
Using Phone Sensors to Augment Vehicle Reliability
Noah T. Curran∗

University of Michigan
ntcurran@umich.edu

Arun Ganesan∗

Meta
arunganesan@meta.com

Mert D. Pesé
Clemson University
mpese@clemson.edu

Kang G. Shin
University of Michigan

kgshin@umich.edu

Abstract— The increasing connectivity of vehicles has led to wide
exploitation of their vulnerability/unreliability surface. As a result,
the security and reliability of vehicle sensor information has become
a pressing concern because of the importance of sensor information
to vehicular functions. To address this concern, state-of-the-art
anomaly detectors validate vehicle sensors via the information
internal to a vehicle. However, they are still prone to data
unreliability as vehicles are built with little to no sensor redundancy.

To further enhance the reliability of vehicle sensors, we present
CaRe,1 which uses the driver’s smartphone as an external source
of sensor redundancy for detecting vehicle sensor anomalies. CaRe
uses sensing capabilities available in smartphones to estimate
vehicle sensor values and ensures smartphone sensing to be resilient
to common phone usage to improve the accuracy of estimations.
It logs anomalies and informs the driver of detected anomalies
to limp home and/or to inspect later.

Using injections on vehicle sensor traces, CaRe is empirically
shown to detect anomalies from 5 safety-critical vehicle sensors with
high true positive rates (for sudden injections, range from 97.33% for
speed to 90.08% for gear) while keeping the false positive rates very
low (almost always less than 1%). CaRe can estimate vehicle sensors
and detect anomalies with low computational overhead (≈8% CPU
usage) and low time latency (bottlenecked by the sensor refresh rate).

I. INTRODUCTION

In the last decade, the increased connectivity of vehicles has
enabled a wide range of vehicular functions/applications that
allow for a more seamless driving experience, but it accompanied
unexpected/undesired consequences. Exposing the vehicle to
a vast arrangement of wireless communication technologies has
widened the surface for malicious actors to infiltrate the vehicle
and inject incorrect data into its sensors [1]–[6].

While physical sensor failures pre-date vehicle hacks, the
remote vehicle hack in [6] motivated the rapid expansion
of research that detects and defends against anomalous
communications within the Controller Area Network (CAN),
the de facto standard of in-vehicle networks. Thus, research on
vehicular Intrusion Detection System (IDS) has dominated the
landscape and steered in several different directions, including
voltage fingerprinting [7]–[13], packet modeling [14]–[17],
sensor correlation [18]–[20], and machine learning [21], [22], as
described in § II-B. While these efforts have advanced the state of
vehicular security and reliability, vehicles still remain vulnerable
since their internal networks are built with little to no redundancy.
Therefore, should an adversary gain write-access to the CAN of
a vehicle, they would be able to directly intrude or deceive the
computer that hosts IDSs since there is no redundancy for the IDSs
to validate against. Furthermore, there is no indication this practice

*These authors contributed equally to this work. Arun made his contributions
while at the University of Michigan

1Pronounced like “care,” CaRe stands for “Car Reliability.”

will change anytime soon due to stringent financial constraints
that automotive OEMs impose on vehicle manufacturing.

Left with the realistic constraint that the automotive industry
will not equip vehicles with sensor redundancy, we have
limited options inside the vehicle network. In order to provide
redundancy in automotive networks at no extra cost, one can
naturally seek redundancy through compute and sense resources
that are pervasively available outside the vehicle network.
Following this anticipation, we present CaRe, a mobile app that
utilizes smartphone resources (e.g., accelerometer, gyroscope)
to sense vehicular dynamics and accurately estimate vehicular
sensor values. To use these estimations as a substitute for sensor
redundancy, CaRe communicates with the vehicle’s On-Board
Diagnostics (OBD-II) port to cross-validate the estimations
against the data values on the CAN. (We discuss OBD-II security
concerns in § III-B.) When the difference between the two
values exceeds a trained threshold for a trained duration of time,
the detected anomaly is logged for inspection. While outside the
scope of this paper, we briefly discuss what to do with detected
anomalies in § VIII. In pursuit of providing sensor redundancy at
no cost through CaRe, we make the following main contributions:
1) Introduction of a new and practical layer of redundancy for

vehicles through ubiquitous external technologies;
2) Provide smartphone sensing resilient to common phone usage

in order to measure vehicle dynamics and estimate the status
of vehicular sensors (§ IV and § V);

3) Design a framework that combines vehicle and smartphone
sensors to detect anomalies and enhance vehicle sensor
reliability (§ VI);

4) Propose a deployment scenario for and application of CaRe
that reinforces its practicality (§ VIII).

To the best of our knowledge, CaRe is the first attempt at
augmenting vehicle reliability through indirect redundancy gained
from ubiquitously available external resources without incurring
additional vehicle manufacturing costs. CaRe has virtually no
added costs since those concerned with vehicle diagnostics likely
already own an OBD-II dongle to interface with the CAN and
since smartphone ownership is ubiquitous in today’s society. Fur-
thermore, CaRe is the first vehicle-oriented smartphone app that
diagnoses vehicle sensor anomalies through smartphone sensing
capabilities. Both end-users (i.e., drivers and passengers) and car
mechanics would use CaRe diagnose vehicular sensor anomalies.

Moreover, compared to other vehicular IDSs, CaRe requires
no reference model to detect anomalous sensor data since it only
utilizes smartphone sensors to estimate the true vehicle sensor
values. Finally, while CaRe is shown to incur an acceptable
level of power consumption (≈8% of the CPU on average), the
smartphone will remain in-vehicle and can thus utilize the car
battery for charging while driving.

Smartphone
CaRe

Remove Human
Activities

Preprocess
Sensor Data

Estimate Vehicle
Sensor Data

Detect Vehicle
Anomalies

Smartphone
Sensor Data

Vehicle

UI Prompt

OBD-II PortVehicle Sensor Data

Fig. 1: An overview of the system design of CaRe, a smartphone app for augmenting vehicle reliability.

We implement CaRe in Android phones and evaluate it against
several classes of anomalies. To best evaluate CaRe, we create
a taxonomy of anomalies reported in the literature—sudden,
gradual, and delta (§ III-A). Our evaluation of CaRe injects these
three types of anomalies into real-world driving traces and shows
CaRe to be capable of detecting anomalies of 5 vehicular sensors
with different levels of true positive rate (TPR), ranging from
97.33% for speed values to 90.08% for RPM values, with very low
false positive rate (FPR), often less than 1% FPR. CaRe can ac-
curately detect speed, gear position, fuel and odometer anomalies,
with the detection latency bottlenecked by the sensor refresh rate.

II. BACKGROUND & RELATED WORK

A. Vehicle Dynamics Estimation
Recent work has shown how to use a vehicle’s dynamics

to estimate its state, and then subsequently use the estimation
to determine whether the vehicle is behaving abnormally [23].
While orthogonal to our work, we neither directly estimate
vehicle dynamics nor track the vehicle state. Rather, we inspect
individual estimations of vehicle sensor values.

B. Vehicular Intrusion Detection
Prior work on vehicle sensor reliability focused primarily on

the cybersecurity problem of detecting adversarial intrusion [24].
In contrast, we discuss the different lines of work in this
direction, highlighting CaRe’s novelty of incorporating an
external source of redundancy for detecting anomalies.

