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Abstract—Bike sharing service (BSS) networks have been proliferating all over the globe thanks to their success as the first/last-mile

connectivity inside a smart city. Their (re)configuration— i.e., station (re)placement and dock resizing— has thus become increasingly

important for BSS providers and smart city planners. Instead of using conventional labor-intensivemanual surveys, we propose a novel

information fusion framework calledCBikes that (re)configures the BSSnetwork by jointly fusing crowdsourced station suggestions from

online websites and the usage history of bike stations. Using comprehensive real data analyses, we identify and exploit important global

trip patterns to (re)configure the BSS network while mitigating the local biases of individual feedbacks. Specifically, crowdsourced

feedbacks, station usage, cost and other constraints are fused into a joint optimization of BSS network configuration.We alsomodel the

spatial distributions of station usage to account for and estimate the unexplored regions without historical usage information.We further

design a semidefinite programming transformation to solve the bike station (re)placement problem efficiently and effectively. Our

extensive data analytics and evaluation have shown CBikes’ effectiveness and accuracy in (re)placing stations and resizing docks

based on three large BSS systems (with > 900 stations) in Chicago, Twin Cities (Minneapolis–Saint Paul), and Los Angeles.

Index Terms—Bike sharing, urban planning, crowdsourcing, information fusion, semidefinite programming, urban computing

Ç

1 INTRODUCTION

WITH the advent of smart cities/communities and Inter-
net of Things (IoTs), the urban sharing economy has

been evolving very rapidly. In particular, bike sharing ser-
vice (BSS) has emerged as one of the most popular and revo-
lutionary powers that change the people’s urban life/
health. Bike sharing enables the first/last-mile urban travel
to be more economic, greener and healthier than traditional
gasoline-engine-powered vehicle riding. City transportation
also benefits from an additional network of bike stations
connected by the trips with less hassle of traffic planning.

Experiencing deployment successes and receiving positive
feedbacks, many BSS providers have begun expanding their
BSS networks. Owing to such an expansion, the global bike
sharing market is expected to grow at a compound annual
growth rate of 21 percent during 2018–2022.1 For example,
Divvy bicycle sharing program in Chicago, IL is adding
10,500 new bikes and 175 additional stations over the next
three years from 2019. Meanwhile, Citi Bike inNewYork City
will embrace another 4,000 bikes, 13 stations in the busiest

areas and 2,500 docks since 2019. On the other hand, there
exist BSS network shrinkages (at a micro or macro scale) for
financial, event, seasonal ormeteorological reasons.

With dynamic bike usage and complexity of urban envi-
ronments, how to expand and shrink, or (re)configure the
existing network of BSS stations becomes increasingly
important for the BSS providers. As stations and bicycles are
dynamically added/deleted/resized during the BSS (re)con-
figuration, the station relocation, or station (re)placement (i.e.,
add, move or remove a station), as well as their dock resizing
becomes challenging, involving more thorough site investi-
gation and labor-intensive user surveys.

To better leverage the collective knowledge from the BSS
users [5], many service providers, like aforementioned
Divvy in Chicago, have attempted to crowdsource various
station placement comments via their own websites, as
illustrated in Fig. 1. Interested users can easily pinpoint,
comment and vote for various potential station locations on
an interactive map. This way, the BSS systems can easily
and timelily obtain many online feedbacks for their next
stage expansion or shrinkage, while reducing their tradi-
tional survey and investigation costs significantly.

Despite its importance, however, how to (re)configure the
BSS network based on the aforementioned crowdsourced
comments is still very challenging and remains an open
problemdue to the following concerns:

� From the data perspective, the first challenge lies in
the heterogeneity of information inputs. Crowd-
sourced feedbacks usually provide local, fragmented
suggestions due to each individual’s limited geo-
graphic scope or personal interest/preference (say,
close to home residence), while BSS network (re)con-
figuration needs global knowledge of user mobility
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and station-to-station dynamics. How to incorporate
the local suggestions/comments together is impor-
tant and should thus be considered carefully.

� From the user’s perspective, as all stations are
“linked” by users’ trips, the second challenge stems
from their trip tendency. Overcrowded or inadequate
BSS network placement and ignorance of popular sta-
tion-station pairs for users’ commute may discourage
cyclists, thus lowering bike usage and platform profit.

� From the platform’s perspective, since the web crowds
are enabled with large freedom to label locations they
want, addressing such naturally-noisy/biased crowd-
sourced inputs becomes the third challenge, which
should be considered by a joint fusion formulation.

To address above challenges, we propose CBikes, a
novel joint information fusion framework for Crowd-
sourced Bike sharing Station network (re)configuration. Spe-
cifically, CBikes integrates local crowdsourced suggestions
with global historical bike usage data upon a geographical
map which is discretized into regions/grids. The informa-
tion fusion in CBikes not only takes into account the usage
at deployed/explored city regions, but also estimates the
usage at the unexplored/expansion ones. Given above,
CBikes converts BSS network (re)configuration into a graph
matching problem. Each vertex (station) of the graph (net-
work) is matched against this spatially and temporally-
varying map of fused knowledge, subject to edges (links) or
trips from others. We then formulate a novel joint optimiza-
tion problem to balance among crowd satisfaction, platform
utility, and (re)configuration cost.

CBikesmakes the following major contributions:

* Comprehensive (re)configuration data analysis: We ana-
lyze extensive real data of several BSS (re)configura-
tion cases, and identify the important properties of
their bike usage distribution evolution, BSS network
density alternation, trip correlations between bike
stations and crowdsourced feedbacks for the BSS
systems.

* Novel data-driven and computational model designs: We
derive important and practical data-driven model
designs for bike sharing station network, including a
novel metric for user trip tendencies, predicted usage
at unexplored city grids and inter-station distance
constraints, and integrate them in CBikes.

* Crowdsourced information fusion & joint optimization :
We propose a novel optimization framework which

jointly considers multi-modal data from crowdsourc-
ing and platform-usage statistics for BSS (re)configu-
ration. We first formulate a grid-based candidate
selection and graph matching problem, then trans-
form it into a novel semidefinite programming (SDP)
form, and finally solve it efficiently and effectively.

* Extensive experimental evaluation: CBikes has been
evaluated with significant amounts of real data (of
more than 900 stations) from 3 premium BSS systems
in Chicago, IL, Twin Cities (Minneapolis–Saint Paul),2

MN and Los Angeles, CA. These comprehensive stud-
ies validate the effectiveness and accuracy of CBikes
in optimizing bike sharing station (re)configuration
given crowdsourced inputs.

Despite its focus on BSS systems, CBikes can be
extended to other sharing/connected vehicle network (re)
configuration, including parking lot decisions for car-shar-
ing [37], gas station redeployment [32] and charging station
expansion for electric vehicles [14].

A preliminary version of this work was presented at a con-
ference [10]. Besides motivating and elaborating more upon
the core formulation (Sections 1, 4& 7), this versionmakes sig-
nificant improvements over the conference version as follows.

1) Estimated Usage at Unexplored Grids/Regions: The con-
ference version [10] did not model the bike usage at
those reconfigured or expansion grids, yielding less
accurate grid matching. While many researchers
studied demand distribution based on known histori-
cal trip data [18], [29], the problem of estimating the
demands at unexplored grids/locations has not been
investigated. In this version, we have also investi-
gated the latter problem, and developed an efficient
multi-layer neural network to estimate the usage dis-
tributions at those unexplored grids, which further
enhances the (re)configuration (relocation) perfor-
mance (Section 3).

2) Additional Experimental & Ablation Studies: We have
also conducted more experimental evaluations of the
proposed framework as well as several important
system parameters (including search scope and grid
size), validating the comprehensive model designs
(Sections 5.2 & 5.3).

3) Performance Improvement: Our new designs have been
shown to outperform those in the previous version in
terms of (re)placement/resizing accuracy improve-
ment and reconfiguration cost reduction (Section 5.3).

4) Deployment Discussions: We have also addedmore dis-
cussion upon the deployment of CBikes (Section 6).

The rest of this paper is organized as follows.We first over-
view the system framework and important concepts for our
problem in Section 2. Then, Section 3 presents (re)configura-
tion analysis and data-driven designs, followed by the core
problem formulation and novel optimization framework in
Section 4. Section 5 provides experimental evaluations, while
Section 6 discusses some deployment considerations. After
reviewing related work in Section 7, the paper finally con-
cludeswith Section 8.

Fig. 1. Illustration of BSS (re)configuration via crowdsourcing.

2. This metropolitan area is commonly known as the Twin Cities as
Minneapolis and Saint Paul are in very close geographic proximity.
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2 SYSTEM & CONCEPTS

We present the basic CBikes framework (Section 2.1) and
introduce important definitions of CBikes (Section 2.2), fol-
lowed by the datasets evaluated (Section 2.3).

2.1 System Framework

Fig. 2 shows the components and layers of CBikes. Specifi-
cally, CBikes consists of 4 consecutive layers for comput-
ing bike station (re)configuration: input, design, core and
action layers. At the input layer (Section 2.3), historical and
estimated station-usages, crowdsourced feedback of station
expansion/shrinkage suggestions, as well as predefined
costs are collected and delivered to a central server, pre-
processed and then stored into databases. Note that other
practical geographic design concerns or constraints, includ-
ing the number of service bikes and accessible station
deployment areas, are also inputted by the service provider,
processed and stored into its database. Our focus here is to
develop a generic optimization framework, given the above
primary and secondary information.

At the design layer (Section 3), we form the joint objective
functions, and integrate map information and station geo-
graphic distances into constraints. Finally, we formulate a
joint optimization framework, transform and solve it at the
core layer (Section 4), optimizing station sites with respect to
predefined map grids. Guided by the results of the action
layer, the service provider may (re)place stations and resize
their docks. In case results are not satisfactory, the parame-
ters can be tuned interactively for another optimization trial.

