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ABSTRACT
With the potential for connecting billions of WiFi devices
to low-power Bluetooth/FSK devices, WiFi–Bluetooth cross-
technology communication (CTC) has drawn significant in-
terests from academia and industry. However, state-of-the-
art CTC solutions either are limited to one-way communica-
tion, or require multiple chips with hardware modifications.
We present a novel solution, Unify, that eliminates both

of these undesirable features. By just updating firmware,
Unify transforms BLE/FSK SoCs (Systems-on-a-Chip) into
WiFi SoCs. It enables bidirectional communication between
BLE/FSK devices and unmodified WiFi APs/devices, and is
compatible with products of all major WiFi chip vendors.
Unify is a single-chip solution and requires no hardware
modifications. Thanks to their high integration, Unify de-
vices are smaller, cheaper and consume significantly less
power than both off-the-shelf WiFi chips and prior WiFi–
FSK CTC solutions.
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1 INTRODUCTION
WiFi and Bluetooth are the two leading wireless technolo-
gies that connect tens of billions of devices. Conventionally,
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(a) Unifiying dongles (b) CC2541 BLE modules

Figure 1: (a) Unify turns a Logitech Unifiying dongle
into a fully operationalWiFi dongle without any hard-
ware modification. The dongle directly connects to a
standard WiFi AP. (b) Unify turns a CC2541 BLE key-
fob into a WiFi thermostat. CC2541 uploads sensor
readings directly to the Internet via a WiFi AP.

these two technologies are deemed incompatible and treat
signals from/to mismatched devices as interference. Recently,
however, researchers in the field of cross-technology com-
munication (CTC) have shown that this “interference” can
actually become valid communication signals by leveraging
digital signal processing to pre-process signals and/or by
reusing various radio and digital blocks.

It is both important and practical to enable bi-directional
communication between WiFi and Bluetooth devices. It al-
lows a device to communicate in environments without any
other device of the same wireless technology, which was
previously impossible. For example, Bluetooth devices can di-
rectly connect to WiFi APs and access the Internet, eliminat-
ing the need to install any Bluetooth gateways. Furthermore,
such a communication can combine the strengths of both
WiFi and Bluetooth. For example, Bluetooth has lower cost,
lower device complexity, and better power efficiency than
WiFi, while WiFi infrastructure is omnipresent and provides
direct Internet access. BLE chips are typically cheaper than
WiFi chips, and the much simpler hardware of many BLE
system-on-chips (SoCs) enables their operation for several
years with a single coin cell battery. Bi-directional communi-
cation betweenWiFi and Bluetooth opens a new opportunity
of connecting low-cost, energy-efficient Bluetooth devices
to omnipresent WiFi APs and provides direct Internet con-
nectivity to Bluetooth devices without requiring gateways.

This envisioned WiFi–Bluetooth bi-directional communi-
cation is particularly suitable for Internet of Things (IoTs)
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and wireless sensor networks (WSNs) in which nodes upload
sensor data to, and receive actuation (control) messages from,
the cloud. In these use-cases, the sensor data and the actua-
tion messages are usually small but should be sent/received
in a timely manner in order to accurately reflect and control
real-world events/behaviors. Considering the large number
of IoT/WSN nodes that have already been, or are expected to
be, deployed in the real world, each of them should be cheap,
small and highly power-efficient so that they can “operate”
as intended without frequent battery changes/charging. BLE
and FSK chips are ideal for meeting these requirements as
they are very cheap, small, and suitable for “small but fre-
quent” (as opposed to “large and bursty”) communications
with ultra low power consumption. However, IoT and WSN
nodes require connection to the Internet, but BLE or FSK
chips by themselves do not support such connectivity and
hence require gateways. Bi-directional communication be-
tween WiFi and Bluetooth can fill this gap by equipping
BLE/FSK chips with WiFi connectivity, thus allowing IoT
or sensor nodes to use cheap and energy-efficient BLE/FSK
chips while also enabling their direct use in conventional
WiFi environments.

On the other hand, state-of-the-art (SOTA) CTC solutions
have a number of limitations and have not yet fully realized
this vision. Specifically, some CTC solutions only enable one-
way communication whereas others require use of multiple
chips and hardware modifications.
Numerous SOTA CTC solutions [1–5] enable one-way

communication by modifying WiFi transmitters to send
“magic packets” that can be received by Bluetooth devices.
Specifically, these solutions carefully select the bits within
a WiFi packet so that, after modulating these bits in WiFi
modulation, the physical waveform resembles a legitimate
Bluetooth waveform. However, since this approach can only
provide one-way communication from WiFi Tx to Bluetooth
Rx, it cannot be used when IoT/WSN nodes (using Bluetooth
chips) need to upload sensor data to the cloud via WiFi in-
frastructure. Also, device discovery and encryption cannot
be implemented with one-way communication without side
channel information, which significantly complicates system
deployment. As a result, the use of such solutions is limited
to Bluetooth beacon broadcasting or one-way “downlink”
(from WiFi to Bluetooth) communication.

FLEW [6] introduced a fundamentally different design
that addresses the above shortcomings and is shown to work
with actual WiFi APs. Other CTCs enable WiFi-to-Bluetooth
one-way communication by modifying WiFi transmitters to
emulate Bluetooth transmitters. Unlike these other CTCs,
FLEW enables bi-directional communication between WiFi
and Bluetooth by directly enabling conventional WiFi opera-
tions on FSK devices (i.e., the hardware of Bluetooth devices).
It makes an FSK device appear as a standard WiFi device and

the FSK device adheres to the conventional WiFi protocol.
The modified FSK device can then connect to unmodified
WiFi APs and use the standard WiFi encryption. Because the
FSK device behaves like a standard WiFi device, users do not
need to modify the WiFi AP or infrastructure, and no IoT
gateway is needed either.
Despite its many salient features, FLEW also has a few

shortcomings. In order to transmit WiFi waveforms using
an FSK device, FLEW requires hardware modifications to
inject the WiFi waveform into the mixers of the FSK chip.
Furthermore, this waveform injection (along with all other
packet processing) requires an external microprocessor. So,
FLEW needs at least 2 chips. (In fact, all evaluations in FLEW
use 3 chips.)
In this paper, we present a novel CTC solution, called

Unify, which transforms modern BLE/FSK SoCs into fully
operational WiFi SoCs without any hardware modifica-
tion. Unify transmits and receives conventional WiFi pack-
ets. Because Unify behaves just like an off-the-shelf WiFi
device, it can directly connect to unmodified, conventional
WiFi APs. Unlike FLEW that relies on multiple chips, Unify
is a single-chip solution, and hence is smaller, cheaper and
more power-efficient.

Unify can directly run on very popular andwidely-deployed
BLE/FSK SoCs (CC254x) made by Texas Instruments (TI). For
example, the CC2544 SoC is widely used in Logitech’s Uni-
fying dongles. Fig. 1a shows that Unify turns a Unifying
mouse dongle into a proper WiFi dongle, which provides
direct WiFi connection for the entire laptop. In another ex-
ample, the CC2541 SoC is widely used in numerous highly
popular BLE modules, such as the HM-10, HM-11, JDY-06
and JDY-08 modules. In Fig. 1b, Unify is shown to transform
a CC2541 keyfob into a WiFi thermostat, which periodically
uploads temperature readings directly to the Internet/cloud.
Enabling bi-directional Bluetooth–WiFi communication

without any hardware modification is a significant advan-
tage of Unify. Specifically, hardware modifications require
either manufacturing brand-new devices, or retrieving and
modifying the circuit board of the device already deployed
in the field. In contrast, Unify only needs a firmware update
and the circuit board need not be modified, which greatly
simplifies and reduces the deployment difficulty. More im-
portantly, some CC254x SoCs are capable of over-the-air
(OTA) firmware upgrade [7]. That is, this firmware update
process could be done wirelessly and even remotely, without
ever physically accessing the device.

