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Abstract—DETROIT is an open-source vehicle-agnostic end-
to-end framework for vehicular data collection, translation and
sharing that facilitates the rapid development of automotive apps.
With vehicles becoming increasingly connected, unlocking sheer
amounts of data from the in-vehicle network (IVN) can accelerate
the development of many useful apps. Unlike existing commercial
and academic solutions that can only access a restricted set
of standardized emission-related sensor data and lack feasible
data accessibility by third-party developers, DETROIT offers a
convenient interface to develop apps which can access a broad
range of powertrain-related sensors and car-body events thanks
to crowd-sourcing vehicular translation tables by fully automated
CAN bus reverse-engineering.
DETROIT is developed with the objectives of simplicity, scal-

ability, privacy and liability. To the best of our knowledge,
this is the first end-to-end framework consisting of a frontend,
backend and a developer portal to cover vehicular data collection,
translation and sharing with app developers. Besides an extensive
framework benchmark to show the light resource overhead
and feasibility of DETROIT, we also have evaluated it by re-
implementing two existing mobility apps from academia. Devel-
opers have reported that DETROIT offers high sensor fidelity,
enhanced application flexibility, as well as low implementation
complexity.

Index Terms—data collection, CAN bus, automotive apps

I. INTRODUCTION

Connected vehicles are estimated to generate 25 GB of

various data per hour, including data from cameras, LiDARs,

radars, etc. The in-vehicle network (IVN) itself, consisting of

multiple network buses, such as the Controller Area Network

(CAN), produces only a fraction of this amount of data, but

still carries highly valuable and critical sensor information.

Data collected from two CAN buses in 2017-2019 model

vehicles were in excess of 170 MB per hour.

The generation and sharing of this driving data will create

an additional source of revenue for OEMs and third-party

services. According to PwC, the connected-car market is

expected to grow to $155.9B by 2022 [1]. OEM-independent,

universal access to data by third-party services can help the

latter in automotive data monetization. Third-parties already

offer vehicle dongles that can access the IVN and obtain

publicly available data (OBD-II PIDs [2]). In particular, usage-

based insurance (UBI) companies [3], [4] have already been

distributing dongles to track their insurees’ driving behavior.

Furthermore, new companies such as Carloop [5] promise

third-party app support to develop and deploy vehicular apps.

Otonomo [6] wants to be the middleman to connect third-party

developers with data collected by OEMs. Finally, academic

solutions such as CarTel [7] have also been proposed for data

collection from cars, but not for data translation or sharing

with third-party developers.
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Fig. 1: System diagram of DETROIT: End User (orange),

Developer (blue) and OpenIVN (green).

Vehicular data is not only a growing target for monetization

by the above commercial solutions, but also enabling aca-

demic and basic research. Numerous mobile sensing apps for

automotive safety, as well as awareness of privacy concerns

on rich vehicular context data have recently emerged (see

Sec. III-C). Note that these apps rely on phone sensor data,

with mobile IMU data being the most popular. Considering

these developments, vehicle mobility is poised to become a

main stream of future mobile computing and networking.

Despite several available solutions and tools for vehicular

data collection as mentioned above, one may wonder why

these platforms are not currently widely used by academic

researchers and commercial companies. We present below

a list of limitations of existing solutions that explained the

limited adoption:

(1) Data Sources. All commercial and academic data

collection platforms proposed thus far operate using the OBD-

II protocol. Some emission-related sensors are standardized

for all US vehicles and can be obtained through the aforemen-

tioned OBD-II protocol. These are only a subset of information

available in the vehicle. Body-related information, such as

door or turn signal status, is completely missing, as it is not

emission-related. Even some kinematic-related signals, such

as the steering wheel angle are not included in this protocol.

Obtaining those unknown signals can be leveraged to build



more powerful third-party apps. Unfortunately, these raw CAN

data cannot be interpreted by researchers and third-party app

developers without possessing the respective translation tables,

called CAN database (DBC) files. The latter are proprietary

to the OEM and contain the mapping of the raw CAN data

to human-readable data. Recent advances in CAN bus data

translation can overcome this issue (see Sec. IV-E), but have

not yet been leveraged in data collection tools so far. Finally,

vehicle-mobility solutions based on smartphone data only are

limited due to the lack of versatility and the high noise levels

in installed vehicles.

(2) Independent Hardware and Infrastructure. Nearly

all commercial third-party solutions that have been introduced

above rely on their own custom OBD-II dongle that works in

combination with their platform. For instance, UBI companies

provide free dongles, but they can only be used with their com-

panion smartphone apps for a limited purpose. Furthermore,

Otonomo’s pre-defined APIs can only be used by vehicles

from two partner OEMs.

(3) Data Accessibility. Key limitations of commercial

solutions are aforementioned proprietary hardware and li-

braries [5], as well as restrictive programming language

support that hinders the universal deployment of third-party

apps on multiple platforms. Furthermore, tools do not support

online data sharing (i.e., real-time data upload) for real-

time, safety-critical third-party apps. Only CarLog [8] seem

to provide limited online data sharing support for developers.

Table I summarizes existing solutions and their capability

to address the above three challenges. No existing platform

addresses all challenges of vehicular data collection, transla-

tion and sharing. To meet this need, we design, implement

and evaluate a new tool for Data Collection, Translation and

Sharing for Rapid Vehicular App Development (DETROIT)

which is depicted in Fig. 1.

