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ABSTRACT
We propose an Adaptive Crowd mobility analytics system based
on Cross-zone Interactive learning (ACroCI) to capture, interpret,
and forecast how the mobility of human crowds interacts with built
or man-made environments (e.g., building functions, event occur-
rences, and changes in the crowd sensing infrastructures). We have
conducted a large-scale real-world case study of ACroCI by lever-
aging the collective and anonymized association data harvested
from the campus Wi-Fi access points (APs), to understand how the
interactions a�ect the forecast of crowd �ows. We have analyzed
the large-scale Wi-Fi association data and derived adaptive learn-
ing and data-driven designs on important crowd mobility features
like multi-level co-�ows and local-global cross-zone interactions.
ACroCI accounts for these interactive features and adaptively learns
the multi-scale crowd distributions with a novel capsule neural net-
work augmented by interactive attention routing, and accurately
predicts the arrivals at, and departures from, each AP. Strengthened
by multi-task extreme-aware learning and e�cient data imputation,
ACroCI further adapts to extreme �ows when the crowds interact
with events, and initializes its model for altered APs. Our extensive
experimental evaluations with >4.8 ⇥ 107 association data from
two large universities have corroborated the accuracy, adaptivity,
robustness, and e�ectiveness of ACroCI in forecasting the crowd
interactions with the man-made environments (in terms of crowd
�ows), achieving a >20% accuracy improvement over the other
state-of-the-arts.

1 INTRODUCTION
Crowd mobility analytics (CMA) — i.e., interpreting and understand-
ing the movement of crowds — have become increasingly important
for many spacious urban and/or public places, such as college cam-
puses, large airports, and malls, where many people are likely to
gather together within and across the human-built or arti�cial en-
vironments like building rooms, corridors, and sidewalks. While
the social and behavioral analysis of crowds [11, 24], including
the interactions among crowds, has been extensively studied in
various ubiquitous and urban computing contexts, how crowds
interact with the built or man-made environments, such as the
building functions, event occurrences inside/across buildings, and
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infrastructure alterations or changes [2], and how such interaction
may bene�t mobility modeling, remain a largely unexplored but
important subject of CMA.

Human crowds usually move responsively given various built
environment settings. For instance, the college students may form
certain travel routines on a campus, given their interpretation of
relative proximity of buildings (as well as their purposes) such as
residential halls (living), recreational centers (recreation), dining
halls (dining), and libraries (studies). One may, therefore, expect
interactive co-presences of crowds at multiple locations during cer-
tain periods of a day. Crowds may also interactively pick alternative
entrances, exits, or routes in response to closure of certain corri-
dors or sidewalks. Understanding and incorporating such dynamic
interactions within the CMA system design, particularly learning
and predicting interactive crowd movements, will bene�t various
important ubiquitous, mobile, and urban applications, such as event
monitoring and facility management.
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Fig. 1: Illustration of design motivations.
To this end, we propose a novel CMA system with insights of

such interactions, using collective and anonymized Wi-Fi associ-
ation and disassociation data harvested from a campus network
infrastructure as a practical case study. Through the system de-
ployment study, we would like to understand how incorporating
interactions, as illustrated in Fig. 1(a), between human crowds and
the built environments impacts the accuracy and e�ectiveness of
CMA, especially in predicting the mobility of crowd �ows. Towards
such a ubiquitous CMA system, we must address the following two
major technical challenges:

(1) Lack of modeling the local-global and cross-zone inter-
actions with the man-made environments: Crowd mobility is
highly complex and often involves multi-scale complexities due to
hourly, daily, and weekly routines, periodic personal activities and
preferences. Furthermore, co-presences and co-�ows of crowds oc-
cur not only locally at neighboring campus zones but also globally
across distant zones. Conventional learning without considering
multi-scale and local-global dependency and interaction modeling
cannot capture the underlying sophisticated campus activities and
provide satisfactory prediction.

(2) Absence of extreme awareness and adaptivity to inter-
actions with dynamic sensor measurement environments:
Besides the inherent spatial and temporal complexities, the distri-
butions of crowds may be a�ected greatly by transient or abnormal



campus events (e.g., a conference gathering or an emergency), lead-
ing to a surge or drop of crowd interaction behaviors (say, arrivals
or departures). Conventional extreme-agnostic Wi-Fi data learning,
however, fails to take into account the potential extreme awareness
within the crowd mobility data. Furthermore, the Wi-Fi infrastruc-
ture may change due to network maintenance and recon�guration,
which can impact the Wi-Fi data collection and subsequent model
learning. In particular, how to learn and predict crowd mobility
with APs that are newly-introduced or relocated without histor-
ical data for model training, i.e., handling “cold-start” for model
initialization, remains largely unexplored.

To address the above challenges, we propose anAdaptiveCrowd
mobility analytics system based on Cross-zone Interactive learning
(ACroCI). To better understand how the crowd interactions with the
built/arti�cial environments a�ect the mobility modeling, we have
further designed a crowd �ow prediction experiment, i.e., forecast-
ing the �ows of crowds at each individual Wi-Fi AP, as a practical
and easy-to-evaluate case study. In this case study, at each time
interval, for each AP, the in-�ow is considered to represent the total
number of clients entering its close proximity, while the out-�ow de-
notes that of those leaving. Speci�cally, our crowd interaction stud-
ies with ACroCI take in the AP-level associations/disassociations
and their zone-level representations, statistical time-series features,
and external factors. Then, our crowd interaction learning frame-
work, with a novel interactive Attention Routing Capsule network
(ARCap) as the core, forecasts the AP-level crowd �ows.

This paper makes the following contributions:
C1. Spatio-temporal interactive campus crowd mobility

analytics (Sec. 2): We have conducted a comprehensive analysis
of campus mobile associations and crowd �ows using real-world
Wi-Fi association datasets, one collected from our university cam-
pus and an open-sourced dataset from a university in Northern
Europe [18]. We have derived several spatial and temporal represen-
tation designs, motivations, and insights regarding the interactions
between the crowds and the built environments, including multi-
scale temporal and co-�ow complexities, local-global cross-zone
dependencies, as well as extreme crowd �ows, to motivate our
adaptive interaction learning model formulation.

C2. Learning interactions between crowds and built envi-
ronments (Sec. 3): Within ACroCI, the complex spatial correlations
across di�erent APs and their neighborhoods are characterized via
a novel spatio-temporal mobility heatmap representation, and the
crowd �ow patterns are further learned by a novel attention routing
capsule neural network. The multi-scale co-�ows and local-global
cross-zone interactions between the crowds and the built envi-
ronments can be jointly and interactively captured by our novel
vectorized capsule structure with attention routing. Then, ACroCI
predicts the AP-level crowd �ows based on the fusion of multiple
learners, yielding high accuracy and robustness.

C3. Awareness and adaptivity augmentation (Sec. 4): We
have further designed a novel auxiliary module with novel multi-
task extreme-aware learning to capture statistical crowd �ow time-
series features and forecast the extreme crowd distributions intro-
duced by transient and potentially abnormal university events. We
have also designed an e�cient data imputation mechanism for our
CMA system to handle the cold-start issue of newly-introduced or
relocated APs after network recon�guration.