The single-chip operation of Unify allows for significantly
smaller, cheaper, and more power-efficient devices, even
when compared to FLEW. For example, CC2544 uses the
QFN32 [8] package with a dimension of 5mm×5mm, which
is already smaller than the FSK transceiver chip (QFN48 [9])
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used in FLEW. FLEW also requires an additional micropro-
cessor (LQFP80 [10], 12mm×12mm) for a complete operation.
Also, CC2544 is as cheap as $1.2 USD [11] and the HM-11
module is available for less than $2 USD. Both are consider-
ably cheaper than the FSK chip used in FLEW. Finally, as we
will show in Sec. 4.6, Unify consumes much less power than
not only standard WiFi chips but also FLEW.

Unify is groundbreaking in that WiFi connectivity can
be achieved with the same device complexity/cost and with
the same power budget as BLE connectivity. We achieve this
vision with three key technical concepts: a) streaming DAC
IQ samples with an innovative use of DMA, b) capturing
FSK signals with SPI, and c) satisfying WiFi timings with
power overrides. These concepts are directly applicable to
the CC254x SoC. In addition, outputting FSK signals and
using power overrides are common on BLE SoCs for the
purpose of BLE certification. Therefore, these techniques
can be easily applied to other BLE SoCs if the register map
of the SoC is known. Some vendors consider the register
maps proprietary information and thus the configuration
procedure is not publicly available. However, the vendors
themselves or trusted developers should have access and can
thus apply the techniques. Unify transmits WiFi waveforms
with an innovative DMA scheduling. This concept can be
generalized as using the DMA to control the phase of the
carrier on BLE SoCs. For example, we can apply our concept
to other BLE SoCs by using and scheduling the DMA to
efficiently control the radio configuration, such as the PLL
or the AFE (analog front end) settings.
We develop Unify entirely from publicly available infor-

mation and we do not use any proprietary information.

2 SYSTEM DESIGN
2.1 SoC: Challenges and Opportunities
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Figure 2: Simplified block diagram of CC254x SoC.

There are numerous technical challenges in transforming
BLE/FSK SoCs intoWiFi SoCs. Unlike the highly configurable
FSK transceiver chip used in FLEW, BLE/FSK SoCs abstract

away low-level configurations and have less flexibility in
customizing radio protocols. For example, CC254x does not
have the infinite receive mode used in FLEW.Moreover, since
SoCs integrate everything on a single chip, the connections
between a processor and the radio circuits are internal, thus
preventing use of certain techniques that are applicable only
when the processor and the radio circuits are two separate
chips. For example, FLEW implements WiFi transmission by
using an external processor to inject digital waveforms into
the analog pins on the FSK transceiver. Such a transmission
design is not feasible on CC254x.
On the other hand, the SoC includes a processor core,

a memory bus, and a number of peripherals. Fig. 2 shows
the components (utilized by Unify) on a CC254x chip. By
leveraging the different functions provided by the periph-
erals and because of the much faster access to the radio or
peripheral registers, these resources create a unique opportu-
nity for Unify to overcome numerous hardware challenges
and perform standard WiFi operations on SoCs without any
hardware modification.

2.2 Design Goal
The ultimate goal of Unify is to make BLE/FSK SoCs behave
like standard WiFi chips. To achieve this goal, the SoC must
transmit and receive standard, un-coded WiFi packets. We
take a bottom-up approach to designing both the WiFi trans-
mission (Sec. 2.3) and the WiFi reception (Sec. 2.4). We first
design transmission/reception of the physical waveform of a
single WiFi bit. We then design robust mechanisms for trans-
mitting and receiving complete packets. Sec. 2.5 presents
an innovative way of drastically reducing the turnaround
times between transmission and reception, which is critical
for meeting the WiFi timing requirements. Finally, Sec. 2.6
puts all components together and schedules the Tx and the
Rx to transform BLE/FSK SoCs into WiFi SoCs.

2.3 Transmitting WiFi Packets
To transmit a WiFi packet, Unify divides its physical wave-
form into segments, each of which is copied to the DAC
registers for radio transmission. The segment copying is
done by precise, robust scheduling of two DMA controllers.

2.3.1 DACRegisters. Similar to earlier TI transceivers, CC254x
chips have registers for controlling transmissionDACs.When
set appropriately, these registers allow the transmitting IQ
samples to be overridden by software. Although these regis-
ters are not documented for CC254x chips, we were able to
pinpoint them among the undocumented memory locations
and verify that the IQ overrides function correctly. Specifi-
cally, the IQ overrides are activated by loading a value of 41
to location 0x61AA (in the 8051 XDATA region), and the ac-
tual I and Q overrides are located at 0x61A7 and 0x61A8. We
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also find that the DACs do not seem to be clock-gated. That
is, any I/Q overrides are directly reflected in the transmit-
ted waveforms after memory stores, and no synchronization
between the DAC and the memory bus is required. Concep-
tually, DACs are always synchronized with memory bus.
For CC254x, these DAC registers, unlike those in older

TI transceivers, provide a unique opportunity to transmit
WiFi waveforms. Specifically, since CC254x are SoCs, DAC
registers can be updated at a high frequency. In contrast,
older TI transceivers are not SoCs and register writes require
using much slower inter-chip communications, such as an
SPI bus, and thus the register updates on older transceivers
are too slow to be useful for WiFi waveforms.
To transmit proper WiFi waveforms, the DAC registers

must be updated fast enough. Moreover, to reliably transmit
WiFi packets from CC254x to WiFi devices every time, these
register updates should have precise, predictable timings
and any glitch should be eliminated. Transmitting one WiFi
packet involves thousands of consecutive writes to the DAC
register. Missing or duplicating one memory write results in
the shifting of all subsequent memory writes (and therefore,
the transmitted WiFi waveforms), which will cause bit mis-
alignment between CC254x and WiFi devices, resulting in
packet errors.
A straightforward way to update the DAC registers is

to use the 8051 on the SoC. The 8051 CPU on CC254x is
a TI-enhanced variant with a typical 8051 memory layout
(RAM, SFR, XDATA, etc.) and reduced clock cycles for the
instructions (as opposed to 12 cycles of the original 8051 [12]).
The CPU runs at 32MHz. We have extensively explored use
of the 8051 CPU for writing DAC registers that transmit
WiFi waveforms. Although we find it possible to transmit
a WiFi packet by our highly-optimized assembly code and
with the CPU set to the real-time mode, glitches are observed
and a less precise WiFi waveform needs to be used because
of longer cycles of accessing the XDATA memory. So, we
conclude that using the CPU does not meet the speed and
reliable timing requirements for transmitting WiFi packets.

2.3.2 DMA Controllers. Fortunately, CC254x is equipped
with DMA controllers. Conceptually, a DMA controller is
hardware that implements memcpy(). Therefore, a WiFi IQ
waveform can first be stored in memory and then a DMA
controller copies (and therefore transmits) the IQ waveform
to the DAC registers. With this method, no CPU intervention
is needed throughout the transmission of WiFi packets. Also,
since the memory reads and writes are implemented in hard-
ware, using the DMA controller enables much faster DAC
register updates, and thus the transmission of precise WiFi
waveforms. Moreover, the memory access priority of the
DMA controllers on CC254x is configurable. With the prior-
ity set to high, the DMA memory access always gets priority

over the CPU access, thus guaranteeing precise, glitch-free
timing. We find that the DMA controllers actually have a
hidden level (“absolute”) with an even higher priority and
use this level for copying IQ samples to DAC registers.

