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ABSTRACT
Mobile devices are only as useful as their battery lasts. Unfortu-
nately, the operation and life of a mobile device’s battery degrade
over time and usage. The state-of-health (SoH) of batteries quan-
tifies their degradation, but mobile devices are unable to support
its accurate estimation — despite its importance — due mainly to
their limited hardware and dynamic usage patterns, causing various
problems such as unexpected device shutoffs or even fire/explosion.
To remedy this lack of support, we design, implement and evaluate
V-Health, a low-cost user-level SoH estimation service for mobile
devices based only on their battery voltage, which is universally
available on all commodity mobile devices. The design of V-Health
is inspired by our empirical finding that the relaxing voltages of a
device battery fingerprint its SoH, and is steered by extensive mea-
surements with 15 batteries used for various commodity mobile
devices, such as iPhone 6 Plus, Nexus 6P, Galaxy S3, etc. These
measurements consist of 13,377 battery discharging/charging/rest-
ing cycles and have been conducted over 72 months cumulatively.
V-Health has been evaluated via both laboratory experiments and
field-tests with multiple Android devices over 4–6months, showing
<5% error in SoH estimation.

CCS CONCEPTS
• Hardware → Batteries; Power and energy; • Computer sys-
tems organization → Embedded software.
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1 INTRODUCTION
Background. Apple announced a free-replacement program of
iPhone 6S batteries in Nov. 2016, due to frequent users’ complaints
on the phone shutoffs evenwhen showing 10–30% remaining power,
and concluded faster-than-normal battery degradation to have
caused the problem [4]. Similar unexpected phone shutoffs also
occurred on devices such as Nexus 6P, Galaxy S4, iPhone 5, to
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name a few [26]. These incidents imply the inability to accurately
answer a simple question “how long will my phone battery last?",
which means (i) the remaining battery life (e.g., relative to battery
degradation and thus its warranty period) or (ii) remaining device
operation time until the battery runs out (i.e., the operation time
with a single charge). The answer relies on the quantification of
battery’s capacity degradation, which is traditionally captured by
its state-of-health (SoH), defined as the ratio of the battery’s full
charge capacity to the designed capacity.

Unfortunately, not all mobile devices are equipped with the ca-
pability necessary for accurately quantifying its battery’s SoH, in-
troducing errors in estimating the devices’ remaining power (i.e.,
state-of-charge (SoC)) and thus shutting them off prematurely or
unexpectedly [1, 23, 34]. The deficiency of health information on
mobile devices’ batteries stems from the non-existence of compati-
ble methods to estimate their SoH. Most existing SoH estimation
methods require either battery parameters, determination of which
is beyond mobile devices’ capability due to hardware limitation
(e.g., impedance [14, 15, 49] and ultrasonic echo [40]), or specific
applicable conditions that do not always hold due to devices’ dy-
namic usage patterns (e.g., small and stable current to fully charge
and discharge [48, 53]). Moreover, even Coulomb counting — the
most widely-deployed SoH estimation method via current integra-
tion [31, 53] — is not supported well on mobile devices [18, 20, 52],
as reported by Ampere [2], a current sensing app with millions of
downloads.
Estimating Battery SoH Using Relaxing Voltages. To remedy
the above problems, we propose V-Health, a user-level SoH estima-
tion service for mobile devices based solely on their battery voltage,
and is thus compatible to all commodity mobile devices with voltage
sensing and processing capabilities, such as smartphones, tablets,
smartwatches, and even electric vehicles. The design of V-Health
is inspired by our empirical finding: the relaxing battery voltages —
a time series of battery voltages when resting it after its charge/dis-
charge — fingerprinting its SoH, and this voltage–SoH relationship
holds reliably for all same-model batteries. We uncover and validate
this property via extensive measurements with 15 batteries used
for various mobile devices, such as Nexus 6P, Nexus 5X, Xperia
Z5, Galaxy S3, iPhone 6 Plus, etc., consisting of a total of 13,377
discharging/charging/resting cycles and have been collected over
72 months cumulatively.

However, resting the battery to collect its relaxing voltages is not
always feasible for mobile devices because they draw dynamically
changing amounts of current from batteries continuously, even
when idle [21]. V-Health exploits over-night device charging to
collect the relaxing voltages, which (i) rests device battery after fully
charging it [8, 22], (ii) offers stable battery conditions in both device
operation and thermal environment, (iii) masks the disturbances
caused by device usage behaviors, and (iv) is frequently done by
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users [7, 17]. Such exploitation of over-night charging in V-Health
also ensures the user-perceived experience does not degrade, as
the external charger supplies the power needed for information
reading/logging

This paper makes the following main contributions:
• Discovery of the correlation between relaxing battery voltages
and their SoH, uncovering the feasibility of voltage-based SoH
estimation;

• Design and implementation of V-Health, an SoH estimation ser-
vice for mobile devices via voltage fingerprinting, neither requir-
ing additional hardware support nor incurring energy overhead
that degrades user experience;

• Evaluation of V-Health using both laboratory experiments and
field tests on multiple devices over 4–6 months, showing <5%
SoH estimation error;

2 RELATEDWORK
Accurate SoH estimation is crucial for battery management [45, 57],
which has been studied extensively based on various battery pa-
rameters such as voltage [3, 24, 59], current [13, 23, 33, 39, 55],
open-circuit-voltage (OCV) [25, 27, 48], SoC [10, 11], resistance [43],
impedance [14, 15, 49], and even ultrasonic echo [40]. These SoH
estimation methods, albeit reported to be accurate, cannot be de-
ployed on mobile devices due to their limited hardware support
and dynamic operating conditions.

