of these 5 bits) will indicate
whether the angle is in [0◦, 180◦) or [180◦, 360◦). Therefore,
we can recover the WiFi BPSK bitstream by continuously cal-
culating Word[i]−Word[i-1] +0x88888888 and extracting
that bit from every 32-bit result.

Table 1: Processing with and without SIMD
DREW Without SIMD

SUB r1, r0, r1 SUB r2, r0, r1
ADD r1, r1, r2 ADD r3, r2, #0x8; first byte

LSR r0, r0, #8
LSR r1, r1, #8
SUB r2, r0, r1

ADD r4, r2, #0x8; second byte
LSR r0, r0, #8
LSR r1, r1, #8
SUB r2, r0, r1

ADD r5, r2, #0x8; third byte
LSR r0, r0, #8
LSR r1, r1, #8
SUB r2, r0, r1

ADD r6, r2, #0x8; fourth byte
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SIMD is a critical part of DREW to enable real-time IQ pro-
cessing. Furthermore, the SUB and ADD instructions used
in our SIMD method are generic 32-bit subtract and addition.
Thus, this method is not specific to ARM and is thus applica-
ble to 32-bit processors in general. Using BPSK demodula-
tion as an example, Table 1 compares processing phases with
and without SIMD. DREW takes 2 cycles whereas processing
without SIMD takes 14 cycles. With a processor running at
48MHz, new sets of IQ samples are generated every 48 cycles,
and other processing steps (loading phases, extracting bits,
pattern matching) take about 39 cycles. Therefore, without
SIMD, DREW cannot process the IQ samples in real time. Also,
processing without SIMD requires using additional registers
(r3∼r6), and additional cycles are needed for managing these
lower registers of the ARM processor.

2.1.4 QPSK Demodulation. We extend the above process to
demodulating QPSK symbols. The major difference is that
the phase change of QPSK symbols can be 0◦, 90◦, 180◦ or
270◦. In Fig. 7(c), QPSK demodulation can be achieved by
first adding a constant 45◦ to the phase difference and then
determining the quadrant of the phase difference.

To demodulate QPSK bits, we calculate Word[𝑖]−Word[𝑖−
1]+0x84848484. (Note that the value ’4’ corresponds to 45◦.)
The quadrant of the phase difference is naturally represented
by the upper 2 bits of the lower 5 bits of each byte. Finally,
since WiFi uses Gray code for the QPSK symbol mapping,
we convert the "dibits" from binary code to Gray code. We
build a simple lookup table for this conversion.

2.1.5 Packet Detection and Time Synchronization. To receive
an entire WiFi packet, we need to locate the beginning of
an incoming WiFi packet. This process is known as packet
detection in which the receiver constantly monitors the in-
coming waveform and triggers the packet decoding when a
valid packet arrives. Packet detection relies on the principle
of pattern matching. The WiFi standard defines special BPSK
bit patterns (i.e., PLCP preamble) that the transmitter should
use, and the receiver searches for the bit pattern to detect
the start of a valid WiFi packet.

At the start of a standard packet, a WiFi transmitter sends
the PLCP preamble. However, since WiFi transmitters later
apply bit-scrambling to the entire packet, the over-the-air
packet contains the scrambled PLCP preamble. Thus, a pos-
sible implementation is to first descramble the demodulated
BPSK bits and then search for the original PLCP preamble.
Prior work [8, 9] point out that the WiFi standard [20]

defines the exact scrambler seed all transmitters should use
for BPSK packets, and hence the descrambling step can be
eliminated by directly searching for the scrambled PLCP
preamble among the demodulated bits.
Different from prior work, however, DREW must achieve

a precise synchronization suitable for QPSK. Furthermore,

this synchronization should be at the IQ-sample level, since
the FSK demodulator (that prior work used) cannot decode
QPSK payloads. At a finer time granularity, we sample each
WiFi BPSK symbol with 4 phase samples, and thus there are
4 possible sampling time offsets, as shown in Fig. 7. Equiv-
alently, each 32-bit word contains 4 bytes and provides 4
possible BPSK estimates at slightly different sampling time
instants. If the optimal sampling time instant is known, we
can directly extract the BPSK bit from one of the four possi-
bilities. However, there is no intrinsic time synchronization
between a transmitter and a receiver, and a WiFi waveform
could start at 𝜃 [0], or at 𝜃 [1], · · · . Thus, in addition to packet
detection, we need to establish precise time synchronization
when a valid packet arrives.

We design an algorithm that solves packet detection and
time synchronization simultaneously. We form 4 indepen-
dent bitstreams from the 4 BPSK estimates of every word
and search for the scrambled PLCP preamble from each bit-
stream. We use one register as one 32-bit FIFO for each
bitstream and the BPSK estimates are constantly shifted into
the FIFO. This can be efficiently implemented by shifting
a demodulated BPSK bit into the carry bit with LSR (log-
ical shift right) and shifting the carry bit into the corre-
sponding FIFO with LSL (logical shift left) and ADC (add
with carry). FIFO #0 contains BPSK bitstream estimated from
{𝜃 [4𝑛] − 𝜃 [4𝑛 − 4]}; FIFO #1 contains BPSK bitstream esti-
mated from {𝜃 [4𝑛+1] −𝜃 [4𝑛+1−4]}, etc. Next, we compare
each FIFO with the bit pattern of the scrambled PLCP pre-
amble using CMP (compare). An exact match indicates that
the start of a packet is detected at a fine-grain sampling time
instant.
Since there are 4 BPSK estimates for every WiFi symbol,

one valid PLCP will ideally trigger multiple exact matches.
In Fig. 6, if a WiFi packet starts at 𝜃 [0], exact matches will
be triggered at 𝜃 [4𝑘], 𝜃 [4𝑘 + 1], 𝜃 [4𝑘 + 2] and 𝜃 [4𝑘 + 3] (for
some 𝑘). In such a case, we will subsequently use the phase
samples near the center of symbols (e.g., {𝜃 [4𝑛 + 2], 𝑛 ∈ N})
for header and payload decoding.