C4. Extensive experimental evaluations (Sec. 5): With asso-
ciation data from the above-mentioned university campuses, we
have conducted extensive experimental evaluations with >4.8⇥107
Wi-Fi association records from over 2.36⇥105 clients in total. These
results have corroborated the importance of incorporating inter-
actions between crowds and the built environments, as well as
accuracy, robustness, extreme-awareness, and adaptivity of ACroCI
in predicting the campus mobility and crowdedness.

2 MOTIVATIONS AND FORMULATIONS
2.1 Crowd Mobility Data Pre-processing
CrowdMobility Data: ACroCI is based on the following two large-
scale campus WLANs.

(a) Campus A: We used our information technology (IT) ser-
vice of University of Connecticut to collect the Wi-Fi association
and disassociation records at our university campus (denoted as
Campus A) via the Cisco Prime Infrastructure. The selected APs
with the given GPS coordinates (longitudes and latitudes) cover a
campus area of 4.4036 ⇥ 106 m2. 1,059 APs and 126,923 clients are
studied, obtaining a total of 9.677 ⇥ 106 records over a 15-month
data collection period (2015/06–2016/09). Each record corresponds
to one AP association event, with the MAC addresses of both the
associated AP and the user’s connected client device, user name
(ID), the start time as well as the association duration, and the IP
address. We infer the departure or disassociation time by adding
the association duration to the start time.

(b) Campus B: The 880 APs selected from another university
campus in Northern Europe [18] (denoted as Campus B) cover an
area of 1.308 ⇥ 106 m2 and 109,197 clients, producing a total of
3.8593 ⇥ 107 Wi-Fi association records during the 16-month long
data collection period (2014/01–2015/04).

Crowd Mobility Data Preprocessing: For Campus A, the data
collection of individual/crowd locations is enabled by a single-
sourced Wi-Fi service provision system managed by our university
IT service, and the user anonymity, including privacy of the user
ID and device’s MAC address, is maintained. Related privacy and
ethical considerations have been discussed and vetted by the uni-
versity’s Institutional Review Board or IRB; we were informed that
no IRB application was required as only aggregate anonymized
data is used in our study. We have anonymized the user names
(IDs), client device MAC addresses, and IP addresses (if any) of
the association records. We use these anonymized user IDs to map
devices to individual users, hence mapping the Wi-Fi association
data to the crowd �ows, and the IDs are discarded immediately
after the mapping. Identities in the dataset from Campus B are also
anonymized before its distribution to preserve individual privacy.
We infer the AP-level crowd �ows (in/out) by:

AP-level Associations/Disassociations: For ease of modeling, we
discretize the time domain into intervals (say, each with 60min in
our settings). The period : and the index : are used interchange-
ably, both referring to the :-th time interval. Let" be the number
of access points (APs) on a campus. Then, we denote the num-
ber of associations and disassociations at AP 8 (8 2 {1, . . . ,"}) in
the :-th time interval as �(: )

8 and ⇡ (: )
8 , which form the resultant

"-dimensional ("-d) vectors of AP-level associations and disassoci-
ations, i.e., A(: ) =

⇥
�(: )
1 , . . . ,�(: )

"

⇤
and D(: ) =

⇥
⇡ (: )
1 , . . . ,⇡ (: )

"

⇤
.
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Fig. 2: AP locations studied at
Campus A.
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Fig. 3: Points of interests (POIs)
at Campus A.
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Fig. 4: Heatmap of associations
at Campus A (a Monday noon).
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Fig. 5: Multi-level temporal in-
teractions.

2.2 System Design Motivations
We derive the following data-driven motivations regarding interac-
tions of the crowds with the built environments on campus (denoted
asM1–M5).
M1 – Spatial Interactions with Points-of-Interest (POIs).

Taking our university campus (Campus A) as an example, we
show in Fig. 2 the AP locations, demonstrating the pervasive cov-
erage of the campus Wi-Fi infrastructures. We also show in Fig. 3
the 219 points of interests (POIs) on Campus A, including academic
buildings, athletics or recreation facilities, dormitory and residen-
tial area, restaurants and cafes, and parking lots. The geolocations
of the POIs are derived from the free editable geographic database
OpenStreetMap. We illustrate the spatial heatmap of aggregated AP
associations (in log10 (·)) during 12:00–13:00 of Monday in Fig. 4.
On Monday dense AP associations and “implied” crowdedness can
be observed from multiple locations such as academic buildings
(denoted as AB) and the student union canteen (denoted as SUC).
However, we also observe that on Sunday (the same time period)
the magnitude is much lower and student halls (denoted as SH in
Fig. 4) as well as academic buildings remain to be hotspots.

One can expect that the campus facility and building distribu-
tions have strong impacts on the crowd �ows. However, given such
a complex and non-uniform distribution of APs, it is very di�-
cult to model their mutual spatial interactions for e�ective crowd
interaction learning. To handle the above issue, we leverage the
inspiration of image learning, and conduct zone discretization to
obtain the aggregate zone-level association data as the important
inputs and feature representations for our model training.

Zone Discretization, Zone-level Associations, & Disassociations:
We discretize the campus map into ⌧ zones. Speci�cally, we divide
the map longitudinally and latitudinally into, ⇥ � equal-sized
rectangular grids. Note that the shape and size of the zones can be
customized according to each speci�c data analysis and prediction
task need, and adapted to the map/building accessibility.

We aggregate the number of Wi-Fi associations or crowd arrivals
at all APs installed within zone 9 in the interval : as . (: )

9 . Then,

we have the zone-level association as Y(: ) =
⇥
. (: )
1 , . . . ,. (: )

⌧

⇤
. Sim-

ilarly, we �nd the disassociations or crowd departures as $ (: )
9 , as

O(: ) =
⇥
$ (: )
1 , . . . ,$ (: )

⌧

⇤
. Then, for each time interval : , we process

the given zone-level Wi-Fi associations/disassociations into sequen-
tial mobility heatmap frames, denoted as F(: ) , as spatio-temporal
mobility representations for the model input. Note that while the
spatio-temporal mobility representations are at the zone level, our
prediction output is at each individual AP for �ne-grained crowd
monitoring.
M2 – Multi-scale Temporal Interactions.

We have investigated the temporal intervals to evaluate the
multi-scale temporal correlations. Recall that the time domain has
been discretized into multiple intervals, each 1 hour long in our
setting. Then, by varying the sliding window of ) consecutive
time intervals, we evaluate the temporal correlations between the
associations of APs 8 and 9 based on the Pearson correlations, i.e.,

corr (8, 9) =
Õ)

C=1

⇣
� (C )
8 ��̄8

⌘
·
⇣
�(C )

9 ��̄ 9

⌘
rÕ)

C=1

⇣
� (C )
8 ��̄8

⌘2rÕ)
C=1

⇣
�(C )

9 ��̄ 9

⌘2 , where �̄8 represents

the mean �ow in the window of ) intervals at AP 8 . Similar results
can be observed from departures. By varying the sliding window
size, we show the means and variations of the temporal correlations
of APs at each campus in Fig. 5. Overall, Campus A experiences
the lower mean correlations and higher variations than Campus
B. From both campus datasets, we can observe that for short-term
intervals (say, <3 hours), the correlations tend to be small and
varied, which is likely due to the short-term mobility dynamics.
On the other hand, for the long-term intervals (say, >9 hours) the
correlations tend to be large and consistent, mainly because there
exist mobility patterns on various campus function zones. After
the sliding window reaches a certain value (say, >12 hours in our
cases), the temporal correlations start to converge.
M3 – Co-Flow and Local-Global Interactions.