Mobile devices offer limited hardware support for sensing, ren-
dering some of the needed battery information (e.g., impedance
and echo response) unavailable. Actually, even the relatively easy-
to-measure electric current — the foundation of the most widely-
deployed SoH estimationmethod, Coulomb counting— is not always
available/reliable on mobile devices [20, 52]. Also, battery informa-
tion such as OCV and SoC requires specific conditions to be met
for their accurate estimation [38, 48, 53], which does not always
hold due to devices’ dynamic usage patterns, thus leading to up to
±25% estimation error [36]. We will make two existing solutions
requiring SoC and OCV in [10, 11] adopt the over-night charge to
improve reliability, and use them as the baselines for comparison
in Sec. 7.

In contrast, voltage is the most pervasively/easily available bat-
tery information on mobile devices, and hence we choose its use
for SoH estimation, i.e., V-Health. To the best of our knowledge,
the closest to V-Health are [19] and [20].
• Guo et al. [19] estimates battery SoH based on its voltage–time
relationship during charging. Such a voltage–time relationship,
however, depends strongly on device usage behavior, making it
unreliable on mobile devices. First, usage behavior during charg-
ing affects the voltage–time relationship [20]. Second, the usage
behavior before device charge affects the voltage–time relation-
ship, making [19] unreliable even when only applying it during
over-night charge, as V-Health does. Fig. 1(a) plots two con-
secutive charges of an idle Nexus 6P phone after discharging
it to 69% (1.A) and 31% SoC (2.A), respectively. Their charging
phases during the [70%, 80%] SoC range (part of 1.B and 2.B in
Fig. 1(a)) are compared in Fig. 1(b), showing significant differ-
ences in both durations and voltage levels and thus dependency
on before-charging device usage.

• He et al. [20] explored the voltage-based SoH estimation based on
two empirically-observed models on battery degradation. Clearly,
its accuracy depends on the model accuracy and the empirically-
identified model parameters, which are found to vary with bat-
tery aging. V-Health reduces such model dependencies using
machine learning, which is enhanced further with a set of data
pre-processing techniques including filtering, smoothing, and di-
mension reduction. We will use [20] as another baseline method
for comparison in Sec. 7.
In summary, existing SoH estimation methods are not applicable

to, or inaccurate for, mobile devices because of the non-existence of
required battery information or the inability of meeting the required
conditions. To remedy this problem, we propose V-Health which
estimates SoH based only on voltage information and is enabled
on mobile devices with the common usage pattern of over-night
charge.

3 PRELIMINARIES
This section provides the preliminaries of V-Health.

3.1 Battery SoH
SoH is one of the most critical battery parameters (see Fig. 2),
quantifies battery’s capacity degradation, and is defined as the
ratio of battery’s full charge capacity𝐶fullcharge to its designed level
𝐶design [35, 51, 59], i.e.,

𝑆𝑜𝐻 =
𝐶fullcharge
𝐶design

× 100%. (1)

SoH is also the key in estimating a battery’s real-time SoC:

𝑆𝑜𝐶 =
𝐶remaining

𝑆𝑜𝐻 ×𝐶design
× 100%. (2)

where 𝐶remaining is the real-time remaining capacity.
Clearly, 𝐶fullcharge is the foundation of SoH estimation, which is

usually estimated via Coulomb counting [53, 54], i.e., integrating
the current when discharging/charging the battery between two
SoC levels to calculate the discharged/charged capacity as Δ𝐶 =∫ 𝑡 (𝑆𝑜𝐶2 )
𝑡 (𝑆𝑜𝐶1 ) 𝑖 (𝑡)𝑑𝑡 , where 𝑖 (𝑡) is the current at time 𝑡 . This way we
know

𝐶fullcharge =
Δ𝐶

|𝑆𝑜𝐶1 − 𝑆𝑜𝐶2 |
.

3.2 Absence of SoH from Mobile Devices
Commodity mobile devices do not support Coulomb counting well
in terms of availability, accuracy, and timeliness, thus making it
difficult to estimate their battery SoH. First, not all the PMICs (i.e.,
Power management integrated circuits), or more specifically their
fuel gauge components [5], of mobile devices support current sens-
ing [20, 52]. Moreover, the PMIC-provided current information,
even when available, is very coarse [18]. Our measurement with
a Nexus 5X phone shows that its PMIC’s current reading deviates
from the true value — collected with the Monsoon power meter at
5,000Hz — by an average of 4% even at room temperature. Lastly,
the current information may lack timeliness, which is crucial for
Coulomb counting because of devices’ dynamic currents, i.e., vary-
ing from tens to thousands of milliamps in a few milliseconds [21].
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Fig. 1. Device usage behavior before charging matters to [19]: (a) two consecutive charges of
an idle Nexus 6P phone after discharged to different SoCs (1.A and 2.A); (b) the voltage–time
relationship varies (part of 1.B and 2.B), degrading the SoH estimation accuracy of [19].
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Fig. 3. Inaccurate SoH information on Nexus 5X: showing 2, 705mAh
full-charge capacity and thus about 100% SoH even though the phone
has been used extensively for 14 months and observed to have a
clearly shortened operation time.
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Fig. 6. Relaxing voltage fingerprints battery SoH: (a) voltage curve during one charging/resting/discharging cycle and the relaxing voltage
during resting; (b) battery SoH degrades during the measurements; (c) the relaxing voltage decreases during the measurements.