Similar to FLEW, Unify transmits DSSS BPSK WiFi wave-
forms, which is the most robust WiFi modulation format.
The DSSS BPSK modulation can be viewed as typical BPSK
modulations at a higher speed, which can be implemented by
updating I samples only and keeping the Q samples to mid-
point (i.e., Q-branch is always 0 on the constellation plane).
While it is possible to use a single DMA controller to update
both I and Q samples, we choose to implement BPSK by only
updating the I samples. This is because the I and Q samples
are in separate registers and updating both samples reduces
the update rate by half.
By only modulating the I-branch, the spectrum of the

transmitted waveform is symmetric. The standard DSSSWiFi
waveform can be generated by modulating the I-branch at
11MHz. This corresponds to the 11-bit Barker sequence the
WiFi DSSS uses. That is, after scrambling and differential
coding, a WiFi packet is encoded in an 1Mbps bitstream.
For any 1’s in the bitstream, the Barker sequence [1,-1,1,1,-
1,1,1,1,-1,-1,-1] is sent to the I-branch at 11Mbps. For any 0’s,
its complement ([-1,1,-1,-1,1,-1,-1,-1,1,1,1]) is used.

In Unify, the DMA updates the I samples at 8MSps. There-
fore, a sequence, resampled in the phase domain from the
Barker sequence, is used. Specifically, for 1’s in the 1Mbps
bitstream, [1,-1,1,-1,1,1,-1,-1] is sequentially sent to the I reg-
isters using DMA. For 0’s, [-1,1,-1,1,-1,-1,1,1] is used. Let the
maximum of the autocorrelation of the Barker sequence be
100%, then themaximumof the cross-correlation between the
Barker sequence and the resampled sequence (when both are
upsampled to 88MHz) is 81%, indicating that they are highly
similar. Technically, the resampled sequence has a smaller
bandwidth (modulating at 8MHz instead of at 11MHz). How-
ever, since conventional WiFi systems are designed to with-
stand interference from nearby channels and since the high
frequency components near channel boundaries are already
attenuated either by the circuits or the channel filter in prac-
tice, this resampled sequence works properly and reliably
with chips from all major WiFi vendors.

In theory, WiFi packets can be transmitted by updating
the DAC registers using a single DMA transfer. However,
this is infeasible in practice due to memory and processing
constraints. CC254x only has 2∼8kB of SRAM. In Unify, each
WiFi bit is represented by 8 bytes of I data. For sending a 200
byte WiFi packet, a contiguous memory of 200 ·8 ·8 = 12.8kB
is required, which far exceeds the available memory on these
low-cost chips. Furthermore, even if an unlimited amount of
SRAM is available, generating and putting all the I data in
the memory in the first place would take too much time for
the 8051 core, resulting in low throughputs.



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

2.3.3 Multiple DMA Scheduling. To overcome these limita-
tions, we must reuse the memory regions, meaning that we
must configure and trigger multiple DMA transfers during
the transmission of a single WiFi packet. Conceptually, each
DMA transfer sends a small segment of the WiFi packet and
the whole WiFi packet is transmitted by concatenating all
DMA-transferred segments.
Using multiple DMA transfers and concatenating them

introduce new challenges. Instead of configuring and then
triggering one DMA transfer, we need to configure multiple
DMA transfers on the fly, and each transfer should be trig-
gered precisely on time. If any DMA transfer is not triggered
precisely at the scheduled instant, the waveform segment
sent during the DMA transfer is shifted and corrupted. If a
DMA transfer is not correctly configured before its trigger-
ing, an incorrect waveform segment will be sent.
We address these challenges by devising a robust mech-

anism that schedules the DMA transfers without any CPU
involvement during transmission. The scheduling is very
tricky to design but works elegantly and reliably in Unify
as described below.
Our solution uses a timer and two DMA controllers on

CC254x. One DMA controller (DMA0) periodically copies
a waveform segment from a memory region to the DAC
register. Since waveform segments must be copied to the
DAC register starting at precise time instants, each transfer
issued by DMA0 must start at a precise time instant. This is
guaranteed by triggering DMA0 in hardware using a timer
on CC254x. Note that a waveform segment does not have
to contain the waveform of just one WiFi bit. In fact, Unify
triggers DMA0 every 4µs, corresponding to the duration of
4 WiFi bits. The basic idea is that, depending on the WiFi
bits to transmit, DMA0 will copy a waveform segment from
different memory locations (by modifying the DMA0 config-
uration). The memory region is pre-loaded with all possible
waveform segments corresponding to all bit permutations
within the duration of a waveform segment.

After a segment (corresponding to a group of WiFi bits)
is transferred via DMA0, the configuration of DMA0 must
be updated to transmit the next segment. Specifically, the
source memory address of DMA0 must be updated to point
to the starting location of the next waveform segment. On
CC254x, DMA is configured by specifying a DMA descriptor.
The DMA descriptor itself is actually 8 bytes of memory
in the XDATA space. Another key idea is that, since the
descriptor of DMA0 is also a memory region, we can use
a second DMA (DMA1) to keep updating the source mem-
ory addresses of DMA0. Additionally, because DMA1 can be
hardware-triggered upon completion of each DMA0 transfer,
the address update happens exactly once after each DMA0
transfer with guaranteed ordering. While the 8051 core, in-
stead of DMA1, could theoretically be used for updating

addresses, we find the timing is not reliable using the 8051.
Also, the DMA0 triggering is too fast to allow interrupt-based
designs for updating the descriptor.

Since DMA0 transfers are the most time-critical, the prior-
ity of DMA0 is set to“absolute” while the priority of DMA1
is “high”. DMA0 is also set to repeated block mode where
DMA0 transfers a block of data once triggered, and after
each transfer, DMA0 automatically reads the new descriptor
and waits for the next trigger.

A small turnaround time is required between DMA0 trans-
fers. (This turnaround time is still present if, alternatively,
DMA0 and DMA1 are interleaved to update the DAC reg-
ister.) Therefore, although 4µs corresponds to 32 memory
accesses, the block size of DMA0 is set to 28. During the
remaining 4 cycles, the DAC register is not updated and
the waveform stays unchanged. To account for this, DMA0
transfers are not aligned with the bit boundaries of WiFi
bitstreams. Each transfer spans 5 WiFi bits where the first
cycle in each transfer copies the last I sample of the first WiFi
bit, and the last 3 cycles copy the first 3 I samples of the last
WiFi bit. That is, the DMA0 transfer is repeated every 4 WiFi
bits and the waveform for one of these 4 bits is transmitted
by the last 3 cycles of a transfer and the first 1 cycle of the
next transfer. The 4 cycles of idle time in between are used
for turnaround.

2.3.4 Waveform Segments. DMA0 copies I samples from
a memory region in which every possible waveform seg-
ment within 4µs can be found. A naive approach to storing
all these segments is to store each segment separately in
a non-overlapping manner. Since every possible 5 WiFi bit
permutation needs an entry, the overall required memory is
25 ·28 = 896 bytes. While this memory size is within the limits
of CC254x chips, it is still relatively large. More importantly,
since a memory region of 896 bytes cannot be indexed using
a single byte, DMA1 needs to update the source address (in
the DMA0 descriptor) in two bytes after each DMA0 transfer
and each address waiting to be copied to DMA0 descriptor by
DMA1 needs to be stored in two bytes of the main memory.
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Figure 3: Transmit waveforms using 2 DMAs.
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A better approach is to store all segments in the memory
with maximum overlaps between segments, resulting in the
minimum required space. This approach makes use of the de
Bruijn sequence [13]. Specifically, every 5-bit permutation is
a subsequence of “000001000110010100111010110111110000”
and we can store all possible segments in this manner. Each
‘0’ or ‘1’ in this sequence represents one WiFi bit, which
actually occupies 8 bytes (representing 8 I samples) in the
memory. (That is, [1,-1,1,-1,1,1,-1,-1] for ‘1’ and [-1,1,-1,1,-1,-
1,1,1] for ‘0’.) With these stored segments, we can transmit a
WiFi bitstream by setting, using DMA1, a series of appropri-
ate offsets as the source address of DMA0. Let us consider
Fig. 3 as an example and suppose the last WiFi bit in the last
iteration is ‘0’ and we want to transmit WiFi bits ‘0000’, then
we need to specify the offset for ‘00000’, which is 0. However,
since we only transmit the last I sample (i.e., skipping the
first 7 samples) of the first WiFi bit, the offset is 7. Suppose
the WiFi bits after ‘0000’ is ‘1111’, we need to specify the
offset for ‘01111’, which is 7 + 26 · 8 = 215. Since the maxi-
mum offset is 7+ 31 · 8 = 255, each offset can be represented
with just one byte. Therefore, DMA1 only needs to update
a single byte of the DMA0 descriptor each time and each
offset waiting to be copied by DMA1 occupies only 1 byte in
the main memory.
The ability to use a single byte to store offsets is also

the reason why DMA0 is triggered every 4µs, since 4µs is
the longest interval that all possible waveform segments for
every bit permutation can still be addressed by a single byte.

