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ABSTRACT
Urban dockless e-scooter sharing (DES) has become a popular Web-
of-Things (WoT) service and widely adopted globally. Despite its
early commercial success, conventional mobility demand and sup-
ply prediction based on machine learning and subsequent redis-
tribution may favor advantaged socio-economic communities and
tourist regions, at the expense of reducing mobility accessibility and
resource allocation for historically disadvantaged communities. To
address this unfairness, we propose a socially-Equitable Interactive
Graph information fusion-based mobility flow prediction system
for Dockless E-scooter Sharing (EIGDES). By considering city re-
gions as nodes connected by trips, EIGDES learns and captures the
complex interactions across spatial and temporal graph features
through a novel interactive graph information dissemination and
fusion structure. We further design a novel model learning objective
with metrics that capture both the mobility distributions and the
socio-economic factors, ensuring spatial fairness in the communi-
ties’ resource accessibility and their experienced DES prediction
accuracy. Through its integration with the optimization regularizer,
EIGDES jointly learns the DES flow patterns and socio-economic fac-
tors, and returns socially-equitable flow predictions. Our in-depth
experimental study upon more than 2,122,270 DES trips from three
metropolitan cities in North America has demonstrated EIGDES’s
effectiveness in accurate prediction of DES flow patterns with sub-
stantial reduction of mobility unfairness.
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1 INTRODUCTION
Driven by its on-demand mobility convenience and last-mile con-
nectivity, the dockless electric (e)-scooter sharing (DES) has emerged
as a ubiquitous Web-of-Things (WoT) service [22, 40], and prolifer-
ated within and across neighborhoods of many smart cities. Due
to dockless parking and easy rental using smartphone apps, the
distribution of e-scooters can change significantly over time. Con-
sequently, the operation utility and service quality of DES systems
largely rely on the balance between demands and supplies, and
proper allocation of such mobility resources. Besides, additional
infrastructures — such as side-walk geo-fences, e-scooter charg-
ing docks, and other convenience support — may be allocated to
regions with high drop-offs or arrivals of e-scooters.

These mobility distribution and coordination operations are of-
ten empowered by accurate pick-up/drop-off flow prediction based
on advanced machine learning and data analytics [19, 20]. In prac-
tice, the fulfilled historical demand likely originates from tourism
regions with already robust mobility options or communities with
financial affordability. Hence, the existing algorithms that redis-
tribute the mobility resources may favor such demand with bias,
and discriminate the communities with low-income or historically
underrepresented attributes [19, 46]. This is mainly due to the na-
ture that conventional learning algorithms seek to fit the fulfilled
historical demands as close as possible for the single-minded “accu-
racy” measures.

Nevertheless, the low fulfilled ridership in disadvantaged commu-
nities does not necessarily indicate the low mobility demand [19].
Such biased/overfitted predictions and subsequent profit-driven
matching of supplies towards demands could trade off the accessi-
bility of all citizens, particularly those historically disadvantaged
groups, for mobility services, which accounts for urban transporta-
tion fairness or equity. The resultant spatial mobility resource im-
balance could jeopardize the long-term sustainability of urban com-
munity development [55]. Since the recent COVID-19 pandemics
have made micro-mobility options [20] like DES the limited and
affordable alternatives to public transportation (particularly for
families without private cars), such a spatial mismatch between on-
demand mobility options and communities has exacerbated with
the disproportionate effect of COVID-19 cases in underrepresented,
disadvantaged, and low-income communities as well as long-lasting
social inequality and exclusion [31].

To address the above civic transportation disparity concerns,
we focus on the emerging DES systems to design a novel socially-
equitable flow prediction framework with mobility analysis and
modeling. In particular, the framework is to predict the fairness-
aware DES demands (pick-ups) and supplies (drop-offs) to enable
equal spatial mobility resource distribution, accessibility, and op-
portunity across diverse social groups and communities. Despite
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Fig. 1. Illustration of socially-equitable DES mobility modeling.

the pioneering studies in [14, 66], there remain two major issues
that need to be addressed for socially-equitable DES deployment.
(1) While various spatio-temporal mobility studies for DES sys-

tems have been conducted recently [14, 22, 66], few of them
have comprehensively studied the mobility fairness of DES de-
ployment in metropolitan cities. The dockless, last-mile, and
easy-manuevering features of DES largely result in a broad spec-
trum (near/distant ranges and short/long terms) of spatial and
temporal connectivities across city regions where different com-
munities are located. Such dynamic DES distributions make the
accommodation of different communities’ mobility demand and
accessibility highly challenging. There exist pressing needs for in-
tegrating the potential disparities in allocated scooter resources
and accommodating differences in model performance across
communities, which, however, remain largely unexplored.

(2) The complex DES mobility patterns result from the complex
interactions between the scooter riders and the urban environ-
ments. Riders’ mobility preferences and routines largely inter-
act with the spatial adjacency, temporal closeness, and other
heterogeneous and multi-level correlations of the city regions.
Characterizing such an interaction with complex dimensions,
heterogeneous representations, and varying degrees is essential
but challenging for the DES mobility modeling.
To realize a socially-equitable WoT-based DES service for smart

and connected community, we propose a socially-Equitable Interactive
Graph fusion framework for Dockless E-scooter Sharing (EIGDES)
systems. As illustrated in Fig. 1, via modeling the spatio-temporal
mobility connectivities across city regions as graphs, we design the
spatio-temporal DES flow (pick-ups/drop-offs) prediction frame-
work based on interactive graph information dissemination and fu-
sion, and incorporate mobility fairness metrics across communities
as regularization upon the core model learning. EIGDES accounts
for essential socioeconomic attributes like social ethnicity, income,
and education, and regularizes the DES flow predictions for fair
distributions across the advantaged and disadvantaged groups.

In summary, this paper makes the following contributions:
(a) Hierarchical Interactive Graph Information Dissemina-

tion and Fusion Designs for DES Flow Prediction: Consid-
ering the city regions as nodes connected by graph edges that
represent DES trips and multiple spatio-temporal correlations,
EIGDES disseminates the embedded information of the graphs to
differentiate their importance. Then, the hierarchical structures
augmented with interactive attentions actively capture the dy-
namic interactions across these graphs, and accurately forecast
the DES flows (pick-ups/drop-offs) at different city regions.

(b) Socially-Equitable DES Flow Prediction Studies: To mitigate
the mobility fairness gap, we have designed and integrated a
novel mobility fairness regularizer within the learning process
of EIGDES, accommodating various social equity perspectives in
DES mobility modeling. In particular, we have studied mobility
fairness metrics regarding resource non-parity and prediction
performance difference. These metrics will help adapt the DES
predictions under different mobility fairness evaluation and de-
ployment scenarios.

(c) Extensive Experimental Evaluations: We have conducted ex-
tensive experimental studies based on real-world datasets from
three DES pilot programs, i.e., Chicago IL and Minneapolis MN
in US, and Edmonton in Canada, which consist of total 2,122,270
trips, as well as related socioeconomic and urban data sources.
The results demonstrate effectiveness, accuracy, and fairness of
EIGDES’s model, which is important for the trending DES deploy-
ment in benefiting a broader spectrum of urban communities.
Our approach will be the key enabler for the policy decision,
scooter redistribution, infrastructure planning, and many other
services as motivated in Fig. 1.
• Relevance to Web: Our accurate prediction and socially-

equitable regularization in this paper will enhance the understand-
ing of proactiveness and inclusiveness of emerging WoT services
for the essential use-cases targeted by the World Wide Web Con-
sortium (W3C) WoT [10] that include Transportation & Logistics
and Smart Cities. The interactive graph fusion we developed will be
broadly applicable for web-based pervasive computing in transport
industry [22, 43], urban planning [63], and digital governance [42],
as well as extensible to the web data integration and mining [28].

