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Abstract

Hardware flaws are permanent and potent: hardware cannot be
patched once fabricated, and any flaws may undermine even
formally verified software executing on top. Consequently,
verification time dominates implementation time. The gold
standard in hardware Design Verification (DV) is dynamic
random testing, due to its scalability to large designs. How-
ever, given its undirected nature, this technique is inefficient.

Instead of making incremental improvements to existing
dynamic hardware verification approaches, we leverage the
observation that existing software fuzzers already provide
such a solution, and hence adapt them for hardware verifica-
tion. Specifically, we translate RTL hardware to a software
model and fuzz that model directly. The central challenge we
address is how to mitigate the differences between the hard-
ware and software execution models. This includes: 1) how
to represent test cases, 2) what is the hardware equivalent of a
crash, 3) what is an appropriate coverage metric, and 4) how
to create a general-purpose fuzzing harness for hardware.

To evaluate our approach, we design, implement, and open-
source a Hardware Fuzzing Pipeline that enables fuzzing
hardware at scale, using only open-source tools. Using our
pipeline, we fuzz five IP blocks from Google’s OpenTitan
Root-of-Trust chip, four SiFive TileLink peripherals, three
RISC-V CPUs, and an FFT accelerator. Our experiments
reveal a two orders-of-magnitude reduction in run time to
achieve similar Finite State Machine coverage over traditional
dynamic verification schemes, and 26.70% better HDL line
coverage than prior work. Moreover, with our bus-centric har-
ness, we achieve over 83% HDL line coverage in four of the
five OpenTitan IPs we study—without any initial seeds—and
are able to detect all bugs (four synthetic from Hack@DAC
and one real) implanted across all five OpenTitan IPs we study,
with less than 10 hours of fuzzing.
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Figure 1: Fuzzing Hardware Like Software. Unlike prior Coverage Di-
rected Test Generation (CDG) techniques [6, 22, 39, 65], we advocate for
fuzzing software models of hardware directly, with a generic harness (test-
bench) and feature-rich software fuzzers. This way, we address the barriers to
realizing widespread adoption of CDG in hardware DV: 1) efficient coverage
tracing, and 2) design-agnostic testing.

1 Introduction

As Moore’s Law [48] and Dennard scaling [19] come to a
crawl, hardware engineers must tailor their designs for specific
applications in search of performance gains [14,25,33,45,51].
As a result, hardware designs become increasingly unique
and complex. For example, the Apple A11 Bionic System-
on-Chip (SoC), released over four years ago in the iPhone 8,
contains over 40 specialized Intellectual Property (IP) blocks,
a number that doubles every four years [62]. Unfortunately,
due to the state-explosion problem, increasing design com-
plexity increases Design Verification (DV) complexity, and
therefore, the probability for design flaws to percolate into
products. Since 1999, 247 total Common Vulnerability Ex-
posures (CVEs) have been reported for Intel products, and of
those, over 77% (or 191) have been reported in the last four
years [18]. While this may come as no surprise, given the
onslaught of speculative execution attacks over the past few
years [11, 37, 42, 75, 76], it highlights the correlation between
hardware complexity and design flaws.

Even worse, hardware flaws are permanent and potent.



Unlike software, there is no general-purpose patching mecha-
nism for hardware. Repairing hardware is both costly, and rep-
utationally damaging [36]. Moreover, hardware flaws subvert
even formally verified software that sits above [86]. There-
fore, detecting flaws in hardware designs before fabrication
and deployment is vital. Given these incentives, it is no sur-
prise that hardware engineers often spend more time verifying
their designs, than implementing them [21, 83].1 Unfortu-
nately, the multitude of recently-reported hardware vulner-
abilities [11, 37, 42, 47, 75, 76] suggests current efforts are
insufficient.

To address the threat of design flaws in hardware, engineers
deploy two main DV strategies: 1) dynamic and 2) formal.
At one extreme, dynamic verification involves driving con-
crete input sequences into a Design Under Test (DUT) during
simulation, and comparing the DUT’s behavior with a set of
invariants, or golden model. The most popular dynamic veri-
fication technique in practice today is known as Constrained
Random Verification (CRV) [1, 16, 30, 88]. CRV attempts to
decrease the manual effort required to develop simulation test
cases by randomizing input sequences in the hopes of auto-
matically maximizing exploration of the DUT state-space. At
the opposite extreme, formal verification involves proving/dis-
proving properties of a DUT using mathematical reasoning
like (bounded) model checking and/or deductive reasoning.
While (random) dynamic verification is effective at identi-
fying surface flaws in even complex designs, it struggles to
penetrate deep into the design state-space. In contrast, formal
verification is effective at mitigating even deep flaws in small
hardware designs, but fails, in practice, against larger designs.

In search of a hybrid approach to bridge these DV ex-
tremes, researchers have ported software testing techniques
to the hardware domain in hopes of improving hardware test
generation to maximize coverage. In the hardware domain,
these approaches are referred to as Coverage Directed Test
Generation (CDG) [6, 16, 21, 24, 30, 39, 72, 80, 92, 93]. Like
their software counterparts, CDG techniques deploy coverage
metrics—e.g., Hardware Description Language (HDL) line,
Finite State Machine (FSM), functional, etc.—in a feedback
loop to generate tests that further increase state exploration.

While promising, CDG has not seen widespread adoption
in hardware DV. As Laeufer et al. point out [39], this is likely
fueled by several key technical challenges, resulting from
dissimilarities between software and hardware execution
models. First, unlike software, Register Transfer Level (RTL)
hardware is not inherently executable. Hardware designs must
be simulated, after being translated to a software model and
combined with a design-specific testbench and simulation
engine, to form a Hardware Simulation Binary (HSB) (Fig. 2).
This level of indirection, increases both the complexity and
computational effort in tracing test coverage of the hardware.
Second, unlike most software, hardware requires sequences

1It is estimated that up to 70% of hardware development time is spent
verifying design correctness [21].

of structured inputs to drive meaningful state transitions, that
must be tailored to each DUT. For example, while software
often accepts input in the form of a fixed set of file(s) that
contain a loosely-structured set of bytes (e.g., a JPEG or PDF),
hardware often accepts input from an ongoing stream of bus
transactions. Together, these challenges have resulted in CDG
approaches that implement DUT-specific: 1) coverage-tracing
techniques [30, 39], and 2) test generators [6, 65, 92].

To supplement traditional dynamic verification methods,
we propose an alternative CDG technique we call Hardware
Fuzzing. Rather than translating software testing meth-
ods to the hardware domain, we advocate for translating
hardware designs to software models and fuzzing those
translated models directly (Fig. 1). While fuzzing hardware
in the software domain eliminates the need for alternative
coverage-tracing mechanisms required by prior CDG tech-
niques [30, 39, 65], since software can be instrumented at
compile time to trace coverage, it does not inherently solve
the design compatibility issue. Moreover, it creates other chal-
lenges we must address. Specifically, to fuzz hardware like
software, we must adapt software fuzzers to:

1. interface with HSBs that: a) contain other components
besides the DUT, and b) require unique initialization;

2. account for differences between how hardware and soft-
ware process inputs, and its impact on exploration depth;
and

3. design a general-purpose fuzzing harness and a suitable
grammar that ensures meaningful mutation.

To address these challenges, we first propose and evalu-
ate strategies for interfacing software fuzzers with HSBs that
optimize performance and trigger the HSB to crash upon de-
tection of incorrect hardware behavior. Second, we show that
maximizing code coverage of the DUT’s software model, by
construction, maximizes hardware code coverage. Third, we
design an interface to map fuzzer-generated test-cases to hard-
ware input ports. Our interface is built on the observation
that unlike most software, hardware requires piecing together
a sequence of inputs to effect meaningful state transitions.
Lastly, we propose a new interface for fuzzing hardware in
a design-agnostic manner: the bus interface. Moreover, we
design and implement a generic harness, and create a cor-
responding grammar that ensures meaningful mutations to
fuzz bus transactions. Fuzzing at the bus interface solves the
final hurdle to realizing widespread deployability of CDG in
hardware DV, as it enables us to reuse the same testbench
harness to fuzz any RTL hardware that speaks the same bus
protocol, irrespective of the DUT’s design or implementation.