2.2 Key Concepts

We elaborate on the important terms, concepts or defini-
tions for our mathematical formulation. Formally, we have

Definition 1 Bike station network (BSN). Each station i is
represented by Si ¼ ðlati; loni; kiÞ, i 2 f1; . . . ;Mg, where
tuple ½lati; loni� denotes its geographic coordinates and ki � 0

is its capacity. Denote the location of each Si as a 2� 1 vector
lli ¼ ½lati; loni�T , and let L ¼ ll1; ll2; . . . ; llM½ �T be the M � 2
coordinate matrix of all stations on the map. Given a set of M
geographical nodes L and their links E � L� L connecting
them, a network of BSS stations is represented by a graph
G ¼ ðL;EÞ.
Given an already-deployed BSN, after a certain period

we obtain

Definition 2 Historical bike trip data. Each trip corre-
sponds to a user’s bike ride which happens at a certain time
from a station to another. Specifically, a set of bike trips from a
start station Si to an end Sj can be represented as ttði; jÞ ¼
fi; j; ðti; tjÞ0sg, where ðti; tjÞ0s are the set of pick-up/drop-off
timestamps of each trip in ttði; jÞ. Note that ttði; jÞ is symmetric
if and only if riders return their bikes at the same station as
they were rented, i.e., ttði; jÞ ¼ ttðj; iÞ iff i ¼ j.

Based on the deployment results the service providermay
initiate:

Definition 3 Bike station network (re)configuration
(BSNR). A phase of BSNR basically consists of station (re)
placement and dock resizing. At each BSNR, the service provider
can place new stations, remove or move existing ones, or just
keep them, and resize the docks. We consider two consecutive
stages of a BSNR, i.e., two sets of station status before and after
a (re)configuration. For ease of description, denote the eM sta-
tions before BSNR as eSi’s, and let the old (prior to the (re)config-
uration) network be eG ¼ ðeL; eEÞ. Each eSi’s location before BSNR

is denoted as elli ¼ ½flati; floni�, with the pre-(re)configured capac-
ity eki. At each BSNR, we consider (re)placing M stations and
resizing the dock capacity to accommodate a total ofK bikes.

We note that the number of stations to be (re)placed, M,
can be determined by the BSS platform as a known input
factor (can be represented as a budgetary constraint). BSNR
decisions should also involve public engagement and cater
to users’ demand. Before each BSNR, via certain media or
platform (like a website) interested users may easily suggest
station sites, i.e.,

Definition 4 Crowdsourced station feedbacks. Each feed-
back indexed by n on the interactive map is represented as
fn ¼ ðlatn; lonn; tn; textnÞ, where the pair ðlatn; lonnÞ is the
location/site coordinate, tn is its timestamp, and textn is the
related posted comment, if any.

We briefly introduce the actions of BSNR. Station (re)
placement is to find their appropriate locations. As search-
ing in continuous geo-space may lead to a computation
complexity problem, we discretize the entire map into mul-
tiple grids. This way, we have finite candidate sets for effi-
cient computation, whose granularity can be determined
via task customization [4], [18]. Formally, we have

Definition 5 Station (re)placement grid. The entire city
map is discretized into a set of R regular grids (rectangle grid

in our case), i.e., G ¼ ½g1; . . . ; gR�T , an R� 2 matrix where
each grid is given by a coordinate (2� 1 vector) of its center,
gr ¼ latr; lonr½ �T , r 2 f1; . . . ; Rg.
Note that R, the number of grids, is determined by

the trade-off of accuracy, granularity and computational

Fig. 2. The system framework flow of CBikes.
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efficiency (evaluated in Section 5). After station (re)place-
ment, CBikes further resizes their docks.

Definition 6 Dock resizing. The total dock capacity equals (or
at least) the total number of bikes, i.e.,

PM
i¼1 ki � K. CBikes

resizes the dock ki (enlarge, decrease or maintain) at each sta-
tion i to satisfy both incoming crowdsourced needs and histori-
cal/potential demands.

In our prototype studies, we consider the total dock
capacity as a pre-determined input by the BSS provider, i.e.,PM

i¼1 ki ¼ K. Note that the cost of dock resizing only consid-
ers those stations staying at the same locations as in eG.
Dock-related costs of other newly-added/removed stations
are included in their subtotals of creation and removal.

Profit, cost and station usage are critical from the plat-
form perspective, while matching request and convenience
may matter to the users. To accommodate both, we study in
this paper:

Definition 7 Crowdsourcing-based BSNR (CBSNR).
Given historical bike trip data, crowdsourced feedbacks, cost of
actions, and other practical BSS design constraints, CBSNR
problem is to (re)configure the existing network to jointly match
crowds’ feedbacks and station usage statistics at minimum cost.

2.3 Overview of Datasets Studied

We consider the following BSS data (including map informa-
tion) for our CBSNR analysis here and evaluation in Section 5:

� Divvy at Chicago, IL, which consists of total 582 sta-
tions by 2017 (2nd quarter). 3 major expansions with
total 282 new stations were recorded since 2013.
Overall, 11;544;750 trips are studied.

� Nice Ride at Twin Cities, MN, which includes a total of
202 stations in Minneapolis-St. Paul Metropolitan
area until 2016. 5 major expansions with 134 new sta-
tions are recorded since 2013. Overall, 2;857;027 trips
are analyzed.

� Metro Bike at Los Angeles County, CA, which consists
of total 119 stations in Los Angeles (LA) County by
2017 (3rd quarter). 2 major network expansions with
total 56 new stations are recorded since 2016. Over-
all, 277;195 trips are evaluated.

This massive trip data includes start/destination stations,
related pick-up/drop-off timestamps (or trip durations),
user type (say, day-pass holders or annual subscribers) or
even age/gender/birthday information. We further scrape
the crowdsourced feedbacks from “Suggest a Station”website
of each BSS provider (Divvy,3 Nice Ride4 and Metro Bike5).
For each CBSNR, we use the 1;100 latest feedbacks fn’s with
½latn; lonn�’s (with tn before the BSNR). In our studies, we
have filtered out the crowdsourced feedbacks in inaccessible
regions (Section 3.5).

Besides aforementioned datasets, we also collect the point-
of-interest (POI) data for each BSS system (Chicago: 4,329;

Twin Cities: 3,100; LA: 5,948) from the OpenStreetMap
(OSM)6 website. As most observations are qualitatively simi-
lar, we focus on Divvy and Nice Ride in the following data
analytics in Section 3.

3 (RE)CONFIGURATION ANALYSIS & DESIGN

The inherent complexity ofCBSNR calls for careful andpracti-
cal designs based on usage data and users’ feedback. We
design key components of CBikes and their integration
via comprehensive analysis of real data: historical and esti-
mated station usages (Sections 3.1 and 3.2), inter-station
trip tendency (Section 3.3), geographic distance constraint
(Section 3.4), andfinally crowdsourced feedbacks (Section 3.5).
For each component, we make important observations from
the data (before (re)configuration), and quantitatively formu-
late the design problem.

3.1 Historical Usage at Each Station

Observation. Intuitively, themore often a stationwas used at a
certain location, the more likely it will be kept there. We first
summarize and show the spatial station usage w.r.t. BSNR.
Figs. 3 and 4 visualize the spatial distribution of usage as a
heat map. The warmer the color, the more pick-ups/drop-
offs are recorded (log10ðusageÞ). Due to BSNR, clear configu-
ration changes can be seen between 2013 and 2015. More city
areas are covered, and higher usages can be observed among
the points of interests (including the Skyline and Lake Coast)
in Chicago as the network expands. Similar patterns can be
observed fromTwin Cities and LACounty.

Design. To better differentiate historical usages of differ-
ent stations, we design a usage-related measure for each Si

w.r.t. each gr. Let

Tr ¼ fttði; jÞjðSi is at grÞ
[

ðSj is at grÞg (1)

be the aggregated set of trips starting or ending at grid r. We
define the historical usage importance of gr for a station loca-
tion candidate lli as

Ui
r ,

expð�i
rjTrjÞ

1þ expð�i
rjTrjÞ ; (2)

where

�i
r ¼

elli � grelli��� ��� � kgrk
: (3)

Fig. 3. Distribution of total usage in Chicago, 2013.

3. http://www.suggest.divvybikes.com, Accessed Date: Feb-10-
2020.

4. http://www.wikimapping.com/wikimap/Nice-Ride-
Suggestions.html, Accessed Date: Feb-10-2020.

5. https://bikeshare.metro.net/suggest-a-location/, Accessed Date:
Feb-10-2020. 6. https://www.openstreetmap.org/, Accessed Date: Feb-10-2020.
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Here 0 < �i
r � 1 characterizes the normalized affinity or

closeness of station i with grid r in previous geographic
space, i.e., the closer Si was with gr before BSNR, the larger
�i
r gets. We consider 0 < Ui

r < 1, the scale of which can be
easily integrated with other formulations, and the exponen-
tial function strengthens the effect of large usage and physi-
cal closeness. Clearly, the more a station i is used at grid r,
the larger Ui

r is, and the more likely its location is kept or
(re)placed there.

3.2 Estimated Usage at Unexplored Grids/Regions

Observation. For those grids/regions without records of his-
torical usage, we need to further conduct the usage estimation
based on spatial and temporal data to infer their potential in
terms of popularity for a BSS station to relocate to. This way,
Eq. (2) can better characterize those unexplored grids in
CBikes’ core formulation. Since neighborhood urban func-
tionality, as visualized in Figs. 3 and 4, largely plays an impor-
tant role in bike pick-ups and drop-offs in practice, we further
introduce an efficient scheme to estimate the usage based on
the points-of-interest (POIs) at those unexplored grids.