2.4 Receiving WiFi Packets
To receive standard, un-coded WiFi packets, Unify uses the
radio circuit and the FSK demodulator to receive raw WiFi
bits. Unify also reuses the SFD detector on CC254x, which is
intended to detect FSK/BLE packets, to detect standard WiFi
packets. Upon detection of a WiFi preamble, Unify starts
collecting raw WiFi bits and descrambling the incoming bit
stream to recover each byte in the WiFi packet. CRC checks
are performed on every WiFi packet, which is critical for
standard WiFi operations. All this processing needs to be
done in real time on CC254x, which is only equipped with
a low-power, 8-bit 8051. Although receiving standard WiFi
packets is usually assumed to be computationally-intensive,
Unify achieves this goal by leveraging recent signal process-
ing discoveries, by reusing certain hardware accelerators on
CC254x and by optimizing the codes run on 8051.

2.4.1 Receive a raw WiFi bit. To receive a raw WiFi bit,
Unify leverages a simple and known technique used in the
latest WiFi–FSK CTC works [4–6]: FSK demodulators, op-
erated at a relative frequency offset, can receive WiFi DSSS
bits. Unify operates the FSK receivers at -3MHz (relative to
the center frequency of the selected WiFi channel) with an

intermediate frequency of -1MHz. The frequency offset is
chosen based on the receive performance. Although the lat-
est WiFi–FSK CTC results show that a fractional frequency
offset should ideally be used, the frequency can only be set
in 1MHz increments/decrements on CC254x. To address this,
the frequency offset compensation feature on CC254x is used,
which provides additional fractional frequency offsets based
on the received waveforms. A similar technique can be found
in [4]. Unify configures CC254x to continuously track and
compensate for any frequency offset before an SFD is de-
tected. Once an SFD is received, the frequency offset is frozen
and this estimate is used to demodulate the rest of a packet.
This setting yields the best performance among all different
frequency compensation configurations.

Although the above techniques are useful in demodulating
raw WiFi bits, they do not enable CC254x to directly receive
WiFi packets. In particular, since the bit decoding and packet
logic on CC254x are designed for BLE/FSK packets, they
cannot be directly used for conventional WiFi packets. The
prior work of [4], which enables one-way WiFi-to-BLE com-
munication, circumvents these limitations by pre-processing
and pre-coding WiFi packets in the form of BLE packets.
However, this method would require modifications on every
WiFi device from which the BLE chip receives packets.

We design Unify to directly detect and decode standard
WiFi packets. This eliminates the need for pre-coding WiFi
packets so that Unify can work with conventional WiFi de-
vices. To achieve this goal, we must address other challenges
imposed by the hardware.

2.4.2 Packet Detection. To detectWiFi packets using FSK/BLE
packet logics, CC254x is configured to detect the standard
WiFi preamble from the received raw WiFi bitstream. Al-
though detecting WiFi preambles can, in theory, be imple-
mented in software using sliding windows, it is computa-
tionally prohibitive, especially on an 8-bit 32MHz CPU.

Unify exploits the BLE/FSK SFD matching hardware on
CC254x for the detection of WiFi packets. The SFD to be
matched is set to a bit sequence within the scrambled WiFi
SYNC field. This technique can be found in FLEW. How-
ever, Unify uses different SFD and SFD length because of
the frequency compensation requirements. The SFD used
in FLEW is 0x05AE4701. In standard WiFi packets, the 8-bit
pattern before 0x05AE4701 is ‘11010101’. On the other hand,
CC254x uses the SFD, along with the 8 bits received before
SFD, to estimate frequency offsets. For CC254x, the 8-bit pat-
tern should be either ‘01010101’ or ‘10101010’, and receiving
‘11010101’ lowers the accuracy of the frequency estimates.

We meet this requirement by using 0x0B5C8E03 as the
SFD, since theWiFi bit pattern is ‘10101010’ before 0x0B5C8E03.
CC254x is configured to expect this bit pattern before SFD.
0x05AE4701 is 0x0B5C8E03 shifted right by 1 bit. Therefore,



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

the length of SFD is set to 31 so as to align the subsequent
bytes to the appropriate byte boundaries.

With appropriate bit descrambling, the WiFi PLCP starts
5 bytes (40 bits) after the SFD (0x05AE4701). This holds for
packets conforming to the 802.11 standard [14]. As described
in [6], Realtek’s chips are buggy in that their PLCP (and sub-
sequent bytes) are 2 bits early (38 bits after bit descrambling).
For connecting to Realtek devices, Unify sets the length of
SFD to 29 in order to automatically align the bytes without
any software processing.

2.4.3 Packet Length. The length of a WiFi packet can be
determined after parsing the PLCP header. Unify also per-
forms sanity checks on the PLCP to prevent erroneous or
unsupported PLCP affecting the packet reception.
The hardware limitations of CC254x make it very diffi-

cult to decode standard WiFi packets, especially due to the
packet-length limitation. Since we are not pre-coding WiFi
packets with BLE packet format, we cannot use CC254x’s
packet-length parsing, which determines the packet length
and adjusts the reception duration accordingly. If the length
parsing is not used, we need to use the fixed length packet
format, which requires specifying the length before starting
each packet reception. This is infeasible because the WiFi
packet lengths are variable and we do not know the length
of each packet until its PLCP is received.

In addition, the packet logic (with or without length pars-
ing) only supports packets up to 255 bytes and CC254x imme-
diately terminates the reception afterwards. Conventional
WiFi packets easily exceed this size.

We use a special design that solves the size limitation and
dynamically adjusts the reception duration. The key idea is
to prevent the packet logic from terminating the reception
before a complete WiFi packet is received. From extensive
experiments, we find this achievable by forcing the packet
logic “stuck” at its initial state. Specifically, we find that after
an SFD is received, we can arbitrarily prolong the reception
by periodically overwriting one register in an undocumented
RAM region the packet logic uses. The register is mapped
to 0x607E in the XDATA space when the RF memory page
is set to 5 (RFRAMCFG = 5). By constantly overwriting 0 to
0x607E, it prevents the packet logic from terminating the
reception. Furthermore, by controlling the total duration of
overwriting 0, the reception duration of a WiFi packet can
be adjusted dynamically after its PLCP is received.
One side effect of overwriting the packet logic’s register

is that the packet buffer goes haywire. Consequently, the
raw WiFi bits cannot be read out from the packet buffer. To
address this problem, we utilize CC254x’s RF observation
signals, which are various signals from the FSK demodulator.
By selecting “demodulated bits”, “clock” and “SFD matched”,
these signals emulate an SPI sender. We can then use an

USART (SPI)

Radio

FSK 

Demod

FSK bits

FSK clock

Data

SS

CLK

SFD matched

SFD matched:

FSK bits:

FSK clock:

Figure 4: Receiving FSK bits with SPI.
SPI receiver (USART hardware on CC254x) to collect the
demodulated bits (the raw WiFi bit stream), as shown in
Fig. 4.
While it might seem that external wires are needed to

connect the SPI sender to the SPI receiver, Unify does not re-
quire such external connections. We find that the peripheral
inputs are (implicitly) always connected to the pins, even
when those pins are configured as outputs. Therefore, by
using the IO matrix to route the RF observation and SPI re-
ceiver signals to the same pins, they are connected without
any external connections.