TABLE I: Comparison of DETROIT with Existing Solutions

Carloop
[5]

Otonomo
[6]

CarTel
[7]

CarLog
[8]

DETROIT

Data Sources OBD-II CAN OBD-II OBD-II CAN

Independent HW
& Infrastructure

No No Yes Yes Yes

Data Accessibility Limited Limited No Limited Yes

DETROIT is the first modular and open-source 1end-to-

end tool comprising all three stakeholders in vehicular data

collection and sharing: End User, Developer, and Platform

Operator. Its contributions for these stakeholders are:

End User. The frontend of DETROIT consists of an

Android app which interfaces the vehicle via an OBD-II

dongle. Data collection is standardized through the Vehicle

Hardware Abstraction Layer (VHAL) so any hardware don-

gle can be interchangeably used to overcome limitation (2),

although currently only OpenXC [9] is supported. The End

1https://github.com/detroit-framework

User can immediately interface with available third-party apps

by simply enabling them.

Developer. Third-party apps from independent developers

can be registered and managed through a developer portal.

Developers have access to more sensors due to translated

CAN data, and can choose between offline or online data-

access modes. In the former mode, the developer can download

the translated data in JSON, MATLAB or Numpy formats

for further processing. In the latter mode, translated data

is streamed to the developers’ backend, where the app is

implemented in their preferred programming language. These

contributions overcome limitations (1) and (3).

Platform Operator. To bridge End Users with Developers,

a backend solution, called OpenIVN, is deployed by the

Platform Operator which can be a commercial entity such as an

OEM or Tier 1 for production use, as well as an academic re-

search entity for limited deployment within their organization.

OpenIVN is responsible for local data translation and offering

an interface to the respective developers for data sharing.

Vehicle-agnostic data translation is done by either importing

a DBC (e.g., in the OEM case) or automatically generating

a (partial) DBC file through CAN bus reverse-engineering

tools such as LibreCAN [10]. DETROIT integrates the latter

framework into its front- and back-end, and is thus the

first tool that supports fully-automated, vehicle-agnostic data

pre-processing on high-quality raw CAN data, a significant

solution to limitation (1).

We evaluate DETROIT in three ways:

Benchmark. DETROIT is benchmarked from end to end

in Sec. V with regards to latency, recording size, energy

consumption, CPU utilization, and memory consumption to

show its light resource overhead and thus feasibility.

Improved Accuracy over Phone Sensing Alone. In

Sec. III-C, we introduce some existing apps from academic

researchers that rely solely on phone sensor data (such as

IMU) to reconstruct the vehicle’s motion data. The accuracy

of these apps is thus bounded by noisy and restrictive phone

sensor readings. In Sec. VI, we show that by re-implementing

two phone data-based apps with vehicular sensor data made

available by DETROIT, the apps’ accuracy can be improved

up to 10.11% and 12.36%, respectively.

Enhanced Developer Experience. Developer feedback in

Sec. VI-E show that DETROIT significantly reduces the de-

velopment effort of the aforementioned two apps with regards

to lines of code (LOC) up to 36.9%.

II. BACKGROUND

A. CAN Primer

Vehicular sensor data is collected from ECUs located within

a vehicle. These ECUs are typically interconnected via an

on-board communication bus, or in-vehicle network (IVN),

with the CAN bus being the most widely-deployed in current

vehicles. Fig. 2 depicts the structure of a CAN 2.0A data

frame, the most common CAN data-frame type.

Highlighted with non-white color in this figure are the three

fields that are essential for the understanding of DETROIT:
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Fig. 2: CAN Data Frame Structure (from [10])

CAN ID: CAN is a multi-master, message-based broadcast

bus. CAN is message-oriented, i.e., CAN message frames

do not contain any information regarding their source or

destination ECUs, but instead each frame carries a unique

message identifier (ID) that represents its meaning and priority.

DLC and Data: Data is the payload field of a CAN

message containing the actual message data of length of 0–8

bytes depending on the value of the DLC. The data payload

field consists of one or more “signals,” each representing

information such as vehicle speed or engine RPM.

B. DBC Files

All recorded CAN data can only be interpreted using the

translation tables for that particular vehicle. These tables can

come in different formats, as there is no single standard.

The most common format used for this purpose is DBC.

They contain a myriad of information. However, to understand

this paper, one must be aware of the following minimum

information stored in the DBC files:

• Message structure: CAN ID, Name, DLC, Sender;

• Signals located within messages, such as Name, Start Bit,

Length, Byte Order, Scale, Offset, Unit, Receiver.

Raw CAN data is not encoded in a human-readable format

and does not reflect the actual sensor values. In order to obtain

the actual sensor values, raw CAN data must first be decoded.

Let rs, ms, ts, and ds be the raw value, scale, offset, and

decoded value of sensor s, respectively, then the actual value

can be found from: ds = ms · rs + ts.

C. In-Vehicle Network Architecture

The most widely used IVN architecture is the central

gateway architecture, with CAN being the most popular bus.

The major point of entry into a vehicle for data collection (and

diagnostics) is the on-board diagnostics (OBD-II) interface

which has been mandated in the US after 1996. Emission-

related sensors such as vehicle speed, engine speed, intake

temperature, mass airflow, etc., are universally available in

all vehicles via the standardized OBD-II protocol [2]. This

port can also be used to both read and write raw CAN

data. The latter contains more powertrain-related signals, in

addition to body-related data. Note that the OBD-II protocol

and OBD-II interface are different and should not be confused.

Furthermore, the OBD-II protocol is public and does not use

DBC files at all.

III. RELATED WORK

A. Collection of Automotive Data

Data-collection service and products for vehicles have been

increasingly popular over the last decade, especially thanks

to the wide deployment of smartphones. There are several

academic projects that have built apps on top of collected ve-

hicular data. Of them, only two generic platforms focus on the

data-collection process itself. One of them is CarTel [7] which

deployed GPS, an OBD-II reader, and wireless interfaces to

transmit the collected data back to the server from 6 vehicles

over the course of a year. This platform was used for a variety

of vehicular research efforts, but does not offer the flexibility

of a developer API for other researchers.