2 RELATEDWORK
We briefly review the related work in the following two categories.
• Spatio-Temporal Mobility Data Mining: Spatio-temporal

mobility modeling has paved new ways for many urban and WoT
computing applications [23, 35, 45]. Hulot et al. [27] studied the
station-level demand prediction for system rebalancing. Ma et
al. [39] studied the convolutional neural network to process and
predict the traffic speed. Zhang et al. [65] proposed a residual neural
network for predictions of urban flows. Liang et al. [35] developed
a spatio-temporal relation network for fine-grained flow predic-
tion. Besides predictive modeling, researchers have started to de-
rive insights for societal impacts introduced by the new mobility
platforms [24, 36]. Unlike these prior studies, we focus on predic-
tive flow modeling for socially-equitable transportation planning,
particularly upon the emerging dockless e-scooter sharing (DES)
deployment. Furthermore, instead of aggregating the graphs [15,
22, 23, 34], we have designed a novel graph information fusion
differentiating and learning the hierarchical interactions between
various spatial and temporal graphs across the urban regions, hence
achieving accurate predictions upon complex DES flows.
• Socially-Equitable Modeling: How to identify and remove

biases against sensitive groups has become a key issue for machine
learning and web communities, especially for many essential but
increasingly intrusive urban applications. Yao et al. studied fairness
for collaborative filtering [60]. Zemel et al. proposed fair represen-
tation encoding for group and individual fairness [61]. Hossain et
al. studied fair classifiers via the economic fairness notions [26].



Socially-Equitable Interactive Graph Information Fusion-based Prediction for Urban Dockless E-Scooter Sharing WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

While fairness-aware classification has been studied extensively,
fewer studies explored the regression designs. A pioneering study
conducted by Kamishima et al. [29] regularized and controlled the
trade-off between accuracy and fairness in logistic regression. Berk
et al. [11] studied a convex family of fairness regularizers. Inspired
by the aforementioned studies, we design fairness regularization
mechanisms for DES systems, and conduct comprehensive studies
to enhance the fairness of its regressed spatio-temporal predictions.

Realizing the socially-equitable transportation planning has be-
come essential with the city expansion and growing social dis-
parities. Hosford et al. [25] investigated the equity of access to
bike sharing at multiple cities in Canada. Ge et al. [18] studied the
racial and gender discrimination in the expanding transportation
network companies. Yan et al. [57] explored the region-based and
individual-based fairness for car-sharing and bike-sharing. Despite
the aforementioned studies, few of them have considered fairness
modeling within the emerging e-scooter deployment, and provided
comprehensive data-driven and fairness-aware mobility analysis
upon the prediction framework [17, 20]. Different from [29, 57, 58],
EIGDES fills this essential gap, and provides important deployment
insights for the DES planning related to resource non-parity and
prediction performance difference.

3 DATA, CONCEPTS, & PROBLEM
3.1 Datasets Studied
We have collected the following datasets for our data analysis and
social-equitable mobility modeling:
• DES Trips: We have collected the DES trips from three metropol-
itan cities in North America: Chicago IL and Minneapolis MN in
US, and Edmonton, Canada. Bird, Lime, and Spin are the major
DES service providers in these pilot programs. Specifically, the
DES dataset from Chicago [3] consists of 604,146 trips which
span from June 15, 2019 to October 15, 2019, while the one from
Minneapolis [6] contains a total of 1,004,920 trips collected dur-
ing two periods: July 10 to November 30, 2018 and May 1 to
November 30, 2019. The DES trip dataset from Edmonton [4] is
comprised of a total 513,204 trips retrieved from the E-Scooter
Share API from August 28 to October 30, 2020. Each trip record
contains the pick-up/drop-off GPS coordinates and timestamps.
For the Chicago, Minneapolis, and Edmonton datasets, trips
which last for over 7 hours, less than 0 miles, or greater than 24
miles have been removed before further processing.
• Socioeconomic Datasets: We have collected the socioeconomic
data (census tracts) related to sensitive attributes, including popu-
lation, social ethnicity, education, and income (poverty) level, for
Chicago and Minneapolis from the US Census Database [8], and
Edmonton from the Canada Federal Census Tract in Alberta [2].
We note that all socioeconomic datasets used in our studies are
from open data portals and hence no institutional review board
(IRB) review is required.
For each city, we have collected the meteorological and weather

conditions for the external data analysis. Specifically, we collect the
weather data consisting of 11 categories, i.e., temperature, precipita-
tion, wind speed, and other 8 weather conditions from the Weather
Archive website [9]. Furthermore, we have collected the city map
and points-of-interests (POIs) from the OpenStreetMap (OSM) [7].

In summary, from 13 POI categories, we have collected 15,026 POIs
from Chicago, 2,204 POIs from Minneapolis, and 4,102 POIs from
Edmonton. We also collected the city events to characterize the
urban momentum from the Eventful website [5]. In particular, we
have collected 767, 2,686, and 3,250 urban events in 12 categories
from Chicago, Minneapolis, and Edmonton within the studied time
scope. Detailed categories of weather conditions, POIs, and city
events are listed in Table 3 (see Appendix A).

3.2 Important Concepts & Problem Definition
We further define the important concepts in EIGDES as follows.
• Spatio-Temporal DES Mobility Processing: We first briefly

discuss how we process the map and time information in EIGDES.
For ease of spatial modeling and computational efficiency (similar

to [59, 65]), we discretize the entire city map into 𝑁 = 𝐻 ×𝑊 rectan-
gular grids or regions, where 𝐻 (𝑊 ) is the number of grids/regions
in the latitudinal (longitudinal) direction. Given the above discretiza-
tion, we denote the set of all city regions asG = {g𝑖 , 𝑖 ∈ {1, . . . , 𝑁 }}.
Similarly, we discretize the time domain into fixed intervals (say,
30 or 60min), where each time interval is indexed by 𝑘 .

Then, by considering each city region as a node, we can rep-
resent the entire DES network as a network graph G = (V, {A}),
where {A} is a set of spatial and temporal graph adjacency matrices
representing the correlations among the regions. Note that each of
the DES trips contains the pick-up/drop-off GPS coordinates, from
which we could infer the start/destination regions. Based on the
spatial discretization, the DES flows refer to the aggregate numbers
of outgoing and incoming DES trips at each grid, where we charac-
terize the flows via the numbers of pick-ups (out flows) and drop-offs
(in flows). Let 𝐼 (𝑘)

𝑖
and 𝑂 (𝑘)

𝑖
be the in and out flows in interval 𝑘 at

the city region g𝑖 . We then have the flows at time interval 𝑘 at all
the 𝑁 city regions as Y(𝑘) ∈ R𝑁×2, whose 𝑖-th row is [𝐼 (𝑘)

𝑖
,𝑂
(𝑘)
𝑖
].

• Socioeconomic Notations: Based on the census (e.g., US
Census) and previous social fairness studies [41, 51, 55], for each of
the sensitive socioeconomic attributes 𝛼 , including social ethnicity
(Caucasian or not), education (college-educated or not), and income
level (above poverty line or not), we consider a binary group feature
setting, and denote the resultant advantaged and disadvantaged
communities, respectively, as c+𝛼 and c−𝛼 .

In practice, as the census tracts are different from the map dis-
cretization, we find the socioeconomic attributes for each city grid
by allocating those in the census tracts proportionally based on the
distance between centers of the grids and the census tracts. For each
city region g𝑖 (𝑖 ∈ {1, . . . , 𝑁 }), we let 𝑃𝑖 be the percentage of pop-
ulation there, i.e., the population of g𝑖 divided by the entire city’s
population. For fine-grained characterization (Sec. 5.2), we further
let 𝜔+

𝑖,𝛼
(𝜔−
𝑖,𝛼

) be the respective percentage of populations within g𝑖
belonging to the advantaged (disadvantaged) groups of attribute 𝛼 ,
i.e., the populations of advantaged (disadvantaged) groups divided
by the total populations 𝑃𝑖 in g𝑖 .
• Problem Definition: Given the historical DES flows {Y(𝑘′) }

(𝑘 ′ ∈ {𝑘 −𝑊, . . . , 𝑘 − 1}) of the recent𝑊 intervals at the 𝑁 city
regions, the DES network graph G (including POI and map infor-
mation), and external factors E (say, meteorological factors and ur-
ban events), we aim to design a function 𝑓 ({Y(𝑘′) },G, E,

{
c+𝛼 , c−𝛼

}
),
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Fig. 2. Prediction framework overview of EIGDES.
which jointly predicts the DES flow distributions (pick-ups/drop-
offs or demands/supplies) of all city regions at the next time interval
𝑘 , i.e., Ŷ(𝑘) ∈ R𝑁×2, and enables socially-equitable accessibility and
resource allocation for communities of both c+𝛼 and c−𝛼 .