To demonstrate the effectiveness of our approach, we
design, implement, and open-source a Hardware Fuzzing
Pipeline (HWFP), inspired by Google’s OSS-Fuzz [61], ca-
pable of fuzzing RTL hardware at scale (Fig. 5). Using our



HWFP we: 1) compare Hardware Fuzzing against a conven-
tional CRV technique when verifying over 480 variations
of a sequential FSM circuit, 2) compare Hardware Fuzzing
against RFUZZ [39] when fuzzing four SiFive TileLink pe-
ripherals [63], three RISC-V CPUs [59], and an FFT ac-
celerator [58], and 3) detect five bugs (four synthetic from
Hack@DAC [20], and one real) across five commercial IP
blocks from Google’s OpenTitan silicon Root-of-Trust [44].

To summarize our main results, we demonstrate Hardware
Fuzzing:

• provides two orders-of-magnitude reduction in run time
to achieve similar FSM coverage than current state-of-
the-art CRV schemes (§5.4),

• achieves 24.76% better HDL line coverage (on average)
after 24 hours of fuzzing compared with similar hard-
ware fuzzing approaches, i.e., RFUZZ [39] (§6.1),

• identifies all five RTL bugs (both synthetic and real) in
five OpenTitan IPs; four in less than 10 minutes, the
remaining in less than 10 hours (§6.2).

2 Background

There are two main hardware verification methods: 1) dy-
namic and 2) formal. While there have been significant
advancements in deploying formal methods in DV work-
flows [35, 44, 92], dynamic verification remains the gold
standard due to its scalability towards complex designs [39].
Therefore, we focus on improving dynamic verification by
leveraging advancements in the software fuzzing community.
Below, we provide a brief overview of the current state-of-the-
art in dynamic hardware verification, and software fuzzing.

2.1 Dynamic Verification of Hardware
Dynamic verification of hardware typically involves three
steps: 1) test generation, 2) hardware simulation, and 3)
test evaluation. First, during test generation, a sequence of
inputs are crafted to stimulate the DUT. Next, the DUT’s
behavior—in response to the input sequence—is simulated
during hardware simulation. Lastly, during test evaluation, the
DUT’s simulation behavior is checked for correctness. These
three steps are repeated until all interesting DUT behaviors
have been explored. To determine if all interesting behaviors
have been explored, verification engineers measure coverage
of both: 1) manually defined functional behaviors (functional
coverage) [74] and 2) the HDL implementation of the design
(code coverage) [32, 56, 70].

2.1.1 Test Generation

To maximize efficiency, DV engineers aim to generate as few
test vectors as possible that still close coverage. To achieve
this goal, they deploy two main test generation strategies: 1)
constrained-random and 2) coverage-directed. The former is
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Figure 2: Hardware Simulation Binary (HSB). To simulate hardware, the
DUT’s HDL is first translated to a software model, and then compiled/linked
with a testbench (written in HDL or software) and simulation engine to form
a Hardware Simulation Binary (HSB). Executing this binary with a sequence
of test inputs simulates the behavior of the DUT.

typically referred to holistically as Constrained Random Veri-
fication (CRV), and the latter as Coverage Directed Test Gen-
eration (CDG). CRV is a partially automated test generation
technique where manually-defined input sets are randomly
combined into transaction sequences [1,88]. While better than
an entirely manual approach, CRV still requires some degree
of manual tuning to avoid inefficiencies, since the test gen-
erator has no knowledge of test coverage. Regardless, CRV
remains a popular dynamic verification technique today, and
its principles are implemented in two widely deployed (both
commercially and academically) hardware DV frameworks:
1) Accellera’s Universal Verification Methodology (UVM)
framework (SystemVerilog) [1] and 2) the open-source cocotb
(Python) framework [77].

To overcome CRV shortcomings, researchers have pro-
posed CDG [6, 16, 21, 22, 24, 30, 39, 65, 72, 80, 92, 93], or
using test coverage feedback to drive future test generation.
Unlike CRV, CDG does not randomly piece input sequences
together in hopes of exploring new design state. Rather, it mu-
tates prior input sequences that explore uncovered regions of
the design to iteratively expand the coverage boundary. Unfor-
tunately, due to deployability challenges, CDG has not seen
widespread adoption in practice [39]. In this paper, we recog-
nize that existing software fuzzers provide a solution to many
of these deployability challenges, and therefore advocate for
verifying hardware using software verification tools. The cen-
tral challenges in making this possible are adapting software
fuzzers to verify hardware, widening the scope of supported
designs, and increasing the automation of verification.

2.1.2 Hardware Simulation

While there are several commercial [10, 46, 69] and open-
source [64, 85] hardware simulators, most work in the same
general manner, as shown in Fig. 2. First, they translate hard-
ware implementations (described in HDL) into a software
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Figure 3: Hardware Fuzzing. Fuzzing hardware in the software domain involves: translating the hardware DUT to a functionally equivalent software model
(1) using a SystemVerilog compiler [64], compiling and instrumenting a Hardware Simulation Binary (HSB) to trace coverage (2), crafting a set of seed input
files (3) using our design-agnostic grammar (§ 4.1.2), and fuzzing the HSB with a coverage-guided greybox software fuzzer [43, 68, 91] (4–6).

model, usually in C/C++. Next, they compile the software
model and a testbench—either translated from HDL, or imple-
mented in software (C/C++)—and link them with a simulation
engine. Together, all three components form an Hardware
Simulation Binary (HSB) (Fig. 2) that can be executed to sim-
ulate the design. Lastly, the HSB is executed with the inputs
from the testbench to capture the design’s behavior. Ironically,
even though commercial simulators convert the hardware to
software, they still rely on hardware-specific verification
tools, likely because software-oriented tools fail to work on
hardware models—without the lessons in this paper. To
fuzz hardware in the software domain, we take advantage of
the transparency in how an open-source hardware simulator,
Verilator [64], generates an HSB. Namely, we intercept the
software model of the hardware after translation, and instru-
ment/compile it for coverage-guided fuzzing (Fig. 3).

2.1.3 Test Evaluation

After simulating a sequence of test inputs, the state of the
hardware (both internally and its outputs) are evaluated for
correctness. There are two main approaches for verifying de-
sign correctness: 1) invariant checking and 2) (gold) model
checking. In invariant checking, a set of assertions (e.g., Sys-
temVerilog Assertions (SVAs) or software side C/C++ asser-
tions) are used to check properties of the design have not been
violated. In model checking, a separate model of the DUT’s
correct behavior is emulated in software, and compared to
the DUT’s simulated behavior. We support such features and
adopt both invariant violations and golden model mismatches
as an analog for software crashes in our hardware fuzzer.

2.2 Software Fuzzing

Software fuzzing is an automated testing technique designed
to identify security vulnerabilities in software [67]. Thanks
to its success, it has seen widespread adoption in both indus-
try [7] and open-source [61] projects. In principle, fuzzing

typically involves the following three main steps [50]: 1) test
generation, 2) monitoring test execution, and 3) crash triag-
ing. During test generation, program inputs are synthesized
to exercise the target binary. Next, these inputs are fed to the
program under test, and its execution is monitored. Lastly, if
a specific test causes a crash, that test is further analyzed to
find the root cause. This process is repeated until all, or most,
of the target binary has been explored. Below we categorize
fuzzers by how they implement the first two steps.

2.2.1 Test Generation

Most fuzzers generate test cases in one of two ways, using: 1)
a grammar, or 2) mutations. Grammar-based fuzzers [2, 31,
49,54,81,82] use a human-crafted grammar to constrain tests
to comply with structural requirements of a specific target
application. Alternatively, mutational fuzzers take a correctly
formatted test as a seed, and apply mutations to the seed to
create new tests. Moreover, mutational fuzzers are tuned to be
either: 1) directed, or 2) coverage-guided. Directed mutational
fuzzers [3, 5, 13, 52, 84, 87, 94] favor mutations that explore
specific region within the target binary, i.e., prioritizing ex-
ploration location. Conversely, coverage-guided mutational
fuzzers [43, 57, 60, 68, 79, 91] favor mutations that explore
as much of the target binary as possible, i.e., prioritizing ex-
ploration completeness. For this work, we favor the use of
mutational, coverage-guided fuzzers, as they are both design-
agnostic, and regionally generic.