1) Voltage Fingerprinting: One class of IDSs utilize voltage fin-
gerprinting [7]–[13]. For instance, in [8] the IDS used clock-based
fingerprinting of ECUs on the CAN to identify any that are misbe-
having. This work is orthogonal to CaRe, as it can act as a layer
of security for locating the intrusion once it is detected by CaRe.

2) Packet Modeling: There have also been IDSs that model
the information-theoretic and structural patterns of the CAN
under normal behavior [14]–[17]. During an attack, they observed
that information-theoretic properties, such as entropy, are likely
to change. However, they fail to detect attacks that do not change
CAN traffic [25], [26]. The information-theoretic properties
change only for CAN injection attacks that deviate from normal
behavior of the CAN. If the adversary is able to mount the
attack without changing the CAN’s behavior—such as through
a bus-off attack [25] or Bootrom attack [26]—then it may evade
detection. In contrast, CaRe does not model the CAN traffic.

3) Sensor Correlation: Other IDSs model the normal behavior
of the vehicle by comparing with other vehicle sensors’ data
on the CAN [18]–[20], [27]. These approaches rely on internal
vehicle sensors that may be susceptible to the same adversary who
can inject data into the CAN. While this category of vehicular
IDSs is most similar to that of CaRe, CaRe uses an external
source of redundancy for validating the sensors within the vehicle.

4) Machine Learning: Similar to packet modeling, the final
set of solutions utilize machine learning to characterize normal
behaviors of the CAN [21], [22]. These solutions are often
computationally expensive and are not as effective on the
computationally limited and outdated ECUs that are embdedded
within vehicles. Furthermore, CaRe provides an external source
of validation and does not provide a characterization for what is
or is not normal traffic for the CAN bus, and is not vulnerable
to attack classes relevant to machine learning solutions.

III. THREAT MODEL

A sensor anomaly occurs when a sensor reports a value
that does not match what it is meant to observe. This may
happen when sensors become faulty, physically damaged, or
compromised by an adversary.

We first describe how an adversary may launch a sensor-
falsification attack on the CAN. An adversary must first gain write-
access to the CAN since the CAN is a broadcast network [3], [26].
Regardless of whether a targeted sensor is a component of the com-
promised unit, information for the targeted sensor can be spoofed,
falsified, and broadcast on the CAN from the compromised
entry-point. There have been a variety of methods for obtaining
write-access to the CAN [2]–[4], [6], [26], [28]–[30]. While these
attack vectors have been exploited widely, other hypothetical
scenarios are also considered, such as physical sensor attacks.

One goal of sensor-falsification attacks is to take control of
a vehicle, which allows an adversary to perform a number of
actions, such as draining the vehicle’s battery [31], controlling
the steering direction [5], or performing another attack listed
in Tbl. I. Such control of the vehicle may cause physical harm
to either the vehicle or the cargo and passengers inside.

A. Taxonomy of Anomalies
Despite extensive research on vehicle reliability and the

often-used sensor injection for compromising a vehicle in the
attack literature (see Tbl. I), there is a lack of standard evaluation
metrics for detecting vehicle anomalies. We survey existing
literature on vehicular cyberattacks and create a taxonomy of
sensor anomalies to create this standard. Due to the similar
nature of sensor attacks and physical sensor failures, this
taxonomy is applicable to either scenario.

Later in this paper we will utilize this taxonomy to evaluate
the effectiveness of CaRe. Our taxonomy uses the notation xt

and x′
t for the tth real sensor value and injected sensor value.

1) Sudden Anomaly: In a sudden anomaly the CAN is flooded
with a single value x′

0 = ... = x′
n, squashing the real values

following x0. Adversaries have used this to flood the CAN with
injected engine RPM values using an attack to put the engine
ECU into diagnostic mode, preventing it from communicating
with other ECUs on the CAN [26].

Ref. ID Target ECU Sensor spoofed Purpose of attack
1 Instrument Cluster (IC) Speed Confuse user
2 IC Odometer Confuse user
3 Intel. Park. Assistant System (IPAS) Gear, Speed Control steering

[4]

4 IC Fuel gauge Confuse user
5 IC Fuel gauge Confuse user

[3]
6 IC Speed Confuse user
7 IC Speed Confuse user

[26]
8 Park. Assistance Module (PAM) Speed Control steering

TABLE I: Example CAN injection attacks which require falsifying vehicular sensors.

2) Gradual Anomaly: An anomaly may steadily and stealthily
change the real value to a target value over a sequence of
gradual changes in what we call a gradual anomaly. For a
series of sensor values, a value ci is added to the real sensor
value. The sequence of values in the anomaly hence becomes
x′
0=x0+c0,...,x

′
n=x0+cn. In the literature, this anomaly is

favored in attack scenarios where stealth is required, such as to
cause driver and/or passenger confusion or to be within physical
limits of a vehicle safety feature [3], [4].

3) Delta Anomaly: In a delta anomaly the falsified values
are consistently offset from the real values following x0 by
a value c. Therefore, real values x0, ... ,xn are altered to be
x′
0=x0+c,...,x′

n=xn+c. An example of this is in [3], where
the adversary falsifies the speedometer to report a value exactly
10 mph below the real speed of the vehicle.

B. Smartphone Connectivity Security

To interface with the CAN from a smartphone, we utilize the
OBD-II port beneath the steering wheel through a dongle. While
some OBD-II dongles have previously been shown to contain wire-
less vulnerabilities for obtaining write-access on the CAN [32],
we assume the OBD-II dongle used by CaRe is one that is unso-
phisticated and inexpensive, lacking direct Internet connectivity
and programmability available in vulnerable OBD-II dongles.
OBD-II dongles of this variety pair with the smartphone through
Bluetooth or BLE—which can only pair with one device at a time
(i.e., the smartphone that hosts CaRe)—and can only listen to the
CAN to relay the sensor data back to the smartphone. Because un-
sophisticated and inexpensive OBD-II dongles are more accessible
to the average consumer, we deem this attractive and sufficient.

Finally, because there exist a plethora of smartphone security
solutions [33], [34] and smartphone security is not the goal of
augmenting vehicular redundancy, we assume the smartphone
that runs CaRe to follow best practices for security and for
CaRe to remain uncompromised. However, should a clever
adversary find a way to compromise CaRe, the adversary would
still need to find a way to compromise the CAN communication
alongside compromising the smartphone due to the fact that the
smartphone lends itself as a source of redundancy.

IV. REMOVING PHONE SENSOR NOISE

Before using smartphone sensing information for vehicle
sensor value estimations, we first pre-process the collected sensor
values. Namely, we ensure the smartphone sensing is resilient
to driver/passenger phone usage unrelated to vehicular dynamics.

In contrast to prior work that estimates vehicular sensors
using phone sensors [35]–[40], we explore if phone sensing can
be used to enhance vehicle reliability.

A. Vehicular Mobile Sensing

To detect vehicular dynamics from a smartphone, we make
use of the set of sensors in the Inertial Measurement Unit (IMU),
consisting of the accelerometer, gyroscope, and magnetometer.
To use the accelerometer and gyroscope for CaRe’s estimations,
we first align the phone’s readings to the vehicle’s direction of
travel. There are two methods for phone-to-vehicle alignment
that we consider: one that makes use of the GPS and one that
does not make use of the GPS. The rationale for this is that
there are some cases where the GPS is incapable of providing an
accurate alignment due to noise from urban canyons (Fig. 4b).