A 47% counting error due to insufficient sampling rates is reported
in [20]. As a real-life evidence of mobile devices’ deficiency in sup-
porting Coulomb counting and their limited SoH information, Fig. 3
shows the full-charge capacity of a Nexus 5X phone provided by
its fuel-gauge chip, saying its battery, with a design capacity of
2, 700mAh, can still deliver 2, 705mAh capacity upon being fully
charged and thus an SoH of about 100%, even though the phone
has been used extensively for 14 months and observed to have a
shorter operation time. This motivates us to explore current-free
SoH estimation, i.e., V-Health.

4 OVERVIEW OF V-HEALTH
V-Health is built on our key finding that batteries’ relaxing voltages
fingerprint their SoH.We demonstrate this finding with a 2, 200mAh
Galaxy S3 battery. Specifically, we test the battery by (i) fully charg-
ing it with a constant-current constant-voltage (CCCV) profile of
<0.5C, 4.2V, 0.05C>cccv as commonly specified in Li-ion battery

datasheet [32, 42], (ii) resting it for 30 minutes, (iii) fully discharg-
ing it at 0.5C-rate until reaching a cutoff voltage of 3.3V, at which
mobile devices normally shut off, and (iv) repeating the process
for 300 cycles, as summarized in Fig. 4. This measurement is made
with the NEWARE BTS4000 battery tester [30] as shown in Fig. 5,
and the cycling process (i.e., current, voltage, timestamp) is logged
at 1Hz. Fig. 6(a) plots the battery voltage during one such charg-
ing/resting/discharging cycle, and highlights the relaxing voltages
during resting. The relaxing voltage drops instantly upon resting
and then decreases gradually further until it converges.

We collect the battery’s full charge capacity (and hence its SoH
according to Eq. (1)) via Coulomb counting during each discharge,
thus recording its degradation process during the cycling mea-
surement, as shown in Fig. 6(b). Also, 300 time series of relaxing
voltages are collected, each during one of the 30-minute resting
period (Fig. 6(c)). Comparison of Figs.6(b) and 6(c) shows that the
battery SoH degrades over the cycling measurement due to its



e-Energy ’23, June 20–23, 2023, Orlando, FL, USA He and Shin

capacity degradation, while during the same measurement, its re-
laxing voltage decreases, exhibiting the possibility to fingerprint
battery SoH with the relaxing voltages.

V-Health exploits this voltage–SoH relationship to estimate the
SoH of device batteries by checking their relaxing voltages with an
offline-constructed fingerprint map. Fig. 7 presents an overview of
V-Health, which we will elaborate in the next two sections.

5 VOLTAGE FINGERPRINTING OF SOH
We now empirically characterize the voltage fingerprint map of
battery SoH.

5.1 Data Collection
Knowledge of batteries’ SoH degradation and relaxing voltages is
necessary to characterize their relationship, obtaining of which
requires extensive battery cycling tests. Such tests are readily avail-
able for smartphone OEMs, such as Samsung and Apple when test-
ing their products,1 but are not available for non-OEM researchers.
Therefore, we have conducted extensive battery cycling measure-
ments with 15 batteries used for various mobile devices as sum-
marized in Table 1 (including the one shown in Fig. 6): collecting
the relaxing voltages during each resting period and logging bat-
teries’ SoH degradation based on their capacity delivery during
each discharge. These measurements consist of 13,377 cycles in
total and last over 72 months cumulatively. In these measurements,
the settings of <0.5C, 4.2V, 0.05C>cccv and 𝑉cutoff = 3.0V are com-
monly used to specify battery properties in industry during battery
testing [19, 32, 42], and𝑉max = 4.35V and𝑉cutoff of 3.2–3.3V specify
more device characteristics: mobile devices are normally charged
to a maximum voltage of 4.3–4.4V and shut off when their battery
voltage reduces to 3.2–3.3V [21]. These 72-month measurements
are able to identify the voltage–SoH relationship within the SoH
range users experience most (e.g., users rarely switch to new bat-
teries/devices until the old ones degrade to 0% SoH). Moreover, the
thus-identified voltage–SoH relationship can be extended to the
SoH ranges not covered by these measurements, as we explain later.

5.2 Construction of Fingerprint
Next we use 12 of such measurements with 4 Galaxy S3 batteries
to elaborate on the construction of a voltage-based SoH fingerprint
map. Each of these 12measurements consists of ≈300 charging/rest-
ing/discharging cycles, logged at 1Hz. This way, we collected 12
SoH-degradation traces, and recorded 3, 612 time series of relaxing
voltages, each from the resting period within a cycle. The same ap-
proach of fingerprint map construction is applied to all the batteries
in Table 1 and evaluated, as we will explain in Sec. 7.

