
Bomberman: Defining and Defeating
Hardware Ticking Timebombs at Design-time

Timothy Trippel∗, Kang G. Shin
Computer Science & Engineering

University of Michigan
Ann Arbor, MI

{trippel,kgshin}@umich.edu

Kevin B. Bush
Cyber-Physical Systems
MIT Lincoln Laboratory

Lexington, MA
kevin.bush@ll.mit.edu

Matthew Hicks∗†
Computer Science

Virginia Tech
Blacksburg, VA

mdhicks2@vt.edu

Abstract—To cope with ever-increasing design complexities,
integrated circuit designers increase both the size of their design
teams and their reliance on third-party intellectual property (IP).
Both come at the expense of trust: it is computationally infeasible
to exhaustively verify that a design is free of all possible malicious
modifications (i.e., hardware Trojans). Making matters worse,
unlike software, hardware modifications are permanent: there is
no “patching” mechanism for hardware; and powerful: they serve
as a foothold for subverting software that sits above.

To counter this threat, prior work uses both static and dynamic
analysis techniques to verify hardware designs are Trojan-free.
Unfortunately, researchers continue to reveal weaknesses in
these “one-size-fits-all”, heuristic-based approaches. Instead of
attempting to detect all possible hardware Trojans, we take
the first step in addressing the hardware Trojan threat in a
divide-and-conquer fashion: defining and eliminating Ticking
Timebomb Trojans (TTTs), forcing attackers to implement larger
Trojan designs detectable via existing verification and side-
channel defenses. Like many system-level software defenses (e.g.,
Address Space Layout Randomization (ASLR) and Data Execu-
tion Prevention (DEP)), our goal is to systematically constrict the
hardware attacker’s design space.

First, we construct a definition of TTTs derived from their
functional behavior. Next, we translate this definition into fun-
damental components required to realize TTT behavior in
hardware. Using these components, we expand the set of all
known TTTs to a total of six variants—including unseen variants.
Leveraging our definition, we design and implement a TTT-
specific dynamic verification toolchain extension, called Bomber-
man. Using four real-world hardware designs, we demonstrate
Bomberman’s ability to detect all TTT variants, where previous
defenses fail, with <1.2% false positives.

Index Terms—Hardware Trojans, Ticking Timebombs, 3rd
Party IP, Verification

I. INTRODUCTION

As microelectronic hardware continues to scale, so too
have design complexities. To design an Integrated Circuit
(IC) of modern complexity targeting a 7nm process requires
500 engineering years [1], [2]. Because it is impractical to
take 500 years to create a chip, semiconductor companies
reduce time-to-market by adding engineers: increasing both
the size of their design teams and their reliance on 3rd-party
Intellectual Property (IP). Namely, they purchase pre-designed

* Work completed at MIT Lincoln Laboratory.
† Corresponding faculty author

Ticking Timebomb Trojan

Ticking Timebomb Trigger

Event

Increment

+
0 1 0 1

Payload

0101

==

Activation

Signal

Comparator

Fig. 1. Ticking Timebomb Trojan (TTT). A TTT is a hardware Trojan that
implements a ticking timebomb trigger. Ticking timebomb triggers monotoni-
cally move closer to activating as the system runs longer. In hardware, ticking
timebomb triggers maintain a non-repeating sequence counter that increments
upon receiving an event signal.

blocks for inclusion in their designs, such as CPU cores and
cryptographic accelerators (e.g., AES). This year, analysts
estimate that a typical System-on-Chip (SoC) will contain over
90 IP blocks [3]. From a security perspective, this reduces trust
in the final chip: with an increased number of (both in-house
and external) designers molding the design, there is increased
opportunity for an attacker to insert a hardware Trojan.

Hardware Trojans inserted during design time are both
permanent and powerful. Unlike software, hardware can-
not be patched in a general-purpose manner; repercussions
of hardware flaws echo throughout the chip’s lifetime. As
hardware vulnerabilities like Meltdown [4], Spectre [5], and
Foreshadow [6] show, replacement is the only comprehensive
mitigation, which is both costly and reputationally damaging.
Moreover, vulnerabilities in hardware cripple otherwise secure
software that runs on top [7]. Thus, it is vital that hardware
designers verify their designs are Trojan-free.

Prior work attempts to detect hardware Trojans at both
design and run time. At design time, researchers propose
static (FANCI [8]) and dynamic (VeriTrust [9] and UCI [10])
analyses of the Register Transfer Level (RTL) design and
gate-level netlists to search for rarely-used circuitry, i.e.,
potential Trojan circuitry. At run time, researchers: 1) employ
hardware-implemented invariant monitors that dynamically
verify design behavior matches specification [11], [12], and
2) scramble inputs and outputs between trusted and untrusted
components [13] to make integration of a hardware Trojan
into an existing design intractable. These attempts to develop
general, “one-size-fits-all”, approaches inevitably leave chips

vulnerable to attack [14]–[16].
Verifying a hardware design is Trojan-free poses two

technical challenges. First, hardware Trojan designs use the
same digital circuit building blocks as non-malicious circuitry,
making it difficult to differentiate Trojan circuitry from non-
malicious circuitry. Second, it is infeasible to exhaustively
verify, manually or automatically, even small hardware de-
signs [17], let alone designs of moderate complexity. These
challenges are the reason why “one-size-fits-all” approaches
are incomplete and akin to proving a design is bug-free.

Instead of verifying a design is free of all Trojan classes, we
advocate for a divide-and-conquer approach, breaking down
the RTL Trojan design space and systematically ruling out
each Trojan class. We begin this journey by eliminating the
most pernicious RTL hardware Trojan threat: the TTT. As
Waksman et al. state [11], [13], when compared with other
stealthy design-time Trojans (i.e., data-based Trojans), TTTs
provide “the biggest bang for the buck [to the attacker] ...
[because] they can be implemented with very little logic, are
not dependent on software or instruction sequences, and can
run to completion unnoticed by users.” Moreover, TTTs are
a flexible Trojan design in terms of deployment scenarios.
An attacker looking to deploy a TTT does not require
any a priori knowledge of how the victim circuit will be
deployed at the system level, nor post-deployment (physical
or remote) access to the victim circuit [11], [13]. By
eliminating the threat of TTTs, we mimic the attack-specific
nature of system-level software defenses like DEP and ASLR
in hardware, i.e., we force RTL attackers to implement Trojan
designs that require post-deployment attacker interaction. This
is the hardware analog to defending against data injection
attacks in software, forcing attackers to employ more complex
data reuse attacks; a necessary part of a comprehensive,
layered defense.

To ensure our defense is systematic and avoids implicit
assumptions based on existing TTTs, we first define an abstract
TTT based on its behavior. At the heart of any TTT is a trigger
that tracks the progression of values that form some arbitrary
sequence. The simplest concrete example is a down-counter
that releases the attack payload when it reaches zero. Thus,
we define TTTs as devices that track an arbitrary sequence of
values constrained by only two properties:

• the sequence never repeats a value,
• the sequence is incomplete.

Fig. 1 shows the basic hardware components required to
implement such a sequence counter in hardware. It has three
building blocks: 1) State-Saving Components (SSCs), 2) an
increment value, and 3) an increment event.

To understand the power our definition gives to attackers,
we use it to enumerate the space of all possible TTT triggers.
We define a total of six TTT variants, including distributed
TTTs that couple together SSCs scattered across the design to
form a sequence counter and non-uniform TTTs that conceal
their behavior by incrementing with inconsistent values, i.e.,
expressing what looks like a random sequence.

We leverage our definition of TTTs to locate SSCs in a

design that behave like TTT triggers during functional verifi-
cation. Specifically, we reduce the Trojan search space of the
Design Under Test (DUT) by analyzing only the progression of
values expressed by SSCs of potential TTT triggers. We design
and implement an automated extension to existing functional
verification toolchains, called Bomberman, for identifying
the presence of TTTs in hardware designs. Bomberman com-
putes a Data-Flow Graph (DFG) from a design’s Hardware
Description Language (HDL) (either pre- or post- synthesis)
to identify the set of all combinations of SSCs that could
construct a TTT. Initially, Bomberman assumes all SSCs
are suspicious. As Bomberman analyzes the results obtained
from functional verification, it marks any SSCs that violate
our definition as benign. Bomberman reports any remaining
suspicious SSCs to designers, who use this information to
create a new test case for verification, or manually inspect
connected logic for malice.

We demonstrate the effectiveness of Bomberman by im-
planting all six TTT variants into four different open-source
hardware designs: a RISC-V CPU [18], an OR1200 CPU [19],
a UART [19] module, and an AES accelerator [20]. Even with
verification simulations lasting less than one million cycles,1

Bomberman detects the presence of all TTT variants across
all circuit designs with a false positive rate of less than 1.2%.