If a WiFi packet starts at 𝜃 [2], exact matches will be trig-
gered at 𝜃 [4𝑘 + 2], 𝜃 [4𝑘 + 3], 𝜃 [4𝑘 + 4] and 𝜃 [4𝑘 + 5] and
we will select {𝜃 [4𝑛 + 4], 𝑛 ∈ N}. In the general case, if any
exact match occurs at 𝜃 [4𝑘], 𝜃 [4𝑘 + 1], 𝜃 [4𝑘 + 2] or 𝜃 [4𝑘 + 3],
we consider a valid packet is detected and will perform the
demodulation and the FIFO matching for one extra round
to see if there are more matches at 𝜃 [4𝑘 + 4], 𝜃 [4𝑘 + 5] or
𝜃 [4𝑘 + 6]. Based on whether the preamble is detected or
not at 𝜃 [4𝑘 ∼ 4𝑘 + 6], we can establish fine-grain time syn-
chronization and select an appropriate sampling time offset
𝑙 such that {𝜃 [4𝑛 + 𝑙], 𝑛 ∈ N} are near the center of symbols.
After the synchronization, only {𝜃 [4𝑛 + 𝑙], 𝑛 ∈ N} will be
used for decoding.
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In our design, the result of preamble matching at 𝜃 [4𝑘 ∼
4𝑘 + 6] is stored as an integer with one-hot encoding. We
build a lookup table that directly converts this encoding to
the best sampling time offset 𝑙 . In our implementation, this
sampling time offset 𝑙 is stored in the form of the number of
right shifts to be applied after performing SIMD.

2.1.6 Long Preamble and Short Preamble. TheWiFi standard
defines two possible PLCP preambles, so a transmitter may
use long (144 bits) or short (72 bits) preambles. However,
the long preamble is always used for BPSK payloads. Since
prior work focused on BPSK only, their packet detection is
for long PLCP preamble only.
For DREW, a transmitter may use either the long or short

preamble for QPSK payloads. Technically, the short preamble
is an optional (and typically configurable) feature and a re-
ceiver is not strictly required to support it. However, we find
that some off-the-shelf WiFi APs use the short preamble by
default. To ensure the best compatibility, we aim to support
both long and short preambles simultaneously.
Since both the long and short PLCP preambles use BPSK

modulation, the packet detection and time synchronization
are applicable to both. However, the short preamble is a dif-
ferent bit pattern scrambled with a different seed. Two types
of preambles thus have different bit patterns, and DREW has
to search for both simultaneously. This can be implemented
efficiently since we already have the demodulated BPSK bits
in the FIFOs. We simply add 4 extra compares (CMP) to search
for the short preamble from 4 independent bitstreams.
The pattern that the CMP instruction tries to match can

be any 32-bit sub-sequence of the scrambled (long or short)
PLCP preamble. We use 0x78869b04 (for the long preamble)
and 0xfa51c63f (for the short preamble), which are the
scrambled bit patterns near the end of the preambles. With
such selections, DREW can detect a packet as long as the last
few bytes of the PLCP preamble are received, even when
the receiver starts sometime later than the beginning of the
packet.

2.1.7 Supporting Realtek’s Non-standard Preamble. Priorwork
[8, 9] observed that Realtek has a wrong WiFi implementa-
tion that produces incorrect long preambles. Consequently,
Realtek’s packets also have a different (scrambled) bit pattern
near the end of the preamble. To detect Realtek’s packets,
we instead search for 0x1e21a6a5, which is a 32-bit sub-
sequence using Realtek’s PLCP format.
A unique feature of DREW is supporting QPSK packets,

which may use the short preamble format (unlike BPSK
packets that always use the long preamble). We find that
Realtek’s short preamble is also wrong. Using simulation
and analyzing waveform captures, we have traced the is-
sue down to the scrambler seed. Sec. 16.2.3.9 of the WiFi
standard [20] specifies that a transmitter should initialize

the scrambler with 0b0011011 for all short PLCP packets. In
contrast, Realtek always uses 0b0110010 as the scrambler
seed. The scrambled short PLCP preamble is thus a different
BPSK pattern. We solve this issue by using 0xda1503e9 (the
last few bytes of this pattern) to detect such packets.

2.1.8 Parsing PLCP Header and Bit Descrambling. The PLCP
header follows the PLCP preamble and contains the duration
and modulation of the payload. The header uses BPSK (for
the long PLCP) or QPSK (for the short PLCP). We demodu-
late BPSK or QPSK bits using the time-synchronized phases
({𝜃 [4𝑛 + 𝑙]}). We then descramble the bitstream to recover
the actual header bytes. We also convert the duration of the
payload to the number of bytes of the payload.