2.2.2 Test Execution Monitoring

Fuzzers monitor test execution using one of three approaches:
1) blackbox, 2) whitebox, or 3) greybox. Fuzzers that only
monitor program inputs and outputs are classified as blackbox
fuzzers [49, 54, 78]. Alternatively, fuzzers that track detailed
execution paths through programs with fine-grain program
analysis (source code required) and constraint solving are
known as whitebox fuzzers [9,12,15,23,27,66,84,89]. Lastly,
greybox fuzzers [2,5,26,52,55,57,60,68,79,81,82,87,91,94]



offer a trade-off between black- and whitebox fuzzers by
deploying lightweight program analysis techniques, such as
code-coverage tracing. Since Verilator [64] produces raw C++
source code from RTL hardware, our approach can leverage
any software fuzzing technique—white, grey, or blackbox. In
our current implementation, we deploy greybox fuzzing, due
to its popularity in the software testing community.

3 Approach

To take advantage of advancements in software fuzzing for
hardware DV, we propose translating hardware designs to
software models, and then fuzzing the model directly. We call
this approach, Hardware Fuzzing, and illustrate it in Fig. 3.
Below we explain the three key components of our approach,
including how: 1) RTL hardware is translated to executable
software (step 1 in Fig. 3), 2) software fuzzers trace hardware
coverage (step 2 in Fig. 3), and 3) fuzzer-generated test cases
are interpreted to effectively stimulate the DUT (step 5 in
Fig. 3).

3.1 Translating Hardware to Software

Today, simulating RTL hardware involves translating HDL
into a functionally equivalent software (C/C++) model that
can be compiled and executed (§2.1.2). To accomplish this,
most hardware simulators [64, 85] contain an RTL compiler
to perform the translation. Therefore, we leverage a popular
open-source hardware simulator, Verilator [64], to translate
SystemVerilog HDL into a cycle-accurate C++ model for
fuzzing.

Like many compilers, Verilator first performs lexical analy-
sis and parsing (of the HDL) with the help of Flex [53] and
Bison [73], to generate an Abstract Syntax Tree (AST). Then,
it performs a series of passes over the AST to resolve pa-
rameters, propagate constants, replace don’t cares (Xs) with
random values, eliminate dead code, unroll loops/generate
statements, and perform several other optimizations. Finally,
Verilator generates C++ (or SystemC) code representing a
cycle-accurate model of the hardware. It creates a C++ class
for each Verilog module, and organizes classes according to
the original HDL module hierarchy [92].

To interface with the model, Verilator exposes public mem-
ber variables for each input/output to the top-level module,
and a public eval() method (to be called in a loop) in the
top C++ class. Each input/output member variable is mapped
to single/arrayed bool, uint32_t, or uint64_t data types,
depending on the width of each signal. Each call to eval()
updates the model based on the current values assigned to top-
level inputs and internal state variables. Two calls represent a
single clock cycle (one call for each rising and falling clock
edges).

3.2 Hardware Coverage Tracing
To efficiently explore a DUT’s state space, CDG techniques
rely on tracing coverage of past test cases to generate fu-
ture test cases. There are two main categories of coverage
metrics used in hardware verification [32, 56, 70]: 1) code
coverage, and 2) functional coverage. The coarsest, and most
widely-used, code coverage metric is line coverage. Line cov-
erage measures the percentage of HDL lines that have been
exercised during simulation. Alternatively, functional cov-
erage measures the percentage of various high-level design
functionalities—defined using special HDL constructs like
SystemVerilog Coverage Points/Groups—that are exercised
during simulation. Regardless of the coverage metric used,
tracing HDL coverage during simulation is often slow, since
coverage traced in the software (simulation) domain must be
mapped back to the hardware domain [32].

In an effort to compute DUT coverage efficiently prior
CDG techniques (RFUZZ [39] and DifuzzRTL [28]) develop
custom coverage metrics, e.g., multiplexer coverage, that can
be monitored by instrumenting the RTL directly. To insert the
instrumentation HDL into the design, these techniques imple-
ment a custom FIRRTL compiler optimization pass. However,
this limits their approach to designs that are implemented in
a high-level HDL like Chisel [4] or FIRRTL [41], since their
instrumentation compiler can only process designs in HDLs
that are translateable to FIRRTL.2

Rather than make incremental improvements to existing
CDG techniques, we recognize that: 1) software fuzzers al-
ready provide an efficient mechanism—e.g., binary instru-
mentation automatically inserted by compiler optimization
passes—to trace coverage of compiled C++ hardware models
(HSBs), and 2) the way Verilator translates RTL hardware to
software makes mapping software coverage to hardware cov-
erage implicit. On the software side, there are three main code
coverage metrics of increasing granularity: 1) basic block, 2)
basic block edges, and 3) basic block paths [50]. The most
popular coverage-guided fuzzers—AFL [91], libFuzzer [43],
and honggfuzz [68]—all trace edge coverage. On the hard-
ware side, Verilator conveniently generates straight-line C++
code for both blocking and non-blocking3 SystemVerilog
statements [92], and injects conditional code blocks (basic
blocks) for SystemVerilog Assertions and Coverage Points.
Therefore, optimizing test-generation for edge coverage of
the software model of the hardware during simulation,
translates to optimizing for code, FSM, and functional

2The RFUZZ paper states: "Our tool is language-agnostic since it can
work on arbitrary RTL designs expressed in the FIRRTL IR. Once a target
design is translated into FIRRTL IR from its source HDL, we can apply
compiler passes for the target RTL regardless of its source HDL" [39]. This
implies, the DUT must be described in an HDL that is translatable to FIRRTL
(e.g., Chisel). If a design is written in (System)Verilog, as most are, this
translation is experimental at best [8].

3Verilator imposes an order on the non-blocking assignments since C++
does not have a semantically equivalent assignment operator [64, 92]. Re-
gardless, this ordering does not effect code coverage.



coverage of the RTL hardware itself. We demonstrate this
artifact in §5.4, §6.1–6.2, and Appendix B.3.

3.3 Interpreting Fuzzer-Generated Tests
For most software, a single input often activates an entire
set of state transitions within the program. Consequently, the
most popular software fuzzers assume the target binary reads a
single dimensional input—e.g., a single image or document—
from either a file, stdin, or a byte array [43, 68, 91]. As
Laeufer et al. point out [39], the execution model of hard-
ware is different. In an HSB, a sequence of inputs is required
to activate state transitions within the DUT. For example, a
4-digit lock (with a keypad) only has a chance of unlocking
if a sequence of four inputs (test cases) are provided. Fuzzing
this lock with single test cases (digits), will fail. Likewise,
fuzzing HSBs with software fuzzers that employ a single-
test-case-per-file model will also fail. Therefore, to stimulate
hardware with software fuzzers, we interpret single dimen-
sional fuzzer-generated tests in two dimensions: space and
time. We implement this interface in the form of a generic
fuzzing harness (testbench), which we describe in §4.1.

4 Implementation

While Verilator and fuzzer-provided compilers already pro-
vide solutions to the first two components of our approach,
hardware to software translation and coverage tracing, the re-
maining component, interpreting fuzzer-generated tests (§3.3)
requires a more tailored solution. Therefore, below we de-
scribe how to implement a generic fuzzing testbench harness
to interpret fuzzer-generated tests. Additionally, we briefly
describe the open-source infrastructure we implement to fuzz
hardware at scale on Google Cloud Platform (GCP).

4.1 Generic Fuzzing Testbench Harness
To adapt software fuzzers to the hardware execution model,
we implement a generic fuzzing harness (testbench) that trans-
forms one-dimensional test inputs, into a two-dimensional
sequence of inputs (§3.3). Our fuzzing harness—shown in
Algo. 1—continuously: 1) reads byte-level portions of fuzzer-
generated test files, 2) maps these bytes to hardware input
ports, and 3) advances the simulation clock by calling the
model’s eval() method twice, until there are no remaining
bytes to process.

4.1.1 Bus-Centric Harness

While the multi-dimensional fuzzing interface we develop
enables fuzzer-generated tests to effect state transitions in
hardware, it is not design-agnostic. Specifically, the ports of a
hardware model are not iterable (Algo. 1: line 4). A DV engi-
neer would have to create a unique fuzz harness (testbench)

Algorithm 1: Generic Hardware Fuzzing harness (testbench) that
maps one-dimensional fuzzer-generated test files to both spatial and
temporal dimensions.