Data Filtering and Smoothing. Variance/noise exists in the
measurements of SoH degradation and relaxing voltages (as ob-
served in Fig. 6), which are likely due to battery dynamics, especially
when considering the stable laboratory environment (i.e., with an
UPS connected and room temperature control) and the battery
tester’s high accuracy (i.e., less than 0.5% error in controlling the
cycling processes). Such a variance in battery measurements has

1This also makes V-Health ideally suitable as an OEM service.

also been reported in [19], necessitating pre-processing (i.e., fil-
tering and smoothing) of data before constructing the fingerprint
map. The collected data were filtered and smoothed using two em-
pirically established models for the SoH degradation and relaxing
voltages.

The battery health is shown to degrade approximately linearly
(as observed in Fig. 6(b)) until it really becomes bad [43, 58]. To
further validate this linear degradation, we tried a linear fit of the
12 collected SoH degradation processes, and all of them have an
excellent goodness-of-fit in terms of root-mean-square error (RMSE)
and R-Squared, as shown in Fig. 8 where each point represents the
goodness-of-fit for a particular SoH degradation process. V-Health
removes outlier SoH samples based on this linear model — those
SoH samples deviating too much from the linear fitting (e.g., >0.5%
SoH) are tagged as outliers and removed, and then the remaining
samples are smoothed with a moving average.

Similarly, V-Health filters and smooths the relaxing voltages
based on another empirical observation that the relaxing voltages
conform to a power function 𝑣 (𝑡) = 𝑎 · 𝑡𝑏 + 𝑐 (𝑡 ≥ 0), where 𝑡 is
the time since resting, as illustrated in Fig. 9. We apply the power
fitting to the 3, 612 collected relaxing voltage traces to statistically
verify this observation. Fig. 10 summarizes the goodness-of-fit —
the fitting RMSE is bounded below 0.0009 and the R-Squared above
0.965, showing excellent fitting accuracy. Note that this power
model differs from existing models with exponential-shape relaxing
voltages [47]. Fig. 10 also plots the goodness-of-fit when fitting the
same set of relaxing voltages as 1-term and 2-term exponential
functions, i.e., 𝑣 (𝑡) = 𝑎 · 𝑒𝑡 ·𝑏 (𝑡 ≥ 0) and 𝑣 (𝑡) = 𝑎 · 𝑒𝑡 ·𝑏 + 𝑐 ·
𝑒𝑡 ·𝑑 (𝑡 ≥ 0), showing reasonably good accuracy, but not as good
as the power fitting. V-Health filters the relaxing voltages with
this power model, e.g., tagging the relaxing voltage traces with
the bottom 5% goodness-of-fit as outliers. The moving average
smoother is then used again to smooth the remaining valid relaxing
voltage traces.

Note that if an SoH sample is tagged as an outlier, so is the relax-
ing voltage in the same cycle, and vice versa. Also, V-Health only
filters out the outliers based on these empirical models, instead of
using the model fitting results to construct the fingerprint map, thus
alleviating its dependency on model accuracy — a clear advantage
over [20]. As an example, 268 SoH samples and relaxing voltage
traces are selected after the data pre-processing from the 300-cycle
measurement shown in Fig. 6.

Dimension Reduction. Each of the collected relaxing voltages
covers a 30-minute resting period logged at 1Hz, yielding 30 × 60 =
1, 800 dimensions of data. Also, the voltage values in each of these
dimensions are correlated. Fig. 11 plots the correlations between
each pair of the 1, 800 dimensions of the 268 relaxing voltages
selected from Fig. 6, where strong correlations (with correlation
coefficients ≈0.8 or higher) are observed in most cases. Such highly-
correlated, high-dimension relaxing voltages justify V-Health’s
use of the principal component analysis (PCA) for reduction of
dimensions, lowering the computational effort in constructing the
fingerprint map. Again, taking the measurements in Fig. 6 as an
example, applying PCA reduces the relaxing voltage dimensions
from 1, 800 to 35 with a variance of 99%.
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Table 1: V-Health is steered and validated by 13,377 empirically collected relaxing voltage traces via 50 cycling tests with 15 phone batteries.

Battery Rated Capacity # of Tests # of Cycles Per-Cycle Profile Covered SoH (%)
Nexus 6P x 1 3,450mAh 5 1,300 <0.50C, 4.35V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.3V [0, 93.6]
Nexus 5X x 2 2,700mAh 3 1,104 <0.50C, 4.35V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.3V [59.2, 94.0]
Nexus S x 1 1,500mAh 3 150 <0.50C, 4.20V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.2V [49.9, 54.3]
Xperia Z5 x 1 2,900mAh 5 655 <0.50C, 4.20V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.2V [12.4, 87.1]

iPhone 6 Plus x 1 2,900mAh 2 100 <0.50C, 4.35V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.3V [67.6, 79.1]
Galaxy Note 2 x 1 3,100mAh 5 1,350 <0.50C, 4.20V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.2V [21, 96.6]
Galaxy S5 x 1 2,800mAh 3 964 <0.50C, 4.35V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.3V [73.1, 91.8]
Galaxy S4 x 3 2,600mAh 8 2,374 <0.50C, 4.20V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.0V [2.8, 93.2]
Galaxy S3 x 4 2,200mAh 12 4,800 <0.50C, 4.20V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.3V [69.5, 97.0]

— 4 580 <0.25C, 4.20V, 0.05C>cccv; 30min rest; 0.5C DChg to 3.3V [87.8, 92.3]

Table 2: Classification accuracy with other regression methods (%).