2.1.9 Decoding Payload and Checking CRC. The WiFi pay-
load begins after the PLCP header. Depending on the "SIG-
NAL" byte in the header, DREW dynamically selects BPSK or
QPSK demodulation. Payload is recovered after demodula-
tion and descrambling. The payload is then stored in the
memory.
The last 4 bytes in the payload are the preceding bytes’

CRC32 values. When receiving the PLCP header, we initialize
a 32-bit register to hold the CRC32 result. After recovering
each WiFi payload byte, we calculate the updated CRC32
using a lookup-table-based algorithm. The updated CRC32
is a function of the current CRC32 value and the WiFi byte
received. At the end of packet reception, we check the CRC32
value and discard any packet with a mismatched CRC.
2.2 BLE to WiFi

Time Domain 
(I-branch):

Frequency 
Domain:

t

f

t

f

(a) (c)

(b) (d)

Figure 8: Comparing BPSK and BPSK with a DC offset.
2.2.1 Observation. To design the BLE-to-WiFi communica-
tion, we look into the standard WiFi waveform. Fig. 8(a)
shows a typical WiFi BPSK waveform. We plot the time-
domain waveform in the baseband (IQ form) and only the
I-branch is shown because the Q-branch is always 0 for BPSK.
We can see that the time-domain waveform is a PSK mod-
ulation (the I-branch is either 1 or -1) and each WiFi bit is
represented by a Barker sequence. Therefore, each WiFi bit
ultimately becomes either {1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1}
or {−1, 1,−1,−1, 1,−1,−1,−1, 1, 1, 1}. The Barker sequence
results in a corresponding spectrum (Fig. 8(b)).
Fig. 8 also shows a waveform related to (a). When a con-

stant offset is added, (a) becomes (c). In the spectrum, this
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DC is manifested as an arrow at 𝑓 = 0, as shown in (d). Note
that spectrum (b) and (d) are identical except at DC.

The DC (𝑓 = 0) in the baseband corresponds to the carrier
frequency (e.g., 𝑓 = 2412MHz) in the passband. A constant
DC level (or a constant carrier) does not carry information
and receivers commonly remove DC prior to demodulation
because the RF circuitry can produce unwanted DC residue
and cause an uncertain DC level in the baseband. For exam-
ple, the bias voltage at which the mixers or ADCs operate
becomes DC in the baseband. Also, the LO leakage in zero-IF
receivers will introduce an uncertain amount of DC in the
baseband. Specifically, the LO signal (e.g., 𝑓 = 2412MHz)
will have some leakage that couples (along with the desired
signal) into the RF port, and such a leakage becomes a DC
uncertainty in the baseband after downconversion.

t DC 
Removal

(HPF)

t

Figure 9: DC removal in receivers.
Suppose a WiFi device receives the waveform in Fig. 8(c),

the DCwill be removed in the baseband before demodulation.
As illustrated in Fig. 9, Fig. 8(c) becomes Fig. 8(a) after DC
removal. Therefore, if we substitute Fig. 8(a) with Fig. 8(c)
at the transmitter, the receiver still sees the same baseband
signal after DC removal and can therefore decode the packet
correctly.

This observation is key to the design of BLE-to-WiFi com-
munication. Fig. 8(a) is difficult to implement on mixer-less
BLE chips as it requires precisely inverting the phase of the
carrier at a relatively high speed. In contrast, Fig. 8(c) can be
implemented by switching the carrier on and off.

2.2.2 Sending Bits. This switching can be realized by turn-
ing on and off any component along the transmission signal
path. A straightforward and effective design is to use as-
sembly to control the power level of the PA. Since the STR
(store) instruction takes 2 cycles in ARM microprocessors,
we update the power level of the PA at 8MHz, which gives
enough headroom for microprocessors running at 16MHz or
higher (which is typical for BLE chips). The Barker sequence
also scales well at 8MHz (and becomes {1, 0, 1, 0, 1, 1, 0, 0}).
To send a WiFi bit, the power levels are {1, 0, 1, 0, 1, 1, 0, 0}
for phase 0◦ and {0, 1, 0, 1, 0, 0, 1, 1} for phase 180◦, assuming
that ’1’ is the maximum power level of the PA.

2.2.3 Sending Packets. By repeating the same process for
every bit in a packet, we can send a complete WiFi packet.
Instead of spelling out all power levels of a WiFi packet with
thousands of instructions, we design a compact routine that
sends a WiFi packet with less than 20 instructions. Specifi-
cally, the sketch of the transmission routine is:

txloop:

R1→ [PA power register]

R0→ [PA power register]

R1→ [PA power register]

R0→ [PA power register]

R1→ [PA power register]

R1← Next WiFi bit (from memory)

R0→ [PA power register]

R0← R1

Jump to txloop if there are more bits

The idea is that since ’10101100’ (or ’01010011’) con-
tains consecutive duplicates, instead of setting the power
level twice, we can use those cycles to get the phase of
the next WiFi bit and prepare the power levels. Note that
R0← R1 is not a memory operation, and thus we can insert
a conditional jump afterwards without affecting the timing.
In our implementation, we also insert NOP at appropriate
locations so that each txloop takes exactly 1𝜇s.

2.2.4 Zero-Wait Packet Transmission. The above assembly
routine works well for sending WiFi packets. However, it
requires copying the entire packet to the memory before
transmission, which causes delays and decreases through-
puts. This issue is manifested on FLEW [8] and Unify [9].
We design another assembly routine that eliminates this

waiting time, thus increasing throughputs. We start trans-
mission as soon as the first byte is ready. During the cycles
where the power level stays the same, we collect theWiFi bits
(from UART), update R0 and R1 accordingly, and copy the
WiFi bits to memory. We still copy the WiFi packet to mem-
ory so that we can run the routine in Sec. 2.2.3 to retransmit
the packet in case of unsuccessful transmissions.