Complex crowd interactions with di�erent built environments
(e.g., buildings) often result from their functions, which can be
characterized by their points-of-interest (POIs) in Fig. 3. We further
look at the APs in the same POI and obtain the correlations among
APs at a pair of di�erent POIs. Speci�cally, we consider several
POIs that are closely related to a student’s daily life: (a) academic
buildings, (b) recreational/athletics facilities, (c) dormitory and
residential zones, and (d) restaurants and cafes.
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Fig. 6: Temporal interactions at selected POIs of Campus A.
To demonstrate the interactions, Fig. 6 plots the average corre-

lations between each pair of POIs at multiple temporal scales (3,
6, and 9 hours). From the higher correlations (warmer colors) be-
tween the two categories of POIs, we can infer more similar trends
of client arrivals, i.e., co-�ows, at the two types of POI zones at the
same time. We observe that for short sliding windows, more co-
�ows are likely to happen in campus zones with recreation/athletics
facilities, dormitories, and restaurants, which are closely related
to campus life apart from class activities. While for large sliding
windows, more co-�ows, with much higher correlations, can be
observed at dormitories, recreational facilities as well as academic



buildings, demonstrating the long-term routine patterns on campus.
We also note from Figs. 3 and 6 that as the recreation and dormitory
buildings are largely at the peripheral areas of the campus and with
noticeable mutual distances, such dependencies should be carefully
modeled via not only locally (local nearby zones) but also globally
adaptive (across distant zones) scopes.
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M4 – Interactions with External Factors.

For Campus A, we further select two locations to further analyze
how the crowdsmay respond to the external factors. Speci�cally, we
select two APs, one inside an academic building and the other inside
the student health center (clinic), and illustrate the associations and
the crowd �ows in Figs. 7 and 8. Fig. 7 shows a clear di�erence in
Wi-Fi associations between holiday and non-holiday weeks on the
campus. Another interesting �nding comes from Fig. 8, where we
compare the crowd �ows between two weeks in a �u-shot season
(usually October/November in our case) and a non-�u-shot season
(in September). The respective temperature trends (average 41�F
vs. 62�F, or 5�C vs. 16�C) are also shown in Fig. 8. More clinic
visits are likely due to the lowering temperature and �u seasons,
implying the needs of forecasting such interactions for public health
concerns. We also observe some drops onWednesday and Thursday
due to rain and shower since the student health center is disjoint
from other academic buildings and dorms which might deter the
crowd mobility.

Motivated by above, for each campus, we collect weather condi-
tions and day of week as the external factors for the crowd �ow pre-
diction. Speci�cally, for Campus A we collect the weather data from
the National Oceanic and Atmospheric Administration (NOAA),
while for Campus B we �nd the weather conditions based on the
open data portal Weather Archive [1]. As shown in Table 1, we con-
sider weather conditions, meteorological data, as well as event/time.
For the categorical factors such as weather conditions and public
holidays, we use one-hot encoding [8], i.e., the value is 1 if a condi-
tion exists (say, rainy) and 0 otherwise. For the numerical factors
such as meteorological data, we conduct the max-min normaliza-
tion [8]. We concatenate the categorical and numerical factors, and
form the external feature vectors E (the dimension is 11 for Campus
A and 15 for Campus B).
M5 – Interactions with Events & Environmental Changes.

We have conducted the following studies upon the crowds’ in-
teractions with the event dynamics and environmental alterations
(in terms of AP alteration):

Table 1: External factors considered for the two datasets.
Factors Campus A Campus B
Weather

Conditions
Foggy/Rainy/Misty/
Haze/Snowy (5-D)

Misty/Drizzle/Light Rain/Shower/Snow/
Freezing/Foggy/No Signi�cant Clouds (8-D)

Meteorological
Data

Temperature/Humidity/
Wind Speed (3-D)

Temperature/Pressure/Humidity/
Wind Speed (4-D)

Event/Time Day of Week/Hour of Day/Public Holiday or Not (3-D)
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Fig. 9: Time series (a) and the PDF (b) of historical associations for an AP.

(i) Interactions with Events: Transient and abnormal campus
events (e.g., a conference or emergency) may lead to signi�cantly
higher (surge) or lower (drop) volumes of crowd �ows at certain
APs than historical average, i.e., the average �ows of the same time
interval of a day in a week. We show in Fig. 9 regarding (a) time
series and (b) probability distributions of �ows in the same histor-
ical time interval (14:00–15:00) at an AP in an academic building
on Campus A. We can observe that the crowd �ow distribution
at this AP can have signi�cantly high or low values (highlighted).
To model such an extreme surge or drop and enhance ACroCI’s
adaptivity, we take into account multiple statistical time-series fea-
tures (detailed in Sec. 4.1) of the crowd �ows at di�erent campus
zones as additional inputs for ACroCI. Meanwhile, we use auxiliary
labels for the extremely high/low AP-level �ows for the joint model
training.

(ii) Interactions re�ected by AP Alterations: Due to network main-
tenance or recon�guration, some Wi-Fi APs may be introduced,
relocated, or removed. A removed AP can be simplymaskedwithout
further prediction. However, an AP that is either newly-installed or
relocated (same MAC addresses but treated as “new” at the model
side), may have di�erent spatio-temporal neighborhood features,
leading to “cold-start” initialization problem for the crowd interac-
tion learning model due to lack of initial data. For instance, we have
observed on Campus A that 11.08% of the APs have been newly
introduced within an academic year (fall and spring semesters).

2.3 Problem De�nition & Model Overview
Problem De�nition. Motivated by the above data analysis, in our
CMA prototype study, we consider the crowd �ow prediction as a
case study to evaluate the usefulness of incorporating interactions
within ACroCI.

Speci�cally, we aim at designing a crowd interaction learning
model P) (·) (with model hyperparameters ) ) to forecast AP-level
crowd �ows (arrivals or departures) in a target time interval : , de-
noted as X̂(: ) , which is either associations Â(: ) or disassociations
D̂(: ) , given a sequence of F historical representations, F(hist) =�
F(:�F ) , F(:�F+1) , . . . , F(:�1)

 
, as well as theAP-level crowd �ows

in the previous interval, X(:�1) , external factors, E(:�1) , and other
statistical time-series features, F(stat) . It is formally given by

X̂(: ) = P)

⇣
F(hist) ;X(:�1) ;E(:�1) ; F(stat)

⌘
. (1)

Model and System Overview. Based on motivations M1 –
M5, we have designed and implemented ACroCI, whose model and
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system framework is illustrated in Fig. 10. To train the model, we
�rst collect the historicalWi-Fi AP association records, AP locations,
campusmap, as well as other external factors (including the weather
conditions and the university calendar) with the campus IT services.
ACroCI pre-processes the above inputs, and the data-driven studies
derive the model inputs and system parameters for the ACroCI’s
core model. Speci�cally, these features are processed and learned
by the following learners.