4 INTERACTIVE GRAPH INFORMATION
FUSION FOR PREDICTION

4.1 Prediction Framework Overview
We first overview the core prediction model framework in Fig. 2,
which consists of the following three major designs.

(a) Spatio-Temporal Graph Construction (STGC): We first process
the adjacencies of the city regions in terms of spatial distances, POI
similarities, and multi-level temporal time-series correlations in
order to construct multiple spatial and temporal graphs for EIGDES
learning. Given above graphs, we further construct spatio-temporal
graph convolution (STGC) blocks to capture the spatio-temporal
correlations and obtain the graph embeddings.

(b) Hierarchical Interactive Graph Information Dissemination &
Fusion (HIGIDF): Given the graph embeddings, EIGDES interactively
learns the graph information through a novel hierarchical dissem-
ination and fusion mechanism. Specifically, we have designed a
gatekeeper soft mask upon the graph embeddings from different
spatio-temporal graphs to first control and differentiate the informa-
tion dissemination. Through the importance differentiation, EIGDES
then correlates the graph embeddings that are more important for
the subsequent information fusion, yielding accurate predictions
of DES flows.

(c) Integrating External Factors: Besides STGC and HIGIDF, we
further incorporate the external factors (weather conditions and
events), and the result will be merged with the output from HIGIDF
for the final DES flow predictions.

4.2 Spatio-Temporal Graph Construction
We construct the spatio-temporal graphs as follows.
• Spatial Proximity 𝚽: According to the first law of geogra-

phy [49], we consider the grids which are closer to each other are
more likely correlated in the DES flows. Let dist(𝑖, 𝑗) be the geo-
graphic distance (in km) between the city regions 𝑖 and 𝑗 , and we
define the spatial proximity between them as

Φ(𝑖, 𝑗) ≜ (1 + dist(𝑖, 𝑗))−1 , (1)

which implies higher correlations across the neighboring regions.
Then, we obtain the proximity graph adjacency matrix Φ ∈ R𝑁×𝑁 .
• Spatial POI Correlations 𝛀: For each region g𝑖 , we find the

POI vector v𝑖 , each dimension of which represents the number of
POIs belonging to a certain category (say, “residential” in Table 3 in
Appendix A). We further define the POI similarities between two
city regions, g𝑖 and g𝑗 , based on the cosine similarity, i.e.,

Ω (𝑖, 𝑗) ≜
(
v𝑖 · v𝑗

)
/
(
|v𝑖 | · |v𝑗 |

)
. (2)

Then, we obtain the POI adjacencymatrix𝛀 ∈ R𝑁×𝑁 characterzing
the POI similarity across city regions.
• Region-to-Region Connectivities 𝚲: The DES riders usually

exhibit frequent travel patterns among certain pairs of city regions
due to the riders’ commute routes and ride preferences. For instance,
we show in Fig. 11 (see Appendix A) the transitions across the
selected top 5% regions with the largest total in and out flows in the
cities of Chicago andMinneapolis, where thewarmer colors indicate
the stronger region-to-region connectivities. Inspired by these, we
further take into account the region-to-region connectivities in
characterizing the correlations of city regions.

Specifically, let 𝑇 (𝑘)(𝑖, 𝑗) be the number of transitions from g𝑖 to g𝑗
in the time interval 𝑘 , and we obtain the vector of transitions from a
region 𝑖 to all 𝑁 regions as ®U(𝑘)

𝑖
= [𝑇 (𝑘)(𝑖,1) , . . . ,𝑇

(𝑘)
(𝑖,𝑁 ) ]. Based on this,

we leverage the dot product between ®U(𝑘)
𝑖

and ®U(𝑘)
𝑗

to characterize
their similarities in region-to-region connectivities, and transform
it to the range of [0, 1] based on a sigmoid function, i.e.,

Λ𝑖, 𝑗 =
(
1 + exp

(
−®U(𝑘)

𝑖
· ®U(𝑘)

𝑗

))−1
. (3)

In other words, the more similar transition trends from two re-
gions 𝑖 and 𝑗 to other regions, the higher Λ𝑖, 𝑗 in region-to-region
connectivities. Then, we obtain the adjacency matrix 𝚲 ∈ R𝑁×𝑁
representing region connectivities.
•Multi-Level Time-series Correlations𝚿: Besides the spatial

proximity, POI correlations, and connectivities, we further take into
account themulti-level temporal dependency across the city regions.
Since the DES flows at grids are time series, one might consider the
typical method based on dynamic time warping (DTW) [12, 34] to
measure their mutual similarity. However, the conventional DTW
for time series similarity calculation can be computationally expen-
sive in practice. Therefore, we propose a novel temporal representa-
tion of the graph based on the LB Keogh bound (LBK) [30], which
can efficiently return a lower-bound of the DTW distance between
two temporal sequences in linear time (illustrated in Alg. 1). This
way, we can facilitate the temporal correlation calculation.

Specifically, for each region 𝑖 , letO(𝑘)
𝑖
[𝑊 ′] =

[
𝑂
(𝑘−𝑊 ′)
𝑖

, . . . ,𝑂
(𝑘)
𝑖

]
and I(𝑘)

𝑖
[𝑊 ′] =

[
𝐼
(𝑘−𝑊 ′)
𝑖

, . . . , 𝐼
(𝑘)
𝑖

]
be the time series of out and

in flows in the time window of 𝑊 ′. When comparing two out
flows O(𝑘)

𝑖
[𝑊 ′] and O(𝑘)

𝑗
[𝑊 ′] (similarly for in flows I(𝑘)

𝑖
[𝑊 ′] and

I(𝑘)
𝑗
[𝑊 ′]) of grids 𝑖 and 𝑗 , LBK takes in the global path constraints,

𝜖 𝑗 − 𝑍 ≤ 𝜖𝑖 ≤ 𝜖 𝑗 + 𝑍, (4)
where 𝜖𝑖 and 𝜖 𝑗 are the indices of the warping path w.r.t. the two
time series, and 𝑍 > 0 is a predefined path constraint. Then, we
find the upper and lower values, uv and lv, along the warping path
(Lines 3 to 4). Afterwards, we obtain a lower-bounding measure,
denoted as lb_diff, of the accumulated difference (Lines 5 to 9).
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Algorithm 1: Calculation of LBK(O(𝑘)
𝑖
[𝑊 ′],O(𝑘)

𝑗
[𝑊 ′]).

Input: O(𝑘 )
𝑖
[𝑊 ′ ], O(𝑘 )

𝑗
[𝑊 ′ ]: two time series (similarly for I(𝑘 )

𝑖
[𝑊 ′ ],

I(𝑘 )
𝑗
[𝑊 ′ ]); 𝑍 : path constraint.