2.3 MAC Layer
DREW is to make a ULP BLE chip indistinguishable from aWiFi
chip (and thus ensuring compatibility). To achieve this goal,
the ULP BLE chip should emulate WiFi’s MAC, including CS-
MA/CA, Tx/Rx switching (timings) and ACK/CTS handling.
Since the emulated MAC layer of prior work [8, 9] is shown
to be effective and highly compatible across WiFi vendors,
DREW’s MAC layer follows the same design principles with
several differences to accommodate the entirely different
physical-layer design and QPSK packets.
To emulate CSMA/CA, DREW uses RSSI from the radio to

perform Clear Channel Assessment (CCA) before transmis-
sion, similar to prior work. Although DREW’s IQ sampling
could, in theory, alternatively be used to implement CS-
MA/CA, we chose to directly read the RSSI register because it
is simple and effective. Random backoff is also implemented.
Applying the same design principle, we create DREW’s

finite-state machine, shown in Fig. 10. The FSM governs
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the state transitions and associated actions. The actions per-
formed after receiving ACK, RTS or unicast packets closely
follow the WiFi standard. However, the FSM has several
differences from prior work. First, because of the zero-wait
packet transmission, the FSM is actually simpler and has
higher transmission throughputs. DREW can directly go to the
the Tx state once the channel is clear (without copying the
entire packet first), whereas prior work have several wait
states and flags in order to reuse part of the downlink (Rx)
airtime to copy uplink (Tx) data. DREW’s design especially
benefits highly asymmetrical traffic (e.g., UDP uplink). There
is still one flag associated with the Tx path to ensure that
each unicast packet is properly acknowledged before a new
packet is used in the Tx state. In Tx, DREW will only fetch a
new packet if flag is 0.
Second, since DREW supports QPSK, the Rx state searches

for both long and short preambles simultaneously, which is
efficiently implemented by adding 4 compare instructions.
Also, the FSM handles 3 combinations (long-BPSK, long-
QPSK, short-QPSK) that an incoming packet may have.
As prior work pointed out, WiFi’s Tx/Rx timings can be

particularly tricky for BLE chips to emulate. Surprisingly, we
found that using the IQ sampling actually helps relax some
of the timing requirements, such as the Tx–Rx turnaround.
In particular, direct processing of IQ samples eliminates any
delay or timing uncertainty that the FSK demodulation logic
might have. More importantly, IQ sampling allows a greater
flexibility in selecting the bit patterns for packet detection.
Prior work has more restrictions in selecting the bit patterns
because the FSK demodulator has to be stabilized with the
"1010101" pattern first. For DREW, we can use the bit patterns
near the very end of a WiFi preamble and thus relax the
Tx–Rx turnaround requirement. We can invoke the normal
Rx warm-up sequence and still satisfy WiFi timing.
Because DREW only relies on the PA to transmit packets,

we can leverage the power override idea (proposed in [9])
to satisfy the Rx–Tx turnaround. Specifically, for ACK or
CTS transmission, DREW keeps IQ sampling running (so that
the PLL is still locked) while powering on the PA (and sig-
nal buffers along the Tx path). The carrier is modulated by
controlling the power level. After ACK or CTS, the power
overrides are turned off and another Rx warm-up is invoked.

2.4 Implementation
We have implemented DREW on COTS BLE chips. We use
the Freescale (now NXP) Kinetis KW41Z ultra-low-power
[3] BLE chip as the hardware platform because its reference
manual [21] and register maps are publicly available. The
KW41Z is a single-chip SoC that has an ARM Cortex-M0+
core [22] running up to 48MHz. In the evaluations, we use
the USB-KW41Z development board [23] from NXP. This
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Figure 10: Finite state machine.
KW41Z SoC can also be found in industrial IoT modules
made by Panasonic Industry [24] and u-blox [25].
The firmware is written in C and is developed in the

MCUXpresso IDE [26]with theGNUARMEmbedded Toolchain
[27]. Time-sensitive tasks (such as packet detection, demod-
ulation or transmission) are written in ARM assembly (with
the Thumb instructions). The USB-KW41Z development
board has an on-board debugger, which is a separate micro-
controller running the OpenSDA [28] debugging functions.
We also use this microcontroller as the USB-UART bridge.
We rewrote the USB-UART bridge firmware ourselves be-
cause we found that SEGGER’s UART implementation does
not work properly at higher (>1MBaud) speeds.

2.4.1 IQ Sampling. The reference manual of KW41Z [21]
provides detailed instructions of IQ sampling using DMA.
We configure KW41Z to convert IQ to phases and pack them
in the 4-byte format as shown in Fig. 6. We also enable the
channel filter that runs a 2-sample moving mean.
Instead of using the DMA, we use the ARM core to fetch

the phases and process them directly. A new 32-bit word
(containing 4 phases) is fetched every 1𝜇s. To help the ARM
core distinguish a new word from the old one, we slightly in-
crease (about 0.1MHz) the RF frequency, ensuring the phases
change slightly each time and consecutive samples are dif-
ferent. This frequency bump is later compensated for when
calculating the phase differences.

2.4.2 Clocking. We found that setting the CPU and periph-
eral clocks on the KW41Z chip requires special attention.
This is because KW41Z uses a legacy clock module (MCG)
from the Motorola (later Freescale) 68HCS08 family [29]. The
KW41Z has two major clock sources: a 32MHz oscillator and
a 32.768kHz RTC (real-time clock). The BLE radio circuitry
always uses the 32MHz clock, whereas the ARM core must
use the FLL (frequency-locked loop) inside the MCG to reach
the advertised speed of 48MHz.
We design the receive codes to run at 48MHz. For trans-

mission, however, we find that the 48MHz clock from the FLL
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has too many jitters for the transmission routine. Broadcom
and Ralink WiFi chips can actually tolerate this waveform
jitters. However, the jitters have a noticeable performance
impact with Atheros chips.
We solve this issue by dynamically switching the clock

source so that the transmission routine is clocked from the
32MHz oscillator. Because WiFi only allows a very short
time between Tx and Rx, clock switching also has to be swift.
We find that this is possible when the clocks are coherent.
Therefore, we use the FLL to generate a 48MHz clock from the
32MHz clock and use it for the Rx routine. For the Tx routines
(including sending ACK and CTS), we directly switch on the
PA, LO and various signal buffers with the OVRD1 and OVRD3
registers. Since both the ARM core and the PA use the same
clock source during transmission, we set GASKET_BYPASS to
1 to bypass unnecessary clock synchronization.