1. Spatial Cross-Zone Interactive Learner (Sec. 3.1): This module
captures the zone-to-zone correlations via the heatmap represen-
tation of spatial crowd �ow distributions. Taking into account the
spatial variations, multi-scale co-�ows, and local-global cross-zone
dependencies (M1 & M3), we pre-process the crowd �ows of an
interval into a heatmap frame, where each grid element represents
aggregated arrivals or departures, and leverage the attention rout-
ing capsule for interactive learning.

2. Multi-Scale Attention Temporal Learner (Sec. 3.2): To model the
temporal interactions and dependencies of sequential time inter-
vals (M2), we further feed the outputs of the spatial learners after
processing multiple consecutive heatmap frames, to the temporal
learner consisting of long short-term memory (LSTM) encoder and
attention decoder.

3. Auxiliary Extreme Crowd Flow Learner (Sec. 4.1): To capture the
correlations with extreme �ows (M5), we extract multiple statistical
features of the zone-level crowd �ow time series to form another
series of heatmap frames for ConvLSTM [8], and simultaneously
forecast the crowd �ows X̂(ECF) and the auxiliary labels Ẑ. We
provide a multi-task extreme-aware learning design beyond the
spatial and temporal learners to jointly minimize the prediction
errors as well as di�erences in predicted and estimated auxiliary
labels.

4. External and AP-level Learners (Sec. 4.2): These two learners are
deeply connected neural networks (with Dense layers) that predict
X̂(Ext) and X̂(AP) , given the input vectors of external factors (M4)
and the crowd �ows of the latest time interval prior to the target
one, respectively. The outputs X̂(Main) , X̂(ECF) , X̂(Ext) , and X̂(AP)

from all four modules are merged for �nal prediction.

3 CORE DESIGNS OF ACROCI

3.1 Cross-Zone & Local-Global Interaction Learning
Input Spatio-Temporal Representations. In our prototype studies,
we formulate the input spatial distributions of the associations and

disassociations in the time interval : into the heatmap frames, i.e.,

Y(: ) =

26666664

. (: )
11 . . . . (: )

1,
...

. . .
...

. (: )
�1 . . . . (: )

�,

37777775
, O(: ) =

26666664

$ (: )
11 . . . $ (: )

1,
...

. . .
...

$ (: )
�1 . . . $ (: )

�,

37777775
, (2)

where . (: )
8 9 ($ (: )

8 9 ) is the number of associations (disassociations)
within the 8-th row (latitudinal), the 9-th column (longitudinal) of
the grid map in the :-th interval. The inherent correlations across
di�erent campus locations, including their functions and POIs, can
be incorporated within the heatmap frames and processed by our
subsequent capsule network learning module.

To accommodate and characterize di�erent temporal scales of
spatial distributions (Fig. 5 in M2 and Fig. 6 in M3), we formu-
late spatio-temporal mobility representations F’s in De�nition 4
(Sec. 2.3) into the short, medium, and long-term input tensors, de-
noted as F(S) , F(M) , and F(L) , respectively. If we are to predict the as-
sociations (or arrivals), each input tensor, F(G ) 2

�
F(S) , F(M) , F(L)

 
,

that is fed to a spatial learner (with the notation G 2 {S,M, L}),
comprises l consecutive heatmap frames from a sliding window
or a predetermined number of time intervals, i.e.,

F(G ) =
h
Y(:�< ·l ) ,Y(:�< ·l+1) , . . . ,Y(:� (<�1) ·l�1)

i
, (3)

where the symbol G 2 {S,M, L} (either short-, mid- or long-term
scale) with, respectively,< 2 {1, 2, 3}. If we are to predict disas-
sociations (or departures), we have O instead of Y in Eq. (3). Each
heatmap frame in F(G ) is fed as a channel [8] for the input layer
(total l channels per temporal scale). We have empirically studied
l and observed a larger l reduces errors but with a diminishing
return, and hence adopt l = 6 in our studies.

Designs of Attention Routing Capsule. Given the input
heatmap frames of crowd �ows, we aim at capturing the complex
spatial distributions, correlated co-�ows, and local-global cross-
zone dependencies (i.e., M1 & M3 in Sec. 2.2). However, via our
later experimental observations, solely using conventional scalar-
based networks, like convolutional neural network (CNN), cannot
adequately characterize these and encode the transformation of the
features. Therefore, we can observe large prediction errors for the
complex Wi-Fi data learning and prediction scenarios.

To address this, we introduce the capsule neural network (Cap) [22]
within ACroCI, where a structured group of neurons, i.e., capsule,
forms a vector representation of the features. Speci�cally, each cap-
sule can describe how the input heatmap distribution, as a target
of interest, is instantiated as a vector, including its spatial position
relative to the map, and captures more co-�ow and local-global
features than the scalar-based CNN.

We note that the conventional capsule network adopts dynamic
routing and squash activation function [10, 22]. Such dynamic rout-
ing iteratively adjusts the values of the vectors between the capsule
layers during training to �nd the vector agreement and learn the
input features. However, the routing cannot further di�erentiate the
importance of connections, dependencies, and interactions across
spacious campus crowd distributions. To strengthen the model,
ACroCI further integrates the attention mechanism to parameterize
the routing among the capsules [5]. The attention mechanism helps
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Fig. 11: Illustration of interactive cross-zone learning.

ACroCI learn a compatibility function between low-level and high-
level features [17], thus empowering the learning performance and
prediction accuracy of the capsule network.

Detailed Layer Designs. In the following, we present the atten-
tion routing capsule (denoted as ARCap) architecture, which consists
of the primary capsule (PC) layer and the convolutional capsule (CC)
layer. Before PC and after CC, ACroCI leverages the 2D convolutional
layer or Conv2D for input preprocessing and output restructuring.
Final output X(G ) is returned after an activation layer.

In an implementation, a capsule layer (either PC or CC) can be
reshaped and restructured from the convolutional (say, Conv ⇥ (·)
with  ⇥ kernels) module consisting of # (; ) ⇥ ( (; ) �lters [9, 22],
where ; is the index of the layer, and # (; ) and ( (; ) represent the
numbers of capsule channels and dimensions at the ;-th layer, re-
spectively. Compared to the convolutional layer, the capsule layer
becomes # (; ) channels, each of which is a group of neurons re-
turning an output vector. We denote for each capsule layer ; the
height and width of the input as � (; ) and, (; ) , respectively.