Commercial products range from app-specific OBD-II don-

gles (e.g., usage-based insurance dongles [3], [4]) to built-

in OEM data-collection platforms (e.g., Android Automo-

tive [11]). All of the above app-specific solutions operate

on OBD-II data due to its vehicle-agnostic nature. The most

prominent OBD-II dongle is ELM327 [12] which works

well with the OBD-II protocol, but does not offer enough

bandwidth to read raw CAN data without dropping frames.

For performance reasons, we will use the premium OpenXC

VI [9] in this paper.

B. Automotive Data Translation

In contrast to the work discussed earlier, there are very few

related publications on automotive data translation. They all

deal with automated ways to reverse-engineer CAN data [13]–

[15], although they differ in how much of the available CAN

data they cover and how accurate their algorithm is. As of now,

LibreCAN [10] offers both the best accuracy and coverage. It

is capable of reverse-engineering both kinematic- and body-

related data that we are interested in offering to developers

and cover more than half of all signals present in the car with

a significantly higher accuracy than other tools.

DETROIT is independent of the source of DBC. To keep

the framework as generic as possible, Platform Operators can

obtain their own DBC files (e.g., under contract from an OEM)

or use LibreCAN to generate a DBC and use it for data

translation.

C. Phone Sensing vs. Car Sensing

The issue of having to rely on mobile device sensors

instead of vehicular sensors has been pointed out in [16]

which compares the context sensing capabilities of vehicular

and mobile device sensors. It highlights two fundamental

challenges to improve the performance of third-party apps

that can be overcome by using vehicular data sources, namely

sensor availability and sensor placement and movement. The

latter discusses the impact of phone placement inside the

vehicle (e.g., cupholder, pocket or windshield) as well as

movement during data collection on the app performance.

After evaluating phone vs. car-sensing on four example apps

(lane-change detection, pothole detection, road-grade estima-

tion and stop-sign detection), car-sensing is found to yield

better performance for some apps, whereas the precision drops



for others. They do not discuss what vehicular sensors have

been used to replace the phone sensors and thus a direct

comparison is not possible. Furthermore, there is no reference

that they explicitly used proprietary CAN data.

VSense [17] is a mobility application that uses the phone’s

gyroscope and can be replaced with the steering wheel angle as

vehicular source alternative that is only available via the CAN

bus. A turn detection app that uses the phone’s microphone to

detect turn signals can directly leverage turn signal data from

the CAN bus. Another application is BigRoad [18] that uses

accelerometer and gyroscope and can be replaced by speed and

steering wheel angle. With the exception of vehicle speed, all

those vehicular source alternatives to the originally used phone

sensors are only available through interpreting raw CAN data

and cannot be globally obtained using the OBD-II protocol.

IV. SYSTEM DESIGN

A. Design Goals

Simplicity. For easy creation and use of vehicular apps,

we would like to make the interface to the developer and the

driver simple. We provide a web UI for the developer to create

a third-party app and an Android UI for the driver to interface

their vehicle and enable apps.

Scalability & Standardization. DETROIT makes vehicle-

agnostic data collection and thus works on any car that has

an OBD-II interface. Data translation is an integral part of

DETROIT and enables developers to "see" an unprecedented

amount of vehicular data, independent of make, model or

year. Both interfaces to the vehicle and developer will be

standardized. Implementing a Vehicle Hardware Abstraction

Layer (VHAL) allows DETROIT to work with any hardware

to interface the vehicle. The modules above VHAL will not be

affected by the choice of hardware dongle. Furthermore, the

developer obtains the data in a translated, well-formed and

well-documented format, so the pre-processing code among

different apps of the same developer can be reused.

Security & Privacy. Unlike the OBD-II protocol (SAE

J1979) which is used in most of the state-of-the-art as dis-

cussed in Sec. III, DETROIT does not require write access

to the CAN bus at any point during regular operation and

only listens passively to the CAN bus broadcast. This has a

significant security advantage over all existing solutions since

it reduces the risk of accidentally writing messages to the CAN

bus, e.g., if the backend of DETROIT is compromised.

Liability. DBCs are OEMs’ proprietary translation tables

that should not be shared with the End User or Developer.

Since DETROIT makes use of these files for data translation

in OpenIVN, we ensure that only the Platform Operator, i.e.,

the OEM itself or another commercial entity, has control of

these files. The acquisition of DBCs made by the operator

of DETROIT mitigates OEMs’ liability concerns. Fully auto-

mated and crowd-sourced CAN bus reverse engineering by

LibreCAN also occurs on the backend, further mitigating

liability concerns. This design primitive also forces DETROIT

to upload the entire raw CAN data for processing to the

backend. Storing the necessary DBC information for local

translation and selective upload on the frontend may create

liability problems.

B. Setting up DETROIT

Developer: Registering an App. Developers can register

their apps in the Developer Portal and verify their identity

using the Google Sign-In service with OAuth 2.0. This way,

it is possible to ensure that each developer is the sole entity

which can access vehicular data intended for their app(s).

Authenticated developers are required to complete a form

in the Developer Portal, where they must provide a represen-

tative app name and a description of the app’s functionality.

Furthermore, developers must choose their desired data access

mode, i.e., offline or online. In the latter case, developers

will be required to specify their own backend endpoint which

consists of an IPv4 address and a port. For offline mode, this is

unnecessary, since the processed data will become available for

download. Finally, developers can select which coarse-grained

vehicular data permissions they would like their app to access.