2.4.3 Driver. We write a custom driver and DREW is directly
compatible with the Linux kernel and the mac80211 module.
In addition to normal Tx/Rx paths, monitor mode and packet
injection also work properly.

3 EVALUATION
3.1 Experimental Setup
We first run microbenchmarks on the PHY layer. The mi-
crobenchmarks evaluate the performance of communication
between BLE and COTS WiFi chips. We measure the packet
error rate (PER) at different distances in both WiFi-to-BLE
and BLE-to-WiFi directions. We use WiFi cards from ma-
jor chip-makers that are widely used in WiFi infrastructures
(APs), including Atheros (nowQualcomm), Broadcom, Ralink
(now Mediatek) and Realtek. All chipsets are unmodified in
terms of hardware, firmware or driver. We used the default
firmware and driver provided by Ubuntu 20.04. We use WiFi
channel 9 to avoid background interference.

In the microbenchmarks, we put a WiFi card (or DREW) in
monitor mode and injected 4096 packets in each test case.
Each packet has 1508 bytes of payload and has a unique
sequence number. The receivingWiFi card (or DREW) is also in
monitor mode and we collect the packets in Wireshark. CRC
check is enforced and the sequence numbers of correctly-
received packets are put into a set. The PER is derived by
calculating the percentage of the sequence numbers missing
out of 4096. To showcase DREW’s unique ability to receive
QPSK packets, we perform PER microbenchmarks of BPSK
and QPSK demodulation. For Atheros, Broadcom and Ralink,
the injected packets are standardWiFi packets with an 802.11
frame type of 0x08. For Realtek, we found that injection of
QPSK data (0x08) packets does not work with the logic of
the default driver (rtlwifi). We solve this issue by injecting
packets with the frame type 0x00, which forces the driver to
use the correct modulation specified in the radiotap header.

Table 2: WiFi APs and chipsets used in evaluations.
Chipset
Maker Router Chipset Preamble

Atheros ASUS RT-AC55U QCA9557 Long
Broadcom ASUS RT-AC66U BCM4331 Short
Ralink/
Mediatek

TP-Link
TL-WR841N MT7628NN Long

Realtek Edimax BR-6478AC RTL8192CE Long
Marvell Linksys EA3500 88W8366 Short

To evaluate end-to-end performance, we directly connect
DREW to various off-the-shelf WiFi APs. We measure system-
oriented metrics, such as TCP/UDP throughputs and round-
trip time (RTT). Table 2 summarizes the WiFi APs and the
chipsets inside. All APs are unmodified and WiFi encryption
(WPA2) is enabled. Table 2 also lists the default preamble
setting. This preamble setting only applies to QPSK packets
since BPSK packets always use the long preamble. We use
the AP’s setup webpage to select WiFi channel 9, and in
Realtek’s webpage we select QPSK. We use iperf3 [30] to
measure throughputs. Specifically, a Windows laptop run-
ning an iperf3 server is connected via LAN to the AP. Then,
we use DREW and run the iperf3 client on the BLE side. We
further set the UDP bitrate to 2Mbps for downlink since DREW
exceeds iperf3’s default of 1Mbps.
3.2 Microbenchmark

Table 3: Packet Error Rate (WiFi to BLE) (%)

Chipset 5m 10m 20m
BPSK QPSK BPSK QPSK BPSK QPSK

Atheros
AR9462 0.02 0.00 0.00 0.05 0.07 0.05

Broadcom
BCM4313 0.10 0.76 0.07 1.32 0.63 1.83

Ralink
RT3290 0.00 0.00 0.00 0.27 0.12 0.49

Realtek
RTL8188CE 0.05 0.46 0.05 1.42 0.15 1.44

Table 3 shows DREW’s excellent performance in receiving
standard WiFi packets. The PER with Atheros is very close
to 0.00% across all distances. Thanks to DREW’s good recep-
tion, the overall packet error comes from very occasional
background interferences (e.g., 0.07% PER is 3 packet misses
out of 4096 packets) and the performance difference between
BPSK and QPSK is insignificant. Ralink also has good per-
formance, achieving 0.00% PER for both BPSK and QPSK at
5m. The PER increases with distance, and QPSK has a higher
PER than BPSK because QPSK has smaller decision regions.
Broadcom and Realtek have similar performance numbers
and are slightly worse than Atheros and Ralink. Even so, all
PERs are less than 2% at 20m, corroborating the effectiveness
of our algorithms and using IQ sampling. Several variables
can impact PER. Actual WiFi cards may have a slight fre-
quency deviation from the ideal WiFi channel, which affects
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the optimal decision boundaries. Additionally, IQ imbalance
and circuit non-linearity can cause slight variations in PER.

Table 4: Packet Error Rate (BLE to WiFi) (%)
Chipset 5m 10m 20m

Atheros AR9462 4.86 7.30 10.03
Broadcom BCM4313 1.42 2.56 7.50

Ralink RT3290 4.57 6.23 12.21
Realtek RTL8188CE 10.86 11.65 10.21

Table 4 shows the PER in the BLE-to-WiFi direction. Be-
cause the BLE chip does not have an external PA, its lower
transmit power incurs a higher PER. Broadcom shows the
best performance. From experiments, we found that Broad-
com’s chips are capable of correcting even substantial timing
jitters and LO leakage. These qualities translate into better
PER in realistic settings. Atheros and Ralink show compa-
rable trends, with Ralink having higher PER at greater dis-
tances. Realtek shows the worst PER, which is consistent
with the prior report [8] of an inferior performance. To inves-
tigate Realtek’s chip further, we have tested sending packets
at longer intervals but the results are consistent. There might
be other issues associated with Realtek’s monitor mode or
its driver, such as unintended WiFi scan.