We present the detailed layer designs of ARCap as follows.
(a) Input: At the input of the spatial learner, ACroCI �rst pre-

processes the tensor via batch normalization (denoted as BN(·)) and
Conv2D(·), deriving the initial coarse-grained features, i.e.,

X(G,0) = f
⇣
Conv2D

⇣
BN

⇣
F(G )

⌘⌘⌘
, (4)

where we adopt ReLU for the activation f (·). For each dataset, the
batch normalization is intended to reduce the internal covariate
shift within the data. The output X(G,0) is then fed to the PC Layer
at the ARCap structure.

(b) PC Layer : Crowd interactions between the nearby zones (say,
low-level features of co-�ows a and b in Fig. 11) are captured by
the capsule layer characterizing such spatial structural information.
Speci�cally, the PC layer �rst processes and returns the vector
regarding each of the # capsule channels (indexed by =), i.e.,

v(0)= = f
⇣
Conv ⇥ 

⇣
X(G,0)

⌘⌘
, (5)

where G 2 {S,M, L}, and we adopt  = 3 in the convolution kernel,
and ReLU for the activation f (·). The correlations between multiple
neighboring zones can be further extracted via the stacked lay-
ers. Then, the capsule activation conducts the a�ne convolutional
transformation upon each capsule channel =, i.e.,

v= = f
⇣
Conv ⇥ 

⇣
v(0)=

⌘⌘
. (6)

where we adopt = 1, and tanh for f (·), which converts the output
into the range of [�1, 1] to restrict the value scale.

(c) CC Layer : CC aims at deriving the crowds’ global interactions
with the zones (say, high-level co-�ow features in groups A and
B from multiple distant zones in Fig. 11) via the capsule attention
mechanism. As shown in Fig. 11, the high-level features in groupsA
and B in CC (as vectors vA and vB), contain structural information
from a and b (as vectors va and vb) after PC.

First, convolutional transformation converts each capsule channel,
and forms new capsule channels with parameters shared locally
with multiple channels of the preceding layer’s channels, i.e.,

ṽ= = Conv ⇥ (v=) , (7)
where we adopt  = 3, and the resultant structure enables the
attention mechanism interleaving the transformed capsules.

Second, between the transformed capsules and the CC layer, we
conduct the attention routing. The attention weights _ 9 ’s are the
softmax [8] outputs of the logarithm probabilities [22] along the
capsule channel axis at the previous layer (; � 1), i.e.,

_ 9 , softmax
�
4 9

�
=

exp
�
4 9

�
Õ# (;�1)
==1 exp (4=)

, (8)

where the logarithm probabilities 4= [22] can be obtained through
the 3D convolution upon the input ṽ, i.e.,

e = [41, 42, . . . , 4# ] = Conv3D1⇥1⇥⇡ (; ) (ṽ) . (9)
Unlike conventional dynamic routing [22], attention routing helps
ACroCI learn the logarithm probabilities of the agreement coe�-
cients between the ✓-th and (✓ � 1)-th layers. Attention routing
adjusts the weights _ 9 for each spatial location in the convolutional
transformed capsules, such that the important locations of interest,
as well as the relevant crowd interactions can be further derived.

Third, given Eqs. (7) and (8), each channel output is the weighted
average of the logarithm probabilities and the vector output from
each preceding capsule channel for the attention routing, i.e.,

v ,
# (;�1)’
9=1

_ 9 · ṽ9 . (10)

The compatibility between the preceding (like va and vb in
Fig. 11) and succeeding features (say, vA and vB in Fig. 11), i.e.,
the local-global interactions, is captured by the attention weights,
and strengthened during model training. This way, ACroCI captures
more co-�ow features and cross-zone interactions than other net-
work designs, yielding better accuracy in our experimental studies.

(d) Output: The capsule activation at the CC layer is done via
another a�ne transformation, which outputs

X(G )
out = f (Conv2D(v)) , G 2 {S,M, L}, (11)

where tanh is used for the activation of f (·). Then, we apply and
feed X(G ) = Dense

⇣
X(G )
out

⌘
(G 2 {S,M, L}) to the temporal learner.

3.2 Learning Temporal Interactions
The Long Short-Term Memory (LSTM) encoder �rst processes the in-
put time-series and encodes the sequence into a vector representing
the context. Let � be the Hadamard product, i.e., the element-wise
multiplication operation, C be the index of time step within the
time-series, (5C , 8C ,>C ) be the output activation vectors from the
forget, input/update and output gates [8], and (cC ,HC ) be the cell
and hidden states at C . ACroCI captures the temporal features via
the LSTM structures as follows:
5C = f6

⇣
W5 X(G ) + U5 HC�1 + b5

⌘
, 8C = f6

⇣
W8X(G ) + U8HC�1 + b8

⌘
,

>C = f6
⇣
W>X(G ) + U>HC�1 + b>

⌘
,

cC = 5C � cC�1 + 8C � f2
⇣
W2X(G ) + U2HC�1 + b2

⌘
, HC = >C � fH (cC ) ,

whereW5 ,W8 ,W> ,W2 ,U5 ,U8 ,U> , andU2 are the weight matrices
for the input and hidden states, and b5 , b8 , b> , and b2 are the biases,
all of which are hyperparameters to be trained.



To further identify the multi-scale temporal dependency (i.e.,
M2 in Sec. 2.2), we integrate within ACroCI the temporal attention
decoder [3], given the encoded results from the LSTM encoder. By
decoding the compressed information from the encoder, the atten-
tion decoder �nds the locations where the most relevant features
are concentrated. The temporal attention mechanism adaptively
selects the more correlated hidden states of the encoder in order
to match the sample features and produce the �nal output. Speci�-
cally, the output cell state cC at the attention decoder is given by
the weighted sum of the input mapping (hidden states) from the
LSTM encoder of the previous inputs: cC =

Õ)
C 0=1 U (C 0,C )HC 0 . Similar

to Eq. (8), the attention weight U (C 0,C ) in the temporal attention is
given by a softmax function of

U (C 0,C ) , softmax

⇣
4 (C 0,C )

⌘
=

exp
⇣
4 (C 0,C )

⌘
Õ)
:=1 exp

⇣
4 (C 0,: )

⌘ , (12)

where 4 (C 0,: ) represents a score of how the :-th heatmap frame F:
in the input sequence matches the hidden state HC 0 . Speci�cally,
each score is characterized by a feed-forward neural network F(·, ·)
with concentration operation [3, 8], i.e.,
4 (C 0,: ) , F (HC 0 , F: ) = v|0 f (W0 [HC 0�1; cC 0�1] + U0F: + b0) ,

(13)
where v0, b, W0 , and U0 are all trainable parameters within the
attention decoder, and we adopt tanh as activation function f (·).
Let H(Out) be the output of the last hidden states. The output of
ACroCI’s temporal learner, denoted as X̂(Main) 2 R" , is an "-d
vector of �ows at all" APs, and is generated by the dense neural
network following the hidden state output at the LSTM encoder, i.e.,

X̂(Main) = Dense

⇣
H(Out)

⌘
, (14)

which is the �nal output of the spatio-temporal integration.