2.4.4 Packet Decoding & CRC. After raw WiFi bits are re-
ceived from SPI, Unify descrambles the bit stream. Unify
performs descrambling immediately upon receiving each
byte. The WiFi descrambling can be simplified as performing
XOR on 3 shifted versions of the bit stream. We optimize the
descrambling as 8-bit computations (as opposed to shifting
and XOR’ing three 16-bit integers). We devise the following
C code to produce each WiFi byte (output):
sb = <one byte received from SPI, LSB first>;
output = lb ^ (lb>>7) ^ (lb>>3) ^ (sb<<1) ^ (sb<<5);
lb = sb.
Further optimization is possible. Unlike ARM’s shift in-

structions, rotate left/right on 8051 only shifts 1 bit at a time
and extra cycles are required to mask bit-rotations to get logi-
cal shifts. Consequently, the second line in the above snippet
takes approximately 31 cycles (depending on the register al-
location) using the IAR compiler. This line can be replaced by
an optimized assembly routine. The key idea is to construct
two lookup tables in the 8051 CODE space to store the re-
sults for lb ^ (lb>>7) ^ (lb>>3) and (sb<<1) ^ (sb<<5).
During descrambling, we can load lb (or sb) into A and use
the MOVC instruction to directly fetch the results. The number
of cycles is reduced to 17 using this method. We process the
WiFi PSDU (excluding the CRC) with this optimization.

CRC must be performed on WiFi packets, since the CRC
result is used to determine whether an ACK should be trans-
mitted after 10 µs. However, CRC32 is simply too compu-
tationally intensive to run on the 8-bit 8051 at WiFi speed.
Fortunately, CC254x has a configurable hardware CRC mod-
ule (known as the BSP co-processor). We devise an appropri-
ate initialization sequence for the CRC module. Specifically,
the CRC32 polynomial is configured once at startup. After
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the SFD (0x0B5C8E03) is received and just before the start
of WiFi PLCP, Unify initializes the CRC32 shift register (to
0xFFFFFFFF). Then, for each byte (excluding the last 4 bytes)
in the WiFi PSDU, Unify sends the descrambled byte to the
BSP. The 4 bytes received last are matched with the CRC
calculated by the BSP. An ACK should be transmitted if the
CRC matches.
The CC254x has a register called FREQTUNE. Contrary to

its name, we find that it has little effect on the RF frequency.
Instead, it fine-tunes the crystal oscillator. We find this reg-
ister particularly useful in fine-tuning CC254x to receive
long WiFi packets, since it compensates for the small timing
offsets between CC254x and a WiFi device. This fine-tuning
is needed only when large packets are expected and it only
needs to run once for each WiFi device. We iterate 5 possible
values and choose the best FREQTUNE.

2.5 Transitions between Tx and Rx
2.5.1 Rx to Tx Turnaround. Normal WiFi operation requires
a device to respond (i.e., with ACK or CTS packets) almost in-
stantly (10µs) after receiving packets. Meeting this WiFi turn-
around time is highly challenging for Unify, since CC254x
is not designed with such a short turnaround time. In partic-
ular, we find that the shortest turnaround time of CC254x,
using the standard Rx to Tx transition, is around 130µs. This
is far too long for any WiFi devices.
After extensive experiments, we fundamentally resolved

this challenge. Our solution starts from a key insight that,
since Unify transmits waveforms by directly controlling the
DAC registers, we can initiate a transmission with minimum
delay by directly turning on the PA, mixer and DAC. The
power signals of these components can be overridden by
modifying the “power down” registers. Although the loca-
tions of these registers on CC254x are completely undoc-
umented, we are able to pinpoint the two registers after
extensive experiments. Specifically, the transmit chain is
turned on if 0x61AC (in the XDATA space) is set to 8.
By directly controlling the power signals, the Rx to Tx

turnaround is reduced to approximately 10µs, thus satisfying
the timing requirement of transmitting an ACK (or CTS) after
receiving the corresponding packet. Unlike FLEW, Unify
meets this timing requirement without truncating packet
reception, and thus full 4 bytes of CRC32 are received, just
like any conventionalWiFi chip.We observe that terminating
packet reception affects the RF carrier signal, and hence do
not terminate the reception until an ACK is transmitted. That
is, the reception is prolonged to receive the full WiFi packet,
plus 10µs, plus the duration of an ACK.

2.5.2 Tx to Rx Turnaround. In the opposite direction, after
Unify sends a packet to an AP, the AP will send an ACK
after 10µs if the AP properly receives the packet. While

it is technically possible that a WiFi system is functional
without ACK detection, such a design would have very poor
performance because a reliable re-transmission mechanism
cannot be implemented without detecting ACKs. However,
10µs is also a far too short turnaround time for CC254x.

To address this challenge, we use a similar idea, except
we change the order of Tx and Rx. That is, to send a packet,
Unify initializes reception, sets the Tx frequency, and then
immediately overwrites the power registers (which block
the signal from going into the receive chain). In addition
to loading 8 to 0x61AC, 32 is loaded to 0x61AB to reduce
power consumption. Once the transmission is completed,
DMA1 becomes inactive. After detecting this, the 8051 can-
cels DMA0 transfers and resumes the highest access priority.
Afterwards, it sets the Rx frequency, sets both 0x61AB and
0x61AC to 0, and waits for a packet (which should be an
ACK). The key idea is that by the time Unify finishes trans-
mission, the receive circuit will be primed and ready for the
next packet. All we need to do is "unblock" the receive signal
by removing the power overrides, and a fast Tx to Rx transi-
tion is achieved. The timing of this control logic is not very
tight since 10µs leaves enough room for the 32MHz 8051.
(The main source of delay was the receive circuit, not the
8051.)
The Tx to Rx turnaround can be followed by an Rx to Tx

turnaround. For example, if a unicast packet (instead of an
ACK) is received after sending a packet, Unify will receive
the unicast packet and transmit an ACK (after ∼10µs).

2.6 MAC Layer
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Figure 5: The FSM of Unify.

The finite state machine (FSM) of Unify consolidates all
important components, schedules transmission and recep-
tion in a half-duplex manner, and implements the MAC-layer
functions of WiFi.

Fig. 5 shows the high-level FSM of Unify. After initializa-
tion, a CMD_RX is issued and Unify enters the Rx 0 state. In
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Rx 0∼3, the hardware is in receiving mode and waiting for
a valid SFD. These states differ only in software. From Rx
0 to Rx 2, Unify copies and prepares the WiFi data until a
complete WiFi packet (in the form of offsets) is ready to be
transmitted in the memory. State Rx 3 represents that the
packet is ready but the channel is busy.