Design. We consider the following factors in order to esti-
mate the potential of usage at unexplored grids:

1) relative geographical location (2-D): We consider the
relative location of each target grid r w.r.t. entire city
map, by normalizing its longitude and latitude into
[0, 1], i.e.,

zlat ¼ latr 	 latmin

latmax 	 latmin
; zlon ¼ lonr 	 lonmin

lonmax 	 lonmin
; (4)

where ½latmax; latmin; lonmax; lonmin� is the geographic
bounding box of the city (see Section 5.1). In practice,

one may filter out (add or remove geo-spatial con-
straints from the search scope) the grids which can-
not be accessed, e.g., rivers and buildings, before
estimating the usage.

2) geographic distances from the P1 nearest stations before
CBSNR (P1-D): Based on the street centerline map,
we find the geographic distances between the target
grid and each of its P1 nearest peer stations (before
CBSNR). Then, we have P1 distance measures
½zdist;1; . . . ; zdist;P1 �.

3) number of POIs for each type and total numbers of PoIs
((P2+1)-D): For each grid gr, we find regarding each
type of POI i (say, business or mall; i 2 f1; . . . ; P2g)
the number of venues, zi, within it. We also find the
total number of POIs, zsum within all the grids of the
city. We visualize the distributions of POIs (includ-
ing restaurants, cafes, banks, supermarkets and
many others based on key:amenity in OpenStreet-
Map (OSM)) in the city of Chicago and Minneapolis-
Saint Paul in Figs. 5 and 6.

4) PoI entropy (1-D): Since the functionality of a grid can
also be specified by a few certain types of POIs, we fur-
ther introduce the POI entropy to characterize it as:

zentropy ¼ 	
Xp
i

zi
zsum

log
zi
zsum

� �
: (5)

Specifically, we form a P -D (P=P1+P2+4) feature vector z
consisting of the above factors as input. Given the aggre-
gated historical usage of those explored grids before
CBSNR, we train a multi-layer fully-connected (FC) dense
neural network to estimate aggregated usage of the unex-
plored ones, denoted as jT0

rj. Its layer-to-layer propagation
can be given by

zl ¼ s Wl � zl	1 þ blð Þ; (6)

where Wl is the neuron weight matrix, bl is the bias vector
for layer l, and sð�Þ is the activation function (we use RELU
in our prototype). The output after multiple stacked layers
is the estimated jT0

rj at each grid, given input of the feature
vector z.

After predicting the potential usage bTr’s for each gr with-
out historical records, we feed them to Eq. (2) and calculate
the estimated usage importance bUi

r of a grid r for each station
candidate i. This way, CBikes accommodates both histori-
cal and estimated usage within the information fusion.

Note that the estimationmodel presented in Eq. (6) is gen-
eral enough to accommodate many other factors if available

Fig. 4. Distribution of total usage in Chicago, 2015.

Fig. 5. POI distribution in Chicago.

Fig. 6. POI distribution in Twin Cities.
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for better performance. We will further evaluate the benefi-
cial effect of usage estimation upon the reconfiguration of
CBikes in Section 5.

3.3 Inter-station Trip Tendency

Observation. Despite its importance, considering total usage
only may not be sufficient. For example, a BSS user may fre-
quently commute between a pair of stations (say, her/his
home and office or school). Individually considering each
station without inter-station trip tendency may overlook
such frequently commuting users (which yields a stable
platform income) and remove those stations having strong
links E � L� Lwith others.

To further illustrate this, Fig. 7 shows an example of trip
tendency among 5 stations in Chicago in 2014. We summa-
rize their pick-up/drop-off flows w.r.t. each outgoing/
incoming direction (i.e., a vector between start and destina-
tion). Dark blue sectors indicate the volume of outgoing bike
flowswhile light yellow represents incoming bikes. Volumes
in all directions are normalized to [0, 1] for each Si. The larger
radius of a sector, the more proportion of its bike flows start
or end in that direction. We can observe that a strong north–
south trip pattern w.r.t. stations along Lake Michigan
beaches mainly because the tourists’ recreational rides create
a large trip tendency at stations along the lake shore.

Similarly, Fig. 8 shows the trip tendency to/from several
stations in Minneapolis, MN. We can see strong bike flows
between west downtown and university area, indicating
bike commutes by students, staff and faculty. In particular,
we can observe significant south–west and south-east flows
at the station of 6th Ave. SE & University Ave. (circled),
which likely bridges the downtown and campus. Despite its
less total usage (lower Ui

r in Eq. (2)) than others, CBSNR
should also value importance of this station.

In summary, inter-station trip tendency is highly corre-
lated with purposes of users’ trip choice ðstart; endÞ, includ-
ing commutes between home and school or recreational
sightseeing. Further, its strength characterizes the volume/
tendency of urban flows. Therefore, we incorporate the ten-
dency in our optimization model.

Design. Recall that ttði; jÞ represents the set of bike trips
from Si to Sj (i 6¼ j). To focus on the connectivity and trip-
tendency, we adapt the link probability in theories of network
embedding [21], and define a new tendency metric pði; jÞ
between Si and Sj as

pði; jÞ ¼ 1

1þ exp 	~aji �~aij
� � ; (7)

where the vector ~aji represents the proportion of trips from i
to j, i.e., jttði; jÞj, as well as that of the remaining trips, i.e.,

~aji ¼
jttði; jÞjPM

k¼1;k6¼i jttði; kÞj
; 1	 jttði; jÞjPM

k¼1;k6¼i jttði; kÞj

" #
; (8)

and similarly for ~aij. Note that pð�; �Þ is symmetric, i.e.,
pði; jÞ ¼ pðj; iÞ. ~aji �~aij returns the dot product of the two
vectors.

In other words, the larger proportion of bikes are com-
muting between stations i and j, the larger pði; jÞ is (0 <
pði; jÞ < 1), implying more important connectivity of these

two stations. Then, we find
PM

j¼1;j6¼i pði; jÞ for each Si, further
indicating its overall connectivity with other stations. This
way, we may characterize the complex network structure
efficiently [21], highlighting the connectivity and trip-
tendency between stations. Considering the frequent usage
and travel patterns of bike users, BSNR should preserve
interactive connectivities between these stations.

We further visualize in Figs. 9 and 10 the distributions of
pði; jÞ’s (normalized) of two stations (red stars) in Chicago
and Minneapolis, which correspond to the trip patterns dis-
cussed in Figs. 7 and 8. The color of each grid represents the
value of the tendency metric of a station there with the

Fig. 7. Flow directions of 5 stations in Chicago 2014.

Fig. 8. Flow directions of 6 stations in Minneapolis, MN 2016.

Fig. 9. Distribution of tendency along Michigan Lake shore.
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target one. The warmer the color, the larger the metric
value, meaning more trips happen between the target sta-
tion and those neighbors. Thanks to the modeling of pði; jÞ
we can fuse the user preferences in CBikes’ formulation.

From the data management’s point of view, the total
usage and the trip tendency of stations are inherently corre-
lated, as the former is the result of aggregating the latter. To
highlight station connectivity and mitigate inherent redun-
dancy, as shown in Eq. (8) we normalize the usage in the
model. Besides, our evaluation (Section 5) shows that inclu-
sion of tendency beyond usage improves the performance,
which has not yet been considered in previous siting stud-
ies [4], [16], [18].

3.4 Geographic Inter-Station Distance

The BSS is designed to provide first-/last-mile commute,
and a user is allowed to return the bike at any station near
her/his destination. Thus, the density of deployed stations
is a critical design consideration, i.e., the network should be
neither too dense nor too sparse.

Observation 1. We first overview the histograms of outgo-
ing trip distances, which characterize the tendency of a user
when deciding on a trip. We do not show round trips as
they are included in single station usage (Section 3.1).
Figs. 11 and 12 show the outgoing trip distance distribution
w.r.t. years for each BSS system. We can observe that a clear
“last-mile” traffic flow, i.e., more than 65 percent outgoing
users tend to drop off bikes within 2km (around 1.5miles).

Interestingly, as BSS expands, increasingly more percen-
tage (88% in 2013 ! 90% in 2016) of users take short-distance
(< 4 km) trips in Chicago, while in Twin Cities this part is
decreasing (97:34% in 2010 ! 93:3% in 2013 ! 89:81% in 2016).
It is likely due to the difference in network density. With
markedly more nearby stations and available bikes, it is
more convenient for Chicagoans to ride between near sta-
tions. For Nice Ride, as average distance to nearest station is
larger (0.47 km in Divvy versus 0.58 km), under such nearby
stations of a sparser networkmay take less usage percentage.

Unlike its peers, Metro Bike in LA County is distributed
in LA, Santa Monica, Pasadena and Long Beach. Distances
between nearest stations are much smaller within each city
(often 0.25 km
0.39 km), showing much denser urban net-
works. Hence, much more short-distance trips are expected.

Observation 2. We also show the bike usage of each sta-
tion versus the distance to its nearest neighbor. This way,
we can characterize the impact between stations due to ser-
vice coverage overlap. Specifically, we conduct negative
binomial regression (NBR) [12] on single station usage jTj
(the number of trips) against different distances D (m) to
the nearest peers. Considering the probability

P jTj ¼ ajDð Þ ¼ e	z � za
a!