4 ADAPTIVITY MODULE INTEGRATION
4.1 Auxiliary Extreme-aware Learner
To enhance ACroCI’s awareness towards the crowd interactions
with the transient or emergent campus events (M5 in Sec. 2.2),
we have further designed an auxiliary extreme-aware crowd �ow
learner based on the statistical time-series features derived for
ACroCI.

Processing Time-Series Features. For each campus zone we
�nd the following 9 statistical time-series features of the recent
l (ECF) historical time intervals: mean, variance, autocorrelation,
entropy, trend coe�cients (total 3 features: trend value and its p-
value via linear trend model estimation, and the variance of the
residuals), spike, and crossing points (the number of times the mean
is crossed by the time series) [7, 13, 15]. Compared with zone-level
crowd �ows in Eq. (2), these auxiliary features (each forms an
� ⇥, heatmap) provide additional information related to the �ow
dynamics.

In the meantime, using extensive empirical studies we label the
corresponding Wi-Fi associations and disassociations for each AP 8
at an interval : , / (: )

8 , with three conditions when compared with
all historical readings at the same time interval (for instance, 8:00–
9:00 of all historical Mondays): (i) / (: )

8 = 0 when the value lies
between 5th and 95th percentiles of all historical values (considered
normal); (ii) / (: )

8 = 1 when the value rises above 95th percentile

(considered surge); and (iii) / (: )
8 = �1 when the value falls below

5th percentile (considered drop). Then, for all APs at time interval
: , we have Z(: ) =

h
/ (: )
1 , . . . ,/ (: )

"

i
as the auxiliary labels in our

multi-task extreme-aware learning design.
Learning Crowd Interaction with Events. For each campus

zone, we �nd the aforementioned 9 features within a window of
l (ECF) consecutive time intervals, and the window rolls over the
most recent ⌦ time intervals. Given the ⌦ most recent � ⇥, ⇥ 9
tensors which form F(stat) , we leverage ConvLSTM [8] to capture
spatial and temporal correlations of the features (each heatmap of
the 9 features as one channel), followed by a Dense layer (with ReLU
for f (·)), and forecast the future AP-level crowd �ows, denoted
as X̂(ECF) . In order to enhance ACroCI’s learnability regarding the
extreme crowd �ows, we design amulti-task extreme-aware learning
mechanism (Sec. 4.2) which jointly captures and outputs both the
AP-level crowd �ows as well as the auxiliary labels, i.e.,h

X̂(ECF) ; Ẑ
i
= f

⇣
Dense

⇣
ConvLSTM

⇣
F(stat)

⌘⌘⌘
. (15)

This way, ACroCI correlates the surging, normal, and dropping
crowd �ows with the statistical features, �ts the �ows and auxiliary
labels simultaneously, and thus enhances the adaptivity towards
the transient or abnormal events.

4.2 Output and Model Training
External Learner. ACroCI also takes into account the external
features (i.e.,M4 in Sec. 2.2) to assist in the crowd �ow inference.
Speci�cally, we normalize each dimension of the external factors
into the range of [0, 1], and concatenate them into a vector E, which
is fed to a neural network returning X̂(Ext) 2 R" as follows:

X̂(Ext) = Dense (f (Dense (E))) . (16)
AP-level Learner. To integrate the most recent AP-level crowd
�ow features and further adapt to the latest transient crowd �ow
dynamics, we feed the crowd �ows of the last time interval to
another neural network, and predict X̂(AP) 2 R" , i.e.,

X̂(AP) = Dense

⇣
f
⇣
Dense

⇣
f
⇣
Dense

⇣
X(:�1)

⌘⌘⌘⌘⌘
, (17)

where X(:�1) 2
�
A(:�1) ,D(:�1)  . For Eqs. (16) and (17), we adopt

ReLU for activation f (·).
Integration, Output, and Training Objective Function. The
�nal prediction of AP-level crowd �ows, X̂ 2 R" , is given by the
fusion of the outputs based on spatial-temporal learners (X̂(Main) ),
extreme crowd �ows (X̂(ECF) ), external factors (X̂(Ext) ), and AP-
level crowd �ows (X̂(AP) ),

X̂ = f
�
W(Main) � X̂(Main) +W(ECF) � X̂(ECF)

+W(Ext) � X̂(Ext) +W(AP) � X̂(AP) �, (18)

whereW(Main) ,W(ECF) ,W(Ext) , andW(AP) are all the learnable
parameters which adjust the degrees a�ected by the di�erent fac-
tors, and we also adopt ReLU for the activation function f (·).

As discussed in Sec. 4.1, ACroCI is trained as multi-task extreme-
aware learning, i.e., to jointly minimize the mean squared error
between the predicted �ows X̂ (Â or D̂) and the ground-truth X, as
well as the mean squared error between the predicted and ground-
truth crowd �ow labels, Ẑ and Z, i.e.,

Loss() ) =
��X � X̂

��2
2 + _

��Z � Ẑ
��2
2 , (19)



where ) represents all the trainable parameters within all the learn-
ers of ACroCI and _ > 0 is a weight parameter. We adopt the Adam
optimizer [8] in our training.
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4.3 Adapting to AP Alteration
As discussed in M5 of Sec. 2.2, when an AP is newly added or
relocated, there is no prior data for model training, leading to the
“cold-start” issue. Thus, we design e�cient training data imputation
for each newly-installed (or relocated) AP using one preceding
week’s data from its nearby APs in the same zone. Speci�cally, for
each target AP 8 , we �nd its geographic distances (in km), dist(8, 9)’s
( 9 2 {1, . . . ,"0}), from all its "0 ("0 < ") nearest APs already
deployed in the same zone, and impute AP 8’s �ows using weighted
average for ACroCI’s model training and initialization, i.e.,

X̃(: )
8 =

" 0’
9=1

V 9Õ" 0
9=1 V 9

X(: )
9 , where V 9 ,

1
1 + dist (8, 9) . (20)

We show in Fig. 12 one week’s associations (blue) of a newly added
AP (due to Campus A’s facility reconstruction) after its deployment.
We also conduct the data imputation (red) upon the earlier week (no
association data) for the model training. We then show in Fig. 13 the
improvement via our e�cient data imputation, with mean absolute
errors (MAEs) reduced from 9.02 (original) to 5.10, showing the
applicability of the e�cient data imputation. We also compare our
approach with transfer learning (TL) [20] and domain adaptation
(DA) [19] methods, and our e�cient imputation more e�ectively
adapts to such a “cold-start” scenario (⇠27% error reduction), as TL
and DA still largely rely on availability of su�cient training data.
We also note that ACroCI can also get timely model updates given
newly accumulated association data for those APs after a few hours
or days for further accuracy improvement.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Settings
Baseline Methods. Our proposed model is compared with the
following conventional and state-of-the-art methods.
• HA and S-HA (Seasonal HA): HA predicts the crowd �ows as
historical average of those of the same time periods or inter-
vals (e.g., �nding the average �ow during 8:00–9:00 of all past
Mondays to predict the same time slot for a Monday). (a) S-HA
takes the same historical periods but of the same seasons.