Unify follows CSMA/CA,which is the fundamentalmedium
access mechanism in WiFi. Before each packet transmission,
the Rx 2 state senses the channel by monitoring the RSSI
value. If an idle channel is observed, Unify transmits a packet.
After Tx, Unify returns to Rx 2. If the connecting AP sends
an ACK, Rx 2 can detect the SFD and transition to Rx Packet.
Otherwise, Unify initiates re-transmissions.
Rx Packet is the main state that collects and processes

(descrambling and CRC) the bitstream and extends the recep-
tion to a complete packet. Rx Packet provides information
(the frame type, address and CRC results) so that necessary
actions are performed thereafter. For packets with a wrong
MAC address or other errors, Unify simply returns to the
last state (“PS”) before Rx Packet. If an ACK is received af-
ter packet transmission, Unify goes to Rx 0 to prepare the
next packet for transmission. CTS is transmitted if RTS is
received. If a unicast packet with a matched MAC address
is received, Unify transmit an ACK. Then, Unify does not
issue a new CMD_RX because each CMD_RX is configured as
repeated with fast warm-up. Since Rx Packet to Tx ACK is
the normal reception flow, the receiver will become ready
faster by simply waiting for the repeated reception to start.
We also include an optimization in Rx Packet. When

Unify is processing the incoming WiFi bit stream from the
radio, the 8051 also copies the outgoing WiFi bytes from the
USB buffer to the memory. This allows Unify to go to Rx 2
much faster after reception.

3 IMPLEMENTATION
3.1 Hardware
To directly compare Unify with SOTA CTC, we implement
Unify on the CC2544 since it has built-in USB. We use Log-
itech Unifying dongles as the hardware. We do not modify
the hardware of Logitech Unifying dongles. We simply load
the Unifying dongle with Unify firmware and WiFi connec-
tivity is achieved.

3.2 Firmware
The firmware of Unify is developed from scratch. This in-
cludes in-house USB firmware codes that are completely
developed from the ground up. The firmware is compiled
with IAR EW8051 [15].

After USB initialization and exchanging USB standard
requests, the firmware initializes the radio hardware. The
8-bit Timer 3 is initialized to provide a constant 4µs trigger.

The radio is set to the fixed length mode (with a length of
120) and repeated reception with the “synthesizer on” option.
The actual reception duration will be dynamically adjusted
at run time. The AGC is off and the radio is manually set to
the maximum gain. The firmware initializes 1 DMA0 and 3
DMA1 descriptors. Three descriptors are for transmitting a
normal packet, an ACK and an CTS, respectively. This allows
Unify to switch between different transmissions by simply
specifying a different descriptor for DMA1.

The firmware also initializes an XDATA region that stores
all possible waveform segments to be sent by DMA0. Using
the IAR compiler, this XDATA region always starts at 0x0001.
A small optimization is used here. In Sec. 2.3, the lowest
possible offset (index) is 7. Therefore, we generate all possible
waveform segments, truncate the very first 7 bytes and store
them in XDATA starting at 0x0001. All offsets are adjusted
(i.e., subtracting 6) accordingly.

After initializations, the firmware enters the FSM loop.
If any USB error (e.g., USB reset) is detected, the firmware
jumps to 0x0000 and the USB initialization follows.

3.3 Firmware Update
The Unify firmware can always be loaded to CC254x us-
ing a CC254x programmer. The official CC Debugger [16]
from TI can be used. Alternatively, an Arduino board can
be used as the debugger [17]. We also design the Unify
firmware so that Unifying dongles with a compatible boot-
loader can be directly updated via USB. Specifically, the boot-
loader on the Unifying dongles in our possession occupies
0x0000∼0x03FF and 0x7400∼0x7EBF (in the CODE space).
A compatible Unify firmware is first generated by placing
the Unify codes starting at 0x052C. Then, all instructions
between 0x0400∼0x052B are replaced by jumps to 0x056D,
which is the entry point to the Unify codes. CRC16 is calcu-
lated over 0x0400∼0x6BF9 and is placed at 0x6BFA. Finally,
CRC16 is followed by a magic string (0xFE,0xC0,0xAD,0xDE).
With this code layout, Unify firmware can be flashed to com-
patible dongles using USB flashing tools for Unifying dongles.
Finally, our firmware is also designed to be able to revert
back to the original Unifying firmware.
The Unify firmware focuses on WiFi communication. TI

developed a “Boot Image Manager”, which allows running
multiple firmware [18]. Alternatively, BLE functions can
later be added to our firmware. Therefore, BLE and WiFi
communication can both be supported with a single SoC.

3.4 WiFi Driver
The WiFi driver of Unify is similar to FLEW and interfaces
the firmware with the mac80211 module in the Linux kernel.
Similar to FLEW, the transmission path converts the WiFi
packets to WiFi (phase) bit streams. Then, every 4 bits (and
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the one bit that precedes them) are converted, using a simple
lookup table, to an offset that points to the corresponding
waveform segment. All offsets are sent to the firmware for
transmission. In the receiving path, the firmware sends de-
scrambledWiFi packets, along with two status bytes for each
packet, to the driver. The status bytes include a CRC flag
indicating if there is a packet error. The driver simply checks
this flag and either relays a packet to mac80211 or ignores
an error packet. In the driver, we set the MTU to avoid over-
flowing CC2544’s memory and to limit the sampling offsets.
For these purposes, we can use an MTU of 256, which is the
minimum MTU setting on the modern Linux. However, we
use a higher MTU (552) because it increases throughputs
and 552 was the minimum MTU of Linux for a long time
[19–22].

4 EVALUATION
4.1 Experimental Setup
Table 1 shows the WiFi devices and APs used in the evalua-
tion of Unify. The experimental setup is similar to that of
FLEW. Various NICs from major WiFi chip makers are used
for measuring physical-layer performance. A difference be-
tween our setup and that of FLEW is that all NICs use exactly
the same antennas (on an HP 2570p laptop), making their
performance directly comparable. Marvell does not seem to
manufacture any standard half-length mini PCIe card and
its chip does not support monitor mode well. Therefore, the
evaluation is done at the system level. Various commodity
WiFi APs are used for evaluating system-level performance.
These system evaluations represent real-world use-cases
where Unify, just like any typical WiFi device, directly con-
nects to conventional WiFi APs. They characterize end-to-
end performance where all aspects of WiFi protocol (e.g.,
re-transmissions, CSMA/CA, etc.) are taken into account.
All WiFi devices and APs are unmodified and all NICs

use their default driver supplied with Ubuntu 20.04 LTS. We
use WiFi channel 9 and the system evaluations (Sec. 4.3∼4.5)
use the WPA2-PSK encryption. This WiFi channel is chosen
because it has the lowest activity in the test environment.

Table 1: WiFi chips and APs used in experiments.
Chip
Maker

PHY
Evaluation System Evaluation

Atheros AR9462 GL.iNet GL-AR150 (AR9331)
Broadcom BCM4313 ASUS RT-AC66U (BCM4331)

Intel Advanced-N
6205

TP-Link Archer AX3000
(WAV654A0)

Marvell - Linksys EA3500 (88W8366)
Ralink/
Mediatek RT3290 TP-Link TL-WR841N

(MT7628NN)
Realtek RTL8188CE D-Link DIR-619L (RTL8192ER)

4.2 PHY Layer and PER

Table 2: PER Evaluation (%)
Direction WiFi to Unify Unify to WiFi
Distance 5m 10m 20m 5m 10m 20m
Atheros 0.44 0.73 2.64 2.47 3.83 4.00
Broadcom 5.25 6.30 6.40 2.88 3.10 3.81
Intel 5.52 8.35 9.74 1.78 3.37 3.74
Ralink 5.27 7.52 10.91 5.71 7.89 9.01
Realtek 1.25 3.08 5.40 12.82 13.21 13.26

We set Unify and NICs to the monitor mode and contin-
uously send/receive standard WiFi packets with a PSDU of
564 bytes (including 4 bytes of CRC). In each setting, 4096
packets are sent so that each packet has a unique sequence
number. On the receiver side, CRC checks are performed.
We calculate the number of received packets with a correct
CRC and the PER is defined as 1 − # of correct packets