For the first method, given consecutive GPS points, we find the
angle of the GPS bearing offset from the magnetic north. We then
rotate the magnetic north vector from the magnetometer by the
same angle to get the vehicle pointing vector from the phone’s
frame of reference, called V⃗ . We do this using a change of
basis transformation from the plane perpendicular to the frame of
reference which has basis vectors M⃗,G⃗,G⃗×M⃗ , where M⃗ is the
magnetic north and G⃗ is the direction of gravity. Using G⃗ and V⃗
we can calculate the rotation matrix R by the following equation:

C⃗= V⃗ ×G⃗; R=

C⃗0 C⃗1 C⃗2

V⃗x V⃗y V⃗z

G⃗x G⃗y G⃗z

 (1)

For the second method, we make use of only the accelerometer
readings to orient the other IMU readings [41], [42]. In this
method, we utilize Euler angles to perform a pre-rotation (ϕ)
about the Z-axis of the vehicle, a tilt (θ) about the X-axis of
the vehicle, and finally a post-rotation (α) about the Z-axis
once again. We obtain the angles for the first two rotations
from the stationary vehicle to determine the direction of
gravity. For derivations we refer the reader to [41]. Note that
in our derivations, cx = cos(x) and sx = sin(x). Using the
accelerometer reading (ax,ay,az), the equations are:

ϕ=arctan(ax/ay), θ=arccos(az). (2)
Once the vehicle begins motion, we calculate the third rotation
into the direction of acceleration of the vehicle. Using the
accelerometer reading (a′x,a

′
y,a

′
z), the equation is:

α=arctan

(−a′xcϕ−a′ysϕ

cθ(a′ycϕ−a′xsϕ)+a′zsθ

)
. (3)

We then get rotation matrix R through Euler angle rotations:
R=RZ(α)×RX(θ)×RZ(ϕ). (4)

B. Determining Phone Use

Before estimating vehicle sensor information, we must
determine whether the smartphone is in use by a driver or
passenger of the vehicle. If it is in use, then the noise caused
by user-to-phone interactions will obscure the true nature of
the vehicle dynamics, preventing accurate estimations. Although

Sensor Estimation Method
IMU-align R=[(V⃗ ×G⃗)⊤;V⃗ ⊤;G⃗⊤]

Speed vt=α(vt−1+Accv,Y ∗dt)+(1−α)GPSv

vt=vt−1+Accv,Y ∗dt
Gear Neural-network based on vehicle speed

SWA [43] θSWA=k∗arcsin(l∗yawrate/v)
Odometer Haversine sum of consecutive GPS
Fuel level Distance * Average MPG

(a) Estimation of 5 different sensors used in CaRe. For details on each sensor,
see their respective sections below.

Speed Offset in Seconds
{-0.5, -0.4, -0.3, -0.2, -0.1, 0}

{-5, -0.5, -0.4, -0.3, -0.2, -0.1, 0}
{-1, 0}

{-3, -2, -1, 0}
{-4, -3, -2, -1, 0}

(b) Each feature vector represents the vehicle’s speed sampled
at different time offsets in seconds. For each vehicle, we searched
through each of these to find the most optimal one.

TABLE II: Summary of estimation equations.

a survey of drivers shows that just 3% of drivers keep their
smartphone in-hand while driving [44], this is significant enough
to warrant careful handling. Furthermore, while prior work
determines whether a driver has a smartphone in-hand for the
purpose of driver safety [45]–[47], to the best of our knowledge
there is no prior activity recognition work on determining
whether any person in a vehicle is holding a smartphone.

Prior work on activity recognition shows that a classifier is suf-
ficient for detecting smartphone use [48]–[51]. Features extracted
from IMU sensor readings provide suitable values for classifiers
due to their ability to measure environmental motions, and all
three IMU sensors can be useful in different situations [52]. Before
extracting the features, we need to slice the data into evenly spaced
segments. [48], [49] demonstrate that 5-second slices are sufficient
for activity recognition. Therefore, utilizing the 12 features listed
in [53], we experimentally determine which IMU sensors and
classifier combination would be most suitable for classifying if
a person is interacting with a smartphone while in a vehicle.

To create the classifier, we gather smartphone IMU sensor
data from multiple locations in a vehicle while the smartphone
is out-of-hand—such as on a seat, in a bag, in a cup holder,
or mounted—and is in-hand. The locations chosen for when the
smartphone is out-of-hand are based on popular locations drivers
keep their phone while driving [44]. Then, we use the collected
data to train five different classifiers with the various IMU sensor
combinations of accelerometer, gyroscope, and magnetometer
readings. The classifiers chosen are Naı̈ve-Bayes, Logistic
Regression, k-Nearest-Neighbor, Rule-Based, and Decision Tree.
We evaluate the classifiers in § VII.

C. Phone Sensor Filtering
Once the smartphone is positioned at a suitable location, we

proceed with processing the IMU sensor readings. We start with
filtering the sensor values to remove noise attributed to the vehicle
itself. Li et al. [42] find accelerometer readings only need a 2Hz
low-pass filter to remove noise that is not attributed to normal
vehicle acceleration. The noise removed is from intrinsic high
frequency vibrations sourced from thermal and mechanical compo-
nents of the sensor, and contextual noise from vehicle vibrations.

Error present in the gyroscope can be attributed to a few sources
each of which must be addressed individually. First, the gyroscope
experiences natural drift over time, causing the values to be off-
calibration. This occurs due to DC bias and angular random
walk. Second, gyroscope readings have noise from environmental
vibrations. Finally, there is noise from the true values attributed
to the actual vehicular dynamics, such as turns and lane changes.

To correct the drift, the gyroscope must periodically be
re-calibrated. This can be accomplished when the vehicle is
determined to be stationary. To distinguish whether reported

values from the gyroscope are attributed to the vehicular dynamics
or environmental noise, we can use discrete wavelet transform
(DWT) functions [42], [54], [55]. Finally, when the smartphone
shifts due to lane changes or turns, the frame of reference
calculated may be no longer accurate. To remedy this, we track
the gyroscope filtered through a DWT to determine the angle
that the frame of reference changes. We then apply this angle
change to the the frame of reference originally calculated [42].

V. ESTIMATING VEHICULAR SENSORS

We estimated 5 in-vehicle sensors using smartphone sensors.
The chosen sensors are falsified in various attacks reported
in the literature (cf. Tbl. I). Furthermore, they are related
to vehicle dynamics, thereby making it possible to replicate
and cross-validate them using the smartphone sensors. Their
estimation equations are summarized in Tbl. IIa.

For some of the estimations, the equations include other
estimated vehicle sensors as input. The vehicle sensor estimations
may depend upon another estimation, so we must pay close
attention to these dependencies, as error accumulated within
an estimation can propagate to a dependent estimation. After
estimation, CaRe cross-validates the estimations with the
CAN-reported sensor values to detect and report anomalies. We
give the details of the 5 sensor estimation techniques below.