Input: fuzz_test_file.hwf
1 dut←Vtop();
2 t f ← open( f uzz_test_ f ile.hw f );
3 while tf not empty do
4 foreach port ∈ dut.inputs do
5 tf.read((uint_8t*) port, sizeo f (port));
6 end
7 for k← 1 to 2 do
8 clock← (clock + 1)%2;
9 dut.eval();

10 end
11 end

for each DUT they verify. To facilitate DUT portability, we
take inspiration from how hardware engineers interface IP
cores within an SoC [17]. Specifically, we propose fuzzing IP
cores at the bus interface using a bus-centric harness.

To implement this harness, we could alter our prior harness
(Algo. 1) by mapping bytes from fuzzer-generated test files
to temporal values for specific signals of a bus-protocol of
our choice. However, this would create an exploration barrier
since bus-protocols require structured syntax, and most muta-
tional fuzzers lack syntax awareness [90]. In other words, the
fuzzer would likely get stuck trying to synthesize a test file,
that when mapped to spatio-temporal bus signal values, pro-
duces a valid bus-transaction. Instead, we implement a harness
that decodes fuzzer-generated test files into sequences of prop-
erly structured bus transactions using a bus-centric grammar
we describe below. Our current bus-centric harness is imple-
mented around the TileLink Uncached Lightweight (TL-UL)
bus protocol [29] with a 32-bit data bus, and illustrated in
Fig. 13.

4.1.2 Bus-Centric Grammar

To translate fuzzer-generated test files into valid bus transac-
tions we construct a Hardware Fuzzing grammar. We format
our grammar in a compact binary representation to facili-
tate integration with popular greybox fuzzers that produce
similar formats [43, 68, 91]. To match our bus-centric har-
ness, we implement our grammar around the same TL-UL
bus protocol [29]. Our grammar consists of Hardware Fuzzing
instructions (Fig. 4), that contain: 1) an 8-bit opcode, 2) 32-
bit address field, and 3) 32-bit data field. The opcode within
each instruction determines the bus transaction the harness
performs. We describe the mappings between opcodes and
TL-UL bus transactions in Table 1.

Note, there are two properties of our grammar that leave
room for various harness (testbench) implementations, which
we study in Appendix B. First, while we define only three
opcodes in our grammar, we represent the opcode with an
entire byte, leaving it up to the harness to decide how to map



Opcode Address Data

32-bits 32-bits8-bits

Figure 4: Hardware Fuzzing Instruction. A bus-centric harness (test-
bench) reads binary Hardware Fuzzing Instructions from a fuzzer-generated
test file, decodes them, and performs TL-UL bus transactions to drive the
DUT (Fig.13). Our Hardware Fuzzing Instructions comprise a grammar
(Tbl. 1) that aid syntax-blind coverage-guided greybox fuzzers in generating
valid bus-transactions to fuzz hardware.

Table 1: Hardware Fuzzing Grammar.

Opcode
Address

Required?
Data

Required? Testbench Action

wait no no advance the clock one period

read yes no TL-UL Get (read)

write yes yes TL-UL PutFullData (write)

Hardware Fuzzing opcode values to testbench actions. We
do this for two reasons: 1) a byte is the smallest addressable
unit in most software, facilitating the development of utilities
to automate generating compact binary seed files (that com-
ply with our grammar) from high-level markdown languages,
and 2) choosing a larger opcode field enables adding more
opcodes in the future, should we need to support additional
operations in the TileLink bus protocol [29]. Second, of the
three opcodes we include, not all require address and data
fields. Therefore, it is up to the harness to decide how it should
process Hardware Fuzzing instructions. While different imple-
mentations may choose to read fixed size instruction frames,
from our empirical analysis in Appendix B, we decide to im-
plement a harness that processes variable size instructions
frames, depending on the opcode (Table 1).

4.2 Hardware Fuzzing at Scale

To fuzz hardware at scale we design, implement, and open-
source a Hardware Fuzzing Pipeline (HWFP) modeled af-
ter Google’s OSS-Fuzz (Fig. 5). First, our pipeline builds
a Docker image (from the Ubuntu 20.04 base image) con-
taining a compiler (LLVM version 12.0.0), RTL simulator
(Verilator [64] version 4.0.4), software fuzzer, the target RTL
hardware, and a generic fuzzing harness (§4.1.1). From the
image, a container is instantiated on a GCP VM that:

1. translates the DUT’s RTL to a software model with Ver-
ilator [64],

2. compiles/instruments the DUT model, and links it with
the generic fuzzing harness (§4.1.1) and simulation en-
gine to create an HSB (Fig. 2),

3. launches the fuzzer for a set period of time, using the
timeout utility,

4. traces final HDL coverage of fuzzer-generated tests with
Verilator [64],

5. saves fuzzing and coverage data to a Google Cloud Stor-

Translate HW à SW
Compile/Instrument HSB

Fuzz HSB
Extract Final HDL Coverage

Save Data to GCS
Teardown VM

GCP VM

Fuzzing Container

Figure 5: Hardware Fuzzing Pipeline (HWFP). We design, implement,
and open-source a HWFP that is modeled after Google’s OSS-Fuzz [61]. Our
HWFP enables us to verify RTL hardware at scale using only open-source
tools, a rarity in hardware DV.

age (GCS) bucket, and lastly
6. tears down the VM.

Note, for benchmarking, all containers are instantiated on
their own GCP n1-standard-2 VM with two vCPUs, 7.5 GB
of memory, 50 GB of disk, running Google’s Container-
Optimized OS. In our current implementation, we use
AFL [91] (version 2.57b) as our fuzzer, but our HWFP is
designed to be fuzzer-agnostic.

Unlike traditional hardware verification toolchains, our
HWFP uses only open-source tools, allowing DV engineers
to save money on licenses, and spend it on compute. This
not only enhances the deployability of our approach, but
makes it ideal for adopting alongside existing hardware DV
workflows. This is important because rarely are new DV ap-
proaches adopted without some overlap with prior (proven)
techniques, since mistakes during hardware verification have
costly repercussions.

5 Feasibility Evaluation

In the first part of our evaluation, we address two techni-
cal questions around fuzzing software models of RTL hard-
ware with software fuzzers. First, how should we interface
coverage-guided software fuzzers with HSBs? Unlike most
software, HSBs contain other components—a testbench and
simulation engine (Fig. 2)—that are not the target of testing,
yet the fuzzer must learn to manipulate in order to drive the
DUT. Second, how does Hardware Fuzzing compare with
traditional dynamic verification methods, i.e., CRV, in terms
of time to coverage convergence? To address this first set of
questions, we perform several End-to-End (E2E) fuzzing anal-
yses on over 480 digital lock hardware designs with varying
state-space complexities.

5.1 Digital Lock Hardware
In this half of our evaluation, we fuzz various configurations
of a digital lock, whose FSM and HDL are shown in Fig. 6
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Figure 6: Digital Lock FSM. We use a configurable digital lock (FSM
shown here) to demonstrate: 1) how to interface software fuzzers with hard-
ware simulation binaries, and 2) the advantages of Hardware Fuzzing (vs. tra-
ditional CRV). The digital lock FSM can be configured in two dimensions:
1) total number of states and 2) width (in bits) of input codes.

and List. 1 (Appendix A), respectively. We choose to study
this design since the complexity of its state space is con-
figurable, and therefore, ideal for stress testing various DV
methodologies. Specifically, the complexity is configurable
in two dimensions: 1) the total number of states is config-
urable by tuning the size, N, of the single state register, and
2) the probability of choosing the correct unlocking code
sequence is adjustable by altering the size, M, of the compara-
tor/mux that checks input codes against hard-coded (random)
values (List. 1). We develop a utility in Rust, using the kaze
crate [71], to auto-generate 480 different lock state machines
of various complexities, i.e., different values of N, M, and
random correct code sequences.