4096 .
Using Unify to receive standard WiFi packets transmitted

by standard WiFi chips, Table 2 shows that transmission
by (Qualcomm) Atheros has the best performance with less
than 0.5% PER at 5m. The performance with Broadcom at 5m
is similar to that of Intel and Ralink but the PER increases
less with longer distances. Intel and Ralink have very simi-
lar performance across different distances with Intel being
slightly better at 20m. Interestingly, Realtek has the second
best PER performance. This is in part due to the fact that
Unify uses a shorter SFD length (to compensate for Realtek’s
packet format bug), which distinguishes Realtek’s packets
from background interferences and yields good performance.
In the opposite direction, Unify transmits conventional

WiFi packets and standard WiFi NICs receive them. Atheros
and Broadcom have similar performance and the PER is
≤4% even at 20m. Intel actually shows the best receive per-
formance in our testing. Ralink and Realtek chips have no-
ticeably worse receive performance. This is consistent with
the observations, reported in the prior work, of the infe-
rior receive performance of Ralink and Realtek NICs. We
believe these are in part due to the comparatively worse
circuit or DSP designs. It is also possible that Realtek uses
a non-standard WiFi SYNC field in the Rx chain (as it does
in the Tx) and leads to the worst performance. Unify uses a
shorter SFD length for Realtek tests in both directions, and
this increases the possibility of packets transmitted by Unify
collide with background interference since the shorter SFD
length is for receiving Realtek’s packets.

These physical-layer evaluations measure one-way, fixed-
data-rate and no-retransmission performance. For packet
transmission (i.e., WiFi to Unify), WiFi cards may have IQ im-
balance, constellation imperfections, or timing or frequency
drifts. For packet reception (i.e., Unify to WiFi), different ven-
dors may use different preamble detection, bit demodulation,
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and RF circuit implementations, which can lead to noticeable
performance differences. On the other hand, higher layer
issues such as the rate adaptation algorithm and MAC layer
implementations will not contribute to the performance dif-
ferences at the physical layer.

4.3 TCP/UDP Throughput
Table 3: Throughput Evaluation (kbps)

Uplink
Transport TCP UDP
Distance 5m 10m 20m 5m 10m 20m
Atheros 421 420 412 471 479 459
Broadcom 397 405 391 461 455 444
Intel 390 388 369 446 438 415
Marvell 395 385 310 435 427 419
Ralink 401 395 387 438 441 437
Realtek 405 399 360 458 454 410

Downlink
Transport TCP UDP
Distance 5m 10m 20m 5m 10m 20m
Atheros 552 530 428 655 652 609
Broadcom 507 491 473 621 597 535
Intel 501 494 474 586 576 544
Marvell 425 424 395 512 520 479
Ralink 469 448 422 571 555 553
Realtek 475 468 451 570 560 527

In the system-level evaluation, Unify directly connects
to unmodified WiFi APs. Using the standard iperf3 [23]
tool, we evaluate the transport-layer throughputs in both
the uplink (Unify to AP) and downlink (AP to Unify) direc-
tions. We run an iperf3 server on a Ubuntu laptop, which is
connected (via Ethernet) to the first LAN port of the testing
AP. Unify joins the AP’s WiFi network and runs an iperf3
client to measure the TCP and UDP throughputs in both
directions. The measurements are always taken from the
receiving end. Besides the MAC layer and packet retransmis-
sions, physical-layer performances in both directions affect
the throughputs since data packets are ACKed in the oppo-
site direction. Different rate adaptation algorithms also affect
data packets sent by an AP.
For uplink, Table 4.3 shows Atheros has the best perfor-

mance, which is due to the superior overall (Tx and Rx)
physical-layer performance. Broadcom also has good per-
formance and similar to Atheros, the throughputs do not
decrease much even at 20m. Intel and Marvell have similar
performance but their throughputs tend to decrease more at
20m. The newer Mediatek chip inside the Ralink AP seems
to have a better receive performance with little through-
put decrease at 20m. Realtek is similar to Ralink at shorter
distances but the throughput drops more at 20m. These de-
creases are caused by the inferior physical layer performance
that requires more re-transmissions.

For downlink, Atheros shows the best performance in
Table 4.3. Broadcom and Intel have almost identical TCP
throughputs but have different UDP throughputs. This could
have been caused by different rate adaptation algorithms
where the Intel AP tries to use a different data rate more
proactively after multiple successful transmissions. Ralink
and Realtek have similar throughputs and some through-
put drops can be observed at 20m. Marvell has the lowest
downlink throughputs, which could be caused by the radio
performance and the rate adaptation algorithms. We observe
that during rate exploration, the Marvell’s AP simply iterates
all data rates from high to low, which takes more air time.

4.4 Round-Trip Time
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Figure 6: RTT

We connect each AP to the Internet and measure the RTT
of Unify over LAN (pinging the AP) and over WAN (pinging
8.8.4.4). The distance between the AP and Unify is 20m.
The wireline RTT between our location and 8.8.4.4 is

approximately 6.80ms. This explains that the WAN RTT
(Fig. 6b) is similar to the LAN RTT (Fig. 6a) except for a
roughly 7ms offset. Broadcom and Atheros show the best
performance, followed by Marvell and Intel. Ralink and Real-
tek have inferior RTT performances. We observe that Realtek
RTT tends to oscillate between high and low. This might be
due to its rate adaptation design or a bug. Overall, the RTT
is 4∼10ms for LAN and 11∼21ms for WAN, making Unify
highly suitable for latency-sensitive applications.

4.5 Coexistence with Multiple Devices
We conductedWiFi coexistence tests, demonstrating Unify’s
ability to coexist with conventional WiFi devices without
"starvation" even when the WiFi channel is fully saturated.
We use theAtheros AP and concurrently runmultiple iperf3
servers. Unify and different conventional WiFi chips will
simultaneously upload or download via TCP or UDP. By
default, each UDP link is rate-limited by iperf3 to 1Mbps
whereas each TCP link is not.



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Hsun-Wei Cho and Kang G. Shin

Table 4: Coexistence with multiple WiFi devices (bps)
# of Devices TCP UL UDP UL TCP DL UDP DL
1 Unify 432 k 484 k 554 k 654 k

2 Unify 218 k 417 k 193 k 634 k
Intel 6205 8.07 M 1.05 M 26.3 M 1.07 M

3
Unify 170 k 442 k 118 k 588 k
Intel 6205 18.2 M 1.05 M 13.3 M 1.05 M
AR9462 1.88 M 1.05 M 17.6 M 1.00 M

4

Unify 92.3 k 411 k 92.4 k 553 k
Intel 6205 12.6 M 1.05 M 14.4 M 1.05 M
AR9462 5.18 M 1.05 M 14.5 M 1.05 M
BCM4313 2.03 M 1.05 M 5.36 M 1.05 M

5

Unify 67.0 k 423 k 115 k 523 k
Intel 6205 14.0 M 1.05 M 11.9 M 1.05 M
AR9462 1.84 M 1.05 M 7.79 M 1.05 M
BCM4313 1.13 M 1.05 M 6.30 M 1.05 M
RTL8811AU 13.2 M 1.05 M 3.91 M 1.05 M

6

Unify 55.8 k 330 k 101 k 471 k
Intel 6205 5.85 M 1.05 M 6.68 M 1.05 M
AR9462 5.68 M 1.04 M 7.84 M 1.05 M
BCM4313 554 k 1.04 M 5.95 M 1.05 M
RTL8811AU 4.61 M 1.05 M 5.69 M 1.05 M
MT7612U 6.06 M 978 k 3.38 M 1.04 M

For UDP, the channel is less saturated than for TCP and
Table 4 shows that the throughput decrease of iperf3 is
relatively moderate as the number of active transmissions
increases. For TCP, the channel is maximally saturated and
each device must contend for the channel and share the
overall bandwidth. For TCP uplink, the Unify throughput is
roughly halved for 2 devices and is 39% (of the one device
throughput) for 3 devices, etc. This validates that the MAC
layer is working well and accesses the channel properly. For
TCP downlink, the Unify throughput has an initial drop but
stays relatively similar thereafter. We believe this is because
the downlink arbitration is mostly done by the AP whereas
the uplink arbitration is mostly achieved by multiple devices
contending for the channel.