Battery Linear SVM Qua. SVM Cub. SVM Fine KNN Med. KNN Coarse KNN Tree
#1 94 94 90 67 73 71 95.4
#2 98 94 97 92 95 95 95.1
#3 93 92 76 91 94 90 96.4
#4 91 84 70 83 92 89 97.2

Table 3: Correlated degradation.

Battery #1 #2 #3 #4
#1 1 0.99 0.98 0.98
#2 0.99 1 0.99 0.98
#3 0.98 0.99 1 0.98
#4 0.98 0.98 0.98 1

0.972 0.98 0.988
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Fig. 8. Linear fitting of SoH degra-
dation: all the 12 degradation
processes fit linearly with RMSE
<0.00062 and R-Squared >0.972.
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Regression Modeling. Finally, V-Health uses a regression tree
to construct the fingerprint map, with the above-obtained principal
components as predictors and the corresponding SoH as response.
Fig. 12 plots the confusionmatrices when validating the constructed
regression model for each battery, showing over 95% classification
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Fig. 10. Goodness of power fitting: all the 3, 612 relaxing voltage traces
have RMSE <0.0009 and R-Squared >0.965; the powermodel describes
relaxing voltages more accurately than the traditional exponential
models.

accuracy when forming 5 SoH categories with 4% step-size. Note
that this 4% step-size is only for visual clarity, and a more fine-
grained step-size of 0.1% SoH is used for the evaluation of V-Health
in Sec. 7. We have also tried other regression methods such as
SVM, KNN, and their variations, but have not observed any clear
advantages over the regression tree in accuracy, as summarized in
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Fig. 11. Different dimensions in relaxing voltage are highly corre-
lated: >0.8 correlation coefficients are observed for most dimension
pairs.

Table 2. Thus, the regression tree is used for its simplicity and high
interpretability.

5.3 Generality Analysis
The constructed fingerprint map has to be applicable for all same-
model batteries, which can be verified with the following two sta-
tistical observations. First, we evaluated the similarity between the
SoH degradation processes of the four batteries using dynamic time
warping [29], and the resultant warping paths are close to the diag-
onal of the degradation matrix for each battery pair (as shown in
Fig. 13), exhibiting strong similarity. Second, the SoH degradation
of the four batteries used in the measurements are highly correlated,
as shown in Table 3. These insights support V-Health’s generality
of training the fingerprint map with one (or more) battery and its
application to other same-model batteries, which is reasonable as
same-model batteries are expected to perform similarly — a goal all
battery manufactures aim to achieve [56]. We will further evaluate
the cross-battery estimation accuracy in Sec. 7.

5.4 Extending Dataset
Ideally, V-Health is to be provided by OEMs because of their acces-
sibility to battery cycling datasets, e.g., covering a complete battery
SoH range. In case only a limited dataset is available, it can be
extrapolated based on the linearity between voltage drop during
resting and battery SoH. Again, we used the cycling measurements
in Fig. 6 to show this observation. Fig. 14 plots the voltage drop after
the battery is rested for 10, 20 and 30 minutes during the resting
period of each cycle, together with the corresponding battery SoH
during that cycle. A clear linearity is observed in all three traces
of dropped voltages, with RMSE in the order of 10−4 after linear
fitting. This observation enables to identify the linear coefficients
based on the available cycling dataset, generate relaxing voltages
that correspond to uncovered SoH, and then construct the complete
voltage fingerprint map.

6 COLLECTION OF RELAXING VOLTAGES
We now describe how to collect local relaxing voltages on mobile
devices.

6.1 Collection During Over-Night Charge
The relaxing voltages can not always bemeasured onmobile devices
for the following challenges.

C1. The relaxing voltage requires batteries to be idle.We idle
batteries for the 30-minute resting period in our measurements.
however, mobile devices discharge their batteries with contin-
uous and dynamic currents even in idle mode, due to device
monitoring and background activities [6, 12, 21].

C2. Battery voltage is temperature-dependent [16, 28, 41, 50].
A stable thermal environment is thus required to collect the re-
laxing voltages, which is challenging due to the well-publicized
device overheating problem [44].

C3. The relaxing voltage depends on its starting voltage. Fig. 15
compares the relaxing voltage when resting the battery at dif-
ferent voltages within [3.6, 4.2]V, showing a clear dependency
between the relaxing voltage and its starting voltage level. Such
dependency requires a unified starting voltage for the collection
of relaxing voltages.
V-Healthmitigates these challenges based on the fact that users

often charge their devices over-night — the charging duration is
so long that the charger is kept connected even after the device is
fully charged. We collected 976 charge cases from 7 users over 1–3
months,2 and found that 34% of them lasted over 6 hours and are
long enough to keep the charger connected after the device was
fully charged, because of the common over-night charge [7, 17, 46].
V-Health starts to collect the relaxing voltage once the battery
reaches 100% SoC during over-night charge, and stops it when
the charger is disconnected. This collection of relaxing voltages
mitigates all the above-mentioned challenges.
• First, over-night device charge rests its battery by powering the
device operation with the charger. Commodity chargers use sep-
arate power paths to charge the battery and power the device [8],
resting the battery if the charger is kept connected even after the
battery reaches 100% SoC, as in over-night charge. Fig. 16 shows
such rested batteries by keeping the chargers connected after
fully charging a Nexus 6P and a Nexus 5X phone — the current
reduces to, and stays at 0mA after fully charging the battery and
thus resting the battery; the battery voltage first instantly and
then gradually drops, agreeing with Fig. 6.