5.2 Digital Lock HSB Architectures
To study these designs, we construct two HSB architectures
(Fig. 7) using two hardware DV methodologies: CRV and
Hardware Fuzzing. The CRV architecture (Fig. 7A) attempts
to unlock the lock through a brute-force approach, where
random code sequences are driven into the DUT until the un-
locked state is reached. If the random sequence fails to unlock
the lock, the DUT is reset, and a new random sequence is
supplied. If the sequence succeeds, an SVA is violated, which
terminates the simulation. The random code sequences are
constrained in the sense that only valid code sequences are
driven into the DUT, i.e., 1) each code in the sequence is in
the range [0,2M) for locks with M-bit code comparators, and
2) sequences contain exactly 2N − 1 input codes for locks
with 2N states. The CRV testbench is implemented with the
cocotb [77] framework and simulations are run with Verila-
tor [64].

Alternatively, the Hardware Fuzzing HSB (Fig. 7B) takes
input from a software fuzzer that generates code sequences
for the DUT. The fuzzer initializes and checkpoints, a process
running the HSB (Fig. 2), and repeatedly forks this process
and tries various code sequence inputs. If an incorrect code
sequence is supplied, the fuzzer forks a new process (equiva-
lent to resetting the DUT) and tries again. If the correct code
sequence is provided, an SVA is violated, which the fuzzer
registers as a program crash. The difference between CRV
and Hardware Fuzzing is that the fuzzer traces coverage dur-
ing hardware simulation, and will save past code sequences
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Testbench (cocotb)

Lock (DUT)
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STDIN assert(!unlocked)
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Sim.
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Figure 7: Digital Lock HSB Architectures. (A) A traditional CRV ar-
chitecture: random input code sequences are driven into the DUT until the
unlocked state is reached. (B) A software fuzzer generates tests to drive the
DUT. The fuzzer monitors coverage of the DUT during test execution and
uses this information to generate future tests. Both HSBs are configured to
terminate execution upon unlocking the lock using an SVA in the testbench
that signals the simulation engine (Fig. 2) to abort.

that get closer to unlocking the lock. These past sequences
are then mutated to generate future sequences. Thus, past
inputs are used to craft more intelligent inputs in the future.
To interface the software fuzzer with the HSB, we:

1. implement a C++ testbench harness from Algo. 1 that
reads fuzzer-generated bytes from stdin and feeds them
directly to the code input of the lock, and

2. instrument the HSB containing the DUT by compiling
it with afl-clang-fast++.

5.3 Interfacing Software Fuzzers with Hard-
ware

There are two questions that arise when interfacing software
fuzzers with HSBs. First, unlike most software applications,
software models of hardware are not standalone binaries.
They must be combined—typically by either static or dynamic
linking—with a testbench and simulation engine to form an
HSB (§2.1.2). Of these three components—DUT, testbench,
and simulation engine—we seek to maximize coverage of
only the DUT. We do not want to waste fuzzing cycles on
the testbench or simulation engine. Since coverage tracing
instrumentation provides an indirect method to coarsely steer
the fuzzer towards components of interest [5], it would be
considered good practice to instrument just the DUT portion
of the HSB. However, while the DUT is ultimately what we
want to fuzz, the fuzzer must learn to use the testbench and
simulation engine to manipulate the DUT. Therefore, what
components of the HSB should we instrument to maximize
fuzzer performance, yet ensure coverage convergence?

Second, when simulating hardware, the DUT must be reset
to a clean state before it can start processing inputs. Tradi-
tionally, the testbench portion of the HSB performs this reset
by asserting the DUT’s global reset signal for a set number
of clock cycles. Since the fuzzer instantiates, and repeatedly
forks the process executing the HSB, this reset process will
happen hundreds, or (potentially) thousands of times per sec-
ond as each test execution is processed. While some software



Figure 8: Instrumentation Level vs. Coverage Convergence Rate. Dis-
tribution of fuzzer run times required to unlock various sized digital locks
(code widths are fixed at four bits), i.e., achieve ≈ full FSM coverage. For
each HSB, we vary the components we instrument for coverage tracing. Run
times are normalized to the median DUT-only instrumentation level (orange)
across each lock size (red line). While the fuzzer uses the testbench and
simulation engine to manipulate the DUT, instrumenting only the DUT does
not hinder the coverage convergence rate of the fuzzer. Rather, it improves it
when DUT sizes are small, compared to the simulation engine and testbench
(Fig. 9).

fuzzers [43, 91] enable users to perform initialization opera-
tions before the program under test is forked—meaning the
DUT reset could be performed once, as each forking opera-
tion essentially sets the HSB back to a clean state—-this may
not always be the case. Moreover, it complicates fuzzer–HSB
integration, which contradicts the whole premise of our ap-
proach, i.e., low-overhead, design-agnostic CDG. Therefore,
we ask: is this fuzzing initialization feature required to fuzz
HSBs?

5.3.1 Instrumenting HSBs for Fuzzing

To determine the components of the HSB we should instru-
ment, we measure the fuzzing run times to achieve approx-
imate full FSM coverage4 of several lock designs, i.e., the
time it takes the fuzzer to generate a sequence of input codes
that unlocks each lock. We measure this by modifying the
fuzzer to terminate upon detecting the first crash, which we
produce using a single SVA that monitors the condition of the
unlocked signal (List. 1). Specifically, using lock designs with
16, 32, and 64 states, and input codes widths of four bits, we
construct HSBs following the architecture shown in Fig. 7B.
For each HSB, we vary the components we instrument by
using different compiler settings for each component.5 First,
we (naïvely) instrument all components, then only the DUT.

4We use the term approximate when referring to full FSM coverage,
since we are not excising the lock’s reset state transitions (Fig. 6) in these
experiments.

5Verilator conveniently contains each component—DUT, testbench, and
simulation engine—in separate C++ files, so each file can be compiled with
separate settings (i.e., with or without coverage tracing instrumentation).

Figure 9: Basic Blocks per Simulation Binary Component. We break
down the number of basic blocks that comprise the three components within
HSBs of different size locks (Fig. 6 & List. 1), generated by Verilator [64]:
simulation engine and testbench (TB), and DUT. As locks increase in size,
defined by the number of FSM states (code widths are fixed to 4 bits), so do
the number of basic blocks in their software model.

Next, we fuzz each HSB 50 times, seeding the fuzzer with an
empty file in each experiment.

We plot the distribution of fuzzing run times in Fig. 8.
Since fuzzing is an inherently random process, we plot only
the middle third of run times across all instrumentation levels
and lock sizes. Moreover, all run times are normalized to the
median DUT-only instrumentation run times (orange) across
each lock size. In addition to plotting fuzzing run times, we
plot the number of basic blocks within each component of
the HSB in Fig. 9. Across all lock sizes, we observe that
only instrumenting the DUT does not handicap the fuzzer,
but rather improves the rate of coverage convergence! In fact,
we perform a Mann-Whitney U test, with a 0.05 significance
level, and find all the run-time improvements to be statisti-
cally significant. Moreover, we observe that even though the
run-time improvements are less significant as the DUT size
increases compared to the simulation engine and testbench
(Fig. 9), instrumenting only the DUT never handicaps the
fuzzer performance.

5.3.2 Hardware Resets vs. Fuzzer Performance

To determine if DUT resets present a performance bottleneck,
we measure the degradation in fuzzing performance due to
the repeated simulation of DUT resets. We take advantage of
a unique feature of a popular greybox fuzzer [91] that enables
configuring the exact location of initializing the fork server.6

This enables the fuzzer to perform any program-specific ini-
tialization operations once, prior to forking children processes
to fuzz. Using this feature, we repeat the same fuzzing run

6By default, AFL [91] instantiates a process from the binary under test,
pauses it, and repeatedly forks it to create identical processes to feed test
inputs to. The component of AFL that performs process forking is known as
the fork server.



Figure 10: Hardware Resets vs. Fuzzer Performance. Fuzzing run times
across across digital locks (similar to Fig. 8) with different fork server initial-
ization locations in the testbench to eliminate overhead due to the repeated
simulation of hardware DUT resets. DUT resets are only a fuzzing bottleneck
when DUTs are small, reducing fuzzer–HSB integration complexity.

time analysis performed in §5.3.1, except we instrument all
simulation binary components, and compare two variations
of the digital lock HSB shown in Fig. 7B. In one testbench,
we use the default fork server initialization location: at the
start of main(). In the other testbench, we initialize the fork
server after the point where the DUT has been reset.