Table 5: Throughputs of multiple Unify devices (kbps)
# of Devices TCP UL UDP UL TCP DL UDP DL
1 Unify #1 432 483 567 684

2 Unify #1 233 297 280 346
Unify #2 229 296 292 347

3
Unify #1 107 86.7 94.7 242
Unify #2 123 112 224 171
Unify #3 90.1 150 118 276

Table 5 shows the results of evaluating the coexistence
of multiple Unify nodes. For two Unify nodes with active
traffic, the throughputs are roughly halved for TCP or UDP
downlink. For uplink, the throughputs are actually more
than 50%. This is because when one Unify is copying the

uplink packet, the other Unify can use the time to transmit
packets. For three nodes, the throughputs are affected more,
particularly in the uplink direction, because of the increased
possibility of collision. However, this occurs only when all
Unify nodes saturate the channel, and even so, no node is
starved. Note that throughput variations can be observed
even among standard WiFi vendors in Table 4. The band-
width control, a common feature on WiFi APs, can be used
to guarantee minimum throughputs for all devices. This ap-
proach should be better than relying purely on MAC layer
implementations, which come with lower guarantees and
can be slightly different among vendors.

Table 6: Coexistencewith backgroundBT traffic (kbps)
TCP UL UDP UL TCP DL UDP DL

0 BT Devices 431 485 551 672
1 BT Devices 432 484 551 672
2 BT Devices 432 485 547 671

We also tested the coexistence of Unify with Bluetooth
devices. Table 6 shows Unify’s throughputs when 0, 1 or 2
Bluetooth headphones are simultaneously streaming audio.
The results show that Bluetooth traffic has virtually no effect
on Unify, because Bluetooth is designed to adaptively avoid
active WiFi traffic and Unify is designed to behave exactly
like a WiFi device.

4.6 Power Consumption

Table 7: Comparison of power consumption
Tx (A) (Peak Power) Rx (A)

AR9271 0.49 (19dBm) 0.07
RTL8811AU 0.32 (≤20dBm) 0.07
RT3072 0.28 (20dBm) 0.13
FLEW 0.16 (∼20dBm) 0.11
Unify 0.04 (4dBm) 0.04
Unify (Med. Rx gain) 0.04 (4dBm) 0.03

We measure the power consumption of Unify and com-
pare it with off-the-shelf WiFi cards and prior work. For
every device, currents are measured from the USB 5V power
line when the device is constantly sending or receiving DSSS
WiFi packets. Table 7 shows that Unify has significantly
lower power consumption than standard WiFi cards and
even FLEW. For a comparison with the same transmit power,
we can first compare FLEW and Unify. Specifically, FLEW
uses an FSK transceiver (0dBm) and an additional PA (+20dB,
100mA at 3V [24]). Just like FLEW, Unify could use the same
PA (+20dB) for higher power. In such a case, the transmit
power of Unify would be greater than 20dBm, and the over-
all power consumption (0.04+0.1 = 0.14A) is still lower than
all other devices after considering the power consumption
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of the additional PA. (In practice, the PA would draw less
than 0.1A at 5V.) Unify is set to the maximum Rx gain in all
evaluations. Using a medium Rx gain consumes even lower
power. Medium gain has a practical range of about 5∼10m.

4.7 Applications
Unify enables CC254x to behave just like a WiFi chip and its
low cost, tiny footprint and low power consumption make
Unify ideal for IoT applications, such as the thermostat
shown in Fig. 1b. Other applications that normally use WiFi
can directly use Unify as well. For example, Unify is capable
of streaming 360p Youtube videos in real time. Alternatively,
Unify can stream high-quality Spotify audio in real time.
Unify can also directly access web pages, such as weather
websites. The novel communication paradigm of Unify can
pave the way for innovative IoT applications in the future.

5 DISCUSSION
We select the DSSS waveform since it is the most robust
WiFi modulation and offers as high as 10dB higher sensitivity
than OFDM. The benefit is that Unify maintains the same
distance with a much lower transmit power (or allows a
longer distance with the same transmit power).

Unify works with old and new WiFi devices, because of
WiFi’s backward compatibility. Another benefit is that DSSS
does not have the problem of OFDM’s high PAPR where the
linearity requirement precludes low-power implementations.
DSSS also allows for reusing existing FSK hardware, which
is more difficult for OFDM. Unify thus achieves very low
power consumption, which is particularly useful when IoT
nodes are listening for an extended period but need to take
immediate actions once a packet arrives.
Chatty DSSS connections may affect coexisting OFDM

traffic. However, the advantage of Unify here is that since
every device follows theWiFi signal and protocol, it provides
good coexistence between them. This is supported by our co-
existence test where no device is starved even under network
saturation. In contrast, strong OFDM signals may drown out
concurrent BLE connections under network saturation. Also,
for narrow band signals like BLE, it has been shown that
OFDM is susceptible to narrow band interference [25] and
narrow band interference may greatly affect OFDM timing
synchronization and detection [26]. Unify avoids starving
and other coexistence issues by directly leveraging the WiFi
design that already exists in access points.

6 RELATEDWORK
Earlier CTCworks [27–34]modulate packets’ transmit power
and a receiver measures the signal strength to decode infor-
mation. These designs have considerably lower throughputs

than the SOTA and require modifications on both ends. Nu-
merous recent works demonstrate communication frommod-
ified WiFi transmitters to non-WiFi receivers, by carefully
constructing magic WiFi packets. WiBeacon [1] broadcasts
Bluetooth beacons by modifying WiFi APs to generate and
send 802.11b waveforms that also resemble Bluetooth wave-
forms. BlueFi [2] transmits Bluetooth beacon or audio pack-
ets by sending special 802.11n packets. TransFi [3] works
similarly but in a MIMO setting. NBee [4] and WiBle [5]
modify WiFi devices to send DSSS packets that encode BLE
packets. OfdmFi [35–37] enables communication between
WiFi and LTE-U. Interscatter [38] uses WiFi chips to send
a custom AM signal. WiFi-to-Zigbee [39–44] and WiFi-to-
LoRa [45, 46] are also possible by selecting WiFi packets.
Two prior studies enable communication between Blue-

tooth and WiFi, but none of them can work without modi-
fying the WiFi receivers. Due to the extent of modifications
required for WiFi receivers, they are only shown to work in
simulation or with software-defined radios. The approach
in [47] receives BLE packets using the FFT signals within
the WiFi demodulation process. It is unclear whether such
a feature is available across different WiFi vendors, or if
collecting the FFT signals from standard WiFi chips is fast
enough to provide continuous and seamless baseband sam-
ples. The WiFi implementation uses software-defined radios.
Another study [48] tries to detect BLE packets using the
preamble detector on WiFi receivers but concludes that the
default WiFi preamble detection cannot be used. It thus pro-
poses an extended preamble detection and demodulates BLE
by collecting WiFi payloads (once a packet is detected). Its
evaluation was done in simulation only.
FLEW [6] enables two-way communication between un-

modified WiFi devices and modified FSK devices. However,
it requires hardware modifications and using multiple chips,
including a configurable FSK chip. In contrast, Unify is a
single-chip solution for popular BLE/FSK SoCs.

7 CONCLUSION
We have designed and evaluated Unify, which transforms
popular BLE/FSK SoCs into WiFi SoCs. Unify overcomes
numerous significant challenges imposed by the hardware
so that standard, bi-directional WiFi operations are achieved
in SoCs without hardware modification. Without modifying
WiFi devices, Unify is compatible with all major WiFi ven-
dors and has low latency, good throughput and coexistence
performance, and low power consumption.
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