• Second, over-night charge provides battery a relatively stable
thermal environment. Most mobile devices charge their batteries
with CCCV [1], during which the CV-Chg phase takes long at
a low charging rate, thus not heating the battery much and al-
lowing for its equilibration. This way, the battery operates in a
stable thermal environment during the resting period after the
CV-Chg phase completes (and thus, the battery is fully charged).
To verify this, we monitor the battery temperature of a Galaxy S6
Edge, a Nexus 5X, and a Nexus 6P during an 8-day real-life usage.
Fig. 17 compares the temperature distribution during the resting
periods after fully charging them with that under normal usage,
showing reduced thermal variations, e.g., the temperature range
of the Nexus 5X battery is narrowed from 25–50oC in normal
case to 29–39oC when resting.

• Lastly, collecting relaxing voltages after the battery is fully
charged unifies the starting voltage at the fully charged level,
e.g., 4.37V for Galaxy S6 Edge.

2One of the user-traces was collected from our data-collection campaign and the other
six traces were obtained from the sample dataset of Device Analyzer from Cambridge
University [46].
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Fig. 12. Confusion matrices: over 95% accuracy when forming SoH categories with 4% step-size.
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Fig. 13. Similarity between degradation processes via dynamic time warping: the close-to-diagonal warping paths show similarities between
individual batteries’ degradation processes.
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We must also consider if a device’s usage pattern (i.e., how its
battery is discharged) affects its after-charging relaxing voltages.
To this end, we discharge, charge, and then rest a Galaxy S4 bat-
tery for (i) 6 cycles with different discharge currents within [300,
1300]mA (Fig. 18(a)), and (ii) another 5 cycles with a different cutoff
voltage within [3.3, 4.1]V (Fig. 18(b)). The thus-collected 6 + 5 = 11

relaxing voltage traces during each resting period are plotted in
Fig. 18(c). These relaxing voltages are very close to each other (e.g.,
in comparison with Fig. 15), exhibiting their insensitivity to previ-
ous discharge and thus reliability — a key advantage over [19] as
shown in Fig. 1. Again, this is because the charge, especially CV-
Chg, of the battery masks the disturbance caused by their previous
discharge from the resting period after being fully charged.

6.2 Mitigating Trickle Charge
Certain mobile devices (e.g., Galaxy S6 Edge, Galaxy S4, etc.) use
trickle charge — charging a fully charged battery under no-load at
a rate equal to its self-discharge rate — to keep their battery at 100%
SoC, which invalidates the battery resting and thus pollutes the
collected relaxing voltages. Specifically, these devices trigger trickle
charge once the voltage of a fully-charged battery has dropped for
a pre-defined value, e.g., 20mV for Galaxy S6 Edge and 40mV for
Galaxy S4, and stop the trickle charge until the battery is fully
charged again. Fig. 19(a) plots the voltage of a Galaxy S4 phone
during an over-night charge, during which trickle charge is trig-
gered 6 times after the phone is fully charged, as shown in Fig. 19(b).
The duration between two consecutive trickle charges increases
because the battery OCV approaches the fully-charged level.

Trickle charge prevents battery from resting and thus pollutes
the relaxing voltages. V-Health extracts relaxing sub-traces from
the polluted trace with a simple observation that a sudden increase/-
drop of battery voltage indicates the triggering/stopping of trickle
charge. Specifically, V-Health calculates the 1-lag delta voltage
after the device is fully charged (Fig. 19(c)), and passes it through
a low-pass filter (Fig. 19(d)). This way, V-Health extracts the re-
laxing sub-traces by locating the peaks and valleys in the trace.
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Fig. 18. Relaxing voltages after charging are insensitive to discharge: relaxing voltages collected after discharging with different currents and
to different cutoff voltages are close, exhibiting their insensitivity to previous discharge and thus reliability.

Fig. 20(a) plots 95 of thus-extracted sub-traces with a Galaxy S5
phone, showing the power shape but with significant variance. To
further improve trace quality, V-Health applies power fitting to
each of these traces, concluding them to be valid if the goodness-of-
fit is acceptable. Moreover, the sub-traces may not be long enough
to form a fingerprint. To remedy this problem, V-Health recovers
the sub-traces to, e.g., 30-minute traces, based on the power fitting,
which is then used for fingerprint checking. Last but not the least,
V-Health uses the dropped voltages upon resting as the fingerprint
to remove its dependency on the specific values of fully-charged
voltage. Fig. 20(b) plots the processed traces based on the raw data
in Fig. 20(a).