Output: LBK difference of the two time series.
1 lb_diff←0; O𝑖←O(𝑘 )

𝑖
[𝑊 ′ ]; O𝑗←O(𝑘 )

𝑗
[𝑊 ′ ];

2 for 𝜖 , o in enumerate(O𝑖 ) do
3 uv←max(O𝑗 [(𝜖-𝑍 if 𝜖-𝑍 ≥ 0 else 0): (𝜖+𝑍 )]); /* upper val */

4 lv←min(O𝑗 [(𝜖-𝑍 if 𝜖-𝑍 ≥ 0 else 0): (𝜖+𝑍 )]); /* lower val */

5 if o > uv then
6 lb_diff←lb_diff + (𝑜-uv)2 ;
7 else if o < lv then
8 lb_diff←lb_diff + (𝑜-lv)2 ;
9 end

10 end
11 end
12 return lb_diff;

We then form the temporal correlations across grids 𝑖 and 𝑗 ,
denoted as Ψ(𝑖, 𝑗) (Ψ(𝑖, 𝑗) ∈ (0, 1)), accounting for the similarities
respectively between out and in flows of grids 𝑖 and 𝑗 , i.e.,

Ψ
(𝑘)
(𝑖, 𝑗) [𝑊

′] ≜
(
1 + LBK(𝑘)(𝑖, 𝑗) [𝑊

′]
)−1

, (5)

where LBK(𝑘)(𝑖, 𝑗) [𝑊
′] is given by sum of LBK for in and out flows,

i.e., LBK(O(𝑘)
𝑖
[𝑊 ′],O(𝑘)

𝑗
[𝑊 ′])+LBK(I(𝑘)

𝑖
[𝑊 ′], I(𝑘)

𝑗
[𝑊 ′]). In other

words, the smaller the bounds, the more similar two grids are in
terms of temporal flows. Based on Eq. (5), we obtain the temporal
correlations 𝚿(𝑘) [𝑊 ′] ∈ R𝑁×𝑁 .
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Fig. 3. Multi-level Ψ in (a) Chicago, (b) Minneapolis, & (c) Edmonton.

We illustrate in Fig. 3 the means and standard deviations (Stds)
of Ψ(𝑘) [𝑊 ′] given different values of𝑊 ′ in (a) Chicago, (b) Min-
neapolis, and (c) Edmonton. We can observe the lower and more
dynamic short-term DES flow correlations given smaller𝑊 ′, as
well as the higher and stabler long-term correlations with larger
𝑊 ′. In order to accommodate multiple different levels of tempo-
ral closeness between the city regions, we adopt the multi-level
LBK bounds given short,medium, and long historical time windows
(denoted as𝑊 (S) ,𝑊 (M) , and𝑊 (L) ). Based on Fig. 3, we set the num-
bers of historical time intervals (𝑊 (S) ,𝑊 (M) ,𝑊 (L) ) as (3, 6, 12) for
Chicago, (4, 8, 12) for Minneapolis, and (4, 6, 10) for Edmonton. Our
experimental studies also corroborate the comparable accuracy of
LBK with DTW ((vi) in Fig. 7).

4.3 Spatio-Temporal Graph Convolution
We adopt the graph convolutions in order to capture the DES corre-
lations and support the message passing across different nodes of
city regions. We illustrate the structures of spatio-temporal graph
convolution (STGC) blocks in Fig. 4(a).

Specifically, each adjacency matrix representing a spatial or tem-
poral graph,A𝑛 ∈

{
𝚽,𝛀,𝚲,𝚿(𝑘) [𝑊 (S) ],𝚿(𝑘) [𝑊 (M) ],𝚿(𝑘) [𝑊 (L) ]

}
is fed to the 𝑛-th STGC block. 𝑛 ∈ {1, . . . , 𝐵} and 𝐵 = 6 are used

in our studies given all the graphs formed in Sec. 4.2. Let 𝜎 (·) be
the sigmoid activation function. Given the output signals from the
preceding (𝑙 − 1)-th layer, denoted as H(𝑙−1)𝑛 ∈ R𝑁×𝑑′𝐺 , we derive
the 𝑙-th graph convolution layer (𝑙 ∈ {1, . . . , 𝐿}) based on the input
spatial or temporal graph, i.e.,

H(𝑙)𝑛 ≜ 𝜎
(
Ã𝑛H

(𝑙−1)
𝑛 Θ

(𝑙)
𝑛

)
, (6)

where Θ(𝑙) ∈ R𝑑𝐺×𝑑′𝐺 is the parameter matrix to be learned, and
we adopt the symmetric normalized Laplacian L(·) and have Ã𝑛 =

L(A𝑛) = D̃−
1
2A𝑛D̃−

1
2 , with the degree matrix D̃(𝑖, 𝑖) = ∑

𝑗 A𝑛 (𝑖, 𝑗).
At the 1-st layer of STGC, EIGDES takes in the historical mobility
flows Y(𝑘−1) in the last time interval (𝑘 − 1) as the graph signals
and have H(1)𝑛 ≜ 𝜎

(
Ã𝑛Y(𝑘−1)𝚯

(1)
𝑛

)
. In this paper, EIGDES will

take in a total of 𝐵 spatial and temporal graphs and process them
respectively through 𝐵 STGC blocks. The output from the 𝐿-th
graph convolution layer of the𝑛-th STGC blocks, denoted asH(𝐿)𝑛 ∈
R𝑁×𝑑𝐺 , will be fed to the module IGIDF for interaction learning.

4.4 Hierarchical Interactive Graph Information
Dissemination & Fusion Design

• Interactive Graph Information Dissemination: After obtain-
ing the graph embeddings from the STGC blocks regarding different
spatial and temporal graphs, we interactively extract and propagate
the feature information across these graphs in different city regions.
For this, we have designed an interactive graph information dis-
semination mechanism (illustrated in Fig. 4(b)) to hierarchically
propagate more feature information across the heterogeneous spa-
tial and temporal graph embeddings derived from Sec. 4.2 that are
more relevant to the predicted flows.
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Fig. 4. Core prediction architecture of EIGDES.
Specifically, we have designed an interactive graph information

attention mechanism between the outputs from STGC blocks to
first generate the soft mask for information control. The soft mask
serves as an information gatekeeper to control the information
dissemination across the graphs of the city regions, and ensure that
they are the most relevant for DES flow prediction.

Let W𝑄
𝑛 ,W𝐾

𝑛 ∈ R𝑁𝐹×𝑑𝐾 , and W𝑉
𝑛 ∈ R𝑁𝐹×𝑑𝑉 be the matrices

of learnable hyperparameters (𝑁𝐹 is number of filters; 𝑑𝐾 and 𝑑𝑉
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are predefined dimensions). Given input graph embedding H(𝐿)𝑛
(𝑛 ∈ {1, . . . , 𝐵}), we first map the graph embeddings from STGC
blocks towards Z𝑛 , i.e., Z𝑛 =

softmax (𝐶𝑛) ·
(
H(𝐿)𝑛 W𝑉

𝑛

)
=

exp (𝐶𝑛)∑𝐵
𝑛=1 exp (𝐶𝑛)

·
(
H(𝐿)𝑛 W𝑉

𝑛

)
(7)

where the function 𝐶𝑛 (𝑛 ∈ {1, . . . , 𝐵}) represents the compatibility
between mappings Q𝑛 = H(𝐿)𝑛 W𝑄

𝑛 and K𝑛 = H(𝐿)𝑛 W𝐾
𝑛 , i.e.,

𝐶𝑛 =
(
Q𝑛 · K⊺𝑛

)
/𝜅 =

((
H(𝐿)𝑛 W𝑄

𝑛

)
·
(
H(𝐿)𝑛 W𝐾

𝑛

)⊺)
/𝜅, (8)

where we scale the output of the dot product via 𝜅 =
√︁
𝑑𝐾 to miti-

gate vanishing gradients within the subsequent softmax activation
function (particularly given large dot products [50]). This way, we
can determine the relative strength that each input graph should
be kept in the gatekeeper.