(9)

and mean of jTj is z [12], NBR finds the set of b’s which max-
imize the log-likelihood for

ln z ¼ b0 þ bD: (10)

Fig. 13 shows the regression parameter b versus D. b char-
acterizes sensitivity of station usage towards network density.
Overall, we observe in both systems a positive effect (b > 0)
of the distance to the nearest neighbor over the station usage,
implying that usage generally increases with distance from
the nearest neighbor. A strong counter-effect upon a station
can be inferred within a close distance from others (say, less
than 400 or 500m) which may lower its usage. It is mainly
because of a competitive effect [25] that close-by stations may
serve the same group of users and prevent each other from
being fully utilized. As a short-range effect, it saturates
quickly after a certain range (say, 600m in Divvy and 700m in
Nice Ride), due to discouraged usage of distant sites.

Design. To reflect the above observations, over E � L� L
we set the lower/upper bounds ½dij; dij� for the distance

between two neighboring stations Si and Sj (in a neighbor-
hood setNN ), i.e.,

Fig. 10. Distribution of tendency in downtown minneapolis.

Fig. 11. Trip distance distributions w.r.t. years (Divvy), with [0.5 km,
2.5 km] zoomed in.

Fig. 12. Trip distance distributions w.r.t. years (Nice Ride), with [0.0 km,
3.5 km] zoomed in.

Fig. 13. Regression parameter b versus distance to the nearest station
(Divvy & Nice Ride, 2016).
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d2ij � klli 	 lljk2 � d
2

ij; 8i 6¼ j; ði; jÞ 2 NN ; (11)

We apply a heuristic local search [2] around all Si’s in G
based on historical usage statistics, crowd feedbacks or their
fused map (Section 4.2) to determine a rough neighborhood
set ofNN . As CBikes is a general framework, geographic dis-
tances other than the euclidean metric (like the Manhattan
distance for metropolitan cities like New York City [33]) can
be easily applied. Note that we consider locally constraining
neighboring station candidates in close grids (say, within 2
to 3 grids), making differences of metrics rather small in
practice. Similar to many state-of-the-art studies [18], [34],
for prototype and illustration purposes we consider the
euclidean distance here.

For convenience and utility, the upper bound caters to
the majority of travel distance preferences, while the lower
bound mitigates conflicts between neighboring stations. We
consider distance at the 65-percentile of cumulative usage
distributions from Figs. 11 and 12 for dij, and distance at the
“knee point” (where the plotted curve “turns”, or formally
where a curve is best approximated by a pair of lines) in
Fig. 13 for dij. Note that all derived parameters for each test
are only based on periods before (re)configuration takes
place. Despite the global bound setting here, one may easily
customize ½dij; dij� further w.r.t. each station pair.

In summary, including links of stations (including inter-
station trip tendency and distance) is important as simple
scalar quantification and local feedbacks of crowds who
have limited scopes may ignore the actual trip tendency.
Their introduction helps assist the global optimization, and
we will further validate their importance and effectiveness
via evaluation of real data (Section 5).

3.5 Crowdsourced Feedbacks

Observation. Crowds are essential to CBSNR, and Fig. 14 vis-
ualizes the spatial distribution (“heat-map”) of aggregated
crowd feedbacks before BSNR. The warmer color means
more feedbacks. We also plot the initial station locations in
2013 (before expansions). From the spatial distribution of
crowdsourced feedbacks, we may observe strong sociode-
mographic factors [17], [18], [29]. For example, many sug-
gestions are made to the central business district and
skyline (say, Magnificent Mile) of Chicago, matching inten-
sive commuting needs there. Besides, anticipation also
comes from south and west, probably due to student com-
muter demands around the university campus and intro-
duction of metro stations. We also observe similar patterns

in feedbacks of the other two systems. The crowdsourced
feedbacks have potential and power in identifying latent
factors (qualitatively and quantitatively) for network (re)
configuration, and serve as an important supplement to
many other GIS databases [38].

Note that the local and dispersed crowds’ feedbacks
could not always directly reveal the overall trip tendency
connecting the start and the destination, mainly because
each individual usually recommends new stations closest to
either her/his own work place or residence. Besides, one
may not reveal both the start and end of each trip due to his
privacy and identity concerns. The global inter-station trip
tendency has been modeled in our optimization to account
for the above biases or insufficiency.

Pre-processing the crowdsourced data, including filter-
ing those in inaccessible regions, is essential. For example,
we have noticed and filtered out some hilarious input loca-
tions in Lake Michigan for Divvy. Via comprehensive map
boundary and building constraints, we can easily identify
those unreasonable feedbacks. As users may vote for more
reasonable labels for themselves, and CBikes jointly con-
siders historical usage and geographic constraints, these
noisy inputs can be suppressed further.

Design. Given Definitions 4 and 5, we consider crowds’
feedbacks in a discretized manner, i.e., we aggregate the
number of feedbacks fn’s falling into each rectangle grid.
Intuitively, the more crowdsourced pin-points go into a
grid, the more likely it would be selected. This way, we con-
sider the aggregated feedbacks Vr for each gr, and define a
measure of vote intensity as a penalty function fðVrÞ for our
optimization input. A larger fðVrÞ due to more votes
implies a heavier “penalty” to be minimized by the solver.
Specifically, given input jVrj votes at gr, we have

Definition 8 Deadzone-linear penalty (DLP). the DLP
function with a deadzone width b � 0 is given by

fðVrÞ ¼ 0 : if jVrj � b;
jVrj 	 b : if jVrj > b:

�
(12)

In other words, our DLP de-emphasizes the grids with
crowds’ votes less than b, mitigating outlier effect, and
focuses on others with more support, which is also reason-
able in traditional user surveys for BSS expansion [19], [25].
Using a linear jVrj 	 b, CBikes also mitigates sensitivity
towards large but noisy votes than other higher-order pen-
alty functions [3]. After calculating for all gr’s, we normalize
each fðVrÞ (r 2 f1; . . . ; Rg) into the range [0, 1].

In summary, as a joint optimization framework, CBikes
fuses heterogeneous sources of information and data-driven
designs, instead of single-point knowledge input, for final
joint decisions, thus mitigating the noisiness of crowd feed-
backs. The effectiveness of our proposed information fusion
will be validated in Section 5.

4 CORE FORMULATION & METHODOLOGY

We present the problem formulation to integrate the above
designs.Wefirst present the gridmatching basics (Section 4.1),
and provide the objective functions (Section 4.2). We then dis-
cuss the formulation (Section 4.3), followed by semidefinite

Fig. 14. Crowd feedback distribution, and station locations in Chicago
2013.

HE AND SHIN: INFORMATION FUSION FOR (RE)CONFIGURING BIKE STATION NETWORKS WITH CROWDSOURCING 743

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 13,2022 at 19:03:28 UTC from IEEE Xplore.  Restrictions apply. 



programming transformation (Section 4.4).Wefinally provide
a complexity analysis (Section 4.5).

4.1 Station (Re)Placement & Grid Matching

Station (re)placement is more challenging than dock resiz-
ing. We convert the BSS (re)placement problem to the prob-
lem of estimating affinity (closeness) of each station with
predefined geographic grids. Each Si’s location is consid-
ered as the weighted average of grid coordinates (Defini-
tion 5). Consider M stations are to be (re)placed. Let hi

r be
the weight of grid r in determining Si’s location lli, i.e.,

lli ¼
XR
r¼1

hi
rgr; 8i 2 f1; . . . ;Mg; (13)

where each hi
r follows normalization and nonnegative con-

straints,

XR
r¼1

hi
r ¼ 1; hi

r � 0; 8r 2 f1; . . . ; Rg: (14)

For ease of presentation, we define H, an M�R matrix con-
sisting of all hi

r’s. The set of location coordinates of all sta-
tions is then

LM�2 ¼ HM�RGR�2: (15)

In our problem formulation, we want to determine the grid
weights, as the variables, for station (re)placement.

4.2 Objective Function Design

To incorporate heterogeneous sources of data, we present a
novel information-fusion technique in our joint optimiza-
tion. Specifically, we present the joint difference functions
fusing crowds and historical usage, and the cost measures
for (re)configuration actions. Combining these leads to our
final objective function.

Metric of Joint Difference. To quantify the matching of
knowledge fusion, we further design a generic metric, i.e.,
joint difference of grid matching, denoted as Di

r, for each candi-
date station i at a grid r. Specifically, given V feature metrics
Fvði; rÞ � 0 showing the fitness of matching, we may define

Di
r ,

1QV
v¼1 1þ Fvði; rÞð Þ : (16)

Fvði; rÞ’s are derived from available historical usage (Sec-
tions 3.1 & 3.3) and crowd feedbacks (Section 3.5), i.e.,

Di
r ,

1

1þ Ui
r

� 	
1þPM

j¼1;j 6¼i pði; jÞ
� �

1þ fðVrÞð Þ
: (17)

The inverse function in Eq. (17) means that the more histori-
cal usage Ui

r, total trip tendency
PM

j¼1;j 6¼i pði; jÞ and votes
fðVrÞ, the smaller Di

r and the more favored gr for Si. It guar-
antees 0 < Di

r � 1, and adapts to cases of either with little
historical usage or few crowds’ votes (say, any Fvði; rÞ ! 0).

We also illustrate and visualize the spatial distribution of
joint difference DDi

r’s in Eq. (18), i.e., “heat map” of fused
knowledge. Fig. 15 shows DDi

r’s of two station candidates in
Divvy (dashed circle: id ¼ 1; solid circle: id ¼ 464). The

warmer the color, the smaller the DDi
r, indicating a higher

matching potential there for that station.
Note that for further grid differentiation, the joint differ-

ence modeling in Eq. (17) is general to be integrated with
other external information (other feature metrics Fvði; rÞ’s)
if available, including distance to the central business dis-
trict, closeness to rail stations and other interesting sociode-
mographic factors (estate price, income or point of interest
number) [25], [38] affecting the station functionality.