An abstracted version of the user interface for registering a

third-party app is shown in the top left of Fig. 3. An SQLite

database stores those metadata about an app registered through

the Developer Portal. Developers have enhanced application

flexibility since they can edit their registered apps at any time

and add or remove permissions. Screenshots for this process

are provided as (3a)-(3d)2.

OpenIVN: Configuring the Backend. DETROIT’s back-

end component OpenIVN requires some initial steps to set up

for first-time use. OpenIVN is a web application written in

Python using the Flask framework. An NGINX server reverse-

proxies requests to a Gunicorn server which then interfaces

with the Flask application. The latter handles requests to

several REST API endpoints which are used by both the

Developer Portal and Frontend. An overview of all API

endpoints to interface the frontend is given in Table II.

DBC Repository. On the backend, we will maintain a

repository of DBC files that will be pulled for translation de-

pending on the vehicle make, model and year (see Sec. IV-E).

As mentioned before, these will be kept exclusively on the

backend due to liability concerns and are exposed only to

the Platform Operator. Translation files on the backend that

we refer to as DBC files throughout the paper are in fact

a customized version of the original format in the broader

sense. Since every OEM can refer to signals differently, it is

necessary to standardize the nomenclature in the custom DBC.

End User. The frontend is an Android app and the only UI

to the End User. It communicates with OpenIVN in order to

not only retrieve vehicular information and app details from

the developer portal, but also to send back recorded data as

well as some meta-information about the vehicle. Upon first-

time startup of the frontend app, the Vehicle Identification

Number (VIN) is queried via a well-formed OBD-II/SAE

J1979 Request [19]. The VIN is a unique 17-character iden-

tifier that allows to look up make, model and year through

2https://www.dropbox.com/sh/3b567sda2qmfvj7/
AACiHjgHw_wuhrHMDMdM6F46a?dl=0
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public online APIs, such as the Product Information Catalog

Vehicle Listing API [20] provided by the National Highway

Traffic Safety Administration (NHTSA). After obtaining the

VIN from the vehicle, an HTTP call to Endpoint #1 from

Table II is made. OpenIVN then sends a request to the API.

Make, model, and year are important parameters to de-

termine the correct DBC for a specified vehicle. OpenIVN

checks if the DBC is present in its repository for the vehicle,

else it notifies and prompts the End User to automatically

reverse-engineer the DBC with LibreCAN [10]. For this

purpose, at least 30 minutes of free driving data and roughly

10 minutes of body data collection are sufficient as described

in LibreCAN. The compressed data is then uploaded to

OpenIVN by an HTTP call to Endpoint #6. Screenshots (1a)-

(1d) depict this process. The reverse-engineered DBC will then

be added to the DBC repository and made available for other

End Users as well as part of crowd-sourcing.

C. Enabling an App

After third-party apps have been registered through the

Developer Portal, OpenIVN has been set up and the vehicle

of the End User has been identified, the latter is presented with

available apps on the frontend. Each time the frontend Android

app is launched, it sends an HTTP call to Endpoint #2 to get

a refreshed list of available apps. Once an app is selected, the

End User is presented meta-information about the app, such as

author, description, data access mode, as well as the requested

coarse-grained permissions. This is done by an HTTP call

to Endpoint #3. The user is allowed to accept or reject

enabling this app. Finally, note that enabling an app is unlike

installing an app as in traditional mobile operating systems. No

binaries are downloaded and installed on the user’s frontend

device. Furthermore, due to enhanced application flexibility as

TABLE II: API Documentation

# Name Endpoint Description

1 Get VIN
/api/v1/vin/
<str:vin>

Sends OBD-II Request to IVN
to Obtain VIN

2
Get App
List

/api/v1/apps/
Requests App List to Display
on Frontend

3 Get App
/api/v1/apps/
<int:app_id>/

Upon App Selection, Meta-data is
Requested to Show on Frontend

4
Translate
(Offline)

/api/v1/translate/?
make=<str:Make>&
model=<str:Model>&
year=<int:Year>&
app_id=<int:app_id>

HTTP POST Sent with
Zipped File to Translation
Endpoint on Backend

5
Get Dev
Message
(Online)

/api/v1/messages/
<int:app_id>

Polls Backend
to Check for
Developer Message

6
Generate
DBC

/api/v1/generateDBC/?
make=<str:Make>&
model=<str:Model>&
year=<int:Year>

HTTP POST Send zipped
trace file to reverse-
engineer DBC

outlined in Sec. IV, no updates/patches have to be installed at

any time by the End User. Screenshots for this process are

provided as (2a)-(2c).

D. Data Collection

Vehicle Interface. We interface the vehicle via its OBD-II

port to access one or more CAN buses. Different hardware

devices can be used for this purpose, as laid out in Sec. III-A.

VHAL. To meet the design goal of Standardization, we

implemented a Vehicle Hardware Abstraction Layer (VHAL)

on the frontend. Since different data-collection devices output

a differently formatted recording file, it is crucial that the data

transmitted to the backend is standardized. As of now, we only

support the OpenXC VI. Other data loggers can be added to



the VHAL and the rest of the data flow is abstracted and does

not affect the functioning of DETROIT.

Offline Data Collection. In the offline data-access mode,

the data is first stored in a formatted file on the phone while

data is being recorded from the vehicle. After End User

terminates the data collection by disabling the app, the file will

be compressed to save data before eventual transmission via

the phone’s network connection. The transmission is triggered

by an HTTP POST to Endpoint #4 from Table II. The endpoint

includes the vehicle make/model/year as well as the third-party

app ID for proper data translation and sharing.