3.3 TCP and UDP Throughputs
Table 5 shows DREW’s transport-layer throughputs. There are
multiple factors, besides the PHY performance, that can im-
pact the overall system goodput. The 802.11 standard allows
different implementation options and variations, particu-
larly in the MAC layer. For example, devices can choose
different CCA methods and they are all 802.11-compliant.
Furthermore, the standard does not specify the details of rate
adaptation, which dynamically changes the modulation of
transmission. WiFi APs may use different or proprietary rate
adaptation algorithms, leading to throughput variations.

For uplink, the zero-wait packet transmission design pro-
vides high throughputs. Atheros and Broadcom perform very
similarly with TCP and with UDP. We found that the MAC
layer implementation of Ralink works really well when con-
secutively receiving a series of packets. Combined with our
zero-wait packet transmission, Ralink achieves even better
performance than Atheros and Broadcom. Realtek’s through-
puts are mostly comparable but exhibit a more significant
decrease at 20 meters due to its worse PHY layer. DREW’s
throughputs are considerably higher than prior work (since
they must copy the entire packet into the memory before
transmission). (In general, the difference is∼100kbps for TCP
and ∼200kbps for UDP.) The Marvell AP is found more sensi-
tive to the residue DC, thus having a lower uplink throughput
than others. However, DREW’s zero-wait packet transmission
still yields higher throughputs at 5m than FLEW.

For downlink, QPSK demodulation doubles the through-
put. Ralink performs best and Broadcom also performs well.
Broadcom devices exhibit good compatibility and stability
but with slightly lower throughputs. Since TCP requires
transport-layer ACKs and UDP requires PHY-layer ACK
packets, the BLE-to-WiFi performance can affect downlink
throughputs. So, Realtek and Marvell have good throughputs
at shorter distances but their throughputs decrease as the
distance increases. Finally, the Atheros AP we use is based on
Atheros’ LSDK, and LSDK is found to have a peculiar behav-
ior: RTS/CTS is always used regardless of the configuration.
This extra overhead lowers the throughputs.

3.4 RTT
We measure the round-trip time (RTT) through LAN and
WAN using ping. We ping the AP (LAN) or 8.8.8.8 (WAN)
10 times and calculate the mean (𝜇) and standard deviation
(𝜎), as shown in Table 6. The ethernet connection between
each AP and 8.8.8.8. has an RTT of 6.68ms.

Table 6 shows that DREW has good RTTs of 3∼6ms for LAN
and 11∼13ms for WAN. The RTT is affected by how fast the
AP responds and forwards packets and it is dependent on
the processing speed of each AP. The Broadcom AP has the
fastest processor (1GHz) and the lowest RTT. The Ralink AP
has comparatively higher RTT because it uses the slowest
processor (575MHz).

3.5 Coexistence
To demonstrate DREW’s ability to coexist with other devices
like a normal WiFi device, we measure the throughputs of
concurrent connections with multiple devices.

3.5.1 Coexistence with WiFi Devices. To evaluate DREW’s co-
existence with others, we use the BroadcomAP and maintain
4 active connectionswithAtheros, DREW, Ralink, RealtekWiFi
cards. The AP’s LAN port is connected to a laptop running 4
iperf3 servers listening on different ports. We first measure
the maximum throughputs of individual devices, and then
simultaneously run 4 iperf3 clients and inject 5, 15, 25 or 35%
of the throughputs per device into the network.
We tested TCP and UDP in both directions and plotted

the measurement results in Fig. 11. For each test-case, the
network was not saturated when injecting 5% or 15% of
throughputs per link. The network is at maximum capacity
when injecting 25% per link. The network is oversubscribed
and spectrum contention is high when injecting 35% per link.
As shown in Fig. 11(a), the devices coexist nicely with each
otherwhen the network is not saturated and each throughput
matches the injected throughput. The throughput of DREW is
actually higher because of the TCP packet size iperf3 uses.
For 25% per link, the network is saturated and the through-
puts are lower than the injected throughputs, and it is more
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Table 5: TCP/UDP Throughputs (kbps)
Direction Uplink (BLE to WiFi AP) Downlink (WiFi AP to BLE)
Transport TCP UDP TCP UDP
Distance 5m 10m 20m 5m 10m 20m 5m 10m 20m 5m 10m 20m
Atheros 757 746 639 891 881 753 1234 1246 1010 1388 1399 1260
Broadcom 770 739 660 872 856 758 1332 1324 1231 1515 1516 1454
Ralink 785 752 672 908 892 765 1344 1337 1258 1608 1607 1509
Realtek 767 735 617 865 843 708 1300 1233 1147 1520 1502 1336
Marvell 693 543 515 779 582 569 1325 1187 1140 1535 1455 1403
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Figure 12: Coexistence with DREW devices

Table 6: Round-trip Time (ms)
LAN WAN

𝜇 𝜎 𝜇 𝜎

Atheros 4.56 0.36 11.02 0.15
Broadcom 2.94 0.37 10.68 0.89
Ralink 6.35 0.84 12.62 0.70
Realtek 3.26 0.52 10.65 0.34
Marvell 3.38 0.82 11.38 0.99

so for the oversubscribed case. Of all the clients, the uplink
throughput of Ralink is least affected. This is consistent with
the findings in Sec. 3.3 where the MAC layer of Ralink uti-
lizes and accesses the spectrum proactively. With a more
dynamic protocol like TCP, we observe the throughput of
DREW is affected more under saturation. However, it does not
completely drop to zero and still allows the data to be trans-
mitted successfully. In the UDP case where the WiFi traffic
is more unilateral, Fig. 11(b) shows that the throughputs of

Ralink, DREW and Atheros coexist nicely, although they re-
act differently in an oversubscribed environment. Realtek
performs badly in this test and cannot access the spectrum
efficiently in the presence of other unilateral UDP traffic.
For downlink, the data packets are mostly sent by the AP,
and thus the results are different from uplink. Figs. 11(c) and
(d) show that DREW is least affected in saturated conditions
under AP’s arbitration.