Fig. 10 shows our results. Again, we drop outliers by plot-
ting only the middle third of run times across all lock sizes
and fork server initialization points. Additionally, we normal-
ize all run times to the median “after DUT reset” run times
(orange) across each lock size. From these results, we apply
the Mann-Whitney U test (with 0.05 significance level) be-
tween run times. This time, only locks with 8 and 16 states
yield p-values less than 0.05. This indicates the overhead of
continuously resetting the DUT during fuzzing diminishes as
the DUT increases in complexity.7 Additionally, we note that
even the largest digital locks we study (64 states), are smaller
than the smallest OpenTitan core, the RISC-V Timer, in terms
of number of basic blocks in the software model (Fig. 9 &
Table 2).

5.4 Hardware Fuzzing vs. CRV
Using the techniques we learned from above, we perform a
run-time comparison analysis between Hardware Fuzzing and
CRV,8 the current state-of-the-art hardware dynamic verifica-
tion technique. We perform these experiments using digital

7While the appearance of Fig. 10 may allude that when the number
of states is 32, forking after DUT resets takes longer than forking at the
testbench entry point, deeper analysis reveals the variance makes this appear
so (the "forking after reset" median is still lower). Regardless, the main
takeaway from Fig. 10 is for large designs, the DUT reset overheads are not
a bottleneck.

8CRV is widely deployed in any DV testbenches built around the co-
cotb [77] or UVM [1] frameworks, e.g., all OpenTitan [44] IP core test-
benches.

locks of various complexities, from 2 to 64 states, and code
widths of 1 to 8 bits. The two HSB architectures we compare
are shown in Fig. 7, and discussed in §5.2. Note the fuzzer
was again seeded with an empty file to align its starting state
with the CRV tests.

Similar to our instrumentation and reset experiments (§5.3)
we measure the fuzzing run times required to achieve ≈ full
FSM coverage of each lock design, i.e., the time to unlock
each lock. We illustrate these run times in heatmaps shown
in Fig. 11. We perform 20 trials for each experiment and
average these run times in each square of a heatmap. While
the difference between the two approaches is indistinguish-
able for extremely small designs, the advantages of Hardware
Fuzzing become apparent as designs increase in complex-
ity. For medium to larger lock designs, Hardware Fuzzing
achieves full FSM coverage faster than CRV by over two
orders-of-magnitude, even when the fuzzer is seeded with
an empty file. Moreover, many CRV experiments were ter-
minated early (after running for five days) to save money on
GCP instances.

6 Practicality Evaluation

In the second part of our evaluation, we address two remain-
ing questions. First, how does Hardware Fuzzing compare
with prior RTL fuzzing schemes, e.g., RFUZZ [39], in terms
of HDL code coverage? While Laeufer et al. were the first to
demonstrate fuzzing RTL with RFUZZ [39], we argue for an
entirely different approach (Fig. 1), fuzzing software models
of RTL hardware, rather than the RTL hardware itself. Lastly,
how does Hardware Fuzzing perform in practice commercial-
grade hardware IP? To address these questions, we perform
E2E fuzzing analyses on several open-source hardware de-
signs, including five commercial-grade cores from Google’s
OpenTitan [44] SoC, four SiFive TileLink peripherals, three
RISC-V CPUs, and an FFT accelerator.

6.1 Hardware Fuzzing vs. RFUZZ
Unlike our approach, RFUZZ instruments RTL hardware di-
rectly by injecting coverage-tracing hardware into the RTL
when it is compiled from a high-level HDL, like FIRRTL, to
Verilog. Moreover, RFUZZ does not exploit any bus-specific
harnesses, rather, it generates design-specific harnesses that
are fed fuzzer-generated bit-vectors to hardware input ports,
as described in Algo. 1 and demonstrated in the fuzzing har-
ness built for the digital lock in Fig. 7b.

To demonstrate the differences between our approach and
RFUZZ, we compare the HDL line coverage achieved by both
approaches over the course of fuzzing eight different hard-
ware designs for 24 hours. Specifically, we fuzz the same eight
hardware designs in the original RFUZZ paper [39], including
the I2C, SPI, PWM, and UART SiFive TileLink IP blocks [63],
three RISC-V Sodor CPUs [59], and an FFT accelerator [58].



Figure 11: Hardware Fuzzing vs. CRV. Run times for both Hardware Fuzzing (A) and CRV (B) to achieve ≈ full FSM coverage of various digital lock
(Fig. 6) designs—i.e., time to unlock the lock—using the testbench architectures shown in Fig. 7. Run times are averaged across 20 trials for each lock
design—defined by a (# states, code width) pair—and DV method combination. Across these designs, Hardware Fuzzing achieves full FSM coverage faster than
traditional CRV approaches, by over two orders of magnitude.

For each core, we use the same RFUZZ-generated test har-
ness across both approaches, but use different fuzzing mech-
anisms, as highlighted in Fig. 1. Specifically, RFUZZ uses a
custom fuzzer (very similar to AFL12) that directly measures
RTL coverage using Verilog-level instrumentation, while our
(Hardware Fuzzing) approach uses a software fuzzer (i.e.,
AFL) that measures RTL coverage using HSB-level instru-
mentation.

Since RFUZZ provides a command-line option to seed the
fuzzer with zero-level input signals for a provided number of
clock cycles, we perform several microbenchmarks to com-
pare the effects of varying this parameter across both fuzzing
setups. Specifically, for each core, we perform five trials with
both fuzzing techniques, using seed inputs that translate to
holding all DUT input signals at a logical zero for one, three,
and five clock cycles, and compare the results. To measure our
worst case performance vs. RFUZZ, we select the best-case
RFUZZ results (i.e., highest coverage across all trials), and
compare them with the worst-case Hardware Fuzzing results
(i.e., lowest coverage across all trials). Our results are plotted
in Fig. 12. After 24 hours of fuzzing, across all cores and
seeds, the average HDL line coverage improvement using our
Hardware Fuzzing approach over RFUZZ was 26.70%, while
the minimum and maximum improvements are 14.82% and
42.64%, respectively. Lastly, we apply the Mann-Whitney U
test (with 0.05 significance level) between all fuzzing trials
across all cores, and observe p-values less than 0.05.

6.2 Fuzzing OpenTitan IP
To address the last question—How does Hardware Fuzzing
perform in practice on commercial-grade hardware?—we
fuzz five IP blocks from Google’s OpenTitan silicon root-of-

Table 2: OpenTitan IP Core Complexity in HW and SW Domains.

IP Core HW LOC SW LOC # Basic Blocks* # SVAs†

AES 4,562 38,036 3,414 53

Alert Handler 4,198 16,260 2,920 34

HMAC 2,695 18,005 1,764 30

KMAC 4,585 119,297 6,996 44

RV Timer 677 3,111 290 8

* # of basic blocks in compiled software model with O3 optimization.
† # of SystemVerilog Assertions included in IP HDL at time of writing.

trust SoC [44], including the: AES, HMAC, KMAC, RISC-V
Timer, and Alert Handler cores. While each core performs
different functions,9 they all conform to the OpenTitan Com-
portability Specification [17], implying they are all con-
trolled via reads and writes to memory-mapped registers
over a TL-UL bus. By adhering to a uniform bus protocol,
we are able to re-use a generic fuzzing harness (Fig. 13), facil-
itating the deployability of our approach. Below, we highlight
the functionality of each IP core. Additionally, in Table 2, we
report the complexity of each IP core in both the hardware and
software domains, in terms of Lines of Code (LOC), number
of basic blocks, and number of SVAs provided in each core’s
HDL. Software models of each hardware design are produced
using Verilator, as we describe in §3.1.

6.2.1 Fuzzing OpenTitan IP with Empty Seeds

Unlike most software applications that are fuzzed [61], we
observe that software models of hardware are quite small
(Table 2). So, we decided to experiment fuzzing OpenTitan

9For more information on the functionalities of each OpenTitan IP block,
see https://docs.opentitan.org/hw/ip/.

https://docs.opentitan.org/hw/ip/
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Figure 12: Hardware Fuzzing vs. RFUZZ. We fuzz eight different
hardware designs, including an FFT accelerator, RISC-V CPUs, and TileLink
peripherals, with our Hardware Fuzzing approach vs. RFUZZ [39] (Fig. 1),
using input seeds that provide zero-level input signals to the DUTs for one,
three, and five clock cycles. Across all cores and input seed configurations,
our approach yields 26.70% better HDL coverage on average (than RFUZZ)
after 24 hours of fuzzing.

cores using a single empty seed file as starting input, this time
for only one hour. We plot the results of this experiment in
Fig. 14. After only one hour of fuzzing with no proper starting
seeds, we achieve over 83% HDL line coverage across AES,
Alert Handler, HMAC, and RV Timer cores, and over 65%
coverage of the KMAC core.