Given the joint difference for each station, we further
look at the entire network. Let DD be an M�R matrix consist-
ing of all Si’s joint differences. We define an operator
cðH;DDÞ returning sum of entry-wise products of elements in
matricesH and DD, or formally, the trace (denoted as Trð�Þ) of
product HDDT . Then, the total joint difference of CBSNR esti-
mates and the map of fused knowledge is

c HM�R;DDM�Rð Þ , TrðHDDT Þ ,
XM
i¼1

XR
r¼1

hi
rD

i
r: (18)

Specifically, the smaller the Di
r, the higher hi

r assigned to gr,
and the more likely Si is (re)placed there (Eq. (13)), i.e.,

hi
r � hi

q; if Di
r � Di

q; 8r 6¼ q 2 f1; . . . ; Rg; 8i: (19)

Cost of Station (re)placement. Considering the feasibility of
CBSNR, we integrate the estimates of potential (re)place-
ment cost. Let c� � 0 and c� � 0 be the costs of adding and
removing a station, respectively (customizable w.r.t. each gr
and each Si). The move action is considered as a removal
followed by an add. Then, we define the costs of all actions
for each Si at gr as:

uir ¼
0 : if no action is imposed;
c� : if a new station is added;
c� : if an existing station is removed;
c� þ c� : if a station is moved to other place:

8>><>>:
(20)

Recall that we consider lli ¼
PR

r¼1 h
i
rgr, the weighted average

of closely-matched grids. For existing stations, let ehi
r ¼ 1 if eSi

was at gr and
ehi
r ¼ 0 vice versa. For newly-added ones, ehi

r ¼
0, for 8r. Increasing or decreasing hi

r at grid r implies a higher

potential of adding or removing Si. To fit these in our formu-

lation, we characterize these two changes for each cost uir as

hi
r

� 	
� ¼ max hi

r 	 ehi
r; 0

n o
;

hi
r

� 	
� ¼ max ehi

r 	 hi
r; 0

n o
:

(21)

Fig. 15. Spatial distribution of DDi
r’s for two selected stations of Divvy.
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Then, we set the total cost of (re)placing all M stations in
R grids as

C� ,
XM
i¼1

XR
r¼1

uir ¼
XM
i¼1

XR
r¼1

hi
r

� 	
��c� þ hi

r

� 	
��c�

� 	
: (22)

Cost of Dock Resizing. Let M 0 � M be the number of sta-
tions staying at their same locations without (re)placement
(moved/removed). Recall in Definition 6, dock resizing con-
siders only the cost of theseM 0 stations, where each resizing
action for an Si costs

hi ¼
0 : if dock size is unchanged;
c" : if dock size is increased by 1;
c# : if dock size is decreased by 1:

8<: (23)

If a dock needs to be enlarged,we have ki � eki, and vice versa.
Similar to Eq. (21), we define the changes at each station as

kið Þ"¼ maxfki 	 eki; 0g; kið Þ#¼ maxfeki 	 ki; 0g: (24)

We design the cost function to capture the change w.r.t. each
station’s location weight assignment in (re)configuration.
Similarly, we may set the total cost of dock resizing as

Cy ,
XM 0

i¼1

hi ¼
XM0

i¼1

kið Þ"�c" þ kið Þ#�c#
� �

: (25)

Summary. Fig. 16 summarizes the idea of joint difference
“heat map” in CBikes formulation, as formulated in
Eq. (17), fusing multiple heterogeneous information sources
of usage, trip tendency and votes. Distances derived in Sec-
tion 3.4 serve as constraints for the grid matching process
against the heat map. Given the objective designs (including
joint difference and cost) and distance constraints, the core
formulation of CBikes determines the final actions, altering
the weights fhi

rg’s in Eq. (15) and changing the sizes via
fkig’s, which are detailed as follows.

4.3 Problem Formulation

Station (re)placementproblem inCBSNR is formulated as: given
the crowds’ site suggestions and the historical usage, the objec-
tive is to (re)place stations such that total joint difference (in
crowdsourced feedbacks and historical usage), as well as the
total cost of station (re)placement are jointlyminimized.

To accommodate both grid matching and (re)placement
cost, we form the final objective as c H;DDð Þ þ aC�, where

a > 0 is a tunable parameter (we empirically set a ¼ 0:5).
Formally, we have

argmin
H

c H;DDð Þ þ aC�;

s.t. Constraints in Eqs. ð11Þ; ð14Þ; ð15Þ & ð21Þ:
(26)

We further present the formulation of dock resizing. Intui-
tively, more capacity should be assigned to stations with

lower Di ,
PR

r¼1 h
i
rD

i
r (i 2 f1; . . . ;M 0g), i.e., more crowd

supports and historical usage. In other words, ki � kj if
Di � Dj. In practice, the dock size may not be too large due
to space constraint in some city areas. The dock sizing also
makes a trade-off between cost and service, where a larger
dock size will reduce the time period when a station is out
of stock or overstock at the cost of deployment. We may
pose an upper limit kmax for each dock, which may vary
with local street environment due to space availability or
customization. Specifically, the dock resizing is to minimize
the dock resizing cost Cy and match the frequently-used and pop-
ular stations, i.e.,

argmin
fkig

Cy;

s.t. ki � kj; if Di � Dj; 8i 6¼ j; 0 � ki � kmax;

Di ¼
XR
r¼1

hi
rD

i
r;

XM0

i¼1

ki þ
XM

i¼M 0þ1

ki ¼ K:

(27)

Total capacity K can be slightly larger than actual bike num-
ber in order to be more resilient to bike flow dynamics.

4.4 SDP Transformation

Note that the lower distance bound, d2ij � klli 	 lljk2 in For-
mulation (26), is a non-convex constraint [3], making its
solving rather difficult. To address this difficulty, we intro-
duce a novel semidefinite programming (SDP) technique [3],
[9], [20] in order to solve the station (re)placement problem
efficiently. Our basic idea is to introduce interim variables
representing the station candidate locations, which turn out
to be positive semidefinite, and then relax the lower bound
constraints via matrix transformation of SDP [20], making it
easier to be solved in polynomial time by interior-point
algorithms [3], [20].

Mathematically, we first define an indicator vector
ðoijÞM�1 withM elements, among which the ith element is 1,
the jth is	1 and all others are 0. Let d2ij ¼ ðlli 	 lljÞT ðlli 	 lljÞ be
the resultant distance (squared) from predictions of Si and
Sj, andwemay further have

d2ij ¼ oTijLL
Toij; 8i 6¼ j; ði; jÞ 2 NN : (28)

We then introduce a transitionmatrixZ 2 RM�M asZ ¼ LLT ,
or

Z	 LLT ¼ 0: (29)

Then, we rewrite the aforementioned bound constraint into

d2ij � oTijZoij � d
2

ij: (30)

Fig. 16. Illustration of formulation for CBikes: joint difference heatmap
and constraints.
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Next we relax Eq. (29) into a semidefinite form [3], i.e.,

Z	 LLT  0: (31)

We aim at transforming Eq. (29) into one with linear
matrix inequality (LMI) [3], [20] which turns out to be convex
and solvable. Therefore, we introduce a block matrix form
called Schur complement [3] for transformation, which is for-
mally defined as follows.

Definition 9 Schur Complement. Let AA be a matrix which is
partitioned into four matrix blocks BB, CC, DD and EE, i.e.,

AA ¼ BB CC
DD EE


 �
; (32)

where BB and EE are symmetric and nonsingular matrices. Then,
Schur complement of block EE in matrix AA, denoted as AA=EE, is
given by

AA=EE ¼ BB 	 CCEE	1DD: (33)

According to related theory of matrices [3], we have
AA  0 if AA=EE  0. Recall that Z	 LI2�2L

T ¼ I2�2=Z  0
(Eq. (31)), where I2�2 is a 2�2 diagonal unit matrix. We then
have its ðMþ2Þ�ðMþ2Þ LMI form:

ZM�M LM�2

ðLT Þ2�M I2�2


 �
 0: (34)

This way, a semidefinite programming solver [3], [20] can
be applied upon the LMI, and the non-convex problem can
be solved efficiently and effectively. In summary, the final
formulation is given by

argmin
H

c H;DDð Þ þ aC�;

s.t. Constraints in Eqs. ð14Þ; ð15Þ; ð21Þ; ð30Þ;& ð34Þ:
(35)

Then, CBikes rounds each station estimation lli to its near-
est grid. Service providers may customize and enforce extra
constraints (some inaccessible area, e.g., hi

r ¼ 0, or region
boundary, e.g., A � loni þB � lati þ C � 0) given geographi-
cal areas where a dock is not supposed to be deployed (say,
a building or a river).

In practice, SDP relaxation renders Eq. (31) a slightly flexi-
ble design instead of an over-rigid one, helping adapt to
more sophisticated network structures underneath. Other
refinements, if needed, can be applied to fine-tune those
relaxed distance bounds. Onemay also check on over-relaxed
pairs and adjust using the gradient descent approach [3] to
re-satisfy their constraints. We observed only a very small
proportion (say, usually less than 1.85 percent) out of all
station pairs need a cosmetic refinement, making our SDP
design applicable inmost cases.

4.5 Complexity Analysis

We briefly analyze the computational complexity of
CBikes. Given M stations and total Nf feedbacks, finding
Di
r’s of all R grids takes OðNf þMRÞ. With M stations and

R grids, the complexity of SDP is OðM3R3Þ [3], [20], and the
total sums to OðNf þM3R3Þ for CBikes.

Further computation reductions can be made in several
ways. For example, for each Si, out of all grids we may only
consider the top several location candidates, which have
lower joint differences Di

r’s, and locally search its poten-
tially-nearby neighbors [2], [18] for fewer mutual distance
constraints in the optimization. Specifically, for each BSS
station i 2 f1; . . . ; Rg, we find the top R0 (R0 < R) grids as
the pruned search scope.