With 𝜎 (·) as the sigmoid function, we form the soft mask Z as
gatekeeper, i.e.,

Z = 𝜎 ( [Z1,Z2, . . . ,Z𝑛, . . . ,Z𝐵]) . (9)
Then, we generate the updated graph embeddings H′ which aim to
differentiate the heterogeneous mobility information, i.e.,

H′ =
[
Z⊺1 · H

(𝐿)
1 , . . . , Z⊺𝑛 · H

(𝐿)
𝑛 , . . . , Z⊺

𝐵
· H(𝐿)

𝐵

]
. (10)

By multiplying the gatekeeper soft mask and the input embeddings,
we can encourage the information dissemination of the spatial
and temporal graphs with greater importance and penalize others
that are less important. This way, we can restrict the information
propagation within the subset of the input graphs.
• Interactive Graph Information Fusion: Given the dissemi-

nated information, we conduct the interactive graph information fu-
sion. Let U𝑃𝑛 ∈ R𝑁𝑃×𝑑𝑉 and W𝑃

𝑛 ∈ R1×2𝑁𝑃 be the linear projection
parameters, and 𝑏𝑛 is the offset parameter. Then, we disseminate
the information across the graphs to form their mutual interactions
(Fig. 4(c)), i.e.,

G𝑛 = U𝑃𝑛H
′
𝑛 + 𝑏𝑛, 𝛽𝑚,𝑛 = LReLU((W𝑃

𝑛 )⊺ [G𝑚,G𝑛]), (11)
where𝑚,𝑛 ∈ {1, . . . , 𝐵}, and LReLU(·) is the leaky rectified linear
activation function. We further leverage above 𝛽𝑚,𝑛 to compute
the interaction weight Γ𝑚,𝑛 which represents the proportion of
information disseminated from the STGC blocks𝑚 to 𝑛, i.e.,

Γ𝑚,𝑛 =
exp(𝛽𝑚,𝑛)∑𝐵
𝑚=1 exp(𝛽𝑚,𝑛)

. (12)

This way, we actively characterize interactions between each pair
of spatial or temporal graphs, instead of aggregating the multiple
graphs [22, 38] that might amortize the essential mobility features.
The final output given the information interaction becomes the
total information weighted and aggregated from others, i.e.,

H̃𝑛 = ReLU
( 𝐵∑︁
𝑚=1

Γ𝑚,𝑛G𝑛
)
, and Ĥ = WIH̃𝑛, (13)

whereWI ∈ R𝑁×𝑑𝑉 is the trainable parameter after the interaction.
Through the hierarchical structures of dissemination and fusion,

EIGDES can actively capture the correlations between the graphs
from coarse-grained (differentiated by gatekeeper soft mask) to
fine-grained (mutual interactions) levels, hence adapting to the
broad spectrum of connectivities in DES mobility.
•Gated Convolution: Based on our extensive analysis, there ex-

ist both local (short-range) and global (long-range) spatio-temporal
dependencies across different city regions. For instance, we observe
in Chicago that 25% of the scooter trips last for more than 0.24h

and reach neighborhood beyond 1.755km. In order to capture the
long-range spatial and temporal correlations with respect to the
distant neighbors, we further design the gated convolution module
within EIGDES to enhance the prediction. Specifically, as illustrated
in Fig. 4(d), given the fused features from Eq. (13), we have

Ĥ = tanh
(
𝚯1 ∗ H̃ + 𝑏1

)
⊙ 𝜎

(
𝚯2 ∗ H̃ + 𝑏2

)
, (14)

where 𝚯1 and 𝚯2 are two independent 1D convolution operations
upon the input H̃, ⊙ represents Hadamard product, and 𝑏1, 𝑏2 are
the bias terms. Ĥ is further reshaped into Ĥ′′ ∈ R𝑁×2 and fed to
dense neural network for the final prediction, returning Y(G) , i.e.,

Y(G) = ReLU(Dense(Ĥ′′)), (15)
which is finally reshaped into Ŷ(G) ∈ R𝑁×2.
• External Factor Integration: In addition to the spatial dis-

tributions and temporal trends, we integrate the external factors
of time, holidays, and weather conditions within EIGDES (Fig. 2(c)).
We use one-hot encoding for the categorical weather data such as
shower or not (one means the condition is observed and zero means
otherwise). We count the number of each category of the events
recorded within each time interval. We conduct min-max normal-
ization upon the numerical weather data (e.g., temperature) and the
event numbers with respect to each dimension. By concatenating
the weather and event features, we then form a 23-D external vector
F(E) as the input for a multi-layer dense neural network, with the
ReLU activation functions interleaving the two Dense layers, i.e.,

X0 = Dense
(
F(E)

)
, X1 = ReLU (X0) ,

X2 = Dense (X1) , X3 = ReLU (X2) ,
(16)

which is finally reshaped into the DES distributions Ŷ(E) ∈ R𝑁×2.
Due to the high dimensions of external factors (say, weather con-
ditions and events), the first Dense layer serves as embedding to
further incorporate the features in input F(E) .

Finally, the final DES flow prediction Ŷ(𝑘) is given by
Ŷ(𝑘) = W(G) Ŷ(G) +W(E) Ŷ(E) , (17)

where W(G) andW(E) are trainable parameters.

5 SOCIALLY-EQUITABLE ADAPTATION
5.1 Design Motivations
Based on the equality or horizontal equity [33, 48, 55], considering
demands (pick-ups) and supplies (drop-offs) as indicator of mobility
resources and opportunities, we target at: (1) equal distribution and
allocation of such DES service resources, and (2) consistent prediction
performance (accuracy) across the advantaged and disadvantaged
communities. Towards these fairness-aware goals, we regularize the
predictions of EIGDES during mobility learning. For fine-grained
characterization, our (un)fairness design particularly takes into
account individual or per capita share of the resources, where for
each community we consider their demographic sub-population
distribution (characterized by 𝜔+

𝑖,𝛼
and 𝜔−

𝑖,𝛼
in Sec. 3.2) in the grids.

5.2 Resource & Performance Fairness Metrics
For ease of description, we let 𝑦 (𝑘)

𝑖
∈
{̂
I(𝑘)
𝑖
, Ô(𝑘)
𝑖

}
be the estimated

demand or supply at g𝑖 at interval 𝑘 . Then for each interval 𝑘 , we
find each (un)fairness measure, denoted as𝑈 (𝑘)𝑥 (𝛼), for a fairness
category 𝑥 given a socioeconomic attribute 𝛼 (e.g., social ethnicity).
• Resource Non-Parity Unfairness: In practice, the DES flow

prediction will determine the allocation parity in scooters and other
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Fig. 5.𝑈 (𝑘 )Par in (a) Chicago and (b) Minneapolis.

support infrastructures. Thus, we measure the non-parity unfair-
ness [29, 60] based on absolute difference between the flow predic-
tions for advantaged and disadvantaged groups for all city regions
at time interval 𝑘 given a certain socioeconomic attribute 𝛼 , i.e.,

𝑈
(𝑘)
Par (𝛼) ≜

1∑2𝑁
𝑖 𝑦

(𝑘)
𝑖

2𝑁∑︁
𝑖

���Q [
𝑦
(𝑘)
𝑖

]+
𝛼
− Q

[
𝑦
(𝑘)
𝑖

]−
𝛼

��� , (18)

whereQ
[
𝑦
(𝑘)
𝑖

]+
𝛼
=

𝑦
(𝑘 )
𝑖
𝜔+𝑖,𝛼∑𝑁

𝑖 𝑃𝑖𝜔
+
𝑖,𝛼

andQ
[
𝑦
(𝑘)
𝑖

]−
𝛼
=

𝑦
(𝑘 )
𝑖
𝜔−𝑖,𝛼∑𝑁

𝑖 𝑃𝑖𝜔
−
𝑖,𝛼

represent

the estimated per capita (for each person) predictions in groups c+

and c−, and the total prediction
∑2𝑁
𝑖 𝑦

(𝑘)
𝑖

is used for normalization
(we have 2𝑁 as both pick-ups and drop-offs are counted per city re-
gion).𝑈 (𝑘)Par (𝛼) takes into account the population percentage of the
different groups, and its value becomes small when the mobility re-
sources allocated (predicted demands and supplies) are consistently
proportional to their populations.