This paper makes the following contributions:
• An abstract definition and component-level breakdown of

TTTs (§IV).
• Design of six TTT variants (§IV-C), including new vari-

ants that evade existing defenses (§VI-C1).
• Design and implementation of an automated verification

extension, Bomberman, that identifies TTTs implanted in
RTL hardware designs (§V).

• Evaluation of Bomberman’s false positive rate (§VI-B)
and a comparative security analysis against a range
of both TTT-focused and “one-size-fits-all” design-time
hardware Trojan defenses (§VI-C); Bomberman is the
only approach capable of detecting all TTT variants,
including state-of-the-art pseudo-random [21] and non-
deterministic [22] TTTs.

• Algorithmic complexity analysis (§VI-D) of Bomber-
man’s SSC Enumeration and SSC Classification stages.

• Open-source release of Bomberman and TTTs [23].

II. BACKGROUND

A. IC Development Process

Developing complex ICs, like the Apple A13 Bionic chip
that contains 8.5 billion transistors [24], employs several de-
sign phases (Fig. 2) that are heavily augmented with Computer
Aided Design (CAD) tools. First, to minimize time-to-market,
hardware designers often purchase existing IP blocks from
third parties to integrate into their designs. Next, designers
integrate all third-party IP, and describe the behavior of any
custom circuitry at the RTL, using a Hardware Description
Language (HDL) like Verilog. Next, CAD tools synthesize

1Typical verification simulations last ≈millions of cycles [11].

3rd Party IP RTL Design Synthesis Physical
Layout Fabrication Packaging/

Deployment

Front-End Design = Design-Time Attack Points

Ve
rif

ic
at

io
n

Ve
rif

ic
at

io
n

Ve
rif

ic
at

io
n

Fig. 2. IC Development Process. As ICs have become increasingly complex, both the reuse of 3rd party IP and the size of design teams has increased [3].

the HDL into a gate-level netlist (also described using HDL)
targeting a specific process technology, a process analogous
to software compilation. After synthesis, designers lay out the
circuit components (i.e., logic gates) on a 3-dimensional grid
and route wires between them to connect the entire circuit.
CAD tools encode the physical layout in a Graphics Database
System II (GDSII) format, which is then sent to the fabrication
facility. Finally, the foundry fabricates the IC, and returns it
to the designers who test and package it for mounting onto
a printed circuit board. HDL-level Trojans inserted at design
time compromise the final chip—even if the tools, back-end
design, and fabrication are secure.

B. Hardware Trojans

Hardware Trojans are malicious modifications to a hardware
design for the purpose of modifying the design’s behavior.
In Fig. 3 we adopt a hardware Trojan taxonomy that makes
characterizations according to 1) where in the IC development
process (Fig. 2) they are inserted, and 2) their architec-
tures [25], [26]. Specifically, hardware Trojans can be inserted
at design time [7], [11], [13], [27], at fabrication time [28]–
[30], or during packaging/deployment [31]. In this paper, we
focus on design-time Trojans, specifically Trojans inserted
during front-end (i.e., HDL) design.

Hardware Trojans are comprised of two main components:
a trigger and payload [32]–[34]. The trigger initiates the
delivery of the payload upon reaching an activation state. It
enables the Trojan to remain dormant under normal operation,
e.g., during functional verification and post-fabrication testing.
Conversely, the payload waits for a signal from the trigger to
alter the state of the victim circuit. Given the focus of this
work is identifying a specific class of Trojans defined by their
trigger, we further classify Trojans accordingly.

There are two main types of triggers: always-on and initially
dormant. As their names suggest, always-on triggers indicate
a triggerless Trojan that is always activated, and are thus
trivial to detect during testing. Always-on triggers represent an
extreme in a trigger design trade-space—not implementing a
trigger reduces the overall Trojan footprint at the cost of sacri-
ficing stealth. Alternatively, initially dormant triggers activate
when a signal within the design, or an input to the design,
changes as a function of normal, yet rare, operation, ideally
influenced by an attacker. initially dormant triggers enable
stealthy, controllable, and generalizable hardware Trojans. As
prior work shows, it is most advantageous for attackers to
be able to construct triggers that hide their Trojan payloads

Malicious Hardware

Design TimeFabrication Time Packaging

Trigger Payload

Always On Initially Dormant

Data-Based Time-Based

DistributedCoalesced
Homogeneous
Heterogeneous

Uniform/Periodic
Uniform/Sporadic

Non-uniform/Sporadic
Non-uniform/Periodic

Fig. 3. Taxonomy of Hardware Trojans. Hardware Trojans are malicious
modifications to a hardware design that alter its functionality. We focus on
time-based Trojans (TTTs) and categorize them by design and behavior.

to evade detection during testing [8]–[10], [13], [22], so we
focus on initially dormant triggers.

Initially dormant triggers consist of two sub-categories:
data-based and time-based [11], [13], [22]. Data-based trig-
gers, or cheat codes, wait to recognize a single data value
(single-shot) or a sequence of data values to activate. Alter-
natively, time-based triggers, or ticking timebombs, become
increasingly more likely to activate the more time has passed
since a system reset. While, ticking timebombs can implement
a indirect and probabalistic notion of time (§IV), a simple
ticking timebomb trigger is a periodic up-counter, where every
clock cycle the counter increments, as shown in Fig. 4A. In
this work, we eliminate the threat of TTTs to force attackers
to implement data-based Trojans that require post-deployment
attacker interaction to trigger [11].

III. THREAT MODEL

Our threat model follows that used by prior work on design-
time Trojan attacks and defenses [11], [13], [16], [21], [22],
[35], [36]. Specifically, we focus on malicious modifications
that are embedded in in-house, 3rd party, or netlist HDL
(Fig. 2). Our focus, on design-time attacks is driven by current
design trends and economic forces that favor reliance on
untrusted 3rd parties and large design teams [3]. Additionally,
without a trusted HDL design, any result of back-end design
and fabrication cannot be trusted.

We assume that a design-time adversary has the ability to
add, remove, and modify the RTL or netlist HDL of the core
design in order to implement hardware Trojans. This can be
done either by a single rogue employee at a hardware design
company, or by entirely rogue design teams. We also assume
an attacker only makes modifications that evade detection
during design verification. Thus, no part of the design can
be trusted until vetted by Bomberman and other heuristics-
based tools [8]–[10]. Like prior work [8]–[10], [13], [21], [22],
we assume that malicious circuit behavior triggered by Trojan
activation is caught via verification testing.

We focus on identifying TTTs as we define them in §IV.
In doing so, we force attackers to implement data-based
(cheat code) Trojans, which require large state machines to
achieve stealth during design verification [14], [15], sub-
sequently making them detectable post-fabrication via side
channels [37]–[43]. Moreover, data-based Trojans have limited
deployability—e.g., they cannot target air-gapped machines—
since they require post-deployment attacker interaction [11].
Our defense can be deployed at any point throughout the
front-end design process—i.e., directly verifying 3rd party IP,
after RTL design, or after synthesis—after which the design
is trusted to be free of TTTs.

IV. TICKING TIMEBOMB TRIGGERS

First, we define TTTs by their behavior. Based on this
definition, we synthesize the fundamental components required
to implement a TTT in hardware. Finally, using these fun-
damental components we enumerate six total TTT variants,
including previously contrived TTTs that resemble contiguous
time counters [11], [13], to more complex, distributed, non-
uniform, and sporadic [21], [22] designs.

A. Definition

We define TTTs as the set of hardware Trojans that im-
plement a time-based trigger that monotonically approaches
activation as the victim circuit continuously operates without
reset. More succinctly, we define a ticking timebomb trigger
based on two properties of the values it exhibits while still
dormant yet monotonically approaching activation:
Property 1: The TTT does NOT repeat a value without a

system reset.
Property 2: The TTT does NOT enumerate all possible val-

ues without activating.
Property 1 holds by definition, since, if a TTT trigger repeats
a value in its sequence, it is no longer a ticking timebomb, but
rather a data-based “cheat code” trigger [11], [13]. Property 2
holds by contradiction in that, if a TTT trigger enumerates all
possible values without triggering, i.e., no malicious circuit
behavior is observed, then the device is not malicious, and
therefore not part of a TTT. Upon these two properties, we
derive the fundamental hardware building blocks of a TTT.