Some of these sensor estimations require per-vehicle calibration.
For example, we trained a different neural network for each
vehicle in our dataset for Gear estimation, and loaded vehicle-
specific parameters for fuel MPG. These must be calibrated
one time for each vehicle model and can be performed by the
OEM before release. CaRe does not require per-smartphone or
per-vehicle calibration. The same calibration can be loaded on
different vehicles of the same model and different smartphones.

Speed. We either fuse the speed estimates from both the
accelerometer and GPS sensors using a complementary filter, or
use only the accelerometer speed estimates when GPS readings
are too noisy. The integration of consecutive accelerometer
readings is an estimate of the speed, but due to the noise in the
IMU sensor readings, this can result in divergent and incorrect
speed estimates. When possible, we use the GPS sensor for
speed estimates in the order of 1Hz, but it misses more frequent
changes which might be sensed by the IMU sampling at 10Hz.

To use the accelerometer, we first align the phone’s IMU
accelerometer readings to the vehicle’s direction of travel. See
§ IV-A for an in-depth discussion of this.

As in [43], we also found that the GPS-estimated speed
is slightly delayed from the actual vehicle speed. We aligned
the GPS-speed by shifting it by ≈0.5 second, a value found
experimentally in our data. We fuse the Y axis of the aligned
Accv , and the delay-adjusted GPSv using a complementary

filter: vt=α(vt−1+Accv,Y ∗dt)+(1−α)GPSv . We set dt to
100 ms since our accelerometer sample rate for CaRe is 10Hz.
We search through a training set and set α to 0.33. Alternatively,
we can use just the accelerometer component when the GPS
readings are too noisy: vt=vt−1+Accv,Y ∗dt.

Gear Position. We focus on automatic transmission vehicles
and exclude continuous variable transmission systems. The gear
position in automatic transmission vehicles is controlled by the
Transmission Control Unit (TCU). The TCU uses inputs from
a variety of vehicle sensors to inform its algorithm to upshift
or downshift the gear. These sensors include the vehicle speed,
throttle position, and many others. The TCU adjusts the gear
position to reduce load on the engine, increase safety of the driver,
and reduce the long-term wear and tear of internal components.

Since the smartphone lacks many of these sensor values, we
trained neural networks using the vehicle’s recent change in
speed as the feature vector to predict the current gear position.
For each vehicle, we found the most accurate feature vector from
those listed in Tbl. IIb. We searched through a neural network
of depths 1, 2 or 3 where each layer is densely connected with
10 neurons. The output is a one-hot encoding of the current
gear position. We used Tensorflow to train these models, and
Tensorflow Lite to run them on Android [56].

Steering Wheel Angle. We estimate the steering wheel angle
(SWA) using the yaw-rate of the gyroscope on the phone. To
accurately estimate the SWA, we align the phone’s coordinate
system to the world coordinate system (see § IV-A), and then
convert the angular rotation in the yaw axis to SWA. We use a
similar rotation matrix as R described in § IV-A. Since we are
only concerned about the yaw-rate, this only uses the third row
of the rotation vector—the vector pointing in the direction of
gravity. We call this rotation matrix that only makes use of the
gravity vector R′. Only using the gravity vector for world-frame
alignment is more robust than using the vehicle-facing vector
and is sufficient for SWA calculations.

With this new rotation matrix R′, we calculate the aligned
gyroscopic movement in the world frame of reference by
g⃗w=R′g⃗p

⊤ where g⃗w and g⃗p are the gyroscope vectors in the
world and phone frame of reference, respectively.

Once we aligned to the world frame of reference, we use a
simplified Ackerman mechanism model to estimate the SWA
using the smartphone’s IMU sensors [43]. The SWA is estimated
using θsteering = k ∗ arcsin(l ∗ yawrate/v), where k is the
steering ratio, l is the vehicle length,2 v is the vehicle speed
and yawrate is the rotated yaw-rate.

Odometer. For the odometer, consecutive GPS readings are
taken after the trip begins, and distances between the GPS
readings are summed together. We calculate these distances using
the Haversine of consecutive GPS points [57]. From this, we
obtain the distance and can add it to the initial odometer reading.

At the start of the trip, we trust the initial odometer value
from the CAN to determine how much it has increased. Even
if the starting odometer value is anomalous, it would not disrupt
future estimations to determine if further anomalies occur.

Fuel Level. We estimate the vehicle’s fuel level by using the
manufacturer’s published average MPG. Starting with a full tank

2We found these in vehicle specifications published online by the manufacturers.

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
False Positive Rate

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

Mag.=0.06kmph, Dur.=0.1s

Mag.=0.06kmph, Dur.=1.1s

Mag.=1.93kmph, Dur.=5.0s

Fig. 2: ROC curve for the speed sensor of 100 combinations of the two
parameters—magnitude and duration. For each combination, we calculate the
FPR and TPR. An ROC curve was computed for the 5 sensor estimations.

of gas, CaRe uses the manufacturer-published datasheet on the
tank capacity of the vehicle. As the user drives his/her vehicle,
CaRe matches each location of the vehicle to a road segment3
and labels that as either highway or city-level driving, using
publicly available information [59]. We take the average MPG
for the identified type of road and multiply it by the distance
traveled to obtain the new fuel tank level.

VI. DETECTING VEHICULAR ANOMALIES

Once we have estimated the vehicular dynamics, we compare
them against the reported values on the CAN. Because we
cannot perfectly account for and remove all error and noise
introduced within the IMU sensors, we must tolerate some
margin of error when detecting anomalies. Therefore, CaRe
uses two parameters to determine if it should flag an anomaly
on the CAN—the magnitude and duration.

The magnitude and duration should both be optimized
to unique values for each vehicular sensor estimation. The
constraints for the optimization are high True Positive Rates
(TPRs) and low False Positive Rates (FPRs). Given the portion
of data that is actually anomalous, the TPR is the fraction of
anomalies that are detected (higher is better). For the portion
of the data that is normal, the FPR is the fraction of normal
data that is incorrectly flagged as anomalous (lower is better).

Anomaly Magnitude. The anomaly magnitude is used to
determine the difference between the estimated sensor reading,
Sest, and the CAN-reported reading, Srep. The value from the
CAN is flagged as potentially anomalous when the optimized
threshold, Dthreshold, is exceeded: Dthreshold < |Sest−Srep|.
This could potentially be caused by either an attack, a faulty
vehicle sensor, or an estimation inaccuracy from the smartphone.
Because of the possibility of an estimation inaccuracy, we
require a second parameter.

Anomaly Duration. We use a second metric to see how long
such a deviation is sustained, measured in seconds. We train a
time threshold for flagging a sustained difference as an anomaly.

For each individual vehicular sensor, we search through
100 combinations of both parameters and, in the absence of
anomalies, calculate the receiver operating characteristic (ROC)
curve. Making use of the vehicular sensor estimations evaluated
in § VII-B, we set the magnitude threshold to one of 10 different
values, defined independently for each sensor, and set the duration
threshold to one of 10 different values equally ranging from
100ms to 5s. For example, Fig. 2 shows the ROC curve for the

3We matched it to OpenStreetMap [58].