Using the above methods, R and constraints (say,
Eqs. (14), (19), and (30)) can be reduced significantly, thus
achieving better computational efficiency.

5 EXPERIMENTAL EVALUATION

Wefirst present the evaluation setups in Section 5.1, and then
illustrate the effects of different system settings in Section 5.2,
followed by the experimental results in Section 5.3.

5.1 Evaluation Setups & Schemes Compared

We compare CBikes with the following schemes in BSNR
design:

� BSNR-w/o-Cost: which greedily considers crowds
and historical usage, without considering the cost for
CBSNR.

� BSNR-w/o-Crow: which focuses on only historical
usage [4], [18], without crowd feedbacks, to (re)place
or resize the BSS stations.

� BSNR-w/o-Hist: which greedily considers only
crowdsourced feedbacks without historical usage, to
(re)configure the stations.

� BSNR-w/o-Tend: which considers no inter-station trip
tendency, and independently (re)configures each sta-
tion [16], [34].

� BSNR-w/o-Dist: which does not consider any dis-
tance bound constraint [14].

� HEU: a heuristic scheme, instead of joint optimiza-
tion, adopted by some BSS providers (e.g., Capital
Bikeshare)7 Site candidates are first filtered by some
heuristic criteria7 (like utility). Top-ranked candi-
dates are selected and further fine-grained.

� RAND: which randomly (re)places the BSS stations
into grids and resizes them without using any design
metrics in Section 3.

� Previous CBikes [10] (denoted as CBikes-1.0):
which is the previously published conference ver-
sion without considering the usage estimation.

We evaluate the above algorithms based on the datasets
(i.e., Divvy, Nice Ride and Metro Bike) described in Sec-
tion 2.3. For BSNR-w/o-Cost, BSNR-w/o-Crow, BSNR-w/o-Hist,
BSNR-w/o-Tend, BSNR-w/o-Dist, HEU and RAND, we adopt
the estimated usage at unexplored grids/regions in order to
evaluate performance of other setups.We compare the station
networks before and after each CBSNR phase, i.e., eG and G,
including each station’s status, i.e., eSi ¼ ðflati; floni;ekiÞ against
Si ¼ ðlati; loni; kiÞ. We analyze (re)placement of stations and
their capacity change. With the timestamps (tm in Defini-
tion 4), crowdsourced feedbacks before this CBSNR (or

7. City of Falls Church: Bikeshare Ridership Analysis, http://www.
fallschurchva.gov/DocumentCenter/View/8694, Accessed Date: Feb-
10-2020.
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between two consecutive expansions, if any) are used as opti-
mization inputs.

At each CBSNR phase, we use the following evaluation
metrics:

� Accuracy, precision, f-measure & recall: We compare the
difference with the ground-truth station distribution.
Specifically, we determine accuracyby checking
whether each station is matchedwith its ground-truth
grid. We measure the latter three well-known metrics
of binary prediction w.r.t. the grids, i.e., a value 1 (0)
represents that a station is (not) placed inside a grid.

� (Re)configuration cost: we compare the costs of all
schemes, i.e., station (re)placement (C�) and dock
resizing (Cy). For the purpose of reference, we also
show the ground-truth (GT) costs derived from the
actual (re)configuration done by service providers.

� Mean absolute error (MAE) & mean squared error
(MSE): differences between predicted dock size fbkig
and ground-truth fkig.

All computation is done on a desktop of Windows 10,
Intel Core i7-6700, 32 GB RAM and Nvidia GTX 1050Ti.
Unless otherwise stated, the default parameter values are
set as follows. For each CBSNR phase, by analyzing trips
and stations before it happens, we empirically set the
½dij; dij� as described in Section 3.4, a ¼ 0:5 and b ¼ 10. We
have empirically observed that a large b results in few
crowdsourced feedbacks included in the problem formula-
tion, and a small one introduces more noisy feedbacks
(detailed results are left due to space limit). Taking into
account the above trade-off, in our studies, we empirically
set above b, and the setting leads to reasonable performance
of CBikes upon the crowdsourced inputs.

To estimate bike usage at unexplored grids, we apply
dropout between fully-connected (FC) layers and batch nor-
malization on the data to mitigate overfitting and enhance
convergence; the Adam optimizer is used and the learning
rate is set to 0.01; for each CBSNR, we leave 10 percent of the
grids for the validation of results, and train the neural net-
work model using the rest (90 percent) of the data (feature
vectors and the bike usage of the gridswith stations); the neu-
ral network structure implemented with Tensorflow and
Python is: input layer ! FC(16) ! FC(128)! FC(16) ! out-
put layer (with tanh activation), where dim in FC(dim) (with
relu activation) represents the number of dimensions inside
the fully-connected dense layer. The number of epochs is set

to 2,000. The input feature vectors and the output usage data
are min-max normalized. For each city, we find P1 ¼ 5 near-
est neighbors and P2 ¼ 20 types of POIs for prediction of
usage potential (the parameter selection is based on the vali-
dation process upon the dataset different from the test one).
In our experimental studies, as a summary, we observe that
the mean absolute percentage errors (MAPEs) for Divvy (446
unexplored grids), Nice Ride (112 unexplored grids) and
Metro Ride (103 unexplored grids) are 0.1585, 0.2199, and
0.1942, respectively. Note that we are leveraging the esti-
mated usage of these unexplored grids/regions to differenti-
ate them for CBSNR, and the estimation performance suffices
to support station (re)placement decisions.

To balance computation efficiency and (re)placement
granularity, we set a 90� 90 grid mesh (each grid is 0:23�
0:40 km2) for Divvy (Chicago), with a bounding box
½	87:80�W;	87:55�W ;41:74� N;42:06�N�. For Nice Ride
(Twin Cities), we use a 60� 60 grid mesh (each is 0:32�
0:26 km2), within a box ½	93:32�W;	93:08�W ; 44:89� N;
45:03�N�. As LA county is much larger, a 120� 120 mesh
(each is 0:29� 0:42 km2) comes with a box ½	118:49�W;
	118:12�W ; 33:71�N; 34:17�N� for Metro Bike. Based on the
existing public market analysis7, we consider c� ¼ 80, c� ¼
100 (station (re)placement) and c" ¼ c# ¼ 10 (dock resizing).

5.2 Evaluation on System Settings

We first evaluate CBikes’ performance while varying its
important components and settings. Note that we set the
parameters based only on historical data of periods prior to
each CBSNR for bias-free evaluation. Taking Divvy in Chi-
cago as a representative example, we evaluate CBikes’ sen-
sitivity to the following different important parameters.

Local search scope & number of neighbors (Section 4.5):
Fig. 17 shows the effect of local search scope in reducing the
computation complexity of CBikes. We conducted experi-
mental studies on the reconfiguration of the Divvy system
in 2015 when the number of stations increased from 300 to
474. As more grids are involved in the local grid search, the
higher (re)placement granularity from CBikes is expected.
However, the performance begins to converge after adding
a few more neighbors and the computation overhead also
increases. Therefore, we select 10 neighbors by default for
reasonably efficient deployment.

Density of grids (Section 5.1): We show in Fig. 18 CBikes’
sensitivity to the density of grids in terms of accuracy, preci-
sion, f-measure and recall for the Divvy dataset. Clearly,
the denser grids yield more fine-grained estimation results,

Fig. 17. (Re)Placement performance versus numbers of neighbors
(Divvy).

Fig. 18. (Re)Placement performance versus grid sizes (Divvy).
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at the cost of longer computation time and lower accuracy,
especially above a certain grid density (say, after 90� 90).
On the other hand, sparser grids are easier to predict while
their granularity may not represent practical BSS reconfigu-
ration. To balance accuracy, overhead and granularity, we
set 90� 90 for Divvy by default (similarly for Nice Ride and
Metro Bike).

5.3 Evaluation on Datasets

Overview. With additional knowledge of estimated usage at
unexplored grids/regions, CBikes outperforms CBikes-1.0
in terms of station (re)placement (Tables 1, 2, and 3) and dock
resizing (Tables 4, 5, and 6). Compared to our earlier results
reported in [10], CBikes achieves higher accuracy (often by
6.58–11.21 percent) and lower reconfiguration cost (often by
> 40%) thanks to itsmore external and predicted knowledge.
Considering the scale of BSS networks with hundreds of sta-
tions, CBikes can help the city planner significantly reduce
the planning cost. Overall, the estimated usage improves the
station (re)placement more than the dock resizing, mainly
due to more location-dependent designs in the (re)placement

problem. Since the current model of CBikes outperforms
that in [10], unless otherwise stated, we will henceforth focus
on evaluating the former.

Station (re)placement. We first show the (re)placement per-
formance (accuracy, precision, f-measure and recall) in
Tables 1, 2 and 3. Each metric is provided with the mean
and 75th/25th percentiles of all CBSNR phases. Note that
accuracy is based on station index, while others are for
binary grid mapping. As wrong matches of stations may
still cause similar grid coverage, the accuracy value can in
general be stricter and smaller.