6.3 Post-Processing of SoH Estimations
Multiple relaxing traces are likely to be collected and recovered
during a single over-night charge (as in Fig. 19), and thus multiple
SoH estimations may result. V-Health averages such estimations as
the battery SoH during that charge. Also, there may be fluctuations
among SoHs obtained from different over-night charges. V-Health
uses a first-order smoother (i.e., estimating the current SoH by linear
fitting current and previous raw SoH estimations) to smooth such
fluctuations, and reports the smoothed result as the final battery
SoH to users. Such smoothing of fluctuations is also used in the
SoC estimation of mobile devices [53].

7 EVALUATION
We evaluate V-Health using both laboratory experiments and field-
tests on multiple Android phones.
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Fig. 19.Mitigating trickle charge: trickle charge pollutes the collected
relaxing voltages ((a) and (b)); V-Health extracts sub-traces from the
polluted trace by identifying the starting/stopping time instants of
trickle charge ((c) and (d)).

7.1 Laboratory Experiments
Wefirst evaluate V-Health based on themeasurements summarized
in Table 1. Relaxing voltages covering a 30-minute resting period are
used as the fingerprint unless specified otherwise. For the purpose
of comparison, we also implement the following three baseline
methods:



Fingerprinting Battery Health Using Relaxing Voltages e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

0 1000 2000

Time (s)

4.34

4.36

4.38

4.4

V
o

lt
a

g
e

 (
V

)

(a) Raw traces (b) Processed traces

Fig. 20. Relaxing voltages collected on a Galaxy S5 phone: (a) raw
traces after mitigating trickle charge; (b) processed traces used for
fingerprint checking.

• Casals’: the final battery voltage after 5-min relaxation is linear
in its SoH [11];

• Bond’s: the final battery voltage after 30-min relaxation is qua-
dratic in its SoH [10];

• V-BASH: the power-factor of battery voltage is linear in its
SoH [20].

Note that Casals’ and Bond’s are not always feasible on phones for
field-tests as the required voltage after a fixed-duration relaxation
may not be available due to the trickle charge.

We first evaluate V-Health based on the dataset collected with
each of the batteries, whose results are summarized in Fig. 21(a), in
terms of the 5-th and 95-th percentiles of estimation errors (in ab-
solute value) and their mean. V-Health estimates battery SoH with
<2%mean error, andmost of them are bounded by 0.5%, outperform-
ing the three baselines in all the explored cases. More importantly,
V-Health significantly reduces the variance in estimation error and
thus is much more reliable when compared to the baseline methods.

We also evaluate V-Health by training the fingerprint map with
a battery and validate its accuracy with the traces collected with
other same-model batteries, i.e., cross-battery validation. This is the
real-life analogy of estimating battery SoH of local devices based
on an offline-trained fingerprint map. Fig. 21(b) plots the validation
results with four Galaxy S3 and two Nexus 5X batteries, the symbol
𝑥/𝑦 denotes training with battery-𝑥 and validating with battery-𝑦.
The estimation error, albeit larger than the same-battery evaluation,
is still bounded by 2% in most cases.

Users may charge their devices with different chargers from
day to day, e.g., using USB or DC chargers. Next we use cross-
profile evaluation to verify if V-Health is tolerable in such hetero-
geneous charger cases, with the four Galaxy S3 batteries as shown
in Fig. 21(c). Specifically, we train V-Health with the dataset col-
lected when charging with <0.5C, 4.20V, 0.05C>cccv, and validat-
ing its accuracy with the dataset collected when charging with
<0.25C, 4.20V, 0.05C>cccv, i.e., with a constant charge current of
2, 200 × 0.25 = 550mA, approximately same as when charging
with standard downstream USB 2.0 ports. Comparison of Figs. 21(b)
and 21(c) shows no clear evidence of degraded SoH estimation
due to different charge profiles — although a few cases resulting
in ≈2.5% estimation error, the errors in most cases are compara-
ble to Fig. 21(b) and some are even smaller, verifying V-Health’s
robustness against charger heterogeneity.

V-Health’s reliability can be improved further by training it
with multiple batteries. Fig. 21(d) plots the SoH estimation error
when training V-Health with three of four Galaxy S3 batteries and
using the fourth one for validation, and compares it with cases of
single-battery training. The results show that training with multiple
batteries reduces the variance in SoH estimation and thus improves
V-Health’s reliability, at the cost of slightly increased error as
compared to the best case achieved with single-battery training.
Note that such best cases, however, are rather random in terms of
the battery used for training, as shown in Fig. 21(d).

We have also explored the impact of relaxing time duration
and the voltage sampling rates on V-Health’s accuracy in SoH
estimation, as shown in Figs. 21(e) and 21(f), respectively. The
results show the relaxing time need not be very long, e.g., the
estimation error converges with ≈10-minute relaxation, but the 5-
minute relaxation in Casal’s is not enough. Also, V-Health prefers
higher sampling rates for fine-grained relaxing voltages.