0 1 2 3 4
Error (km/h)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f
e
le

m
e
n

ts

(a) Speed: {0.69, 4.74}kmph

0.
0

0.
5

1.
0

1.
5

2.
0

Error (km)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f
e
le

m
e
n

ts

(b) Odometer: {0.15,2.14}km

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error (liters)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f
e
le

m
e
n

ts

(c) Fuel: {0.09, 0.51} gallon

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Error (gear)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f
e
le

m
e
n

ts

(d) Gear: {0, 1} gear

0 5 10 15 20 25 30 35

Error (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f
e
le

m
e
n

ts

(e) SWA: {2.02, 38.2}◦

Fig. 3: CDF of CaRe estimation error of vehicular sensors during each trip. The average error is the bold line. Captions include the {50th, 90th} percentile error.

Vehicle model Trips Hours
Mid-size sedan 2018 21 7.08
SUV A 2017 12 4.87
Compact sedan A 2017 2 0.91
SUV B 2016 44 9.73
Hatchback 2016 2 0.73
Compact sedan B 2012 31 5.07
Total 112 28.56

TABLE III: Driving dataset collected for evaluation of CaRe. We use
OpenXC [60] to access the CAN data in all test vehicles. We collected a total
of 712.8 miles of data.

speed sensor. With the ROC curve, we search for the configuration
which yields the maximum TPR for bounded FPR values, where
FPR is bounded to {0.1,0.5,0.01,0.001}. We discuss the results
utilizing the optimized combination of parameters in § VII-C.

VII. EVALUATION

A. Accuracy of Phone-Usage Detection

We train and individually evaluate five classifiers in their ability
to recognize phone-usage while in-vehicle: Naı̈ve-Bayes, Logistic
Regression, k-Nearest-Neighbor, Rule-Based, and Decision Tree.
To train these classifiers, we collect smartphone IMU sensor data
for various activities in the vehicle. While extracting features
from the sensors, we slice data in sizes of 0.5 sec., 1.0 sec., and
5.0 sec. Across the difference combinations of the three sensors
in the IMU and the three difference data slice sizes, we train
a total of 105 different models. To efficiently train these models,
we use a machine learning and data mining software suite [61].

The IMU data is collected in a 2020 Jeep Compass across
a variety of road types, including neighborhoods, suburban
streets, backroads, and highways. We collected ≈15 minutes
of IMU sensor data for seven locations in the vehicle, which
were chosen based on typical places smartphone owners keep
their phone while driving [44]. The seven locations we place
the phone during data collection are: mounted, cup-holder, seat,
bag, shirt pocket, pant pocket, or held. The IMU sensor data
is collected at a rate of 100Hz, which amounts to around 90,000
samples for each IMU sensor for each position in the vehicle.

Of the trained models, the Decision Tree classifier performs
well for most IMU sensor combinations. Furthermore, the
gyroscope data alone gave the best classification results across
the board. For 5.0s durations of data collection, the Rule-Based
classifier gave the best accuracy of 99.71%, and for 0.5s and 1.0s
durations of data collection, the Decision Tree classifier gave
the best accuracy of 99.80% and 99.36%, respectively. The Rule-
Based and Decision Tree classifiers both are computationally fast,
so they are good choices for a real-time approach. Therefore, we
determine that the combination of 5.0s of gyroscope data applied
to a Rule-Based classifier is a good choice for determining
whether a smartphone is in a person’s hand while in a vehicle.

The gyroscope is capable of accurately detecting whether
a smartphone is in someone’s hand due to the context of
what it measures, the rotational rate of change. The rotational
measurement of the gyroscope is sensitive to the noise from
metabolic and biological interactions with the smartphone; for
instance, a heart beat propagated through the held hand. By
extension, the features we selected—such as the variation and
skewness—measure the noise only present in the gyroscope
readings when a person is interacting with the smartphone,
assisting the classifier determine when a person is holding the
smartphone. For this reason, we believe that the result is accurate
and that the selected classifier is able to leverage features from
the gyroscope readings for accurate classification.

B. Accuracy of Vehicular Sensor Estimation
1) Evaluation Dataset: We evaluate CaRe using driving

traces containing ground truth data from CAN and smartphone
sensors. Our evaluation requires in-vehicle data that is beyond
the scope of the OBD-II diagnostic standard, so we use
OpenXC [60] to collect data. We collected data from 112 trips
for 28.56 hours and 712.8 miles of driving in total. The trips
cover highways and surface streets. We collected data from 7
different vehicles and 3 drivers, summarized in Tbl. III. The
drivers placed the phone in a natural stationary location, such
as the windshield, cup-holder or their pocket.

2) Estimation Accuracy: In what follows, we use the
smartphone sensors to evaluate the estimation of the 5 in-vehicle
sensors discussed in § V. We evaluate CaRe’s estimation
accuracy in the absence of anomalies by comparing the estimated
and the ground truth values for all 112 trips. Plots of the CDF
of the errors can be found in Fig. 3. The results presented in
this section corroborate the estimation accuracy reported in [43],
[62]. We have gone beyond prior work in our gear estimation
evaluation and delved into the common cause of estimation
failure for many sensors. Moreover, we evaluated the estimation
algorithms under normal phone-usage scenarios. We note that
due to the variation in smartphone sensor performance and
specifications, the estimation accuracy may have differences.

Speed. CaRe can accurately estimate the vehicle speed using
GPS sensors—50th percentile has < 0.69 kilometers per hour
(kmph) error, and 95th percentile has < 4.74kmph error. The
low-frequency speed (< 1Hz) is accurately estimated using the
GPS-inferred speed and the high-frequency speed (> 1Hz) is
estimated using the aligned accelerometer readings.

Gear. CaRe also accurately estimates the gear position. Over
≈80% of the time, it can exactly estimate the current gear
position, and at 95% percentile, it is wrong by 1 gear position.
We observed that the errors are related to where the driver
travels. CaRe can more accurately estimate the gear position

0 200 400 600 800 1000 1200
Time (s)

12.349

12.699

13.049

13.399

13.749

Li
te

rs

Groundtruth fuel level
Estimated fuel level

0 200 400 600 800 1000 1200
Time (s)

0.019

0.081

0.181

0.281

0.381

Li
te

rs

Fuel Estimation Error

(a) Fuel estimation error drift.

(b) Vehicle speed estimation error for
increasing high-frequency GPS noise.
For higher GPS noise, CaRe relies
more on accelerometer component of
the complementary filter.

0 200 400 600 800 1000
Time [sec]

0

10

20

30

40

50

60

Sp
ee

d
[k

m
/h

]

estimated speed [km/h]
true speed [km/h]

(c) Speed estimation for a vehicle from
the start to finish of a trip relying only
on accelerometer. The Mean Average
Error is 4.37 km/h. The red/blue line
is the true/estimated speed.

Fig. 4: Sensor estimation error investigations.

when the trip is predominantly in the highway versus surface
local roads. We divided the data from the highway and the
local road by map-matching the GPS points. This effect occurs
because the driver tends to stay in the same gear while on the
highway, whereas there is much more fluctuation caused by
start and stop behavior on the surface streets. This is further
corroborated by the fact that gear estimation error and vehicle
speed have a negative pairwise correlation of -0.1, meaning as
the vehicle goes faster, there is less gear estimation error.

Steering Wheel Angle. CaRe can estimate steering wheel
angle (SWA) with < 2.02◦ error in 50% of all trips, and
< 38.2◦ in 95% of all trips. We find a strong negative correlation
between SWA estimation and vehicle speed (coef=-0.22) and
gear position (coef=-0.31). We find large errors in SWA when
the car moves slowly. This occurs because as the car drives
faster, there is a stronger relationship between the induced yaw
rate in the vehicle body and the SWA.