6.2.2 Fuzzing for Bugs in OpenTitan IPs

While coverage is an important metric, the ultimate goal of
fuzzing hardware is to automatically uncover bugs, before
they percolate into fabricated silicon. Therefore, in our final
evaluation, we demonstrate the effectiveness of Hardware
Fuzzing at finding five RTL bugs, one in each OpenTitan
IP block we study. Specifically, in the AES, Alert Handler,
HMAC, and RV Timer IPs, we implant four of the same syn-
thetic bugs used in the Hack@DAC competition [20], and

IP core (DUT)

STDIN Decode

Generic Testbench (C++)

AFL TileLink

Seeds*

co
ve

ra
g

e Fetch

TileLink DriverSVAs

TileLink Bus

Provided by OpenTitan Our Design

.hwf

Ha
rd

w
ar

e 
Si

m
ul

at
io

n 
Bi

na
ry

Figure 13: OpenTitan HSB Architecture. A software fuzzer learns to
generate fuzzing instructions (Fig. 4)—from .hwf seed files—based on a
hardware fuzzing grammar (§4.1.2). It pipes these instructions to stdin
where a generic C++ fuzzing harness fetches/decodes them, and performs the
corresponding TileLink bus operations to drive the DUT. SVAs are evaluated
during execution of the HSB, and produce a program crash (if violated), that
is caught and reported by the software fuzzer.
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Figure 14: Coverage vs. Time Fuzzing with Empty Seeds. Fuzzing five
OpenTitan [44] IP cores for one hour, seeding the fuzzer with an empty file in
each case, yields over 83% HDL line coverage in three out of four designs.

for the KMAC IP, we attempt to re-detect a bug found in the
wild, that was reported on the OpenTitan public GitHub (Issue
#6408).10 Across all IPs, we craft generic SVAs to produce
HSB crashes upon encountering out-of-spec hardware be-
haviors. These include SVAs to check FSM transitions, lock
registers, and other functional behaviors of an IP. In Table 3,
we describe the bugs in each IP, and for each IP except the
KMAC,11 we list the corresponding Hack@DAC bug num-
ber [20]. Additionally, in Table 3, we list the time it took our
fuzzer to detect each bug when seeded with a set of inputs
that simply resets and initializes each DUT to perform its
prescribed tasks. Namely, for the AES, our seed configures
the device to operate in CTR mode, for the Alert Handler, our
seed does nothing after resetting the device, for the HMAC,
our seed configures the device to perform SHA256 hashes, for
the KMAC, our seed configures the device to perform KMAC
operations in cSHAKE hashing mode, and lastly, for the RV

10https://github.com/lowRISC/opentitan/issues/6408
11The KMAC bug was not a Hack@DAC bug that was intentionally im-

planted, rather, it was a real bug. See link above.



Table 3: Hardware Fuzzing RTL Bug Discovery Times.

IP Bug Description Hack@DAC
Bug #

Discovery
Time (s)

AES FSM bug causes DoS. 18 65.1

Alert Lock writable by software. 4 396.5
Handler

HMAC Incorrect padding pro-
duces insecure hash.

19 46.9

KMAC FSM bug skips entropy
state refresh.

N/A11 35548

RV Timer Faulty logic causes inaccu-
rate time interrupt tick.

15 5.1

Timer, our seed arms the timer. Across each core we study, we
are able to detect four out of five bugs in less than 10 minutes,
and all bugs in less than 10 hours, with initialization seeds
that are orders-of-magnitude less complex than conventional
dynamic verification testbenches.

7 Discussion

Detecting Bugs During Fuzzing. The focus of Hardware
Fuzzing is to provide a scalable yet flexible solution for in-
tegrating CDG with hardware simulation. However, test gen-
eration and hardware simulation comprise only two-thirds
of the hardware verification process (§2.1). The final, and
arguably most important, step is detecting incorrect hardware
behavior, i.e., test evaluation in §2.1.3. For this there are two
approaches: 1) invariant checking and 2) (gold) model check-
ing. In both cases, we trigger HSB crashes upon detecting
incorrect hardware behavior, which software fuzzers log. For
invariant checks, we use SVAs that send the HSB process
the SIGABRT signal upon assertion violation (demonstrated in
§6.2.2). Likewise, for gold model checking testbenches any
mismatches between models results in a SIGABRT.

Developing Additional Bus Protocols. To provide a
design-agnostic interface to fuzz RTL hardware, we develop
a design-agnostic testbench harness (Fig. 13). Our harness
decodes fuzzer-generated tests using a bus-specific grammar
(§4.1.2), and produces corresponding TL-UL bus transactions
that drive a DUT. In our current implementation, our generic
testbench harness conforms to the TL-UL bus protocol [29].
As a result, we can fuzz any IP core that speaks the same bus
protocol (e.g., all OpenTitan cores [44]). To fuzz cores that
speak other bus protocols (e.g., Wishbone, AMBA, Avalon,
etc.), users can simply write a new harness for the bus they
wish to support.

Writing a new bus harness requires developing an API with
two (or more) functions that represent possible bus transac-
tions that the fuzzing harness (testbench) can initiate. These
functions toggle the bus interface signals in the correct order,
to complete a bus transaction, e.g., reading/writing to/from a
specific address. For the TL-UL bus protocol we study, only
a read (Get in TL-UL terms) and write (Put in TL-UL terms)

function are required. Implementing these functions took 380
lines of C++ code (including supporting debug code). For
more details on how to implement your own fuzzing harness
based off our TL-UL harness, we refer you to our open-source
codebase.

Hardware without a Bus Interface. For hardware designs
that perform I/O over a generic set of ports that do not con-
form to any bus protocol, we provide a generic testbench
harness that maps fuzzer-generated input files across spatial
and temporal domains by interpreting each fuzzer-generated
file as a sequence of DUT inputs (Algo. 1). We demonstrate
this Hardware Fuzzing configuration when fuzzing various
digital locks (Fig. 7B) and the RFUZZ cores (Fig. 12). Specif-
ically, RFUZZ automatically generates a testbench harness
for each DUT that takes as input a byte array each clock cycle,
and maps the bits in the array to the inputs of the DUT. Our
generic testbench harness then wraps the RFUZZ-generated
testbench, reading input bytes generated by the fuzzer, and
routing them directly to the (auto-generated) RFUZZ test-
bench byte array.

Note, if any DUT inputs require structural dependencies,
we recommend developing a grammar and corresponding
testbench—similar to our bus-specific grammar (§4.1.2)—to
aid the fuzzer in generating valid test cases. Designers can use
the lessons in this paper to guide their core-specific grammar
designs.

Limitations. While Hardware Fuzzing is both efficient
and design-agnostic, there are some limitations. First, unlike
software, there is no notion of a hardware sanitizer, that can
add safeguards against generic classes of hardware bugs for
the fuzzer to sniff out. While we envision hardware sanitizers
being a future active research area, for now, DV engineers
must create invariants or gold models to check design be-
havior against for the fuzzer to find crashing inputs. Second,
there is no notion of analog behavior in RTL hardware, let
alone in translated software models. In its current implemen-
tation, Hardware Fuzzing is not effective against detecting
side-channel vulnerabilities that rely on information transmis-
sion/leakage through analog domains.

8 Related Work

There are two categories of prior CDG approaches: 1) design-
agnostic and 2) design-specific.