Without mutual constraints, BSNR-w/o-Distmay get simi-
lar grid coverage, but lower matching w.r.t. each station. It
may hence introduce a much higher moving cost. Overall,
without support of historical data and joint fusion-based
optimization, BSNR-w/o-Histmay be easily affected by noisy
feedbacks, and suffers much worse and varied performance.
Lacking crowdsourced feedbacks, BSNR-w/o-Crow cannot
determine placement of new stations well, especially for the
case of extensive expansion, causing larger variations. HEU
(heuristic) adjusts stations without joint optimization and

TABLE 1
Performance Metrics of Station Replacement for Divvy, Chicago for Each Setup

Metrics Accuracy (%) Precision (%) F-Measure (%) Recall (%) Replacement Cost (log 10)

Schemes Mean 75% 25% Mean 75% 25% Mean 75% 25% Mean 75% 25% Mean 75% 25%

CBike 96.50 97.50 93.67 98.47 99.46 93.83 96.70 97.67 93.70 96.50 96.64 94.73 2.13 3.55 1.54
CBike-1.0 92.69 94.02 91.98 97.80 98.62 92.43 95.28 96.63 94.51 92.90 94.72 91.76 3.06 3.17 3.01
w/o-Cost 76.18 91.96 50.08 89.22 98.61 71.76 82.10 95.94 56.63 82.38 93.41 63.30 4.74 4.91 3.74
w/o-Crow 91.28 94.75 87.55 95.79 98.52 92.76 91.93 93.93 88.09 90.61 96.09 83.88 3.88 4.04 3.25
w/o-Hist 34.06 37.01 30.59 61.58 64.62 57.84 53.61 58.13 48.54 47.51 52.81 41.81 3.22 3.34 2.81
w/o-Tend 73.82 76.59 68.99 88.69 90.46 87.36 82.35 83.04 81.44 76.92 79.12 74.06 3.14 3.30 2.56
w/o-Dist 88.20 91.96 84.17 94.92 99.78 86.37 91.48 95.93 83.78 88.31 93.41 91.36 3.18 3.34 2.56
HEU 89.78 91.96 86.50 98.56 97.29 99.78 95.20 95.94 93.73 92.07 93.41 90.43 3.60 3.72 3.33
RAND 14.08 32.07 1.20 61.45 46.91 8.04 43.06 61.96 33.37 46.12 69.98 25.90 4.68 4.76 4.54

TABLE 2
Performance Metrics of Station Replacement for Nice Ride, Twin Cities for Each Setup

Metrics Accuracy (%) Precision (%) F-Measure (%) Recall (%) Replacement Cost (log 10)

Schemes Mean 75% 25% Mean 75% 25% Mean 75% 25% Mean 75% 25% Mean 75% 25%

CBike 92.19 93.08 88.58 94.70 96.54 90.65 92.50 93.20 87.50 91.61 92.90 86.61 0.89 1.04 0.73
CBike-1.0 82.88 84.36 81.13 90.41 91.91 88.79 88.70 90.13 87.33 87.07 88.53 85.90 3.00 3.01 2.99
w/o-Cost 63.34 74.00 50.14 81.39 92.03 66.30 73.89 83.47 60.06 67.71 77.58 54.89 3.56 3.68 3.40
w/o-Crow 81.76 84.09 79.11 88.35 90.40 86.20 86.22 88.65 83.92 84.23 87.61 80.81 3.10 3.42 2.19
w/o-Hist 77.28 82.29 72.29 82.94 86.48 80.20 80.76 85.52 76.60 78.77 84.59 73.31 2.89 3.10 2.51
w/o-Tend 77.37 82.29 71.72 86.52 90.44 81.33 84.24 88.90 79.16 83.84 87.90 79.16 3.47 3.60 3.28
w/o-Dist 73.82 79.53 69.23 91.70 93.29 90.35 84.24 86.72 82.47 78.00 82.34 74.71 3.48 3.62 3.28
HEU 63.40 75.15 47.30 85.90 92.82 72.77 75.72 86.36 61.81 66.88 76.66 54.02 3.95 4.17 3.67
RAND 20.50 35.09 8.27 40.81 58.28 27.08 34.58 51.91 21.73 30.24 46.97 17.96 3.50 3.64 3.28

TABLE 3
Performance Metrics of Station Replacement for Metro Ride, LA for Each Setup

Metrics Accuracy (%) Precision (%) F-Measure (%) Recall (%) Replacement Cost (log 10)

Schemes Mean 75% 25% Mean 75% 25% Mean 75% 25% Mean 75% 25% Mean 75% 25%

CBike 91.98 95.31 88.65 93.70 99.03 88.37 93.35 97.50 90.20 91.82 96.14 87.50 1.52 1.95 1.09
CBike-1.0 86.30 86.55 86.15 85.52 85.56 85.48 89.70 89.92 89.47 92.68 95.24 90.12 3.04 3.06 3.02
w/o-Cost 72.68 77.31 68.05 85.52 89.23 81.81 88.86 89.92 87.80 92.68 94.74 90.62 3.52 3.53 3.52
w/o-Crow 70.34 70.93 69.75 82.47 86.37 78.57 85.10 87.70 82.50 87.95 89.06 86.84 2.47 2.56 2.35
w/o-Hist 71.18 71.43 70.93 62.88 66.67 56.09 62.43 64.86 59.99 62.05 63.16 60.94 2.53 2.70 2.24
w/o-Tend 71.79 77.31 66.27 85.52 89.23 81.81 88.86 89.92 87.80 92.68 94.74 90.62 3.30 3.30 3.30
w/o-Dist 72.96 77.31 68.61 85.55 89.23 81.83 88.86 89.91 87.80 92.68 94.75 90.62 3.49 3.49 3.49
HEU 80.84 86.05 75.53 89.69 90.14 89.24 87.10 89.51 84.69 84.74 88.89 80.59 3.36 4.35 3.23
RAND 25.37 34.46 16.28 63.37 76.74 49.99 52.05 61.68 42.42 44.20 51.56 36.84 2.47 2.54 2.38
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global pictures, and thus more post-processing is required
before better results can be achieved. We also note that due
to additional estimated usage at unexplored grids, the per-
formance metrics of the schemes improve from the ones
without estimated usage [10]. In contrast, with joint informa-
tion fusion and optimization CBikes outperforms others.

Due to a much larger volume of trip data and denser net-
work with more stations, CBikes in Chicago is optimized
better and slightly outperforms those in other two cities.
Considering the coupling of users and stations (trip tendency
and distance bounds) makes CBikes outperform BSNR-w/o-
Tend and BSNR-w/o-Dist. Divvy may witness stronger effect
of inter-station trip tendency (more commute and recrea-
tional trips) and there is a slightly larger gap between
CBikes and BSNR-w/o-Tend. Besides, as more CBSNR
phases (total 5) are involved in Twin Cities, all schemes expe-
riencemore performance variations than in other cases.

Tables 1, 2 and 3 also summarize the total (re)placement
costs. Clearly, one may expect a huge cost to be incurred by
BSNR-w/o-Cost. With more information fused, CBikes

achieves much lower costs and outperforms others. The
ground-truth station (re)placement costs (mean, 75, 25 per-
cent) for Divvy, Nice Ride and Metro Ride are respectively
(2.19, 2.52, 1.96), (0.62, 0.72, 0.53) and (1.381, 1.49, 0.0). We
can also see that its differences with ground-truth (actual (re)
placement costs) are alsomuch smaller.

Dock Resizing. Due to space limit and similarity of results,
we focus on dock resizing of Divvy and Nice Ride here.
Tables 4 and 5 show the different schemes in terms of resizing
MAEs andMSEsw.r.t. ground-truth ki’s in Chicago and Twin
Cities. Large resizing error may lead to underutilization or
underprovisioning of docks, causing waste and imbalance of

BSS resources.CBikes is shown to achievemuch lower errors
(usually more than 20 percent improvement) than other
schemes. Overall, dock resizing may be easier in Chicago
than in TwinCities due tomore trip data and better optimized
(re)placement results.

Compared to Divvy, historical usage at Nice Ride is more
important in dock resizing than crowd popularity. Due to a
sparse network at Nice Ride, most crowds’ feedbacks focus
on the issues of adapting coverage or density, without pay-
ing attention to the resizing of existing stations. Thus, with-
out sufficient historical usage information, BSNR-w/o-Hist
could not effectively determine the importance of each
station’s capacity, and hence larger error occurs to it at Nice
Ride than BSNR-w/o-Crowd and others.

Table 6 summarizes the dock resizing costs (log 10ðCyÞ).
The ground-truth costs (mean, 75 and 25 percent) for the
Divvy and Nice Ride are respectively [3.29, 3.49, 3.06] and
[2.94, 3.13, 2.78]. Note that similar costs may occur when
wrong subsets of docks are resized at a similar scale.With bet-
ter accuracy due to more comprehensive information fusion
and lower adjustment cost (often by half an order of magni-
tude), CBikes helps effectively adapt to bike demands with
better feasibility.

(Re)Configuration Visualization & Computation Overhead.
We visualize (re)configuration prediction and ground-truth
results in Figs. 19, 20, and 21 for Chicago ((re)configuration
in 2016), Twin Cities ((re)configuration in 2015) and LA
County ((re)configuration in 2017). One can see that the pre-
dictions via crowdsourced information fusion and joint
optimization markedly resemble the actual values. In partic-
ular, we show the downtown replacement results without
and with usage estimation in Figs. 22 and 23. Thanks to the
additional knowledge of the downtown neighborhoods, our
new scheme achieves better matching results compared
with the previous version.

In terms of computation, the optimization time w.r.t.
datasets of Divvy, Nice Ride and Metro Bike are 93.71s (due
to much more stations), 19.7s and 7.27s, which are suitable
for periodic (monthly or annual) bike station network (re)
configuration.