3.5.2 Coexistence with DREW Devices. To evaluate the coex-
istence performance of multiple active DREW devices, we use
4 DREW clients and repeat the coexistence evaluation. Fig. 12
shows a similar trend for all nodes since they have the same
timing and MAC-layer implementation. The throughputs in-
crease linearly before saturation and taper off at 25% and 35%
injections per node. There are some variations in through-
puts due to the randomness in the WiFi MAC layer. For
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uplink, the 4 nodes contend for the spectrum at the same
time, so the uplink throughputs vary more than the downlink
(since the AP transmits most of the traffic for downlink).
Table 7: Throughputs with active BT connections

TCP UL UDP UL TCP DL UDP DL
No BT 780 kbps 896 kbps 1359 kbps 1552 kbps
1 BT 786 kbps 896 kbps 1324 kbps 1566 kbps
2 BT 792 kbps 898 kbps 1314 kbps 1586 kbps

3.5.3 Coexistence with Bluetooth Devices. We measure the
throughputs of DREW when simultaneously using Airpod ear-
buds and Sennheiser headphones. Table 7 shows that these
active Bluetooth connections do not have significant effect
on the throughputs. Furthermore, we do not observe any
audio stuttering or discernible defects with these Bluetooth
headphones when DREW is running the tests. This good co-
existence performance comes from the fact that Bluetooth
devices will minimize interference by avoiding the channels
used by nearby WiFi APs.
3.6 End-to-End Applications
DREW enables new applications that no prior work could sup-
port. Specifically, the bit rate of a real-time, stereo, Hi-Fi
quality audio is 1.411Mbps (= 44100 · 16 · 2). DREW’s unique
support of QPSK (2Mbps) is crucial for streaming audio,
since the throughputs of prior work (BPSK) are insufficient
(FLEW: 857kbps, Unify: 655kbps). DREW (∼1.6Mbps transport-
layer throughput) can directly stream uncompressed, bit-
accurate audio, which guarantees lossless, wired-equivalent
audio quality and completely eliminates algorithmic laten-
cies (>100ms for SBC) of audio compressions. In fact, even
existing Bluetooth headphones (“Bluetooth Classic”) are not
capable of streaming such an audio stream, since the Blue-
tooth standard only supports lossy audio formats (e.g., SBC,
AAC and aptX) with heavy (∼4x) compressions. Furthermore,
BLE is not compatible with Bluetooth Classic. Streaming au-
dio over BLE has even higher compression (4∼8x) due to
BLE’s lower throughput and is not supported on most (Blue-
tooth 5.1 or older) devices.

The direct WiFi connectivity enables DREW to leverage au-
dio over IP solutions, thus circumventing the limitations
of the Bluetooth stack. Of the many audio over IP solu-
tions available, we choose Scream [31] to demonstrate audio
streaming. Scream is a simple Windows driver that creates a
virtual sound card and streams uncompressed sound samples
over UDP. We use the unicast mode and the UDP packets are
sent over WiFi. On the BLE side, bit-accurate audio samples
are outputted to the speakers using Scream’s Linux receiver.
The bit rate is measured at 1.44Mbps. Interestingly, the BLE
chip we used (KW41Z) only supports Bluetooth 4.21 and
1KW41Z’s stack was not certified for all Bluetooth 5 features but the hard-
ware supports IQ sampling. The IQ sampling was incorporated in Bluetooth

does not support Bluetooth Classic or BLE audio. With DREW,
however, we can directly stream uncompressed audio via
WiFi and offer higher audio quality than Bluetooth.

This throughput advantage also enables fetching high-
quality multimedia contents directly from the Internet. We
have used DREW to watch 720p (and some 1080p) Youtube
videos without buffering.We also used DREW to streamNetflix
at 720p, the maximum resolution under DRM restrictions.
With WiFi’s global routability, DREW is also well-suited

for IoT applications. With DREW, IoT devices can directly re-
trieve information from various websites or upload sensor
readings to the cloud. Furthermore, DREW’s direct interop-
erability with WiFi allows ULP BLE devices to use normal
web services without requiring custom packet translation or
gateways. For example, we have used DREW to send prompts
and receive responses to/from the ChatGPT server. We also
use DREW to perform Google Voice Search. These use-cases
are particularly useful for adding valuable features to ULP
wearable devices, such as smartwatches.
3.7 Power Consumption

Table 8: Power-consumption measurements
Tx (A) BPSK Rx (A) QPSK Rx (A)

Atheros AR9271 0.49 0.07 0.07
Ralink RT3572 0.42 0.15 0.15
Ralink MT7612U 0.42 0.15 0.15

Realtek RTL8811AU 0.28 0.08 0.08
FLEW [8] 0.16 0.11 Not supported
Unify [9] 0.04 0.04 Not supported
DREW 0.07 0.07 0.07