Design-Agnostic. Laeufer et al. ’s RFUZZ [39] is the most
relevant prior work, which attempts to build a full-fledged
design-agnostic RTL fuzzer. To achieve their goal, they pro-
pose a new RTL coverage metric—mux toggle coverage—that
measures if the control signal to a 2:1 multiplexer expresses
both states (0 and 1). Like our approach, they use a fuzzer
very similar to AFL.12 Unlike our approach, they instrument

12According to their GitHub repository, the RFUZZ fuzzer, called kfuzz, is
mostly a re-implementation of AFL in the Rust programming language [38].



the RTL directly, by injecting additional HDL into the design.
Unfortunately, this has two drawbacks. First, to instrument
the RTL for coverage tracing, the authors of RFUZZ develop
a custom optimization pass on top of the FIRRTL compiler.
However, the FIRRTL compiler, takes as input FIRRTL code,
and translates it to Verilog. This implies that their coverage-
tracing instrumentation tooling is only compatible with hard-
ware designs described in FIRRTL, or an HDL that is easily
translated to FIRRTL, e.g., Chisel.13 Unfortunately, translat-
ing (System)Verilog designs to FIRRTL is non-trivial, and
experimental at best [8]. Second, RFUZZ requires some de-
signs be modified to have reset times on the order of one to
two clock cycles, since designs must be reset between test
executions, and slow resets can lead to poor fuzzing perfor-
mance.

Similarly, Gent et al. [22] also propose an automatic test
pattern generator based on custom coverage coverage mon-
itors injected into the RTL. However, given their coverage
tracing methods, Laeufer et al. [39] question the scalability
of their approach to larger designs.

Design-Specific. Unlike the design-agnostic approaches,
several researchers propose CDG techniques exclusively for
processors. Zhang et al. [92] propose Coppelia, a tool that
uses a custom symbolic execution engine (built on top of
KLEE [9]) on software models of the RTL. Coppelia’s goal
is to target specific security-critical properties of processors;
Hardware Fuzzing enables combining such static methods
with fuzzing (i.e., concolic execution [66]) for free, overcom-
ing the limits of symbolic execution alone. Hur et al. [28]
propose DIFUZZRTL that combines RFUZZ with golden model
checking to find bugs in CPUs. However, Hardware Fuzzing
produces better coverage than RFUZZ (§6.1), and can be com-
bined with invariant or with golden model checking to detect
bugs. Lastly, two other processor-specific CDG approaches
are Squillero’s MicroGP [65] and Bose et al. ’s [6] that use
a genetic algorithms to generate random assembly programs
that maximize RTL code coverage of a processor. Unlike
Hardware Fuzzing, these approaches require custom DUT-
specific grammars to build assembly programs from.

9 Conclusion

Hardware Fuzzing is an effective solution to CDG for hard-
ware DV. Unlike prior work, we take advantage of feature-rich
software testing methodologies and tools, to solve a long-
standing problem in hardware DV. To make our approach
attractive to DV practitioners, we solve several key deploy-
ability challenges, including developing generic interfaces
(grammar & testbench) to fuzz RTL in a design-agnostic man-
ner. Using our generic grammar and testbench, we show that
our Hardware Fuzzing approach can achieve over 83% HDL

13This is further confirmed by reviewing their GitHub project [38], which
only contains hardware designs written in FIRRTL.

code coverage across four of the five OpenTitan IPs we study
in only one hour, with no knowledge of the DUT design or
implementation. Moreover, we demonstrate that approach can
also detect various real and implanted bugs in the same de-
signs, in less than 10 hours. Finally, compared to standard
dynamic verification practices and prior RTL fuzzing tech-
niques [39], with Hardware Fuzzing, we achieve over two
orders-of-magnitude and 26.70% coverage convergence im-
provements, respectively.
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A Digital Lock HDL

Listing 1: SystemVerilog of Lock with N=log2(#states) and
M-bit codes.

1 module lock(
2 input reset_n ,
3 input clk ,
4 input [M−1:0] code,
5 output unlocked
6 ) ;
7 logic [N−1:0] state ;
8 logic [M−1:0] correct_codes [N];
9

10 // Secret codes set to random values
11 for (genvar i = 0; i < N; i++) begin : secret_codes
12 assign correct_codes [ i ] = <random value>;
13 end
14

15 assign unlocked = ( state == ’1) ? 1’b1 : 1’b0;
16

17 always @(posedge clk) begin
18 if (! reset_n ) begin
19 state <= ’0;
20 end else if (!unlocked && code == correct_codes[ state ])

begin
21 state <= state + 1’b1;
22 end else begin
23 state <= state ;
24 end
25 end
26 endmodule

B Optimizing the Hardware Fuzzing Gram-
mar

Recall, to facilitate widespread adoption of Hardware Fuzzing
we design a generic testbench fuzzing harness that decodes
a grammar and performs corresponding TL-UL bus transac-
tions to exercise the DUT (Fig. 13). However, there are im-
plementation questions surrounding how the grammar should
be decoded (§4.1.2):

1. How should we decode 8-bit opcodes when the opcode
space defines less than 28 valid testbench actions?

2. How should we pack Hardware Fuzzing instruction
frames that conform to our grammar?

B.1 Opcode Formats
In its current state, we define three opcodes in our grammar
that correspond to three actions our generic testbench can per-
form (Table 1): 1) wait one clock cycle, 2) TL-UL read, and
3) TL-UL write. However, we chose to represent these op-
codes with a single byte (Fig. 4). Choosing a larger field than
necessary has implications regarding the fuzzability of our
grammar. In its current state, 253 of the 256 possible opcode
values may be useless depending on how they are decoded by
the testbench. Therefore we propose, and empirically study,
two design choices for decoding Hardware Fuzzing opcodes
into testbench actions:

• Constant: constant values are used to represent each op-
code corresponding to a single testbench action. Remain-
ing opcode values are decoded as invalid, and ignored.

• Mapped: equal sized ranges of opcode values are
mapped to valid testbench actions. No invalid opcode
values exist.

B.2 Instruction Frame Formats
Of the three actions our testbench can perform—wait, read,
and write—some require additional information. Namely, the
TL-UL read action requires a 32-bit address field, and the
TL-UL write action requires 32-bit data and address fields.
Given this, there are two natural ways to decode Hardware
Fuzzing instructions (Fig. 4):

• Fixed: a fixed instruction frame size is decoded regard-
less of the opcode. Address and data fields could go
unused depending on the opcode.

• Variable: a variable instruction frame size is decoded.
Address and data fields are only appended to opcodes
that correspond to TL-UL read and write testbench ac-
tions. No address/data information goes unused.

B.3 Results
To determine the optimal Hardware Fuzzing grammar, we
fuzz four OpenTitan IP blocks—the AES, HMAC, KMAC,
and RV-Timer—for 24 hours using all combinations of opcode
and instruction frame formats mentioned above. For each core
we seed the fuzzer with 8–12 binary Hardware Fuzzing seed
files (in the corresponding Hardware Fuzzing grammar) that
correctly drive each core, with the exception of the RV-Timer
core, which we seed with a single wait operation instruction
due to its simplicity. For each experiment, we extract and plot
three DUT coverage metrics over fuzz times in Fig. 15. These
metrics include: 1) line coverage of the DUT software model,

https://lcamtuf.coredump.cx/afl/
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Figure 15: Coverage Convergence vs. Hardware Fuzzing Grammar. Various software and hardware coverage metrics over fuzzing time across four
OpenTitan [44] IP cores and hardware fuzzing grammar variations (§B). In the first row, we plot line coverage of the software models of each hardware core
computed using kcov. In the second row, we plot basic block coverage computed using LLVM. In last row, we plot HDL line coverage (of the hardware itself)
computed using Verilator [64]. From these results we formulate two conclusions: 1) coverage in the software domain correlates to coverage in the hardware
domain, and 2) the Hardware Fuzzing grammar with variable instruction frames is best for greybox fuzzers that prioritize small test files.

2) basic block coverage of the same, and 3) line coverage
of the DUT’s HDL. Software line coverage is computed us-
ing kcov [34], software basic block coverage is computed
using LLVM [40], and hardware line coverage is computed
using Verilator [64]. Since we perform 10 repetitions of
each fuzzing experiment, we average and consolidate each
coverage time series into a single trace.

From these results we draw two conclusions. First, vari-
able instruction frames seem to perform better than fixed
frames, especially early in the fuzzing exploration. Since AFL
prioritizes keeping test files small, we expect variable sized
instruction frames to produce better results, since this trans-
lates to longer hardware test sequences, and therefore deeper
possible explorations of the (sequential) state space. Second,
the opcode type seems to make little difference, for most ex-
periments, since there are only 256 possible values, a search
space AFL can explore very quickly. Lastly, we point out that
for simple cores, like the RV-Timer, Hardware Fuzzing is able
to achieve ≈85% HDL line coverage in less than a minute
(hence we do not plot the full 24-hour trace).
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