By substituting 𝑦 (𝑘)
𝑖

’s with the ground-truths 𝑦 (𝑘)
𝑖

’s, we further
illustrate in Fig. 5 the spatial 𝑈 (𝑘)Par of Chicago and Minneapolis,
i.e., latent unfairness within the DES mobility resource distribu-
tion. In particular, we show the aggregated non-parity unfairness
(with social ethnicity, income, and education) within a selected
week (Chicago: 07/07/2019 – 07/13/2019; Minneapolis: 07/22/2018–
07/28/2018). Such spatial mismatch between DESmobility resources
and communities renders incorporating (un)fairness metrics within
mobility modeling both necessary and imperative.
•PredictionPerformanceUnfairness: Prediction performance

difference in terms of accuracy will affect the service experience
of different communities. To characterize the fairness in DES flow
prediction performance for different communities, we measure the
inconsistency in unsigned flow estimation errors across advantaged
and disadvantaged groups via the absolute value unfairness given
a socioeconomic attribute 𝛼 , i.e.,𝑈 (𝑘)Perf (𝛼) ≜

1∑2𝑁
𝑖 𝑦

(𝑘 )
𝑖

2𝑁∑︁
𝑖

���� ���Q [
𝑦
(𝑘 )
𝑖

]+
𝛼
− Q

[
𝑦
(𝑘 )
𝑖

]+
𝛼

���−����Q [
𝑦
(𝑘 )
𝑖

]−
𝛼
−Q

[
𝑦
(𝑘 )
𝑖

]−
𝛼

��������, (19)
whereQ

[
𝑦
(𝑘)
𝑖

]+
𝛼
=

𝑦
(𝑘 )
𝑖
𝜔+𝑖,𝛼∑𝑁

𝑖 𝑃𝑖𝜔
+
𝑖,𝛼

andQ
[
𝑦
(𝑘)
𝑖

]−
𝛼
=

𝑦
(𝑘 )
𝑖
𝜔−𝑖,𝛼∑𝑁

𝑖 𝑃𝑖𝜔
−
𝑖,𝛼

represent

the per capita distributions of DES predictions. It characterizes the
quality of predictions for each group or community due to the
unsigned comparison, regardless of the direction of the differences.
In other words, the Eq. (19) aims at minimizing the differences of
the absolute errors for the DES flow predictions at the advantaged
and disadvantaged communities.

5.3 Socially-Equitable Objective Regularization
The conventional objective of minimizing the prediction errors in
deep learning training likely leads to bias towards the historically

Table 1: Overall prediction performance of all approaches.

Schemes Chicago Minneapolis Edmonton
RMSE PCR RMSE PCR RMSE PCR

HA 7.44 23.6% 6.31 25.6% 7.23 32.3%
GP 6.12 21.9% 6.33 25.1% 7.19 31.2%

ARIMA 5.32 18.1% 4.33 23.5% 5.16 30.7%
RNN 5.69 20.2% 3.62 22.5% 4.52 28.7%
LSTM 5.72 20.5% 3.15 18.7% 4.21 27.4%
GRU 5.36 19.8% 3.02 15.6% 3.72 25.1%
CNN 4.86 17.5% 2.96 18.7% 2.88 21.9%
STC2D 4.56 15.2% 2.87 16.2% 3.24 32.3%
STC3D 4.02 13.6% 2.45 15.3% 2.62 19.6%
STRN 3.75 16.3% 2.16 14.8% 2.67 20.1%
MGCN 3.66 15.3% 2.36 12.8% 2.32 18.7%
GWN 3.86 17.5% 2.86 17.5% 2.91 24.3%
MSGN 3.72 14.2% 2.36 16.7% 2.55 19.7%
MTGNN 4.02 19.2% 2.62 12.9% 2.63 22.1%
CSTN 3.95 19.2% 2.17 13.8% 3.34 23.5%
TLSTM 3.55 13.2% 2.75 13.1% 2.96 25.1%
FST 4.62 18.1% 2.83 15.9% 3.12 24.1%
FRep 4.51 17.2% 2.71 15.1% 3.51 26.7%
EIGDES 1.98 5.2% 1.11 5.1% 1.97 8.9%

advantaged communities and tourism regions [19, 20]. Thus, we
leverage the unfairness metrics defined in Sec. 5.2 to regularize
the learning objective. Specifically, we form the hybrid training
objective for EIGDES, which is to minimize the weighted loss in
terms of prediction errors LPred as well as (un)fairness costs LFair (𝑥)
given a mobility fairness metric 𝑥 in Sec. 5.2, i.e.,

L𝑥 = LPred + 𝜆LFair (𝑥), (20)
where 𝜆 > 0 is a weight parameter for model training.

To mitigate impact from the outliers particularly in the squared
loss, we adopt the Huber loss [13] for L𝑃 , i.e., Huber(𝑦𝑖 , 𝑦𝑖 , 𝛿) ≜{

1
2 (𝑦𝑖 − 𝑦𝑖 )

2
, if |𝑦𝑖 − 𝑦𝑖 | < 𝛿 ;

1
2𝛿

2 + 𝛿 · ( |𝑦𝑖 − 𝑦𝑖 | − 𝛿) , otherwise.
(21)

The hyperparameter 𝛿 indicates where the loss function changes
from a quadratic one to linear, making the loss function less sensi-
tive to the outliers and more robust towards flow dynamics.

In practice, the city planners analyze multiple sensitive socioe-
conomic attributes S (say, social ethnicity, income, and education
level in our studies) in LFair (𝑥) for comprehensive model training
upon an unfairness metric 𝑥 , i.e., Eqs. (18) and (19).

Therefore, the final loss function for our socially-equitable model
training, given each of the target (un)fairnessmetrics𝑥 ∈ {Par, Perf},
becomes

L𝑥 =
1
𝑍

𝑍∑︁
𝑖=1

Huber (𝑦𝑖 , 𝑦𝑖 , 𝛿) +
∑︁
𝛼 ∈S

𝜆𝑈𝑥 (𝛼), 𝜆 > 0, (22)

where 𝛼 is a certain sensitive socioeconomic attribute and 𝑍 is the
total number of prediction samples.

6 EVALUATION
We compare the performance of EIGDES with other baseline ap-
proaches using root mean square error (RMSE), poor case rate (PCR),
as well as the (un)fairness (see Appendixes B and C for detailed
definitions, baseline approaches, and additional results).
• Overall Prediction Accuracy & Fairness: We first show in

Table 1 the overall flow prediction accuracy and fairness of different
approaches in Chicago, Minneapolis, and Edmonton. Thanks to the
HIGIDF designs, EIGDES is shown to improve prediction perfor-
mance in terms of RMSE and PCR (at least by 35.26%), including
other graph neural network approaches [15, 38, 54]. We can also
observe overall higher errors for all approaches in Chicago and
Edmonton than in Minneapolis, mainly due to their larger traffic
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volumes and more complex routes. As shown in Table 2, EIGDES
disassociates the DES flows with the sensitive socioeconomic at-
tributes through our regularization, enabling subsequent fair DES
resource allocation decisions and prediction quality experienced
across communities. In terms of societal implications, we can infer
from the fairness results that EIGDES can enhance the scooter acces-
sibility by at least 54.85%, and reduce the prediction performance
difference by at least 44.26%, which is essential for urban planners
in coordinating the DES systems across different communities.
Table 2: Resource non-parity & prediction performance unfairness.