Figs. 4A–D illustrate example ticking timebomb behaviors
that are captured by our definition, in order of increasing
complexity. The most naive example of a ticking timebomb
trigger is a simple periodic up-counter. While effective, a

Periodic Sporadic

U
ni
fo
rm

N
on

-u
ni
fo
rm

0 1 2 3
…

X

9 3 5 8
…

5ns

AES

A

B

X’

0 1 2 3 … X

…
7ns 2ns 3ns

9 3 5 8

AES

C

D

X’

5ns 5ns

Fig. 4. Ticking Timebomb Trigger Behaviors. There are four primitive
ticking timebomb trigger counting behaviors, in order of increasing com-
plexity, captured by our definition (Properties 1 & 2 in §IV-A). A) The
simplest counting behavior is both periodic and uniform. Alternatively, more
sophisticated counting behaviors are achieved by: B) encrypting the count to
make the sequence non-uniform, C) incrementing it sporadically, or D) both.

clever attacker may choose to hide the monotonically increas-
ing behavior of a periodic up-counter by either 1) obscur-
ing the relationship between successive counter values (e.g.,
AES counter mode sequence, Fig. 4B), or 2) sporadically
incrementing the counter (e.g., a non-deterministic TTTs [22],
Fig. 4). Even more sophisticated, the attacker may choose to
do both (Fig. 4D).

B. TTT Components

From our definition, we derive the fundamental components
required to implement a TTT in hardware. Fig. 1 depicts these
components. For TTTs to exhibit the behaviors summarized
in Fig. 4, they must implement the notion of an abstract time
counter. TTT time counters require three components to be
realized in hardware: 1) State-Saving Components (SSCs),
2) increment value, and 3) increment event.

The SSC defines how the TTT saves and tracks the trigger-
ing state of the time counter. SSCs can be either coalesced
or distributed. Coalesced SSCs are comprised of one N -bit
register, while distributed SSCs are comprised of M , N -bit
registers declared across the design. Distributed SSCs have
the advantage of increasing stealth by combining a subset of
one or multiple coalesced SSCs whose count behaviors indi-
vidually violate the definition of a TTT trigger (i.e., Properties
1 and 2), but when considered together comprise a valid TTT.
Distributed SSCs can also reduce hardware overhead through
reuse of existing registers.

The TTT increment value defines how the time counter is
incremented upon an increment event. The increment value
can be uniform or non-uniform. Uniform increments are hard-
coded values in the design that do not change over time, e.g.,
incrementing by one at every increment event. Non-uniform
increments change depending on device state and operation,
e.g., incrementing by the least-significant four bits of the
program counter at every increment event.

Lastly, the TTT increment event determines when the time
counter’s value is incremented. Increment events may be
periodic or sporadic. For example, the rising edge of the clock
is periodic, while the rising edge of an interrupt is sporadic.

C. TTT Variants

From the behavior of the fundamental TTT components,
we extrapolate six TTT variants that represent the TTT design
space as we define. We start by grouping TTTs according
to their SSC construction. Depending on their sophistication
level, the attacker may choose to implement a simplistic
coalesced TTT, or construct a larger, more complex, dis-
tributed TTT. If the attacker chooses to implement a coalesced
TTT, they have four variants to choose from, with respect to
increment uniformity and periodicity. The most naive attacker
may choose to implement a coalesced TTT with uniform
increment values and periodic increment events. To make the
coalesced TTT more difficult to identify, the attacker may
choose to implement non-uniform increment values and/or
sporadic increment events.

To increase stealth, an attacker may choose to combine two
or more coalesced TTTs, that alone violate the definition of
being a TTT trigger, but combined construct a valid distributed
TTT. An attacker has two design choices for distributed TTTs.
Seeking to maximize stealth, the attacker may choose to
combine several copies of the same coalesced TTT with non-
uniform increment values and sporadic increment events, thus
implementing a homogeneous distributed TTT. Alternatively,
the attacker may seek integration flexibility, and choose to
combine various coalesced TTTs to implement a heteroge-
neous distributed TTT. For homogeneous distributed TTTs,
an attacker has the same four design choices as in coalesced
TTTs. However, for heterogeneous distributed TTTs, the de-
sign space is much larger. Specifically, the number of sub-
categories of heterogeneous distributed TTTs can be computed
using the binomial expansion,

(
n
k

)
, with n, the number of

coalesced sub-triggers, and k, the number of unique sub-
trigger types. We summarize all six TTT variants and their
behaviors in Figs. 3 and 4, respectively, and provide example
implementations in Verilog in Appendix A.

V. BOMBERMAN

Now that we have defined what a TTT is, and how
it behaves, how do we automatically locate them within
complex RTL designs? To address this question, we design
and implement Bomberman, a dynamic Trojan verification
framework.2 To summarize, Bomberman locates potential
TTTs by tracking the sequences expressed by all SSCs in
a design, as SSCs are one of the fundamental building
blocks of TTTs. Initially, Bomberman classifies all SSCs as
suspicious. Then, any SSCs whose sequence progressions,
recorded during simulation, violate either Properties in §IV-A,
are marked benign.

Bomberman takes as input 1) a design’s HDL, and 2) veri-
fication simulation results, and automatically flags suspicious

2Unfortunately, no commercial verification tool exists to track complex state
that defines TTT invariants, i.e., asserting no repeated values or distributed
state exhaustion. Moreover, the closest such tools—JasperGold [44] and VC
Formal [45]—deploy bounded static analysis approaches that suffer from
state-explosion when applied to such invariants.

Bomberman

A) SSC Identification

IVL
Front-End

Data-Flow
Graph

Generator
(C++)

C+
+

A
PI

Suspicious
SSCs

SSC
Enumeration

(Python)

.dot

B) SSC
Classification

(Python)

.json

Verification (HDL Simulator)
Random Input

Generator Output Checking

.vcd

.vcd

Verilo
g

Hardware Design (DUT)

Fig. 5. Bomberman Architecture. Bomberman is comprised of two stages:
A) SSC Identification, and B) SSC Classification. The first stage (A) identifies
all coalesced and distributed SSCs in the design. The second stage (B)
starts by assuming all SSCs are suspicious, and marks SSCs as benign as it
processes the values expressed by each SSC during verification simulations.

SSCs that could be part of a TTT. The Bomberman dynamic
analysis framework is broken into two phases:

1) SSC Identification, and
2) SSC Classification.

During the SSC Identification phase, Bomberman identifies
all coalesced and distributed SSCs within the design. During
the SSC Classification phase, Bomberman analyzes the value
progressions of all SSCs to identify suspicious SSCs that may
comprise a TTT. Fig. 5 illustrates the Bomberman architecture.

A. SSC Identification

The first step in locating TTTs, is identifying all SSCs
in the design. Identifying coalesced SSCs is straightforward:
any component in the HDL that may be synthesized into
a coalesced collection of flip-flops (or latches §VII-2) is
considered a coalesced SSC. Enumerating distributed SSCs
is more challenging. Since distributed SSCs are comprised
of various combinations of coalesced SSCs that are inter-
connected the host circuit, a naive approach would be to
enumerate the power set of all coalesced SSCs in the design.
However, this creates an obvious state-explosion problem, and
is unnecessary. Instead, we take advantage of the fact that
not every component in a circuit is connected to every other
component. Moreover, the structure of the circuit itself tells us
what connections between coalesced SSCs are possible, and
thus the distributed SSCs Bomberman must track.

Therefore, we break the SSC Identification phase into two
sub-stages: 1) Data-Flow Graph (DFG) Generation, and 2)
SSC Enumeration (Fig. 5A). First, we generate a DFG from
a circuit’s HDL, where each node in the graph represents a
signal, and each edge represents connections between signals
facilitated by intermediate combinational or sequential logic.
Then, we systematically traverse the graph to enumerate: 1)
the set of all coalesced SSCs, and 2) the set of all connected
coalesced SSCs, or distributed SSCs.

1) DFG Generation: We implement the DFG Generation
stage of the SSC Identification phase using the open-source
Icarus Verilog (IVL) [46] compiler front-end with a custom
back-end written in C++. Our custom IVL back-end traverses
the intermediate HDL code representation generated by the
IVL front-end, to piece together a bit-level signal dependency,
or data-flow, graph. In doing so, it distinguishes between

state-saving signals (i.e., signals gated by flip-flops) and inter-
mediate signals output from combinational logic. Continuous
assignment expressions are the most straightforward to capture
as the IVL front-end already creates an intermediate graph-
like representation of such expressions. However, procedural
assignments are more challenging. Specifically, at the RTL
level, it is up to the compiler to infer what HDL signals
will synthesize into SSCs. To address this challenge, we use
a similar template-matching technique used by modern HDL
compilers [47], [48]. The data-flow graph is expressed using
the Graphviz .dot format. Fig. 11 in Appendix C shows an
example data-flow graph generated by Bomberman.