Odometer & Fuel Level. CaRe can also accurately estimate
odometer (50th% < 0.15km, 95% < 2.14km) and fuel level
(50th% < 0.09L, 95% < 0.51L). Due to the accumulative nature
of fuel estimation, we noticed an increasing error as the trip
continues for a longer duration. The fuel-level estimate and
drifting error are shown in Fig. 4a. The accumulating error
only affects the estimates within a single trip. In between trips,
CaRe re-calibrates the change in odometer and fuel level, and
is therefore able to detect anomalies that happen during the trip.

3) GPS Noise: CaRe relies on GPS to estimate the vehicle
speed. We evaluate the effect of GPS error/noise by adding
normally-distributed noise to the GPS samples (sampled up to
once every 100ms). We inject random noise for each 100ms time
sample of the GPS signal. Realistic GPS noise is likely to be
less jittery and noisy, but our analysis shows the effect of a more
extreme noise distribution. We find that as we increase the high-
frequency GPS noise, the average error also increases. The trend
is that for every additional meter of high-frequency GPS noise, we
see an average additional error of 1 kmph in the speed estimation
using only the GPS. In fact, we find that with an increased GPS
noise, CaRe relies more on the vehicle-aligned accelerometer
to reduce the error. In Fig. 4b, this is shown as the α curve, the
trade-off between GPS-speed and accelerometer-speed.

As seen in Fig. 4b, as the GPS noise gets too high, the speed
estimations become increasingly inaccurate. We can use the
GPS confidence returned by GPS chips to make use of rotation
matrix techniques that do not make use of the GPS, such as

Fig. 5: The left figure shows TPR for varying injection magnitudes. The right
figure shows varying fixed values of injection. At the moment of injection the
vehicle sensor varies with the scenario, e.g., in some cases the car was traveling
at 10 kmph when there was a 4kmph injection. For all cases, FPR was less
than 5% and thus omitted.

those in [41], [42] and described in § IV-A. The results of such
a method are plotted in Fig. 4c and are deemed to be acceptable
compared to those that occur with high GPS noise.

C. Accuracy of Sensor-Falsification Detection

Next, we use the best settings learned from the estimation
accuracy evaluation (§ VII-B) to evaluate the accuracy of sensor
anomaly detection. This evaluation first involves injecting data
into the CAN to mimic realistic anomalies (§ VII-C.1) and
then detecting intrusion using CaRe (§ VII-C.2). We utilize the
parameters found in § VI.

1) CAN Injection: We injected data into the collected data
traces to simulate sudden, gradual, and delta anomalies. In the
case of intentional anomalies (i.e., attacks), the adversary would
resort to one of these three anomalies depending on the intended
outcome. Some attack goals can be found in Tbl. I and in Tbl. IV.

In the evaluation of all three anomalies, we measure the number
of flagged anomalies according to our model in § VI. We then
determine the instances of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). We used the normal
case without injection to count FP and TN, and the injected case to
count TP and FN. In what follows, we compare the True Positive
Rate (TPR) and False Positive Rates (FPR) of various conditions.
The TPR (also known as recall) is defined as TP/(TP+FN)
and the FPR is defined as FP/(FP+TN). Configuring CaRe
leads to a tradeoff between TPR and FPR. A cautious driver would
prefer to increase TPR at the risk of more alarms. However, if
the FPR is too high, it will raise too many false alarms and might
lead the driver to get annoyed and ignore even real anomalies.

2) Detection Accuracy: Speed. For sudden anomalies,
CaRe can detect speed injection anomalies with TPR=97.33%,
FPR=0.2%. For a delta anomalies, CaRe can detect the

Sensor Values Rationale
Speed { 4, 10, 25, 50, 100 } kmph Used in manipulating other ECUs, e.g., [4].

Steer. Wheel Angle { -100, -50, -10, 10, 50, 100 } degrees Trick adaptive headlight into shining in the wrong location.
Gear { -1, 1, 4, 6 } gear Used in manipulating other ECUs, e.g., [4].

Su
dd

en
/G

ra
d.

Fuel level { 15.4 } gallons Trick driver into emptying gas tank, e.g., [3].
Speed { -50, -10, +10 } kmph Trick driver into going faster, e.g., [3].

Steer. Wheel Angle { +10, +50 } degrees
Odometer { -1000 } km Trick driver into missing oil change dates.D

el
ta

Fuel Level { +0.5 } gallons Trick driver into driving without sufficient fuel level, e.g., [3]

TABLE IV: Specific injection values we used. The first 4 attacks were sudden or gradual injections. The last 4 were injected immediately as a delta of the
actual value. These injections were inspired by existing literature.

injection with TPR=99.67% and FPR=0.2%. However, for
gradual anomalies on the speed sensor, the accuracy drops to
TPR=90.25% at FPR=0.2%.

Gear. CaRe can accurately detect any gear injection
anomalies, with sudden anomalies at TPR=90.08%, FPR=0.22%
and gradual anomalies at TPR=88.3%, FPR=4.79%.

Steering Wheel Angle. CaRe is able to detect SWA delta
anomalies at TPR=91.98%, FPR=0%. The sudden anomalies are
detectable with TPR=94.12%, FPR=0%. The gradual anomalies
have a TPR=58.33%, FPR=0%. The primary reason why the
gradual attack detection is less accurate for the SWA is the
inherent difficulty of estimating the SWA using IMU sensors.
This problem mainly occurs when the vehicle is traveling very
slowly or stationary, i.e., the driver may move the steering wheel
significantly, but no vehicular dynamics occur. Therefore, to
improve the TPR, we have to accommodate a much higher FPR,
which may not be acceptable for drivers.

Fuel Level. We find a similar pattern in the fuel-level
anomalies. CaRe can detect the delta anomalies with a
TPR=93.86%, FPR=0.77%, and the sudden anomalies with
TPR=88.8%, FPR=0.77%. However, it only detects the
gradual anomalies with TPR=64.57%, FPR=0.77%. The poor
performance of gradual anomaly detection is due to injected
values closely resembling the actual values during the start of
the anomaly. Only after a few seconds of the 10-second gradual
anomaly does the value start to differ enough.

3) Weakest Detectable Anomaly: We evaluate the minimum
anomaly CaRe can detect by injecting different magnitudes from
the actual value for each sensor (Fig. 5). The x-axis is the magni-
tude of the sensor injection, which is multiplied by the unit scale
shown in the figure legend. We can detect speed injection once
it exceeds 10kmph. The detection threshold for other sensors are:
Gear=2, Steering=22.5◦, Odometer=4km and Fuel Level=0.9L.

In the left figure, we show varying magnitudes of a delta
anomaly. As the anomaly is close to 0 delta (i.e., the true value),
the TPR drops to 0. In the right figure, we show the TPR for
a sudden anomaly. If the sudden anomaly is close to the actual
value, then the TPR becomes very low.

VIII. DISCUSSION

Expected Deployment Scenario. Thanks to the ease of
deployability due to the pervasive use of smartphones, CaRe has
the potential for a wide reach. If an anomaly is detected, CaRe
sends an alert of it, either directly to the driver or to another
trusted agent such as a mechanic. This model resembles that of
health apps, which are able to automatically send health data
to the physician with the permission of the smartphone owner.
Similarly, the alert of anomalies may aid a professional mechanic

in diagnosing vehicle problems before they cause irreparable
harm.