Online Data Collection. Online data-access mode allows

vehicular data to be streamed in real time. As mentioned

before, some app developers might want to process the data

on-the-fly to notify the End User in real time. An example for

this is the Intrusion Detection System (IDS) that will trigger

an alert when an anomaly or intrusion in the vehicle has been

detected. The formatted data will be streamed via TCP. This is

necessary since we cannot assume that the network connection

during a trip will always be reliable (e.g., traveling through

tunnels) so that data can be re-transmitted. In offline data-

access mode, the app ID and vehicle make/model/year were

included in the HTTP POST. These two parameters are sent

in the first TCP segment before data collection starts.

E. Data Translation

Once the data is transmitted to OpenIVN, it needs to be

translated into human-readable sensor data using the afore-

mentioned custom DBC files. The process is similar for offline

and online data-access modes: For the selected coarse-grained

permissions of each app specified by the developer, the fine-

grained signals are mapped to it in the first step. Once we

know the location of those signals (CAN ID, Start Bit, End

Bit, Scale, Offset), we can filter the specific signal from the

raw CAN data with a bitmask and then calculate the absolute

value for each signal as explained in Sec. II-B.

Offline and online data-access modes differ as follows. For

the former, the compressed file has to be extracted first, and

then each message can be translated. For the latter, each

TCP segment received from the established TCP socket is

decoded into 4-tuples and then added to a buffer to ensure

correct packaging of all vehicle data. Complete messages are

removed from the buffer, translated and added to a queue.

Multi-threading is used to prevent the translation process from

becoming the bottleneck, especially given real-time require-

ments for online third-party apps. OpenIVN ensures that the

translated messages are added to the queue in order.

F. Data Sharing

Offline Data Sharing. Recorded vehicular data is made

available for developers to download as a JSON file, as

well as convenient MAT- and NPY-files for further MATLAB

or Python processing in the Developer Portal. The JSON

file will include the fine-grained permission name, its base

timestamp, sampling frequency as well as time-series data

vector. The MAT and NPY-files will have a 2D array for each

sensor, consisting of the re-calculated timestamp from the base

timestamp and sampling frequency.

Online Data Sharing. Based on the developer’s indicated

choice in the Developer Portal, data can also be streamed to

an endpoint they indicated. The developer must specify an IP

address and a port to which the translated data will be relayed

over a separate TCP connection. The developer will receive

only the data they have requested. The first entry sent to the

developer will contain the app ID and vehicle information.

The following packets in that TCP connection will contain a

list of messages which are composed of timestamp and data

points. The latter consists of the fine-grained permission and

the signal value. If multiple messages are ready at the same

time, up to 10 of them will be sent together in the same packet

with the same timestamp to minimize the total number of TCP

packets sent.

DETROIT also offers real-time feedback from the devel-

oper. The latter can send a notification to the End User via

OpenIVN. For this purpose, the frontend periodically polls

the backend for the developer messages by an HTTP call

to Endpoint #5. Messages are displayed on the UI of the

frontend.

V. FRAMEWORK BENCHMARK

A. Experimental Setup

We collected two 1-hour traces from a North American

full-size crossover SUV. Trace 1 features both urban and

highway driving, while Trace 2 contains only urban driv-

ing data. For interfacing the vehicle, we used the OpenXC

Bluetooth VI. We did not experiment with multiple vehicles

since DETROIT’s performance only depends on the number

of CAN messages being processed, which is around 1.6M per

hour in data acquired from multiple vehicles. All experiments

were conducted using Python 3 on a computer running 64-bit

Ubuntu 18.04.4 LTS with 128 GB of registered ECC DDR4

RAM and two Intel Xeon E5-2683 V4 CPUs (2.1 GHz with

16 cores/32 threads each). Furthermore, the smartphone used

for collecting data for Trace 1 was a Google Pixel XL with

1.6GHz quad-core Qualcomm Snapdragon 821 CPU and 4

GB of RAM running Android 10. For Trace 2, we used a

Samsung Galaxy S10+ with 2.84 Ghz octa-core Qualcomm

Snapdragon 855 CPU and 8 GB of RAM running Android

10. For all the metrics in the following discussions, we ran

each trace in both offline and online mode with varying

trace lengths (benchmarked for Trace 1). Furthermore, the test

apps for both access modes include the collection of coarse-

grained Acceleration,Gyroscope, Position Information, Speed

and Vehicle Turning permissions, accounting for a total of 15

of 55 fine-grained permissions. We only analyze the following

metrics when data collection has been started by the frontend.

B. End-to-End (E2E) Latency

Offline Mode. Table III reports the time required for offline

mode. The transmission time is dependent on the radio access

technology (and thus bandwidth) used between frontend and

backend, for which we chose a 100 MBit/s WiFi network.



Offline E2E latency for both traces is similar, standing around

half a minute, respectively, for a 1-hour trace. For varying

trace lengths (15, 30 and 60 minutes), we can observe a linear

pattern. The times for both frontend and backend are reduced

proportionally as expected.

TABLE III: Offline E2E Latency (in Seconds)

Trace 1 Trace 2

Frontend Compress and Upload 26.157 21.582

Backend

Store File and Extract 0.289 0.270

Translate 5.334 5.237

Total Backend 6.305 6.220

DETROIT Total Time 32.462 27.802

Online Mode. The critical path in online mode is the

delay introduced by OpenIVN, since it is responsible for

processing incoming messages from the TCP connection by

translating and sending it to the developer. In order to support

real-time apps, the developer needs to be able to receive the

data with minimal latency. Hence, it is desirable to have a

reliable and fast network connection between frontend and

OpenIVN, as well as between between OpenIVN and the

developer backend. In what follows, we are only interested

in the latency induced by OpenIVN. As a result, we set the

developer backend on the same machine running OpenIVN,

with the messages being sent to a different port.