2) SSC Enumeration: We implement the SSC Enumeration
stage of the SSC Identification phase using a script written
in Python. First, our SSC Enumeration script iterates over
every node in the circuit DFG, and identifies nodes (signals)
that are outputs of registers (flip-flops). The script marks
these nodes as coalesced SSCs. Next, the script performs a
Depth-First Search (DFS), starting from each non-coalesced
SSC signal node, to piece together distributed SSCs. The
DFS backtracks when an input or coalesced SSC signal is
reached. When piecing together distributed SSCs, Bomberman
does not take into account word-level orderings between root
coalesced SSCs. The order of the words, and thus the bits,
of the distributed SSC does not affect whether it satisfies
or violates the properties of our definition of a TTT trigger
(§IV-A). Our definition does not care about the progression of
values expressed by the SSC(s), but only cares if all values are
not expressed and individual values are not repeated. Note, a
clever attacker may try to avoid detection by selecting a slice
of a single coalesced SSC to construct a ticking timebomb
trigger. However, our implementation of Bomberman classifies
a single sliced coalesced SSC as a distributed SSC with a
single root coalesced SSC.

Algorithm 1: SSC Classification Algorithm

Input: Set, P , of all possible SSCs
Output: Set, S, of all suspicious SSCs

1 S ← P ;
2 foreach p ∈ P do
3 n← SizeOf(p);
4 Vp ← ∅; /* previous values of p */
5 foreach t ∈ T do
6 value← V alueAtT ime(p, t);
7 if value ∈ Vp then
8 Remove p from S;
9 Break;

10 else
11 Add value to Vp;
12 end
13 end
14 if ‖Vp‖ == 2n then
15 Remove p from S;
16 end
17 end

B. SSC Classification

After all SSCs have been enumerated, Bomberman analyzes
the values expressed by every SSC during verification sim-
ulations to classify whether each SSC is either suspicious—
meaning it could construct a TTT—or benign. Bomberman be-

gins by assuming all SSCs within the design are suspicious. At
every update time within the simulation, Bomberman checks
to see if any SSC expresses a value that causes it to violate
either property of our definition (§IV-A). If a property is
violated, the SSC no longer meets the specifications to be part
of a TTT, and Bomberman classifies it benign. Bomberman
does not care how, when, what, or the amount an SSC’s
value is incremented; rather, Bomberman only monitors if
an SSC repeats a value, or enumerates all possible values.
Lastly, Bomberman reports any remaining suspicious SSCs for
manual analysis by verification engineers.

We implement the SSC Classification algorithm—
Algorithm 1—using Python. Our classification program
(Fig. 5B) takes as input a Value Change Dump (VCD)
file, encoding the verification simulation results, and cross-
references the simulation results with the set of suspicious
SSCs, initially generated by the SSC Identification stage
(Fig. 5A). For coalesced SSCs, this is trivial: our analysis
program iterates over the values expressed by each coalesced
SSC during simulation, and tests if either property from our
definition (§IV-A) is violated. SSCs that break our definition
of a TTT are marked benign. However, distributed SSCs are
more challenging. To optimize file sizes, the VCD format
only records signal values when they change, not every clock
cycle. This detail is important when analyzing distributed
SSCs, whose root coalesced SSCs may update at different
times. We address this detail by time-aligning the root
coalesced SSC values with respect to each other to ensure
the recording of all possible distributed SSC values expressed
during simulation. Finally, any remaining suspicious SSCs
are compiled into a JSON file, and output for verification
engineers to inspect and make a final determination on
whether or not the design contains TTTs.

VI. EVALUATION

By construction Bomberman cannot produce false negatives
since it initially assumes all SSCs are suspicious, and only
marks SSCs as benign if they express values during simulation
that violate the definition of TTT SSC behavior. However,
false positives are possible. To quantify Bomberman’s false
positives rate, we evaluate Bomberman against four real-world
hardware designs with TTTs implanted in them. To model a
production simulation-based verification flow, we use a mix of
existing test vectors (from each core’s repository), random test
vectors (commonly used to improve coverage), and custom test
vectors (to fill coverage gaps). To contextualize Bomberman’s
effectiveness compared to state-of-the-art TTT defenses, we
build an end-to-end (E2E) TTT—that uses a pseudorandom
sequence to trigger a privilege escalation within a processor—
that evades all defenses except Bomberman. Lastly, we provide
an asymptotic complexity analysis of the Bomberman frame-
work, and characterize Bomberman’s performance in practice.

A. Experimental Setup

1) Hardware Designs: We evaluate Bomberman against
four open-source hardware designs: 1) an AES accelera-

A) AES B) UART C) RISC-V D) OR1200

Test Bench Controller

AES (DUT)

Plaintext LFSR

ciphertext

Key LFSR Verify

Test Bench Controller

Wishbone Bus

UART
Encoder

UART
Decoder

UART (DUT)

Data LFSR

RX TX

Verify

RISC-V CPU
(DUT) Memory

Test Bench Controller

.exe

AXI-4 Lite Bus

Execution Monitor
Verify

Test Bench Controller

OR1200 CPU
(DUT)UART Memory

UART
Decoder

.exe

Wishbone Bus

Verify

Execution Monitor

TX

Verify

Fig. 6. Hardware Testbenches. Testbench architectures for each DUT (outlined in red). For the AES and UART designs, LFSRs generate random inputs
for testing. For the RISC-V and OR1200 CPUs, we compile ISA-specific assembly programs [18], [49] into executables to exercise each design.

1 8 16 32 64 128
Register Size (# bits)

0

100

200

300

400

R

eg
is

te
rs

0

91

144

61

344

40

1 0 0 2 1 4
40

2

68 79

0 0 8 2
22

0 0 0

AES
UART
RISC-V
OR1200

Fig. 7. Hardware Design Complexities. Histograms of the (coalesced)
registers in each hardware design.

tor [20], 2) a UART module [19], 3) a RISC-V CPU [18],
and 4) an OR1200 CPU [19]. Fig. 6 provides details on the
testing architectures we deployed to simulate each IP core.
We also summarize the size and complexity of each hardware
design in terms of the number of registers (i.e., potential
SSCs) in Fig. 7. The AES, RISC-V, and OR1200 designs
are shown to be the most computationally-intensive designs
for Bomberman to analyze, since they have large registers
(≥32-bits), i.e., potentially suspicious SSCs that can increment
almost indefinitely.

AES Accelerator. The AES core operates solely in 128-bit
counter (CTR) mode. It takes a 128-bit key and 128-bits of
plaintext (i.e., a counter initialized to a random seed) as input,
and 22 clock cycles later produces the ciphertext. Note, the
design is pipelined, so only the first encryption takes 22 clock
cycles, and subsequent encryptions are ready every following
clock cycle. We interface two Linear Feedback Shift Registers
(LFSRs) to the DUT to generate random keys and plaintexts
to exercise the core (Fig. 6A). Upon testing initialization,
the testbench controller resets and initializes both LFSRs (to
different random starting values) and the DUT. It then initiates
the encryption process, and verifies the functionality of the
DUT is correct, i.e., each encryption is valid.

UART Module. The UART module interfaces with a
Wishbone bus and contains both a transmit (TX) and receive
(RX) FIFO connected to two separate 8-bit TX and RX shift
registers. Each FIFO holds a maximum of sixteen 8-bit words.
The core also has several CSRs, one of which configures
the baud rate, which we set to 3.125 MHz. We instantiate a
Wishbone bus arbiter to communicate with the DUT, and an
LFSR to generate random data bytes to TX/RX (Fig. 6B). We
also instantiate a UART encoder/decoder to receive, and echo
back, any bytes transmitted from the DUT. Upon initialization,

the testbench controller resets and initializes the Wishbone bus
arbiter, LFSR, and DUT, and begins testing.

RISC-V CPU. The RISC-V CPU contains 32 general-
purpose registers, a built-in interrupt handler, and interfaces
with other on-chip peripherals through a 32-bit AXI-4 Lite or
Wishbone bus interface. We instantiate an AXI-4 Lite bus ar-
biter to connect the DUT with a simulated main memory block
to support standard memory-mapped I/O functions (Fig. 6C).
The testbench controller has two main jobs after it initializes
and resets all components within. First, it initializes main
memory with an executable to be run on the bare metal CPU.
These programs are in the form of .hex files that are compiled
and linked from RISC-V assembly or C programs using the
RISC-V cross-compiler toolchain [50]. Second, it monitors the
progress of each program execution and receives any output
from an executing program from specific memory addresses.
We configure the testbench controller to run multiple programs
sequentially, without resetting the device.