Following an alert of an anomaly, the driver/mechanic should
carefully consider the context of the alert. If it is isolated with
no other indication of an issue, then it is possible to be a
false-positive. If it is indeed a false-positive, then this information
can inform further iterations of refining CaRe. However, a
stream of (or repeated) anomalies requires a careful inspection.
Such a stream may indicate a malfunctioning vehicular sensor, an
adversarial attack, or a false-positive invoked via an unexpected
behavior. In this case, the driver may wish to exercise caution
drive home slowly. They may also elect to have their vehicle
enter its ”limp home” mode, which is where an ECU triggers
for the engine to prevent itself from driving faster. Thus, all
cases provide useful feedback to the driver for enhancing both
current and future vehicle safety and reliability.

Future Application. Additionally, smart infotainment OSs are
on the horizon, such as Android Automotive OS (AAOS) [63].
AAOS has the ability to intelligently control various aspects
of the vehicle, such as the HVAC and lighting systems. In the
future, a smart infotainment OS such as AAOS may be coupled
with CaRe in order to provide free sensor redundancy to any
decisions that AAOS makes.

Incorporating Engine RPM. In our experiments, we con-
sidered estimating the engine RPM using speed, the final drive
ratio, the transmission gear ratio, and tire circumference [62].
Figs. 5 contains some of the engine RPM evaluation. Our
results demonstrated weak estimation performance with {50th,
95th}={115.6, 788.5} RPM error. This lead to weak detection
performance for sudden (TPR=78.29%, FPR=0.54%) and gradual
(TPR=43.22%, FPR=0.54%) anomalies. Tire slip causes this large
variation in the engine RPM estimation, and is mediated by the
tire slip ratio [19].

However, incorporating tire slip into the estimations is not
simple. Several unpredictable factors cause tire slip such as
the road condition, wear of the tire, and the friction coefficient
between the tire and the road. We are able to show some
factors can be considered. For instance, when we separated the
estimation error based on the acceleration of the vehicle, we
found that compared to normal acceleration conditions there was
1790% increase during sudden acceleration. Through a similar
separation, we found 372% increased error in up-hill versus flat
roads and 178% increased error in high-precipitation areas. Using
these detectable factors can slightly improve the RPM estimation
performance, but there are several challenges that remain.

IX. ACKNOWLEDGEMENTS

The work in this paper was supported in part by ONR under
Grant No. N00014-22-1-2622. We thank the reviewers and RTCL
for their feedback. Noah and Arun extend a special thanks to
their families for lending their cars to the data collection efforts.

REFERENCES

[1] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe,
and I. Seskar, “Security and privacy vulnerabilities of in-car wireless networks: A
tire pressure monitoring system case study,” in USENIX Security Symposium, 2010.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive experimental
analyses of automotive attack surfaces,” in USENIX Security Symposium, 2011.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental analysis of a
modern automobile,” in IEEE Symposium on Security & Privacy (S&P), 2010.

[4] C. Miller and C. Valasek, “Adventures in automotive networks and control units,”
in DEF CON, 2013.

[5] ——, “A survey of remote automotive attack surfaces,” in DEF CON, 2014.
[6] ——, “Remote exploitation of an unaltered passenger vehicle,” in Black Hat USA, 2015.
[7] K.-T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle networks,”

in ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017.
[8] ——, “Fingerprinting electronic control units for vehicle intrusion detection,” in

USENIX Security Symposium, 2016.
[9] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “VoltageIDS: Low-level

communication characteristics for automotive intrusion detection system,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 8, 2018.

[10] R. Bhatia, V. Kumar, K. Serag, Z. B. Celik, M. Payer, and D. Xu, “Evading
voltage-based intrusion detection on automotive CAN,” in The Network and Distributed
System Security Symposium (NDSS), 2021.

[11] M. Kneib and C. Huth, “Scission: Signal characteristic-based sender identification
and intrusion detection in automotive networks,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2018.

[12] M. Kneib, O. Schell, and C. Huth, “EASI: Edge-based sender identification on
resource-constrained platforms for automotive networks,” in The Network and
Distributed System Security Symposium (NDSS), 2020.

[13] M. Foruhandeh, Y. Man, R. Gerdes, M. Li, and T. Chantem, “SIMPLE: single-frame
based physical layer identification for intrusion detection and prevention on in-vehicle
networks,” in Annual Computer Security Applications Conference (ACSAC), 2019.

[14] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell, “Modeling
inter-signal arrival times for accurate detection of CAN bus signal injection attacks:
A data-driven approach to in-vehicle intrusion detection,” in Conference on Cyber
and Information Security Research (CISRC), 2017.

[15] Z. Tyree, R. A. Bridges, F. L. Combs, and M. R. Moore, “Exploiting the shape
of CAN data for in-vehicle intrusion detection,” in IEEE Vehicular Technology
Conference (VTC-Fall), 2018.

[16] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle networks,”
in IEEE Intelligent Vehicles Symposium (IV), 2011.

[17] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to anomaly detection
for in-vehicle networks,” in International Conference on Information Assurance and
Security (IAS), 2010.

[18] A. Ganesan, J. Rao, and K. G. Shin, “Exploiting consistency among heterogeneous
sensors for vehicle anomaly detection,” SAE Technical Paper, Tech. Rep., 2017.

[19] K.-T. Cho, K. G. Shin, and T. Park, “CPS approach to checking norm operation of
a brake-by-wire system,” in ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), 2015.

[20] A. Wasicek and A. Weimerskirch, “Recognizing manipulated electronic control units,”
SAE Technical Paper, Tech. Rep., 2015.

[21] M. Markovitz and A. Wool, “Field classification, modeling and anomaly detection
in unknown can bus networks,” Vehicular Communications, vol. 9, 2017.

[22] M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages through
analysis of ID sequences,” in IEEE Intelligent Vehicles Symposium (IV), 2017.

[23] L. Xue, Y. Liu, T. Li, K. Zhao, J. Li, L. Yu, X. Luo, Y. Zhou, and G. Gu, “Said:
State-aware defense against injection attacks on in-vehicle network,” in USENIX
Security Symposium, 2022.

[24] S.-F. Lokman, A. T. Othman, and M.-H. Abu-Bakar, “Intrusion detection system for
automotive controller area network (can) bus system: a review,” EURASIP Journal
on Wireless Communications and Networking, vol. 2019, no. 184, 2019.

[25] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes them
vulnerable,” in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016.

[26] C. Miller and C. Valasek, “Advanced CAN injection techniques for vehicle networks,”
in Black Hat USA, 2016.

[27] F. Guo, Z. Wang, S. Du, H. Li, H. Zhu, Q. Pei, Z. Cao, and J. Zhao, “Detecting
vehicle anomaly in the edge via sensor consistency and frequency characteristic,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 6, 2019.

[28] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and vulnerable: A story
of telematic failures,” in USENIX Workshop on Offensive Technologies (WOOT), 2015.

[29] T. Eden, “A reverse engineered interface for the BMW i3 electric car,”
https://github.com/edent/BMW-i-Remote, 2021.