• ARIMA, GP, RNN, LSTM, and DNN: Each of these approaches fore-
casts with (3) auto-regressive integratedmoving average (ARIMA),
(4) Gaussian process, (5) recurrent neural network (RNN) [8],

(6) long short-termmemory (LSTM) [8], and (7) fully-connected
deep neural network (DNN).

• CNN and CNN-Att: only capture the spatial distributions of the
associations with (8) convolutional neural network (CNN) [8]
and (9) CNN with spatial attention mechanism [4].

• GCN and MTGNN [27]: which leverage (10) graph convolutional
neural network [14] and (11)multiple time-series graph neural
network, respectively, to predict the crowd �ows.

• STCNN, STRNet, and STCaNet: process crowd distribution via
(12) spatio-temporal convolutional neural network [28], (13)
spatio-temporal residual neural network [28], and (14) spatio-
temporal capsule neural network [9].

• CHAT [12]: is adapted to model the cross-event interactions in
predicting the dynamics of the crowd �ows.

• CSTN [16]: predicts with the convolution embedded LSTM-based
method with a contextualized spatio-temporal network.

• T-LSTM: predicts the crowd �ows based on temporal pattern
attention long short-termmemory [25].

Parameter Settings & Evaluation Metrics. Unless otherwise
stated, we use the following parameters by default. We set the num-
ber of epochs to 1,000, batch size to 256, and learning rate to 0.001.
We set 32⇥32 for heatmap frames on both campuses, 1h for time
discretization, and l = 6 for each scale of temporal correlations.
For the spatial learner of ACroCI, we set

�
, (1) ,� (1) ,# (1) , ( (1)

�
=

(14, 14, 8, 8),
�
, (2) ,� (2) ,# (2) , ( (2)

�
= (7, 7, 32, 32) for ARCap, the

number of �lters to 32 for the two Conv2D(·) in Eqs. (4) and (11).
For the temporal learner, we set the number of units to 8 for the
LSTM modules, and the number of attentions to 16. For the aux-
iliary extreme crowd �ow learner, we have empirically studied
and set l (ECF) = ⌦ = 5 and number of �lters as 32 in ConvLSTM,
and _ = 0.1 for the multi-task learning objective. For the external
learner, we set the output dimension for E0 to 8. For the AP-level
learner, we set the output dimension for X0 and X1 to 128 and 32,
respectively. For the AP alteration adaptation, we use "0 = 5 for
Eq. (20).

For each campus dataset, we take the �rst 600 time intervals as
the validation dataset and test upon the following 100 intervals
to evaluate the model and parameter sensitivity. Apart from that
validation dataset, for each campus, we conduct model training and
testing on a monthly basis to emulate the real-world deployment.
Speci�cally, we train the model based on data of 25 days (600 in-
tervals in total) before each target test month. For each AP that
is newly installed or relocated, we impute one-week data prior to
its deployment for model training. We train and test the models
through Python/Tensor�ow using a GPU server with Intel Core i9
9900K, 32Gb RAM and two NVIDIA RTX 2080Ti 11Gb GPUs. The
ACroCI model training time is 1.45s per epoch for Campus A, and
1.51s per epoch for Campus B; its model testing is fast (⇠0.92ms
per time interval) for both datasets.

We evaluate all the schemes using the mean absolute error (MAE)
to interpret the overall error trend, the root mean square error
(RMSE) to demonstrate the variance of error distributions, and the
poor case rate (PCR) to show the relative scale of prediction errors.
The PCR is given by the percentage of all predictions which have the
excessive over- or under-estimations compared to the ground-truth
values, i.e., 1

X8
|X8 � X̂8 | � [, where we consider [ = 0.6.



5.2 Evaluation Results
Overall Performance, Rush Hours, and Extreme Events. Ta-
ble 2(a) lists performance comparison of ACroCI with other algo-
rithms for the two datasets. Overall, ACroCI achieves signi�cantly
higher accuracy than others. The conventional time-series-based
techniques, (1)–(4), cannot capture the spatial correlations across
the campus zones, hence achieving less accurate results. The se-
quence learning approaches like (5)–(7) cannot handle the spatial
and temporal complexities within the crowd �ows. Spatial learning
approaches like (8)–(11) focus on the zone-to-zone correlations, and
hence cannot handle multi-scale temporal complexity.
Table 2: Overall and rush-hour performance for Campuses A and B.

Schemes
(a) Overall Performance (b) Rush-Hour Performance

Campus A Campus B Campus A Campus B
MAE RMSE PCR MAE RMSE PCR MAE RMSE PCR MAE RMSE PCR

(1) 5.65 9.98 0.313 7.86 12.92 0.346 9.33 13.01 0.447 12.29 18.18 0.508
(2) 4.35 8.19 0.251 7.84 12.30 0.336 8.72 11.92 0.413 11.43 17.17 0.477
(3) 6.15 9.04 0.304 7.57 11.79 0.323 9.24 11.02 0.405 10.08 13.06 0.386
(4) 6.75 10.82 0.351 8.76 12.99 0.363 9.72 13.52 0.465 11.28 14.21 0.425
(5) 3.45 6.76 0.204 6.34 8.98 0.255 6.39 9.59 0.320 10.12 13.68 0.397
(6) 2.97 6.66 0.193 6.26 8.72 0.250 6.85 8.57 0.308 10.18 12.31 0.375
(7) 5.05 7.61 0.253 6.86 9.52 0.273 9.59 10.94 0.411 9.41 11.75 0.353
(8) 2.74 5.75 0.170 6.38 8.37 0.246 3.16 7.29 0.209 8.54 10.03 0.310
(9) 2.89 6.06 0.179 5.27 7.52 0.213 3.42 7.06 0.210 7.23 9.75 0.283
(10) 2.99 4.74 0.154 7.49 10.14 0.294 3.94 8.33 0.245 9.13 12.00 0.352
(11) 3.13 5.82 0.180 6.02 9.11 0.252 3.69 7.74 0.229 8.82 11.40 0.337
(12) 2.53 5.17 0.164 5.68 8.00 0.228 2.89 5.74 0.173 7.61 9.41 0.284
(13) 2.45 4.77 0.144 5.27 7.22 0.208 2.79 5.93 0.174 7.07 9.52 0.277
(14) 2.32 4.57 0.138 5.17 7.16 0.206 2.86 6.87 0.195 7.12 9.46 0.276
(15) 2.35 4.75 0.142 5.12 7.10 0.204 2.97 6.62 0.192 7.26 9.58 0.281
(16) 3.12 6.16 0.186 6.17 9.71 0.265 3.63 7.94 0.231 8.92 11.70 0.344
(17) 2.95 5.73 0.174 6.12 9.12 0.254 3.29 6.73 0.200 7.06 10.52 0.293
ACroCI 1.53 3.18 0.094 3.69 5.63 0.125 1.92 4.39 0.126 4.47 7.27 0.196

ACroCI, however, formulates comprehensive spatio-temporal
representations, and hence achieves respectively 51%⇠77%, 35%⇠70%,
and 25%⇠51% accuracy improvements over the time-series, se-
quence learning and spatial learning approaches. Compared to
prior e�orts on spatio-temporal learning, e.g., (12)–(17), ACroCI
captures the spatial heatmap frames via attention routing capsule,
which jointly leverages vectorization of neural outputs to character-
ize spatial features, and identi�es multi-scale temporal complexities.
Furthermore, with the local and global cross-zone dependencies
modeled, ACroCI demonstrates superior accuracy than scalar-based
networks, leading to 21%⇠51% accuracy improvements.