OR1200 CPU. The OR1200 CPU implements the OR1K
RISC ISA. It contains a 5-stage pipeline, instruction and data
caches, and interfaces with other peripherals through a 32-bit
Wishbone bus interface. We instantiate a Wishbone bus arbiter
to connect the DUT with a simulated main memory block and
a UART module to support standard I/O functions (Fig. 6D).
The testbench controller has two jobs after it initializes and
resets all components within. First, it initializes main memory
with an executable to be run on the bare metal CPU. These
programs are in the form of .vmem files that are compiled
and linked from OR1K assembly or C programs using the
OR1K cross-compiler toolchain [51]. Second, it monitors the
progress of each program execution and receives any program
output from the UART decoder. Like the RISC-V, we configure
the OR1200 testbench controller to run multiple programs
sequentially, without resets in between.

2) System Setup: As described in §V, Bomberman inter-
faces with Icarus Verilog (IVL). IVL is also used to perform all
verification simulations of our four hardware designs. In both
cases, we use version 10.1 of IVL. Both IVL and Bomberman
were compiled with the Clang compiler (version 10.0.1) on
a MacBook Pro with a 3.1 GHz Intel Core i7 processor and
16 GB DDR3 RAM. All RTL simulations and Bomberman
analyses were also run on the same machine.

B. False Positives

We empirically quantify Bomberman’s false positive rate by
analyzing four real world hardware designs (§VI-A1). Addi-

A) AES

C) RISC-V

B) UART

D) OR1200

Repeat 75 Encryptions75 Random Encryptions

Found
6 SSCs

Er
ro

r T
es

tin
g

TX
 1

6
By

te
s

RX
 1

6
By

te
s

Re
pe

at
 T

X
16

 B
yt

es

Re
pe

at
 R

X
16

 B
yt

es

Found 6 SSCs

ds
x

in
sn

fe
tc

he
rr

or ov

shortjump

tic
ks

ys
ca

ll

ds
x

in
sn

fe
tc

he
rr

or ov

shortjump tic
ks

ys
ca

ll

custom*

Fo
un

d
9

SS
Cs

custom*

lsu lsu

lw
jr

lw
jr

Ju
m

p
In

s.

Br
an

ch
 In

s.

Lo
ad

 In
s.

St
or

e
In

s.

In
t.

Re
g.

-Im
m

ed
. I

ns
.

In
t.

Re
g.

-R
eg

. I
ns

.

M
ul

tip
ly

 In
s.

Di
vi

de
 In

s.

Found 19 SSCs

De
bu

g
In

s.

Fig. 8. False Positives. Reduction in SSCs classified as suspicious across all four hardware designs over their simulation timelines. A) AES. Bomberman
identifies the SSCs of all six TTT variants implanted with zero false positives. B) UART. (Same as AES). C) RISC-V. Bomberman flags 19 SSCs as suspicious,
six from implanted TTTs, three from benign performance counters, and ten benign constants resulting from on-chip CSRs. D) OR1200. Bomberman flags
nine SSCs as suspicious, six from implanted TTTs, and three benign constants.

tionally, we verify our implementation of Bomberman does not
produce false negatives—as this should be impossible—by
implanting all six TTT variants (§A) within each design. For
each design, we plot the number of suspicious SSCs flagged
by Bomberman over a specific simulation timeline. Based on
the TTT trigger definitions provided in §IV-A, we categorize
SSCs within each plot as follows:

1) Suspicious: a (coalesced or distributed) SSC for which
all possible values have not yet been expressed and no
value has been repeated;

2) Constant: a (coalesced or distributed) SSC for which
only a single value has been expressed.

Note coalesced and distributed classifications are mutually
exclusive, as they are SSC design characteristics. However,
suspicious and constant classifications are not mutually exclu-
sive. By definition (§IV-A), an SSC that has only expressed a
single value during simulation is suspicious. While constants
SSCs are also suspicious, we plot both to enable Bomberman
users to distinguish between SSCs that store configuration set-
tings (commonly used in larger designs) from SSCs that store
sequence progressions (e.g., TTTs or performance counters).

AES Accelerator. We configure the AES testbench to
execute 75 random encryptions, i.e., 75 random 128-bit values
with 75 (random and different) 128-bit keys, and subsequently
repeat the same 75 encryptions. We simulate the AES core at
100 MHz. In Fig. 8A we plot the number of suspicious SSCs
tracked by Bomberman over the simulation timeline.

During the first 250 clock cycles of simulation, as registers
cycle through more than one value, they are removed from the
sets of constants. During the initial 75 random encryptions,
after ≈ 750 clock cycles, the 8-bit registers toggle through

all 256 possible values, and thus are also eliminated from
the sets of suspicious SSCs. However, after the initial 75
encryptions, the number of false positives is still quite high,
as the 32- and 128-bit registers have yet to toggle through all
possible values, or repeat a value. Since these registers are
quite large, toggling through all possible values is infeasible.
Driven by the observation that the data-path of a TTT-free
design tracks state from test inputs, not since the last system
reset, we take an alternative approach to eradicate large SSC
false positives. Formally, we repeat the same test case(s)
without an intermediate system reset to cause only non-
suspicious SSCs to repeat values (violating Property 1 in
§IV-A). We use this insight to efficiently minimize suspicious
SSC false positives. Since the AES core is a deterministic
state machine with no control-path logic, we simply reset
the LFSRs, and repeat the same 75 encryptions. After ≈ 1200
clock cycles, we achieve a false positive rate of 0% while
detecting 100% of the TTT variants implanted in the core.

UART Module. We configure the UART testbench to
perform configuration, error, and TX/RX testing. During the
configuration and error testing phases, configuration registers
are toggled between values, and incorrect UART transactions
are generated to raise error statuses. During the TX/RX testing,
16 random bytes are transmitted by the DUT, and upon being
received by the UART decoder, are immediately echoed back,
and received by the DUT. Following our insights from the
AES experiments, we transmit and receive the same set of
16 bytes again, to induce truly non-suspicious SSCs to repeat
values. We plot the number of suspicious SSCs identified by
Bomberman over the simulation timeline in Fig. 8B.

During the first ≈ 80k clock cycles (error testing phase),
Bomberman eliminates over 50% of all potentially suspicious

(coalesced) SSCs, as many of the UART’s registers are either
single-bit CSRs that, once toggled on and off, both: 1) cycle
through all possible values, and 2) repeat a value. Subse-
quently, during the first TX testing phase, the 16-byte TX FIFO
is saturated causing another 50% reduction in the number of
coalesced constants. Likewise, once the DUT transmits all 16
bytes to the UART decoder, and the UART encoder echos them
all back, the 16-byte RX FIFO is saturated causing another
reduction in the number of coalesced constants.

After the initial TX/RX testing phase, we are still left with
several (suspicious) false positives. This is because the TX
and RX FIFO registers have yet to cycle through all possible
values, nor have they repeated a value. While these registers
are small (8-bits), and continued random testing would eventu-
ally exhaustively exercise them, we leverage our observations
from the prior AES simulation: we repeat the previous TX/RX
test sequence causing data-path registers to repeat values,
eliminating all false positives. Again, Bomberman successfully
identifies all TTT variants with zero false positives.

RISC-V CPU. We configure the RISC-V CPU testbench
to run a single RISC-V assembly program that exercises
all eight instruction types. The assembly test program was
selected from the open-source RISC-V design repository [18].
These instructions include jumps, branches, loads, stores,
arithmetic register-immediate and register-register, multiplies,
and divides. We simulate the RISC-V core and again plot
the number of suspicious SSCs identified by Bomberman
(Fig. 8C).

During the execution of the first set of instructions (jumps),
Bomberman largely reduces potential constant and suspicious
SSCs. This is because, like the UART module, most of the
registers within the RISC-V CPU are 1-bit CSRs for which
enumerating all (2) possible values is trivial. The remaining 90
suspicious SSCs are slowly eradicated as more instructions ex-
ecute, causing the remaining control-path signals to enumerate
all possible values. Similar to repeating the same encryptions
during the AES simulation, the assembly programs were
designed to load and store repeated values in the large (≥ 32-
bit) registers, causing them to violate Property 1 (§IV-A).

In the end, Bomberman identifies 19 suspicious SSCs:
16 coalesced and three distributed. Upon manual inspection,
we identify four of the 16 coalesced SSCs, and two of the
three distributed SSCs, as components of the six implanted
(malicious) TTTs. Of the 12 remaining coalesced SSCs, we
identify three as benign timeout and performance counters, and
nine as benign constants that stem from unused CPU features,
the hard-coded zero register, and the interrupt mask register.
Lastly, we identify the single remaining distributed SSC as
a combination of some of the benign coalesced constants.
In a real world deployment scenario, we imagine verification
engineers using Bomberman’s insights to tailor their test cases
to maximize threat-specific testing coverage, similar to how
verification engineers today use coverage metrics to inform
them of gaps in their current test vectors.