Schemes Chicago Minneapolis Edmonton
UPar UPerf UPar UPerf UPar UPerf

HA 171.15 96.33 89.70 59.92 87.66 57.24
GP 115.13 41.21 43.19 31.04 47.10 31.22

ARIMA 91.47 88.21 90.12 41.89 67.21 39.01
RNN 126.60 74.06 58.91 34.24 64.12 48.70
LSTM 112.39 39.40 34.83 29.80 44.31 37.21
GRU 117.36 42.92 51.46 73.46 63.77 51.33
CNN 72.64 59.04 44.78 40.48 52.88 45.96
STC2D 96.33 32.05 40.80 51.46 57.06 43.18
STC3D 84.68 24.55 42.08 52.16 41.65 35.64
STRN 89.92 17.06 37.86 34.24 62.70 33.21
MGCN 63.52 39.08 37.86 32.08 41.70 47.31
GWN 72.64 59.04 61.25 79.04 61.21 45.96
MSGN 96.33 32.05 72.12 37.05 73.23 55.12
MTGNN 72.26 21.52 53.23 27.51 51.21 31.56
CSTN 69.12 21.16 62.92 17.26 62.92 47.13
TLSTM 78.12 27.12 43.92 22.76 73.92 55.91
FST 63.52 39.08 42.64 21.35 49.21 33.10
FRep 57.06 26.31 36.12 24.17 41.55 35.31

EIGDES 10.26 6.52 11.72 9.62 18.76 11.95

• Fairness with Single Socioeconomic Attribute: We eval-
uate in Fig. 6 the resource non-parity fairness and prediction per-
formance fairness of EIGDES given each individual socioeconomic
attribute, i.e., social ethnicity (Eth), education (Edu), or income (Inc),
in the optimization objective regularizer. In particular, we reduce
the number of socioeconomic attributes in Eq. (22) during the model
learning. Such studies are suitable for city planning when policy
decision-makers are particularly interested in a specific socioeco-
nomic attribute in the city. We can observe the relatively higher
importance in mitigating mobility unfairness across ethnic groups
for all cities. We can also observe generally lower unfairness in the
category of education than income in Chicago, while in Minneapo-
lis and Edmonton overall higher unfairness exists in education than
income, implying more college-educated users in the latter cases.
Such differences across three metropolitan cities reflect the spatial
DES deployment and neighborhood socioeconomic conditions.
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Fig. 6. Fairness performance with single socioeconomic attribute.

• Model Ablation Studies: We remove (or replace) different
design components of EIGDES, and evaluate the resultant flow pre-
diction RMSE in Fig. 7 (for Chicago). We train the model based
on DES trips during June 15–25, 2019, and evaluate based on June
26–30, 2019. We compare the performance of complete settings
(denoted as (i) “w/ all”) with variations of EIGDES without: (ii) ex-
ternal factors (w/o ext), (iii) spatial correlations (w/o 𝚽), (iv) POI

correlations (w/o 𝛀), (v) region-to-region connectivities (w/o 𝚲),
(vii) multi-level temporal correlations (w/o 𝚿), (viii) information
dissemination masking (w/o Mask), (ix) interaction fusion (w/o
Fusion), and (x) fairness regularization (w/o Reg). We also have (vi)
DTW instead of LBK (w/ DTW) for 𝚿. We can observe the relative
importance of different components in EIGDES. In particular, we
can infer from the difference between (i) and (x) that single-minded
“accuracy” objective may not necessarily ensure satisfactory predic-
tion performance, while regularization based on more fine-grained
socioeconomic information can better identify and characterize the
local demand and supply, and enhance model generalization.
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Fig. 7. RMSE of ablation studies on EIGDES.
• Interaction of Spatial andTemporalGraphs: Taking Chicago

as an example, we visualize in Fig. 8 the 𝚪 ∈ R𝐵×𝐵 of two time
intervals (a Monday noon and a Sunday noon), where the lighter
colors imply more attention weights and more mutual interactions
between the graphs (organized as Fig. 4(c)). We can observe the
multi-level time-series correlations (𝚿) interact with each other for
both cases. For (a) Monday noon, we can observe more interactions
between spatial proximity (𝚽), connectivities (𝚲), and short-term
time-series correlations, mainly owing to the transient ride trips
during the rush hours. For (b) Sunday noon, besides interactions
within each set of spatial and temporal graphs, we can further ob-
serve more interactions between POI (𝛀) and long-term time-series
correlations. This is mainly due to more recreational rides spanning
throughout the weekend around the urban points-of-interest.

(a) A Monday Noon

[W(S)] [W(M)] [W(L)]

[W(S)]

[W(M)]

[W(L)]

(b) A Sunday Noon

[W(S)] [W(M)] [W(L)]

[W(S)]

[W(M)]

[W(L)]

Fig. 8. Illustration of interactions between different elements in 𝚪.

7 CONCLUSION
We have proposed EIGDES, a socially-equitable flow prediction
system for dockless e-scooter sharing. EIGDES hierarchically incor-
porates spatial and temporal interactions across different graphs
across city regions, via a novel interactive graph information dissem-
ination and fusion framework. By integrating with the optimization
regularizer, EIGDES jointly learns the complex DES flow patterns
and socio-economic factors. EIGDES yields flow distribution pre-
dictions which mitigate spatial resource allocation and prediction
performance unfairness for disadvantaged communities. Our ex-
tensive studies based on over 2.1 million trips in North America
have validated EIGDES’s effectiveness, fairness, and accuracy in
socially-equitable flow prediction.

This project is supported, in part, by the Google Research Scholar
Program Award (2021–2022) and the 2021 Nvidia Applied Research
Accelerator Program Award.
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APPENDIX
A EXAMPLES OF DATASETS
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Fig. 9. DES pick-up/drop-off
flows in Chicago.
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Fig. 10. DES pick-up/drop-offs
flows in Minneapolis.
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Fig. 11. Transitions in (a) Chicago and (b) Minneapolis (log10 ( ·)).

Taking Chicago and Minneapolis as the examples, we demon-
strate the hourly/daily routines and dynamics of total pick-ups/drop-
offs within each time interval of a week in Figs. 9 and 10. We can
also see in Fig. 9 a sudden drop in pick-ups/drop-offs on Day 1 due
to the windy/rainy conditions and temperature drop. Fig. 11 illus-
trates the region-to-region transitions in Chicago and Minneapolis
(Sec. 4.2). Table 3 further summarizes the external factors used in
EIGDES.

Category POIs (13-D) Weather (11-D) Events (12-D)

Data

Residential, education,
cultural, recreational,

social services, transportation,
commercial, government,

religious, health services, public
safety, water, sustenance.

Temperature, precipitation,
wind speed, other conditions

including misty/drizzle
/light rain/shower

/snow/freezing/foggy
/no significant clouds.

Comedy, conferences,
education, food,
health, museum,

music, networking,
outdoors, arts, sports,

technology.

Table 3: Details of external weather factors and urban features.

B EXPERIMENTAL SETTINGS
• Comparison Schemes: We evaluate the following conventional
and state-of-the-art mobility prediction algorithms:
– HA: which predicts the flows of a target period based on the
historical average (HA) of the same periods in the past. Specif-
ically, we use the historical average during the same period
in the historical records; for example, we average all the DES
flows during 8:00–8:30 of all recorded Mondays to predict that
of 8:00–8:30 of a specific Monday.

– GP/ARIMA: which predict the DES flows with Gaussian process
(GP) and auto-regressive integrated moving average (ARIMA),
respectively.

– RNN/LSTM/GRU: which predict the DES flows based on the re-
current neural network (RNN) [44], long short-term memory
(LSTM) [64], and gated recurrent unit (GRU), respectively. For
RNN, LSTM, and GRU, we predict the DES flows based on the 𝐾
most recent time intervals, and we empirically set 𝐾 = 72 and
the units (dimensionality of the output space) as 128.

– CNN: which takes in the historical heatmaps of DES flows and
predicts the future flows via conventional convolutional neural
network (CNN). We adopt 12 Conv2D layers, each of which uses
32 filters of kernel size 5 × 5.

– STC2D: which spatio-temporally processes the historical flows
via 2D CNN [39], and then further extracts the sequential de-
pendency based on LSTM. We adopt 12 Conv2D layers, each of
which uses 32 filters of kernel size 5 × 5.

– STC3D: which spatio-temporally processes the historical flows
via 3D CNN [62], and then extracts the sequential dependency
based on LSTM. We adopt 12 Conv3D layers, each of which uses
32 filters of kernel size 5 × 5.

– STRN: which forecasts the DES flows via the spatio-temporal
residual neural network (STRN) [65]. We adopt 12 residual lay-
ers, each of which has 32 filters of kernel size 3 × 3.