6 DISCUSSIONS

Network Shrinkage: As most existing BSS systems are grow-
ing in recent years, our evaluation data in hand mainly
contains expansions, and does not include any (re)configu-
ration cases with only shrinkage. However, the data we

TABLE 4
Dock Resizing Error in Divvy, Chicago

Metrics MAE MSE

Schemes Mean 75% 25% Mean 75% 25%

CBike 2.36 2.57 2.01 18.01 20.68 14.49
CBike-1.0 2.40 2.58 2.10 18.71 20.90 14.91
w/o-Cost 4.33 5.25 2.75 42.56 54.54 22.78
w/o-Crow 3.25 4.33 2.69 30.58 46.78 22.18
w/o-Hist 2.99 3.23 2.56 33.66 34.23 33.09
w/o-Tend 2.55 2.73 2.25 20.94 23.13 16.83
w/o-Dist 3.17 4.14 2.67 29.28 43.31 21.32
HEU 3.11 3.84 2.69 27.93 38.12 21.53
RAND 3.24 4.31 2.68 30.18 46.91 21.16

TABLE 5
Dock Resizing Error in Nice Ride, Twin Cities

Metrics MAE MSE

Schemes Mean 75% 25% Mean 75% 25%

CBike 2.19 2.56 1.84 15.24 18.97 11.92
CBike-1.0 2.36 2.73 2.01 16.70 19.12 12.19
w/o-Cost 4.04 4.79 3.42 28.92 39.19 21.12
w/o-Crow 4.04 4.76 3.44 28.62 38.51 21.18
w/o-Hist 4.25 5.05 3.57 33.54 45.98 24.16
w/o-Tend 4.06 4.89 3.41 30.88 42.79 22.10
w/o-Dist 4.05 4.78 3.45 29.03 39.17 21.38
HEU 3.61 4.14 3.11 24.70 28.42 21.04
RAND 4.13 5.61 2.93 31.25 52.13 15.72

TABLE 6
Dock Resizing Cost in Divvy and Nice Ride

Metrics Divvy Nice Ride

Schemes Mean 75% 25% Mean 75% 25%

CBike 3.78 3.89 3.54 3.19 3.31 2.99
CBike-1.0 4.02 4.26 3.90 3.49 3.62 3.30
w/o-Cost 4.20 4.38 3.80 4.28 4.39 4.01
w/o-Crow 4.06 4.16 3.78 3.50 3.62 3.33
w/o-Hist 4.21 4.21 4.21 3.53 3.65 3.42
w/o-Tend 4.11 4.22 3.79 4.28 4.49 4.01
w/o-Dist 4.66 4.73 4.51 3.50 3.62 3.30
HEU 4.03 4.15 3.80 3.51 3.61 3.32
RAND 4.66 4.74 4.51 4.28 4.49 4.01
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studied includes removed/moved stations (say, around
21.25 percent of all stations). Our model is general enough
to accommodate both expansion and shrinkage of BSN, and
can achieve good accuracy.

Incorporating Other Information. Due to resource limit, a
myriad of other factors, such as demographic distribution and
city management regulation [17], [18], [29], may not be well
considered in our current prototype. Their absencemight also
account for the discrepancy from actual results. However, as a
generic information fusion framework, CBikes can easily
integrate them if and when given. Also, note that we focused
on urban-level BSNR, reducing the initial search scope and
facilitating decision-making on management of BSNs. Given
our results as a reference, secondary fine-grained adjustments
of dock locations inside grids may be made subject to various
constraints, including bike accessibility, user visibility and
space compatibility, which are orthogonal to our focus.

Our studies focus on replacement and resizing cost for
long-term decisions of the BSS providers, while operational

cost including rebalancing actions and maintenance usually
results from short-term and spatio-temporally dynamic fac-
tors (including weather and traffic conditions). Among the
candidates with similar demands, a station with lower oper-
ational cost after (re)placement is often preferred. Despite
the lack of dynamic operation data from the service pro-
viders, our formulation can be extended to such additional
knowledge if available.

The demand from the bike transition is also affected by
the inventory status, including the case of invisible demand
loss due to a station’s out-of-stock condition, and consequent
substitution effect of its neighbors.While our comprehensive
information fusion takes into account the ride preferences,
further investigation should be conducted upon the above
issues for better predictability of demands.

Further Denoising. Large error in using crowds’ feedbacks
only (BSNR-w/o-Hist in Section 5) indicates the severity of
“noisy” crowdsourcing. CBikes can exploit many state-of-
the-art approaches [13], [19], [26] to filter the comments or
incentivize better suggestions from the crowds. Besides, ser-
vice providers periodically conduct formal panels or semi-
nars7 where citizen representatives could discuss BSNR.
One may design weighting schemes to assess the quality of
various feedbacks for better accuracy.

Dynamic Traffic Prediction. Recently, researchers have pro-
posed highly accurate traffic prediction based on deep learn-
ing [30], [35]. Yao et al. [30] proposed the meta learning to
learn the bike flows from multiple different cities. Wang
et al. [23] studied an entropy-based prediction model for
future bike usage. While CBikes can be easily integrated
with theirs for more accurate and prompt bike traffic predic-
tion [15], [23], our coarse-grained study focuses on qualitative

Fig. 19. Visualization in Chicago (765.6 km2).

Fig. 20. Matching visualization in Twin Cities (304.87 km2).

Fig. 21. Matching visualization in Los Angeles County (1,754.5 km2).

Fig. 22. Station (re)placement in Down Town, Minneapolis without usage
estimation.

Fig. 23. Station (re)placement in Down Town, Minneapolis with usage
estimation.

750 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 13,2022 at 19:03:28 UTC from IEEE Xplore.  Restrictions apply. 



inference of the importance of new city grids in terms of
potential bike usage over a long period. In future, we would
like to study the prediction of dynamic traffic flows for smart
transportation systems.

Acceleration. While CBikes leverages a centralized struc-
ture, it can be easily extended to the distributed designs.
Furthermore, due to the last-mile nature of the bike sharing,
we can cluster the bike stations into many clusters, which
are more connected (say, in terms of trip volumes and time
correlations) within each cluster than across any two of
them, and conduct the cluster-wise computation to reduce
centralized computation. Parallelization and GPU can be
easily applied, which is outside the scope of this paper and
will be part of our future work.

7 RELATED WORK

We briefly review the related work in the areas of urban
computing, station placement and bike sharing systems.

Urban Computing & Information Fusion. Urban comput-
ing [37] aims to improve social life quality under the trend of
speedy urbanization. With faster computing, smarter IoTs
andmore sensing data, many urban transportation problems
have been redefined intelligently and efficiently. CBikes
serves as a novel cross-domain knowledge fusion tech-
nique [36], unleashing the data-driven and crowdsourcing
power to look at traditional site (re)configuration for emerg-
ing bike sharing [6], [7], [11], [28].

Site Placement & Expansion. Due to the recent boom of
intelligent transportation, site placement, including gas sta-
tions [32], ambulance points [37], and electric vehicle charg-
ing docks [14] has been investigated to improve their social
and business values.

Note that our work is different from the problems of
placing stores [27], gas or electric charging stations [14],
since we are given crowdsourced comments and usage sta-
tistics from already-deployed stations to (re)configure the
BSS network, thus making their initial station placement not
directly applicable to our problem. Our joint optimization
and crowdsourced fusion are also complementary to emerg-
ing urban dynamics [31] and functional zone inference [18],
and their studies can be integrated with ours for further
refinement of results. Unlike others estimating geographical
dependencies of real estate [8], CBikes considers users’
trip tendency (pick-up/drop-off) between the bike stations.

Bike Sharing Systems & Services. Recent popularity of BSS
has triggered many interesting studies, such as mobility and
demand prediction [18], [24], [29], [33], station re-balanc-
ing [17], lane planning [1], trip recommendation and station
deployment [16], [18]. However, few of state-of-the-art studies
considered optimizing the (re)configuration of existing BSS
network with crowdsourced knowledge. Orthogonal to the
important spatial-temporal modeling for real-time bike
demand prediction (including dynamic geographical, meteo-
rological or seasonal factors) [17], [18], [29], CBikes focuses
on fusing long-term batched station usage [25], [38] with
aggregated crowdsourced feedbacks, for periodic network
(re)configurations. Note that our (re)configuration can be
done monthly, seasonally or annually subject to the urbaniza-
tion process, profit, cost and the service provider’s own
customization.

Many external factorsmay influence the success of (re)con-
figuration [33], [38], including human-built facilities (quality/
availability), natural environments (like topography, season
or weather [29]), socio-economic or psychological considera-
tions (say, social norms or habits), and utility (cost and travel
time). Though it is very challenging to design a complete
model, incorporating historical spatial-temporal usages,
large-scale crowdsourced preferences and refined cost metric
would be a goodway to accommodate these factors.

In contrast to recent approaches to BSS deployment [18],
[34], we propose a generic optimization framework that
accommodates both network expansion and reduction using
data-driven designs and novel semidefinite programming [3].
CBikes adopts a flexible formulation fusing crowdsourced
knowledge with historical usage statistics jointly, and
accounts for interactions of users and stations, thus adapting
much better to complex station correlations.

Our study is also orthogonal to emerging station-free BSS
systems [1], [22]. CBikes can be used for station-free BSS if
each parked bike is considered a “dock-less station”. How-
ever, as unregulated parking may still prevent its wide
acceptance by social-norm, we focus on station-based bike
sharing systems in this paper.

8 CONCLUSION

BSS network (re)configuration – i.e., station (re)placement and
dock resizing – has become very important for many BSS pro-
viders. We have proposed a novel optimization framework,
CBikes, to (re)configure bike station networks with crowd-
sourced station suggestions. A comprehensive data analysis
first derives inter-station trip tendency and distance con-
straints. Crowds’ feedbacks, historical usage, costs anddesigns
are then fused into a joint optimization formulation. We have
also modeled the spatial distributions of station usage to
account for, and estimate the unexplored regions without his-
torical usage information. We further leverage SDP trans-
formation to solve the nonconvex (re)placement problem
efficiently and effectively. Extensive experiments with 3 pre-
mium BSS systems, supported by related crowds’ feedbacks,
have validated the accuracy and effectiveness of CBikes.
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