Recall, Bomberman only flags SSCs whose value pro-
gressions do not violate the properties of a TTT (§IV-A).

At most, Bomberman will only flag SSCs as suspicious. It
is up to the designer or verification engineer to make the
final determination on whether or not an SSC is malicious.
By locating all (malicious) implanted TTTs and (benign)
performance counters, we validate Bomberman’s correctness.

OR1200 CPU. Lastly, we configure the OR1200 testbench
to run eight different OR1K assembly programs. Like the
AES and UART simulations, we configure the testbench to
perform repeated testing, i.e., execute each program twice,
consecutively, without an intermediate device reset. The first
seven test programs are selected from the open-source OR1K
testing suite [49], while the last program is custom written to
exercise specific configuration registers not exercised by the
testing suite. We simulate the OR1200 at 50 MHz, and plot the
number of suspicious SSCs identified by Bomberman over the
simulation timeline in Fig. 8D.

In the end, Bomberman identifies nine suspicious SSCs,
seven coalesced and two distributed. Four of the seven coa-
lesced SSCs, and both distributed SSCs, are components of the
six implanted TTTs. The remaining three coalesced SSCs are
constants, and false positives. We manually identify these false
positives as shadow registers only used when an exception is
thrown during a multi-operand arithmetic instruction sequence.

C. Comparative Analysis of Prior Work

To demonstrate the need for Trojan-specific verification
tools like Bomberman, we provide a two-fold comparative
analysis between Bomberman and existing design-time Trojan
defenses. First, we study the capabilities of each defense in
defeating all six TTT variants described in §IV-C. We summa-
rize each defense and its effectiveness in Tab. I, and describing
why some defenses fail to defeat all TTT variants below.
Armed with this knowledge, we construct an E2E TTT in
Verilog—targeting the OR1200 [19] processor—that is capable
of bypassing all existing defenses except Bomberman. We
describe the fundamental building blocks of our TTT—and the
corresponding Verilog components in our implementation—
that enable it to defeat prior defenses.

1) Security Analysis of Existing Defenses: There are two
approaches for defending against TTTs: 1) Trojan-agnostic,
2) TTT-specific. Trojan-agnostic techniques are primarily ver-
ification focused, and include: FANCI [8], UCI [10] and
VeriTrust [9]. While these approaches differ in implementa-
tion (static vs. dynamic), from above they are similar. All
three locate rarely used logic that comprise most generic
Trojan circuits. Unfortunately, researchers have demonstrated
systematic approaches to transform almost any Trojan circuit
to evade these techniques, while maintaining logical equiva-
lence [14], [15]. Alternatively, TTT-specific approaches such as
WordRev [35], [36] and Waksman et al.’s Power Resets [13],
attempt to counter only TTTs. While these approaches work
against known TTTs at the time of their respective publica-
tions, they fail to recognize the behavior of all TTT variants
presented in this work. In Tab. I, we summarize each defense,
and the TTT variants (§IV-C and §A) they can defeat. Below,

TABLE I
COMPARATIVE SECURITY ANALYSIS OF TTT DEFENSES AND BOMBERMAN.

Defense UCI [10] FANCI [8] VeriTrust [9] WordRev [35] Power Resets [13] Bomberman
Type Trojan-Agnostic Trojan-Agnostic Trojan-Agnostic TTT-Specific TTT-Specific TTT-Specific
Analysis Dynamic Static Dynamic Static N/A† Dynamic
Target Activation Signals Comparator Inputs Activation Signals Increment Logic SSCs SSCs

T
T

T
Ty

pe

CUP 3 7 7 3 3 3
CUS 3 7 7 3 7 3
CNP 3 7 7 7 7 3
CNS 3 7 7 7 7 3
D-HMG 7 7 7 7 7* 3
D-HTG 7 7 7 7 7 3

XXX: Coalesced or Distributed SSC — XXX: Uniform or Non-uniform Increment Value — XXX: Periodic or Sporadic Increment Event
† Power Resets [13] are a runtime mechanism, not a verification technique.
* Power resets only defend against homogeneous distributed TTTs compromised entirely of CUP sub-components.

we provide a security analysis of each defense, describing how
and what TTT variants are defeated.

UCI. UCI [10] is a Trojan-agnostic dynamic verification
tool that searches HDL for intermediate combinational logic
that does not affect signal values from source to sink dur-
ing verification simulations. Since TTT trigger components—
SSCs, increment event, increment amount—remain active
during simulation, UCI would not flag them as suspicious.
However, TTTs also have a comparator that checks if the
SSC’s count has reached its activation state. Since the output
of this comparator—the trigger activation signal (Fig. 1)—
would remain unchanged during simulation, UCI would flag
it. Unfortunately, as Sturton et al. show [14], having two
activation signals—e.g., a distributed TTT—that each express
their activation states under simulation, but never simulta-
neously, would evade UCI. As we show in our E2E TTT
below (§VI-C2), this can be achieved using a distributed
SSC constructed of fast and slow (coalesced) counters that
wrap around (repeat values individually). Since the overall
distributed SSC would not violate TTT properties (§IV-A),
it would still be flagged by Bomberman.

FANCI. FANCI [8] is a Trojan-agnostic static verification
framework that locates potential Trojan logic by computing
“control values” for inputs to intermediate combinational logic
in a design. Inputs with low control values are weakly-
affecting [8], and most likely Trojan comparator inputs
(Fig. 1) that indicate the current state of the trigger, e.g. a
specific time counter value. Control values can be approxi-
mated by randomly sampling the truth tables of intermediate
logic across the design. Unfortunately, Zhang et al. construct a
systematic framework—DeTrust [15]—that distributes trigger
comparator inputs across layers of sequential logic to increase
their control values, hiding them from FANCI. Since any
TTT variant can be used with DeTrust-transformed comparator
logic, FANCI cannot identify any TTTs.

VeriTrust. Similar to UCI, VeriTrust [9] is a Trojan-
agnostic dynamic verification framework that locates (unused)
Trojan trigger activation signals (Fig. 1) in combinational
logic cones that drive sequential logic. However, unlike UCI,
VeriTrust locates activation signals by locating unused in-
puts—not logic—to the victim logic encapsulating a Trojan’s
payload. This semantic difference enables VeriTrust to detect

Trojans irrespective of their implementations. Unfortunately,
using their DeTrust framework [15], Zhang et al. illustrate
how splitting the activation signals of any TTT design across
multiple combinational logic cones, separated by layers of
sequential logic, evades VeriTrust.

WordRev. WordRev [35], [36] is TTT-specific static anal-
ysis tool that identifies SSCs that behave like counters. Wor-
dRev leverages the notion that the carry bit propagates from
the least-significant position to the most-significant position
in counter registers. Thus, the increment logic connecting
SSCs must be configured to allow such propagation. However,
this operating assumption causes WordRev to miss distributed
TTTs, and TTTs with non-uniform increment values.

Power Resets. Waksman et al. [13] suggest intermittent
power resets as a TTT-specific defense. Intermittent power re-
sets prevent potential TTT SSCs from reaching their activation
states. This approach requires formally verifying/validating
the correct operation of the DUT for a set amount of time,
denoted the validation epoch. Once they guarantee no TTT
is triggered within the validation epoch, the chip can safely
operate as long as its power is cycled in time intervals less
than the validation epoch. Unfortunately, as Imeson et al. [22]
point out, this type of defense only works against TTTs with
uniform increment values and periodic increment events, as it
is impractical to formally verify non-deterministic (sporadic
and/or non-uniform) designs.

2) End-to-End Supervisor Transition TTT: Using the ap-
proaches for defeating each Trojan-agnostic and TTT-specific
defense described above [14], [15], we systematically con-
struct an E2E TTT (List. 2) that evades all defenses, except
Bomberman. Our Trojan provides a supervisor transition
foothold that enables attackers to bypass system authentication
mechanisms and obtain root-level privileges.

Attack Target. Our TTT (List. 2) is based on a supervisor
transition foothold Trojan first described by Sturton et al.
in [14]. This Trojan targets a microprocessor circuit, and
enables an attacker to arbitrarily escalate the privilege mode
of the processor to supervisor mode. In List. 1, we provide
a simplified version of the un-attacked processor HDL that
updates the processor’s supervisor mode register. Under non-
trigger conditions, the supervisor signal—super—is either
updated via an input signal—in.super—on the following

clock edge, if the holdn bit is 1 (holdn is active low),
otherwise the super signal holds the same value from the
previous clock period. Additionally, the super signal is reset
to 1 (supervisor mode) when the processor is reset via the
active-low resetn signal.