We further pick the rush-hour periods (7:00–9:00, 12:00–14:00,
and 16:00–18:00 of the weekdays) to evaluate the prediction ro-
bustness of ACroCI and other schemes. Table 2(b) shows higher
MAEs, RMSEs, and PCRs during rush hours compared to the overall
performance due to more dynamic and larger volumes of crowd
�ows. We can see that ACroCI still outperforms the other schemes
by at least 22.7% for both datasets thanks to the multi-scale designs
which adapt to the complex crowd �ows.
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Fig. 14: Ground-truth & predictions for two APs.
We have further studied ACroCI’s awareness to extreme crowd

�ows by showing the results of two APs ((a) & (b)) in an academic
building. We compare in Fig. 14 their ground-truth time-series as
well as the predicted ones by: (i) ACroCI with auxiliary extreme

crowd �ow learner, and (ii) ACroCI without it. We can observe
from Fig. 14 that the case (i) achieves much better prediction results
than case (ii) particularly for the extreme crowd �ows (highlighted
in pink boxes; ⇠31.5% MAE reduction). Though extreme crowd
�ows happen less frequently than normal ones, such adaptivity and
extreme-aware improvements will bene�t the campus management
and response given the foreseen potential extreme events in campus
crowd �ows.

Model Ablation and Sensitivity Analysis.We have conducted
ablation studies on the di�erent components of ACroCI. Fig. 15
presents the performance of several ACroCI variations: (a) without
entire temporal learner designs (w/o TL), (b) without temporal
attention (w/o TA), (c) without external factors (w/o ext), (d) with-
out attention routing designs (w/o AR), (e) without spatio-temporal
representations (w/o F), (f) without extreme crowd flow learner
(w/o ecf), (g) withoutmodel initialization (w/o mi), and (h) with
all components (w/ all). For w/o AR, we adopt the conventional
dynamic routing [22] within the capsule neural network structure
of ACroCI. We can see that the MAE bene�ts more from the repre-
sentations, spatial attention routing, extreme crowd �ow learner,
and model initialization (⇠27% reduction), while the RMSE bene-
�ts more (⇠45% reduction) from the temporal learner (including
the temporal attention). Our proposed representations and spatial
attention in ARCap can help mitigate the overall error trends, and
the temporal learner designs assist in adapting to crowd dynam-
ics. Performance improvements from w/o AR also imply ACroCI’s
preeminence over conventional capsule-based approaches.
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Fig. 15: Ablation studies on ACroCI’s various components.

Case Studies & Interaction Visualization. We further focus
on Campus A as we are more familiar with the local environments.
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(c) Public Holidays
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Fig. 16: Various cases at di�erent time periods (Campus A).

Fig. 16 plots the performance of ACroCI and several state-of-the-
art schemes, i.e., T-LSTM, CSTN, MTGNN, CHAT, STCaNet, and STRNet
for three time periods: (a) working hours (8:00–17:00) of the week-
days (holidays excluded), (b) �nal exam weeks (one week in middle
December), and (c) public holidays (including Thanksgiving Recess
and Christmas). Compared to working hours, the mobility patterns
during the �nal exams are more dynamic and hence larger errors
can be observed. During the public holidays, all schemes have better
performance due to lower crowd �ow volumes. In all the above
cases, ACroCI outperforms the other schemes by at least 26%, 31%,
and 36%, respectively.



6 RELATEDWORK
Wireless Mobility Analysis. Wireless mobility analysis has at-
tracted much interest due to its business and social values. Qin
et al. [21] mined the user behaviors based on mobile Wi-Fi usage
inference. To the best of our knowledge, few of these e�orts predict
AP-level crowd �ows using adaptive learning upon Wi-Fi associa-
tion data in a campus network. We �ll this gap by presenting an
adaptive data learning system for accurate AP-level crowd �ow
prediction. In addition, we conduct comprehensive studies on how
to deal with extreme �ows and altered measurement environments,
providing new insights for extreme-aware and adaptive wireless
mobility analytics.

Various techniques have been proposed for group mobility sens-
ing. Shen et al. [24] studied group detection based on the signal
features of Wi-Fi probes; a similar study was conducted by Hong et
al. [11]. Vision-based approaches [6, 26] can provide �ne-grained
crowd sensing, but their pervasiveness and applicability are subject
to privacy concerns as well as environmental e�ects (e.g., none-
line-of-sight and poor lighting). Unlike these techniques based on
wireless/visual signals, we consider the campus Wi-Fi network
setups as a case study and forecast crowd �ows at each AP, us-
ing anonymized and less privacy-intrusive Wi-Fi association and
disassociation data.

Crowd Mobility Modeling. Deep learning has recently been
adopted to support various urban crowd mobility applications. For
mobility learning, Zhang et al. [28] proposed leveraging a resid-
ual neural network to predict urban bike and taxi tra�c. Huang
et al. [12] studied the cross-interaction hierarchical attention net-
works for urban anomaly prediction. Scellato et al. [23] conducted
a pioneering study that leverages time-series analysis models to
predict the next location of a user based on her/his historical lo-
cation visits. ACroCI, serving as an interactive wireless mobility
data learning and crowd prediction system, di�ers from others as
follows. ACroCI focuses on real-world Wi-Fi data learning, and
is grounded on comprehensive and extensive data-driven system
studies for smart connected campus application scenarios.

7 DEPLOYMENT DISCUSSION
Although one user may carry multiple mobile devices like lap-
tops and smartphones, and certain pieces of o�ce equipment like
printers may connect to the campus Wi-Fi network, users can be
easily identi�ed by their IDs, allowing us to count the number of
people (instead of devices) associated with an AP. Through such
data pre-processing, we can use A(: ) and D(: ) , at the user/client
level, as reasonable indicators or ground-truths of user arrivals and
departures. In future, we will make further improvements on the
ground-truth labeling of arrivals and departures, e.g., calibrating
session duration, handling unassociated devices and ping-pong
e�ects, albeit beyond our current scope.

8 CONCLUSION
We have proposed ACroCI, a novel crowd mobility analytics system
which models the crowds’ interactions with the built environments
with adaptive Wi-Fi data learning. Integrating with spatial crowd
heatmaps, temporal �ow dynamics, extreme features, environmen-
tal changes, and other external factors, ACroCI captures the crowds’
interactions with built environments via a novel design of attention

routing capsule network. Our extensive experimental studies have
corroborated the accuracy, adaptivity, and robustness of ACroCI.

We would like to thank the University of Connecticut Informa-
tion Technology Services (UITS) for their assistance in collecting
Wi-Fi association data.
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