7.2 Field-Tests on Android Devices
We have also implemented V-Health on multiple Android phones,
including Galaxy S5, Galaxy S4, Galaxy Note 2, Nexus 6P, and
Nexus 5X, and evaluated them over 4–6 months. To emulate real-
life usage, these devices are discharged with various combinations
of Youtube, flashlight, and an app called BatteryDrainer [9] that
support different discharge rates, at an adaptive screen bright-
ness, to a random SoC in the range of 0–80%. The devices are
then charged for 6–10 hours (mostly over-night) during which
the relaxing voltages are collected by sampling the system file
/sys/class/power_supply/battery/voltage_now. We use addi-
tional batteries for each device module to train their respective
fingerprint maps. The ground truth of the battery SoH of Galaxy S5,
Galaxy S4, and Galaxy Note 2 are collected by removing the battery
from the phones and fully charging/discharging them with the bat-
tery tester, with the same profile as the case of training their respec-
tive fingerprint maps. The SoH ground truth of Nexus 6P and Nexus
5X, whose batteries are not removable, is collected via Coulomb
counting based on their current log during discharging, located
at /sys/class/power_supply/battery/current_now. Although
the thus-estimated ground truth may not be perfectly accurate due
to the limitation of current sensing, this is the best estimation one
can get as non-OEM researcher.

We first examine if the voltage-SoH relationship (as in Fig. 6) still
holds on smartphones. Fig. 22 plots the voltage drop of a Galaxy
S5 phone after 30-minute relaxation upon fully charged, during
a period of over 5 months. Note that the voltage after 30-minute
relaxation may not be available due to trickle charge, in which
case we use power fitting to predict such voltage. The voltage
drop increases over usage, during which the battery SoH decreases,
agreeing with Fig. 6. Significant variance, however, is observed in
such voltage drops, indicates methods such as Bond’s and Casals’
— which estimate SoH based on a single voltage reading — may
be unreliable. Also, the conspicuous variance in Fig. 22 compared
to those in Fig. 14 shows a clear difference between in-laboratory
measurements and field-tests on mobile devices, likely due to the
dynamic device operation.
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Fig. 21. Lab experiment results: V-Health estimates battery SoHwith <3%mean error andmuch-reduced variance ((a)-(c)); training with multiple
batteries increases reliability (d); relaxing time need not be very long but has to be logged at a high frequency ((e) and (f)).

Fig. 22. Voltage drop increases over usage: the voltage drop of a
Galaxy S5 phone after 30-minute relaxation increases over usage,
validating V-Health’s principle in SoH estimation.

Next we check if V-Health can mitigate such variance and esti-
mate SoH reliably. Fig. 23(a) summarizes the estimated battery SoH
with Galaxy S5 over 6 month, together with the five ground truth
SoHs measured on different dates, showing <4% errors in SoH esti-
mation. Also, as stated above, users may charge their devices with
different chargers. To cover such cases, we charged the phone with
different chargers during the evaluation, namely, 1A USB, 2A USB,
and its associated DC charger. No clear dependency on SoH estima-
tion accuracy and the charger selection is observed, demonstrating
V-Health’s robustness against heterogeneous chargers. Finally, the
first-order smoother reduces the variance and thus the fluctuations
of SoH reported to users, as compared to the per-charge estima-
tions. The evaluation results with Galaxy S4 and Note 2 phones are
plotted in Figs. 23(b) and 23(c), showing 1.5–4% estimation error.

Table 4: Field-test results with Casals’, Bond’s, and V-BASH.

Galaxy S5 Galaxy S4 Note 2 Nexus 6P Nexus 5X
Casals’ 52.5% >400% 47.3% >900% <−1, 000%
Bond’s 59.3% >1, 000% 136.2% >1, 000% >1, 000%
V-BASH 63.3% 91.5% 64.4% 77.5% 118%

Figs. 23(d) and 23(e) plot the evaluation results with Nexus 6P
and Nexus 5X, showing 4–5% error in SoH estimation. This rel-
atively large error could be due partially, besides the inaccurate
PMIC-provided current information, to battery’s rate-capacity ef-
fect — batteries deliver more capacity when discharged with less
currents [5, 37]. The two phones have an average discharge current
of ≈300mAwhen collecting their SoH ground truth, much less than
the 0.5C discharge rate (i.e., 1, 725mA for Nexus 6P and 1, 350mA
for Nexus 5X) used in training the fingerprint maps, thus leading to
the over-estimation of the batteries’ full charge capacity and their
SoH. Note that the first-order smoother needs at least 3 samples,
causing the initial fluctuation in the smoothed SoH in Fig. 23(e).

We have also tried to estimate these phones’ battery SoH with
the three baseline methods Casals’, Bond’s, and V-BASH based
on the same sets of collected relaxing voltages, as summarized in
Table 4. Again, note that the required voltage after 5- or 30-minute
relaxation may not be available due to trickle charge, in which
case we use power fitting to predict such voltage and then use it to
estimate SoH. The SoHs estimated by the three baseline methods
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Fig. 23. V-Health estimates battery SoH with <5% error on multiple
Android devices over experiment periods of 4–6 months.

have much larger error than V-Health, and even exceed 100% or
below 0% in many cases, showing their unreliability on phones.

8 CONCLUSIONS
We have presented V-Health, a low-cost user-level battery SoH
estimation service for mobile devices based solely on their voltage,
and thus is deployable on all commodity mobile devices. V-Health
is inspired by our empirical finding that the relaxing battery voltage
fingerprints its SoH, and is steered by 50 battery measurements,
consisting of 13,377 charging/resting/discharging cycles in total
and lasting over 72 months cumulatively. A key takeaway from
V-Health is the necessity to integrate physical battery properties
with user behaviors in the battery management of user-centric
systems such as smartphones.
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