Listing 1. Unmodified HDL of the processor’s supervisor-mode update logic.

1 always @(posedge clk) begin
2 super <= ∼resetn | (∼holdn & super) | (holdn & in.super) ;
3 end

Listing 2. Verilog HDL of a TTT that evades all existing design-time
Trojan detection techniques—including UCI [10], FANCI [8], VeriTrust [9],
WordRev [35], [36], and power resets [13]—except Bomberman. This TTT
alters logic (List. 1) that updates the supervisor-mode bit register.

1 // Distributed TTT SSCs to evade UCI
2 reg [15:0] count 1; // Assume reset to 16’h0000
3 reg [15:0] count 2; // Assume reset to 16’h0000
4

5 // TTT Trigger Deployment Signal
6 reg [6:0] deploy 1; // Assume reset to 7’b0000000
7 reg [6:0] deploy 2; // Assume reset to 7’b0000000
8

9 // Update SSCs non−uniformly and sporadically
10 // to defeat WordRev and Power Resets
11 always @posedge(pageFault) begin
12 count 1 <= count 1 + PC[3:0];
13 count 2 <= count 2 + PC[5:2];
14 end
15

16 // Distribute trigger activation input signal (count 1)
17 // across layers of sequential logic to defeat FANCI.
18 always @(posedge clk) begin
19 if (count 1 [3:0] == ‘DEPLOY 0)
20 deploy 1[0] <= 1;
21 else
22 deploy 1[0] <= 0;

23

...
...

...
24 if (count 1[15:12] == ‘DEPLOY 3)
25 deploy 1[3] <= 1;
26 else
27 deploy 1[3] <= 0;
28 end
29

30 always @(posedge clk) begin
31 if (deploy 1[2:0] == 2’b11)
32 deploy 1[4] <= 1;
33 else deploy 1[4] <= 0;
34 if (deploy 1[3:2] == 2’b11)
35 deploy 1[5] <= 1;
36 else deploy 1[5] <= 0;
37 if (deploy 1[5:4] == 2’b11)
38 deploy 1[6] <= 1;
39 else deploy 1[6] <= 0;
40 end
41

42 // Repeat lines 16−−40, but with count 2 and deploy 2
43

44 // Hide trigger activation signals (deploy 1 and deploy 2)
45 // inside fan−in logic cone of three additional signals
46 // (h 1, h 2, and h 3) to evade VeriTrust . Note, holdn prev
47 // and in . super prev are values of holdn and in . super from
48 // previous clock cycles , added to maintain timing .
49 always @(posedge clk) begin
50 holdn <= holdn prev;
51 in . super <= in.super prev;
52 h 1 <= deploy 1[6];
53 h 2 <= ∼deploy 2[6] & holdn prev & in.super prev |

deploy 2[6];
54 h 3 <= (∼deploy 1[6] | deploy 2[6]) & (holdn prev &

in.super prev) ;

55 end
56

57 always @(posedge clk) begin
58 super <= ∼resetn | (∼holdn & super) | (h 1 & h 2) | h 3;
59 end

Stealth Characteristics. We systematically construct our
TTT (shown in List. 2) with several characteristics that enable
it to evade all existing Trojan defenses except Bomberman.
First, armed with Sturton et al.’s insights [14], we deploy a
distributed SSC architecture to evade detection by UCI. Dis-
tributed SSCs enable the TTT’s activation signals to bypass
UCI since each coalesced SSC sub-component—count1 and
count2—can express their individual triggered states during
verification testing–defined by the ‘DEPLOYX constants—
while the overall distributed SSC does not express its triggered
state. Next, we increment our TTT’s SSCs non-uniformly,
to evade WordRev [35], [36] and power resets [13]. Lastly, we
deploy DeTrust transformations [15] on the Trojan’s: 1) com-
parator inputs (count1 and count2)—splitting them amongst
several layers of sequential logic—and 2) trigger activation
signals (deploy1[6] and deploy2[6])—hiding them inside a
logic cone of three additional signals: h 1, h 2, and h 3. This
hides our TTT from FANCI [8] and VeriTrust [9], respectively.
Since Bomberman: 1) is TTT-specific, 2) considers distributed
SSC architectures, and 3) is agnostic of how or when SSCs are
incremented, it is the only defense that can detect this TTT.

D. Run Time and Complexity Analysis

Since Bomberman is a dynamic verification framework,
its run time is roughly proportional to the size of the DUT
(number of SSCs and wires, see Fig. 7) and simulation time
(number of time steps). Across all designs we study, the
run time of Bomberman did not exceed 11 minutes on a
commodity laptop. Compared with other Trojan verification
frameworks [8]–[10], [35], [36], Bomberman is two orders
of magnitude faster when analyzing the same circuits; this is
due, in part, to Bomberman’s targeted nature. As we show in
Tab. II, Bomberman’s run time on real-world hardware designs
scales proportionally with respect to the number of SSCs and
number simulation test cases.

TABLE II
BOMBERMAN SCALABILITY COMPARISON FOR CIRCUIT DFGS WITH n

SIGNALS SIMULATED OVER c CLOCK CYCLES.

Analysis Time Space Average
Framework Type Complexity Complexity Run Time

Bomberman Dynamic O(nc) O(nc) 1x Minutes
FANCI [8] Static O(n) O(n) 10x Hours
UCI [10] Dynamic O(n2c) O(nc) 1x Hours
VeriTrust [9] Dynamic O(n2n) O(nc) 10x Hours
WordRev [35] Static Not Reported Not Reported 1x Hours

The Bomberman framework consists of two main compo-
nents that contribute to its overall time and space complexities
(Fig. 5): 1) SSC Enumeration, and 2) SSC Classification.3

Below, we provide an in-depth complexity analysis for each
stage, and Bomberman as a whole.

3In our experiments, we did not observe the DFG Generation stage to be
computationally dominant.

0 10 20 30 40 50
Pipeline Logic Depth

AES

UART

OR1200

RISC-V

ARM CORTEX-M0

D
es

ig
n

Bomberman RT: 5.457s

Bomberman RT: 4.912s

Bomberman RT: 22.570s

Bomberman RT: 10.840s

Bomberman RT: 643.568s

Fig. 9. Distributions of Logic Depths per Pipeline Stage. The length of
combinational logic chains between any two sequential components in most
hardware designs is bounded to optimize for performance, power, and/or area.
High performance designs have the shortest depths (less than 8 [53]), while
even the flattened and obfuscated logic model of the lowest-performance
Arm processor available [52] (worst case scenario) has a depth <25. Even in
the worst case, Bomberman’s run time (overlaid for each core), is <11 min.
on a commodity laptop.

1) SSC Enumeration: During the SSC Enumeration stage,
Bomberman locates signals that are the direct outputs of coa-
lesced SSCs, and signals that form distributed SSCs (§V-A).
For a circuit DFG with n nodes (each node representing a
signal), a maximum fan-in of f for signal nodes, a maximum
logic depth per pipeline stage4 of d, the asymptotic time
complexity for enumerating SSCs is O(nfd). Since most
hardware designs are optimized for either power, performance
(clock speed), and/or area, the maximum logic depth, d, is
usually small and bounded. Therefore, the time complexity is
polynomial. To show this, we plot (Fig. 9) the distributions of
logic depths within pipeline stages—and the corresponding
Bomberman run time—across the four designs we study,
representing both mid-to-high performance and mid-to-large
designs. Additionally, to stress-test Bomberman, we measure
its run time in the worst-case scenario: analyzing the
flattened and obfuscated functionally-equivalent logic model
of the most low-performant and low-power Arm processor
available [52]. For all designs, the logic depths were less
than 25 across all pipeline stages.5 Additionally, the maximum
fan-in for a signal node is often small—less than 10—and
bounded [8], further reducing the time complexity to O(n).
By extension, the asymptotic space complexity reduces from
O(n+ nf) to O(n), to store the DFG.

While Bomberman’s SSC Enumeration time complexity
is bounded by conventional circuit size and performance
constraints, from a security perspective it is important to
understand how an attacker might manipulate these bounds.
Fortunately, while an attacker can control the maximum logic
depth in a pipeline stage, d, and the maximum fan-in of a
signal node, f , choosing large values for either in hopes of ren-
dering Bomberman analyses computationally infeasible would
reveal them: the victim design would be rendered unusable—
either too large or too slow—by its intended customers and
the tools would direct the designer to inspect the Trojan logic.