[30] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Towards secure and dependable
storage services in cloud computing,” IEEE Transactions on Services Computing,
vol. 5, no. 2, pp. 220–232, 2011.

[31] K.-T. Cho, K. Shin, Y. S. Kim, and B.-H. Cha, “Off is not off: On the security of parked
vehicles,” in IEEE Conference on Communications and Network Security (CNS), 2020.

[32] H. Wen, Q. A. Chen, and Z. Lin, “Plug-N-Pwned: Comprehensive vulnerability
analysis of OBD-II dongles as a new over-the-air attack surface in automotive IoT,”
in USENIX Security Symposium, 2020.

[33] P. Faruki, A. Bharmal, V. Laxmi, M. S. Gaur, and M. Conti, “Android security: A
survey of issues, malware penetration, and defenses,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 2, 2015.

[34] T. Sharma and D. Rattan, “Malicious application detection in Android — a systematic
literature review,” Computer Science Review, vol. 40, 2021.

[35] J.-H. Hong, B. Margines, and A. K. Dey, “A smartphone-based sensing platform
to model aggressive driving behaviors,” in SIGCHI Conference on Human Factors
in Computing Systems (CHI), 2014.

[36] J. E. Meseguer, C. T. Calafate, J. C. Cano, and P. Manzoni, “Drivingstyles: A
smartphone application to assess driver behavior,” in IEEE Symposium on Computers
and Communications (ISCC), 2013.

[37] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, “The pothole
patrol: Using a mobile sensor network for road surface monitoring,” in International
Conference on Mobile Systems, Applications, and Services (MobiSys), 2008.

[38] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher, “SmartRoad: Smartphone-based
crowd sensing for traffic regulator detection and identification,” ACM Transactions
on Sensor Networks, vol. 11, no. 4, 2015.

[39] V. Coric and M. Gruteser, “Crowdsensing maps of On-Street parking spaces,” in IEEE
International Conference on Distributed Computing in Sensor Systems (DCOSS), 2013.

[40] Y. Wang, X. Liu, H. Wei, G. Forman, C. Chen, and Y. Zhu, “CrowdAtlas: Self-updating
maps for cloud and personal use,” in Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2013.

[41] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: Rich monitoring of road
and traffic conditions using mobile smartphones,” in ACM Conference on Embedded
Network Sensor Systems (SenSys), 2008.

[42] K. Li, M. Lu, F. Lu, Q. Lv, L. Shang, and D. Maksimovic, “Personalized driving
behavior monitoring and analysis for emerging hybrid vehicles,” in International
Conference on Pervasive Computing, 2012.

[43] L. Liu, H. Li, J. Liu, C. Karatas, Y. Wang, M. Gruteser, Y. Chen, and R. P. Martin,
“Bigroad: Scaling road data acquisition for dependable self-driving,” in International
Conference on Mobile Systems, Applications, and Services (MobiSys), 2017.

[44] J. Wiese, T. S. Saponas, and A. J. B. Brush, “Phoneprioception: Enabling mobile
phones to infer where they are kept,” in SIGCHI Conference on Human Factors in
Computing Systems (CHI), 2013.

[45] Y. Wang, Y. J. Chen, J. Yang, M. Gruteser, R. P. Martin, H. Liu, L. Liu, and
C. Karatas, “Determining driver phone use by exploiting smartphone integrated
sensors,” IEEE Transactions on Mobile Computing, vol. 15, no. 8, 2016.

[46] Y. Wang, J. Yan, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin, “Sensing vehicle
dynamics for determining driver phone use,” in International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2013.

[47] H. L. Chu, V. Raman, R. R. Choudhury, A. Kansal, and V. Bahl, “Poster: You driving?
talk to you later,” in International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2011.

[48] W. Wu, S. Dasgupta, E. E. Ramirez, C. Peterson, and G. J. Norman, “Classification
accuracies of physical activities using smartphone motion sensors,” Journal of Medical
Internet Research, vol. 14, no. 5, 2012.

[49] A. Anjum and M. U. Ilyas, “Activity recognition using smartphone sensors,” in
Consumer Communications and Networking Conference (CCNC), 2013.

[50] O. D. Incel, M. Kose, and C. Ersoy, “A review and taxonomy of activity recognition
on mobile phones,” BioNanoScience, vol. 3, no. 2, 2013.

[51] H. Martı́n, A. M. Bernardos, J. Iglesias, and J. R. Casar, “Activity logging using
lightweight classification techniques in mobile devices,” Personal and Ubiquitous
Computing, vol. 17, no. 4, 2013.

[52] M. Shoaib, H. Scholten, and P. J. M. Havinga, “Towards physical activity recognition
using smartphone sensors,” in International Conference on Ubiquitous Intelligence
and Computing and International Conference on Autonomic and Trusted Computing
(UIC-ATC), 2013.

[53] M. Ehatisham-ul Haq, M. A. Azam, J. Loo, K. Shuang, S. Islam, U. Naeem, and
Y. Amin, “Authentication of smartphone users based on activity recognition and
mobile sensing,” Sensors, vol. 17, no. 9, 2017.

[54] C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bulletin of
the American Meteorological society, vol. 79, no. 1, 1998.

[55] S. Sardy, P. Tseng, and A. Bruce, “Robust wavelet denoising,” IEEE Transactions
on Signal Processing, vol. 49, no. 6, 2001.

[56] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, and M. Isard, “TensorFlow: A system for Large-Scale machine learning,” in
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016.

[57] Wikipedia, “Haversine formula,” https://en.wikipedia.org/wiki/Haversine formula, 2021.
[58] OpenStreetMap, “OpenStreetMap foundation wiki,” https://wiki.osmfoundation.org/,

2021.
[59] Ford, “2017 Escape Tech Specs,” https://media.ford.com/content/dam/fordmedia/

NorthAmerica/US/Events/17-LAAS/2017-ford-escape-tech-specs.pdf, 2021.
[60] ——, “OpenXC,” http://openxcplatform.com/, 2021.
[61] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The

WEKA data mining software: An update,” ACM SIGKDD Explorations Newsletter,
vol. 11, no. 1, 2009.

[62] I. Skog and P. Händel, “Indirect instantaneous car-fuel consumption measurements,”
IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 12, 2014.

[63] Android, “Android automotive,” https://source.android.com/docs/devices/automotive,
2022.

	Introduction
	Background & Related Work
	Vehicle Dynamics Estimation
	Vehicular Intrusion Detection
	Voltage Fingerprinting
	Packet Modeling
	Sensor Correlation
	Machine Learning

	Threat Model
	Taxonomy of Anomalies
	Sudden Anomaly
	Gradual Anomaly
	Delta Anomaly

	Smartphone Connectivity Security

	Removing Phone Sensor Noise
	Vehicular Mobile Sensing
	Determining Phone Use
	Phone Sensor Filtering

	Estimating Vehicular Sensors
	Detecting Vehicular Anomalies
	Evaluation
	Accuracy of Phone-Usage Detection
	Accuracy of Vehicular Sensor Estimation
	Evaluation Dataset
	Estimation Accuracy
	GPS Noise

	Accuracy of Sensor-Falsification Detection
	CAN Injection
	Detection Accuracy
	Weakest Detectable Anomaly

	Discussion
	Acknowledgements
	References