We calculate the backend latency as the time difference

between the last TCP segment arriving before the socket

is closed and the last translated packet being sent out to

the developer. For Trace 1, we observed 5 ms and 7 ms

latency for Trace 2. These results highlight that DETROIT is

highly capable of real-time apps since the induced latency is

negligible. For traces with varying lengths, the latency stands

at 6 ms and 5 ms, respectively, which shows that the processing

on OpenIVN is independent on the amount of data streamed.

C. Recording Size

Offline Mode. In offline mode, we transmit the compressed

data log once the recording has been completed. Compression

significantly reduces the file size as can be seen in the top

part of Table IV. For both traces, only around 10 MB of data

are transmitted. For 30-min and 15-min traces, the compressed

sizes stand at 5.13 MB and 2.53 MB, respectively. Once again,

we can observe a linear pattern.

Online Mode. In online mode, we calculate the size of TCP

segments that are transmitted to the backend. The bottom part

of Table IV shows that the transmitted size is much larger

than for offline mode, due to the lack of compression, as well

as overhead induced by TCP/IP headers. For both traces, the

transmitted data from start to end stands at 77.46 MB. This is

roughly equivalent to one hour of streaming music through the

popular Spotify app in high quality (160 kbps) [21]. For traces

of varying length, the transmitted data stands at 38.75 MB for

30 minutes and 20.12 MB for 15 minutes, respectively, which

shows a linear pattern as well.

D. Energy Consumption

Energy consumption is an important concern to smartphone

users. In the following benchmark, we are interested in the

energy overhead of the DETROIT app in particular. Measuring

the current drain on a non-rooted Android phone without

a modified kernel is difficult. Nevertheless, measuring the

battery drain is possible over the Android Developer Bridge

(ADB). Google provides Battery Historian that allows to

display the per-application battery drain using battery statistics

and bugreport recorded via ADB. In order to have a fair com-

parison between the traces and phones, we also make sure that

the phone is fully charged at the beginning of the experiment.

The values provided by Battery Historian are merely estimates.

A large estimate provided by it are "UNACCOUNTED" or

"OVERCOUNTED" which is what happens when Android

estimates that apps have used more battery than has actually

been used (as measured by the voltage on the actual battery).

For both modes, we calculate the worst-case overhead o

induced by DETROIT as follows, with bDETROIT , bTOTAL

and bUNACCOUNTED being the battery drain by DETROIT ,

total battery drain and over-counted battery drain by Android,

respectively: o =
bDETROIT

bTOTAL−bDETROIT−bUNACCOUNTED
. We

evaluate both the energy overhead o as well as battery drain

of the frontend app bDETROIT which are summarized in the

top two rows of each access mode in Table IV. For each

of the four experiments, we made sure that the battery was

fully charged upon launching the data recording. As can be

seen in the table, the frontend app of DETROIT accounts

for around 10% of energy overhead in offline mode. The

numbers are expectedly higher in online mode (due to heavy

use of networking). Nevertheless, the more practical metric

is the actual battery drain bDETROIT . According to [22],

the average American driver spends 51 minutes per day in

the vehicle. Both our traces are one hour long and we can

thus derive a good comparison. Even if we add the battery

drain caused by OpenXC Enabler (ranging 0.57-3.33%) and

account all network (WiFi/Cell) drain for DETROIT (ranging

1.58-2.22%), we can see that the total battery drain for the

necessary components never exceeds 7%. Given that a phone

battery shall last one day, this overhead is relatively low.

E. Other Metrics

Memory Consumption. By using the ADB command

adb shell top − m 30 | grep PACKAGE_NAME, the

memory of a specific Android app can be logged. For offline

traces, the RAM consumption tends to be lower than for data

collected in online mode. The RAM consumption peaks at

≈150 MB in online mode whereas it peaks at 90 MB in

offline mode. We can verify the same results for smaller

traces. Our results show that the memory consumption in both

modes is relatively low. Nevertheless, on lower-end Android

devices with <512 MB of RAM, using DETROIT together

with the OpenXC Enabler companion app to interface the

vehicle (RAM consumption stands under 70 MB) might be

challenging.



TABLE IV: Recording Size, Energy Consumption and CPU

Usage

Access
Mode

Metric Trace 1 Trace 2

Offline

Uncompressed Recording Size 58.99 MB 56.97 MB

Compressed Recording Size 10.46 MB 9.77 MB

Energy Overhead 9.14% 11.30%

Battery Drain 1.33% 1.09%

Avg. CPU Usage 11.17% 4.69%

Online

Uncompressed Recording Size 77.46 MB 74.47 MB

Energy Overhead 13.04% 29.36%

Battery Drain 1.82% 3.20%

Avg. CPU Usage 9.62% 10.87%

CPU Usage. Finally, we summarize the average CPU

utilization of the frontend application in the bottom part

of Table IV. Battery Historian also provides parameters to

calculate CPU usage on a per-app basis. Given the user time

tu, system time ts, total measured time tt and the number of

CPU cores N , the CPU usage c can be calculated as [23]:

c =
tu+ts

tt·N
. For Trace 1, the metric stays at around 10% for

both access modes. For Trace 2, the CPU usage in online

mode is comparable to Trace 1, but significantly lower for

offline mode. This might be due to newer and more performant

memory structures while writing the data to a file. We can

verify the same results for smaller traces which shows that

DETROIT adds a low computational overhead.