DREW w/ K22F sleep 0.05 0.05 0.05

The KW41Z chip used in our implementation has ultra-low
power consumption. According to its datasheet, the active
currents (at 3.6V) are as low as 6.1mA (Tx) and 6.8mA (Rx),
which are considerably lower than those of a typical WiFi
chip. For example, a QCA9377 module consumes 538mA (Tx)
and 155mA (Rx) at 3.3V [32].
Table 8 shows the power consumption of DREW, various

commonWiFi dongles, and prior work. We measure the USB
(5V) current during active transmission or reception (and
every device uses the same modulation format). DREW has the
lowest power consumption among chips that support QPSK.
Also, the USB power on the USB-KW41Z board is shared by
the BLE chip and the debugger. The debugger itself is a pow-
erful Cortex-M4 K22F microcontroller running at 120MHz,
which contributes to the overall power consumption. We
further tried downclocking the K22F and using sleep modes
(with the WFI instruction) whenever possible, and the power
consumption is reduced to 0.05A for all cases. Further power
saving may be possible by enabling KW41Z’s buck converter
5.1, and thus newer chips’ hardware support it. The standard does not spec-
ify circuit implementation and ULP designs commonly eliminate mixers.
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or by removing the debugger completely. The KW41Z is
operated at 3.5dBm. Since the PA is switched on 50% of the
time, the transmit power is approximately 3.5 − 3 = 0.5dBm,
which is within the power range specified in the WiFi stan-
dard. If a higher power is needed, an external PA can be
used. Assuming a nominal efficiency of 33%, the PA will add
(0.1W − 0.001W)/0.33/5V = 0.06A to the transmit current.

4 DISCUSSION
4.1 Advantage over using WiFi 64-QAM
Although a prior work [33] indicates that utilizing WiFi’s
64-QAM modulation at the same transmit power may
consume less energy than BLE during packet transmission,
the goal of DREW is to enable WiFi connectivity on existing
hardware that comes with simple, low-cost hardware and
without high-speed DSP or wideband RF ADCs/DACs. Fur-
thermore, a typical BLE chip has a sensitivity of -97dBm [4],
which is 19dB better than -78dBm [34] of MCS7 (64-QAM).
Therefore, without affecting the range, the transmit power
of BLE should be 19dB lower than MCS7, which would have
resulted in much lower power consumption for BLE. (Also,
DSSS waveforms can achieve an even better sensitivity at
-102dBm [34] thanks to the advantage of PSK over FSK.) DREW
is significant in that a ultra-low-power WiFi connectivity is
possible by reusing the BLE’s hardware, since BLE chips have
ultra-low continuous currents (Tx: 6.1mA, Rx: 6.8mA) with
low-power ARM processors. (In contrast, the WiFi chip used
in [33] is known for its high current draw in the industry
(DSSS Tx: 240mA, DSSS Rx: 95mA) and the chip consumes
more than 20mA even with WiFi disabled [35].)

4.2 IQ Sampling
IQ sampling is available on a wide range of new BLE chips
to support localization and AoA features defined in the Blue-
tooth standard. Different BLE chips have different procedures
for enabling the IQ sampling. We set up IQ sampling by fol-
lowing the transceiver DMA procedure described in NXP’s
manual [21]. Other parts of the Bluetooth firmware and soft-
ware stack are not utilized in DREW. By directly fetching IQ
samples with the ARM core (Sec. 2.4.1), the length of IQ
capture need not be known in advance and is not limited
by the buffer size or by the DMA configuration. However,
this design requires real-time IQ processing, thus making
SIMD a critical component. Finally, we have tested using IQ
sampling with OFDM waveforms, but the challenge is that
the IQ sampling is relatively narrow-band and is insufficient
for decoding a packet without errors.

4.3 Spectrum
In terms of spectrum, DREW is at least as efficient as prior
CTC designs, and is twice as efficient when QPSK is used.
Furthermore, typical WiFi systems still commonly use DSSS

for critical traffic, such as management packets, beacons, RT-
S/CTS, and ACKs. Spectrum efficiency can also be improved
by spatial diversity and power control between devices.

4.4 Packet Detection
The packet detection of DREW is optimized for both speed
and memory. We directly use ARM registers as 32-bit FI-
FOs for the fastest access. Updating 4 FIFOs (for 4 IQ sam-
ples) takes 12 cycles and comparing these 4 FIFOs with both
long and short preambles takes 16 cycles. In contrast, the
correlation-basedmethod requires 128 (= 32 𝜇s · 4 samples/𝜇s)
complex multiplications and additions for every IQ sample
received. Additional loads and stores for memory access are
also needed. Such a method exceeds the capability of typical
ARM microcontrollers.

5 RELATEDWORK
Earlier CTC works [36–39] use one packet to represent one
or a few modulation symbols for a heterogeneous device
to receive. These designs have lower throughputs and they
need to modify both Tx and Rx. Recent CTC works directly
transmit compatible waveforms at the PHY layer and achieve
higher throughputs. These works include WiFi-to-Bluetooth
[12–16], WiFi-to-Zigbee [40–45], and WiFi-to-LoRa [46, 47].
However, they only enable one-way communication and
require modifying the transmitter. Furthermore, they focus
on generating 1Mbps FSK [12–16], 250kbps Zigbee [40–45]
or slower waveforms. Some other CTCs [48, 49] modify WiFi
devices to receive non-WiFi waveforms. Other CTCs focus
on Bluetooth–Zigbee [50, 51] or LTE [52–55]. CTC is also
related to concurrent-communication systems [56–58].
FLEW [8] and Unify [9] achieve bidirectional WiFi–FSK

communication without any modification on the WiFi side.
However, they require older FSK chips that have mixers, and
the PHY throughput is capped at 1Mbps. Other software-
defined-radio-based [59] and simulation-only [60] systems
have also been proposed but are not directly applicable to
COTS WiFi systems.

Many prior work [61–69] use BLE’s AoA feature and pro-
pose various post-processing algorithms for localization. To
the best of our knowledge, DREW is the first that uses the AoA
feature for data communication (specifically WiFi communi-
cation) instead of localization.

6 CONCLUSION
DREW enables direct communication between ULP BLE chips
and WiFi APs. We proposed innovative use of the PA and IQ
sampling, and devised various algorithms with SIMD acceler-
ation. DREW is applicable tomixer-less BLE chips and uniquely
supports QPSK. It is shown to have good coexistence, low
power consumption and much higher throughputs.
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