– MGCN: which leverages the multi-graph convolutional neural
network to predict the DES flows [15].

– GWN: which leverages the graph wave neural network for the
traffic flow prediction [54].

– MSGN: which adaptively learns and forecasts the DES traffic
flows with the multi-scale graph neural network [38].

– MTGNN: which estimates the future DES flows based on multiple
time-series graph neural network [53].

– CSTN: which predicts the DES flows with the convolution
embedded LSTM-based method with a contextualized spatio-
temporal network [37].

– TLSTM: which predicts the DES flows based on temporal pattern
attention long short-term memory [47].

– FST: which takes in three-stream network for equitable mobil-
ity resource demand prediction [56, 57]. We respectively adopt
3 Conv3D layers (3 × 3 × 3 filters), Conv2D (3 × 3 filters) and
Conv1D (3 filters) layers to take in historical demands, urban
map road network and city-wide temperature.

– FRep: which learns the fair representation integration to align
the heterogeneous data [58].

• Evaluation Settings: Unless otherwise stated, we set the follow-
ing default parameters in evaluations. Based on empirical studies
and the DES coverage, we discretize the city map into 32×32 (𝑁 =
1,024), and the time into 1-hour and 30-min intervals for Chicago
and Minneapolis due to the granularity of their original datasets,
respectively. For Edmonton, we partition the city map into 28×28
(𝑁 = 784), and time into 30-min intervals. We note that our model
is general enough to be adapted to discretization based on Census
tracts or zip codes by formulating them into the graph. We set the
learning rate to 0.0001, and 500 epochs for all the model evaluated.
To emulate the real-world deployment, we divide the dataset on a
monthly basis and respectively conduct the offline model training
as well as online model prediction. Specifically, for each month,
we use the first two weeks, i.e., 336 time intervals in Chicago and
672 time intervals in Minneapolis and Edmonton, for the model
training, and the rest of that month for prediction (testing).
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Wehave implemented all these schemes based on Python/Tensorflow
upon a GPU server with AMD Ryzen Threadripper 3960X Processor
(24 Core), 128Gb RAM, and four Nvidia RTX3090 (24Gb DDR6). We
adopt the Adam optimizer [32], which has been shown to yield faster
convergence than the conventional stochastic gradient descent.
•Model Parameter Settings: For the EIGDESmodel designs, we

empirically set the important parameters as follows. 𝑍 = 5 for the
multi-level time-series correlations in Eq. (4); 𝑑𝐺 = 𝑑 ′

𝐺
= 8; number

of STGC blocks 𝐵 = 6; number of graph convolution layers in each
STGC block 𝐿 = 8; 𝑁𝐹 = 8, 𝑑𝑉 = 8, 𝑑𝐾 = 2, and 𝑁𝑃 = 32 in HIGIDF.
We set the output dimensions of X0 and X2 in Eq. (16) as 32 and
2𝑁 . For the schemes other than EIGDES, we adopt the Huber loss
function only. We set 𝛿 = 2.5 in Eq. (21) for all approaches evaluated.
We use 𝜆 = 0.6 within the fairness regularizer in Eq. (22). For each
(un)fairness metric, we use all three socioeconomic attributes in
Eq. (22) by default, i.e., social ethnicity, education, and income.
Model training generally takes 0.68s per epoch, and prediction takes
17ms per input of a time interval. In our experiment, we also observe
adopting LBK substantially reduces EIGDES’s prediction time by
74.9% and 46.9% compared with DTW and Pearson correlation.
• Performance Metrics: We comprehensively evaluate all the

schemes and designs based on the following three metrics:
(1) Root Mean Square Error (RMSE): which evaluates the spread of

the residuals, i.e., RMSE =

√︃
1
𝑍

∑𝑍
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )

2.
(2) Poor Case Rate (PCR): Furthermore, we define the poor case rate

(PCR) as the percentage of predictions which have excessive
over- or under-estimations than ground-truths, i.e., 1

𝑦𝑖
|𝑦𝑖 −

𝑦𝑖 | > 𝜆%, where we set 𝜆 = 50. A lower PCR indicates a more
robust DES flow prediction performance.

(3) (Un)Fairness: We take into account the non-parity, value, ab-
solute value, underestimation, and overestimation unfairness
metrics in Sec. 5.2 for the final fairness evaluation (on sensitive
socioeconomic attributes of social ethnicity, education and
income). In particular, we find the average of all time intervals
𝑘 ∈ {1, . . . , 𝐾} within the test data, i.e., 𝑈𝑥 = 1

𝐾

∑𝐾
𝑘=1𝑈

(𝑘)
𝑥 ,

where the metric type 𝑥 ∈ {Par, Perf}.
C OTHER RESULTS & DISCUSSION

Fig. 12. Spatial non-parity unfairness without (a) and with (b)
EIGDES’s Regularization (FR).

• Spatial Fairness Variations: Taking Chicago as a typical
example, we first compare in Fig. 12 the spatial heat-map distri-
butions of non-parity (un)fairness (Eq. (18)) for a selected time
interval without (a) and with (b) EIGDES’s fairness regularization
(FR). The warmer colors imply larger unfairness values. From the
difference of the two heatmaps, we can observe that EIGDES sub-
stantially reduces the spatial unfairness, particularly around the
regions of West Side (including Humboldt Park and West Town)
for the disadvantaged communities in Chicago. Such reduction and

the socially-equitable prediction results will serve as the basis for
the city planning decision-makers.
• Visualization of Mobility Fairness: Besides the spatial un-

fairness, we show in Fig. 13 the temporal non-parity (un)fairness
variation without and with EIGDES’s regularization in Chicago. We
can observe that when there exist large DES traffic volumes during
daytime, the non-parity unfairness is large, demonstrating the inher-
ent disparities within the DES distributions. EIGDES substantially
reduces the unfairness values of the DES mobility prediction (by
87.97% on average), which can benefit the fairness-aware allocation
of DES resource decisions in practice.
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Fig. 13. Temporal unfairness without and with EIGDES.

• Effect of 𝜆: We evaluate the RMSE,𝑈Par, and𝑈Perf of EIGDES
versus 𝜆 (Eq. (22)) in Fig. 14. We can see that with small 𝜆 (say, 𝜆 ≤
0.3) EIGDES can achieve better accuracy and mobility fairness than
𝜆 = 0, thanks to the model regularization. With further increase
of 𝜆, the errors of EIGDES slightly enlarge with improvement in
mobility fairness. Overall, EIGDES can maintain high prediction
accuracy and mobility fairness, and we empirically set 𝜆 = 0.6.
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Fig. 14. Performance of EIGDES (RMSE and fairness) vs. 𝜆.

• Societal Implications: As illustrated in Fig. 1, according to
the EIGDES’s predictions integrated with the WoT designs, the city
planners as well as the DES service providers can interactively
adjust the initial e-scooter deployment (re)distribution, particularly
during the city mobility planning and pilot program studies. Fur-
thermore, the e-scooter relocation/redistribution operation can be
more fairly adapted towards the demand of diverse communities in
the city. Support infrastructures, including geo-fences for parking,
e-scooter lanes, and charging docks, can also be planned accord-
ingly. We can extend fairness studies and model insights towards
the vulnerable populations in US under the COVID-19 pandemic,
enhancing the algorithm designs for the mobility-on-demand com-
panies to augment these communities’ access to pharmacy, grocery
stores, hospitals, and many other life-essential urban services.
• Redistribution of Transportation Resources: Although

we focused on DES flow prediction, our EIGDES can serve as an
information input for mobility or transportation resource redistri-
bution mechanisms, including but not limited to DES. For example,
Lime can coordinate the Lime Juicers [1] to redistribute the scooters
towards disadvantaged communities for commute purposes. Such
mechanisms can also be extended to the operation of other web-
based andWoT platforms [16, 21, 43, 52]. Redistributionmay change
the subsequent spatial fairness conditions, thus requiring continu-
ous optimization and coordination as well as additional planning
information, and we leave such studies as our future work.
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