VI. EVALUATION

To study and examine the efficacy of DETROIT in ben-

efiting mobility apps, we first articulate how to adapt the

CAN data. Then, by studying the two demonstrative mobility

apps, we will show how their performance (e.g., detection

accuracy) can be improved with DETROIT over smartphone

data only. We collected 30-min and 35-min CAN data from

the aforementioned North American full-size crossover SUV

(Vehicle A) and an Asian electric two-seater microcar (Vehicle

B), respectively.

A. Using CAN Data for Mobility Apps

CAN bus arbitration prioritizes messages with a lower CAN

ID, and thus creates varying signal sampling rates. Timestamp

traces of different CAN signals (i.e., speed, gyroscope, and

steering wheel angle) show a slightly nonlinear pattern which

is the natural effect of CAN arbitration. The overall sampling

rate of aforementioned three signals are 2.81 Hz, 9.38 Hz, and

8.83 Hz, respectively. App developers should thus be aware of

CAN arbitration and align timestamps.

B. Demonstrative Apps

Steering Detection. The detection of vehicle steering on

mobile devices exploits gyroscope readings to retrieve two-

level information from the vehicle’s steering maneuvers: the

angular change and type of steering maneuvers (i.e., lane-

changes vs. left/right turns). As in prior work [16]–[18],

the angular change caused by a steering maneuver can be

reconstructed by fusing gyroscope, accelerometer and GPS

data that are available on mobile platforms. For example, one

can use the gyroscope data to capture the angular change; to

differentiate a lane-change from a turn, the accelerometer and

GPS are used to reconstruct the horizontal displacement of the

vehicle. In particular, VSense [17] is shown to achieve 93%

accuracy (i.e., recall) in detecting all 21 lane-changes.

However, smartphone sensors can be noisy due to poor

sensing fidelity and phone movements. DETROIT can natu-

rally overcome these problems by making translated vehicle

steering data available. To demonstrate the improvement by

using DETROIT, we collected the required phone data (i.e.,

gyroscope, accelerometer, magnetometer, and GPS data) and

CAN data (steering wheel and speedometer).

Detection of Turn Signals. Characterizing the driver’s turn-

signal usage would be an essential element for assessing the

driver’s attentiveness. For example, drivers’ failure to use

turn signals alone accounts for more than 2,000,000 accidents

annually [24], [25]. Due to the inaccessibility of translated

CAN data, prior work infers the turn-signal usage by analyzing

context information, such as the periodic clicking sound that

is triggered by the turn-signal usage. Specifically, the sound-

based approach [17], [26] uses a series of filtering and feature

engineering steps, e.g., matched filtering, to reconstruct the

clicking sound. However, the performance of this prior work

is limited due to environmental noise, including loud music,

speaking and the vibration noise induced by bumpy roads.

Instead of detecting the clicking sound, turn-signal data can

be directly obtained from the CAN bus and translated, thus

providing more reliable information for assessing the driver’s

turn-signal usage. DETROIT can also detect a wrong turn

signal — another dangerous driving maneuver that is not

detectable with the phone data only.

C. Detection of Steering Maneuvers

To compare DETROIT-collected data with phone-collected

data, we use the VSense algorithm in [17] for steering

detection data. For this purpose, we reconstructed the vehicle’s

yaw rate from steering wheel angle (SWA) data by using

an estimation formula [18]. To evaluate the performance of

steering detection, we used driving data from Vehicle A with

accumulated driving of 23.67 km in a suburban area. In total,

the driver made 31 left turns, 28 right turns, 12 left lane-

changes, and 8 right lane-changes, respectively. Driving data

from Vehicle B consists of 10.06 km on a university campus

with 28 left turns, 32 right turns, respectively. Due to the

single-lane design of campus roads, no lane change maneuvers

were performed. During the test, a Google Pixel XL (placed

in the cup holder) is used for Vehicle A and a Redmi Note 8

for Vehicle B to collect the IMU and GPS sensor data required

for the VSense steering detection. We asked the driver to not

move the phone during data collection.



Figs. 4(a) and (b) show confusion matrices for VSense

performed with smartphone and CAN data for Vehicle A,

where labels 1, 2, 3, 4, and 5 denote left turn, right turn, left

lane-change, right lane-change, and non-steering maneuvers,

respectively. A non-steering maneuver is not any of the four

aforementioned maneuvers, but may also induce a bump-

shaped curve in the gyroscope reading. These experimental

results show that CAN data is superior to smartphone data

in correctly classifying all maneuvers with VSense, i.e.,

the overall accuracy of steering detection with CAN data

is 10.11% higher than with phone data. Note that the data

extracted by DETROIT reduces false positives (i.e., detecting

non-steering maneuvers as a steering maneuver). The reason

for this improvement is that due to the vehicle’s motion

and loose phone placement, the momentum and/or centrifugal

force may cause a slight phone displacement. Hence, the

high data fidelity of DETROIT can help developers build

high-performance apps. For Vehicle B, the overall accuracy

improves by 13.3% when CAN data is used. While the CAN

data-based approach provides similar results, the performance

of the phone-based method decreased due to driving on a

university campus which usually has several speed bumps

for speed limit enforcement. Passing through a speed bump

induces a bump-shaped curve in the gyroscope reading, which

may be misclassified as a steering maneuver by VSense.

Accuracy: 84.27%

90.3%

28

0.0%

0

0.0%

0

0.0%

0

9.7%

3

0.0%

0

92.9%

26

0.0%

0

0.0%

0

7.1%

2

0.0%

0

0.0%

0

75.0%

9

0.0%

0

25.0%

3

0.0%

0

0.0%

0

0.0%

0

75.0%

6

25.0%

2

10.0%

1

0.0%

0

10.0%

1

20.0%

2

60.0%

6

1 2 3 4 5

Actual Steering Types

1

2

3

4

5

D
e
te

c
te

d
 S

te
e
ri
n
g
 T

y
p
e
s

(a) Smartphone data.

Accuracy: 94.38%

96.8%

30

0.0%

0

0.0%

0

0.0%

0

3.2%

1

0.0%

0

96.4%

27

0.0%

0

0.0%

0

3.6%

1

0.0%

0

0.0%

0

75.0%

9

0.0%

0

25.0%

3

0.0%

0

0.0%

0

0.0%

0

100.0%

8

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

10

1 2 3 4 5

Actual Steering Types

1

2

3

4

5

D
e

te
c
te

d
 S

te
e

ri
n

g
 T

y
p

e
s

(b) CAN data.

Fig. 4: Confusion matrices of steering detection.

D. Detection of Turn-Signal Usage

We collected turn-signal data from the CAN bus for both

vehicles. To compare to the sound-based turn-signal detec-

tion [17], we recorded the sound while driving with an iPhone

7+. The ground truth of turn-signal usage was annotated by

the passenger. For a thorough statistical analysis (i.e., both true

positive and false positive rates), the driver was instructed to

omit turn-signal usage during certain steering maneuvers. For

Vehicle A, 43 of 79 steering maneuvers are associated with

proper turn-signal uses. For Vehicle B, the blinker is used in

53 of 60 steering maneuvers.

Fig. 5 shows the use of both left and right signals for

Vehicle A. SWA data is also provided to illustrate how turn-

signal data is associated with steering maneuvers. The zoom-

in view clearly shows that the binary turn-signal indicator

denotes whether the signal is used or not. Here, the right turn
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Fig. 5: Data trace of turn-signal usage during steering maneu-

vers.

signal is triggered when the steering wheel is turned to the

right (negative bump), and vice versa. This information can

enable several mobility apps, e.g., inattentive driver detection

based on turn-signal usage during steering maneuvers. The app

developer can first collect both turn-signal and SWA data with

DETROIT. Then, to determine proper turn signal usage during

turns and lane-changes, steering maneuvers are detected and

checked for a positive indicator during them.

TABLE V: Comparison of turn signal detection.

Method Vehicle Precision Recall Accuracy

Sound
Detection

Veh. A 1.0 0.82 0.89
Veh. B 0.92 0.94 0.88

DETROIT Both 1.0 1.0 1.0

Finally, we compare the performance of turn-signal detec-

tion between phone and CAN data. As shown in Table V,

CAN data can (unsurprisingly) achieve 100% in all evaluation

scores. For Vehicle A, this approach provides 100% precision

(i.e., no false positives) while it suffers from false negatives

as indicated in the recall score, because the high noise floor

may saturate the filtering capability of the signal processing

pipeline. For Vehicle B, recall is higher due to the EV’s

reduced mechanical noise, but precision suffers from the

microcar’s lower signal sound volume.

E. Low Implementation Complexity

One of the key benefits of DETROIT is that app develop-

ers can directly use high-quality translated CAN data, thus

lowering the implementation complexity by (1) shortening the

development time via the reduction of the lines of code (LOC)

in data pre-processing steps. Specifically, for the steering

detection algorithm (i.e., V-Sense), the developers can reduce

LOCs up to 10.8% in Matlab and 12.7% in Java (Android),

respectively. For the turn-signal detection, using DETROIT

data can free the developer from implementing the sound

signal analysis pipeline — accounting for 36.9% LOC in Java.

VII. DISCUSSION

One important question is who will deploy and operate

DETROIT to connect all three stakeholders with each other.

We envision two possibilities for the Platform Operator:

(1) Commercial Entity. DETROIT can naturally serve as a

complete solution for an OEM with DBCs already at hand.



OEMs can embed this platform into their infrastructure to

build an OEM-specific app store. The frontend would be

implemented on their In-Vehicle Infotainment (IVI) instead of

a phone. It is also possible that start-ups can deploy DETROIT

to bridge drivers with developers for data monetization.

(2) Academic Entity. Researchers can also deploy

DETROIT to accelerate their vehicular research. Since it is

difficult for researchers to obtain DBC files, crowd-sourced

CAN reverse engineering can be leveraged to accelerate their

research.

Although DETROIT provides a highly functional end-to-end

solution for vehicular data collection, translation and sharing,

it still comes with certain limitations which are part of our

future work. Mass testing of DETROIT will also help identify

more issues. In what follows, we elaborate on limitations and

possible extensions:

Multi-App Support. The current implementation allows

multiple apps to be enabled simultaneously. For both modes,

the data is processed separately on front- and backend. We can

further save bandwidth by avoiding repetitive transmission of

data over multiple TCP connections for multiple apps.

Privacy. Although DETROIT implements the data mini-

mization privacy goal by supporting a customizable permission

model, other privacy design primitives, such as data sanitiza-

tion are not implemented on the backend. Different permis-

sions/signals have different privacy sensitivities as shown in

[27]. The use of sanitization algorithms, such as Differential

Privacy, can help overcome the End User’s privacy concerns

while preserving the third-party app’s utility.

VIII. CONCLUSION

In this paper, we have presented DETROIT , an open-source

end-to-end solution for vehicular data collection, translation

and sharing. It is the first tool that supports vehicle-agnostic

data translation of raw CAN data which is made possible

by a fully-automated, crowd-sourced CAN bus reverse en-

gineering tool integration. We benchmarked the performance

of DETROIT with several metrics to show its lightweight

performance. Finally, mobility app developers used DETROIT

to re-implement their apps that were designed with smartphone

sensors to highlight both the performance enhancements with

CAN data due to high sensor fidelity as well as improved

application flexibility and low implementation complexity.
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