4The logic depth in a pipeline stage is the number of stages of combinational
logic between layers of sequential logic.

5If we could plot the logic depths within commercial x86 processors in
Fig. 9, we would expect them to be smaller than the OR1200, RISC-V, and
Arm designs, as the maximum depth of logic per pipeline stage of GHz
processors must be less than eight [53].

2) SSC Classification: In the SSC Classification stage,
Bomberman analyzes verification simulation traces to deter-
mine if an SSC is suspicious—potentially part of a TTT
(Algo. 1). For a circuit DFG with n nodes (each node repre-
senting a signal), and c simulation clock cycles, the asymptotic
time and space complexities are both O(nc). This accounts
for tracking the values expressed by each SSC over each
simulation clock cycle. Since the time and space complexities
of the SSC Classification stage dominate, compared with the
SSC Enumeration stage, they represent the time and space
complexities for the entire Bomberman framework.

VII. DISCUSSION

1) Test Vector Selection: During the AES and UART
false positive evaluations, we witnessed a plateauing reduc-
tion in false positives after executing initial verification tests
(Figs. 8A–B). Upon a closer look, we find this initial reduc-
tion is a result of test vectors exhaustively exercising small
registers—1- to 16-bit—violating Property 2 in §IV-A. For
large registers—32-bit and larger—cycling through all register
values is not computationally feasible. Thus, to quickly reduce
the number of false positives across both designs, we deploy
a repeat testing strategy (§VI-B). For most circuit designs,
we observe: the state of most benign SSCs is a function of
design inputs. By repeating tests, we induce benign SSCs to
repeat a value, violating Property 1 (§IV-A).

How do we know which test cases to repeat in order to
induce repeated values in benign SSCs? For designs with
unstructured, data-path-only inputs—like the AES design—
repeating any test vector will suffice. Alternatively, for de-
signs that require structured control-path inputs, inducing
repeated SSC values requires activating the same control-
path multiple times while also repeating data-path inputs.
Determining which control-paths to activate, i.e., control-paths
that influence specific SSCs, is tantamount to crafting test
vectors with high SSC coverage. Fortunately, Bomberman
provides verification engineers with two channels of infor-
mation to aid in this process: 1) the circuit DFG (Fig. 11
in Appendix C) illustrates the control-path that exercises a
specific SSC, and 2) the SSC Classification output indicates
the extent suspicious SSCs have/have-not been exercised. To-
gether, these Bomberman insights guide verification engineers
in creating test vectors that achieve high coverage, with respect
to Bomberman invariants (Properties 1 and 2 in §IV-A),
therefore minimizing false positives. For example, in §VI-B,
when analyzing the OR1200 processor, we noticed designer-
provided test vectors [49] did not exercise several CSRs.
By referencing Bomberman’s output, we located the (non-)
suspicious SSCs and crafted test vectors to exercise them.

2) Latches: For Bomberman to locate TTTs in a hardware
design, it first locates all SSCs by identifying signals in the
design’s HDL that are inferred as flip-flops during synthesis
(§V-A). However, flip-flops are not the only circuit compo-
nents that store state. SSCs can also be implemented with
latches. However, it is typically considered bad practice to
include latches in sequential hardware designs as they often

induce unwanted timing errors. As a result, HDL compilers in
synthesis CAD tools issue warnings when they infer latches
in a design—highlighting the TTT. Nonetheless, to support
such (bad) design practices, we design Bomberman’s data-flow
graph generation compiler back-end to also recognize latches.

3) TTT Identification in Physical Layouts: Bomberman
is designed as an extension into existing front-end verification
tool-chains that process hardware designs (Fig. 2). Under a
different threat model—one encapsulating untrusted back-end
designers—it may be necessary to analyze physical layouts for
the presence of TTTs. Bomberman can analyze physical lay-
outs for TTTs, provided the layout (GDSII) file is first reverse-
engineered into a gate-level netlist. As noted by Yang et
al. [28], there are several reverse-engineering tools for carrying
out this task. Bomberman also requires HDL device models
for all devices in the netlist (e.g., NAND gate). This informs
Bomberman of a device’s input and output signals, which is
required to create a DFG. Fortunately, HDL device models
are typically provided as a part of the process technology IP
portfolio purchased by front-end designers.

4) Memories: Bomberman is designed to handle memories,
or large arrays of SSCs, in the same fashion that it handles
flip-flop-based SSCs. Namely, Bomberman creates a DFG
of the addressable words within a memory block to curb
state-explosion when locating distributed SSCs. For memories
that mandate word-aligned accesses, Bomberman generates
a coalesced SSC for every word. For memories that allow
unaligned accesses—which represent a minority, i.e., part
of two adjacent words could be addressed simultaneously,
Bomberman generates a coalesced SSC for every word, and
multiple word-sized distributed SSCs created by sliding a
word-sized window across every adjacent memory word pair.
In either case, Bomberman’s DFG filtering mechanism greatly
reduces the overall set of potentially suspicious SSCs.

5) Limitations: Bomberman is capable of detecting all
TTTs with zero false negatives, within the constraints of
our definition (§IV-A). However, these constraints impose
limitations. First, if an attacker knows Bomberman is in use,
they may alter their Trojan to repeat a value to avoid detection.
There are two ways they may do this: 1) add an extra state bit
to the SSC(s) that does not repeat a value, or 2) add additional
logic that resets the SSC(s) upon recognizing specific circuit
behavior. The first design would be detected by Bomberman
since, by definition, describes a distributed SSC. However, the
second scenario describes a Trojan that, by definition, is a data-
based (cheat code) Trojan [13] not a TTT. Therefore, it would
not be detected by Bomberman. Data-based Trojans [13]
are better addressed by techniques that target rarely used
activation signals [9], [10] or comparator inputs [8] (Tab. I).
Second, Bomberman is incapable of detecting TTTs that use
analog SSCs, like the A2 Trojan [28], as there is no notion of
analog SSCs in front-end designs.6 Detecting Trojans like A2

6While the non-deterministic (sporadic) TTTs proposed by Imeson et
al. [22] do use non-simulatable analog behavior (i.e., phase noise) as an
entropy source for the increment event, they do not use analog SSCs. Thus,
they are detectable by Bomberman.

require knowledge of the physical layout of the circuit, and
are best addressed during circuit layout [54].

VIII. RELATED WORK

The implantation, detection, and prevention of hardware
Trojans across hardware design phases have been widely
studied. Attacks range from design-time attacks [7], [22], [27],
[55], to layout-level modifications at fabrication time [28]–
[30]. On the defensive side, most work focuses on post-
fabrication Trojan detection [37]–[43], [54], [56], [57], given
that most hardware design houses are fab-less, and therefore
must outsource their designs for fabrication. However, as
hardware complexity increases, reliance on 3rd-party IP [3]
brings the trustworthiness of the design process into question.
Thus, there is active work in both detection [8]–[10], [35],
[36] and preventation [11], [13] of design-time Trojans.

On the attack side, King et al. [7] demonstrate embedding
hardware Trojans in a processor for the purpose of planting
footholds for high-level exploitation in software. They demon-
strate how small perturbations in a microprocessor’s hardware
can be exploited to mount wide varieties of software-level
attacks. Lin et al. [27] propose a different class of hardware
Trojans, designed to expose a side-channel for leaking infor-
mation. Specifically, they add flip-flops to an AES core to cre-
ate a power side channel large enough to exfiltrate key bytes,
but small enough that it resides below the device’s power noise
margin. While both attacks demonstrate different payloads,
they both require triggering mechanisms to remain dormant
during verification and post-fabrication testing. Thankfully, our
defense is payload-agnostic and trigger-specific. We focus on
detecting hardware Trojans by their trigger. As a byproduct,
we can identify any payloads by inspecting portions of the
design that the trigger output influences.

Wang et al. [21] propose the first variant of sporadic TTTs,
called Asynchronous Counter Trojans. Asynchronous Counter
Trojans increment pseudo-randomly from a non-periodic in-
ternal event signal (e.g., Fig. 4C and D). Similarly, Imeson
et al. [22] propose non-deterministic TTTs. Non-deterministic
TTTs are also sporadic, but they differ from pseudo-random
TTTs in that their event signals are not a function of the
state of the victim device, rather, they are a function of a
true source of entropy. Unlike, Waksman et al.’s power reset
defense [13], this nuance is irrelevant to Bomberman, who
identifies TTTs by the values expressed by their SSCs, not
the source or predictability of their event signals.

On the defensive side, both design- and run-time approaches
have been proposed. At design-time, Hicks et al. [10] propose
a dynamic analysis technique for Unused Circuit Identifica-
tion (UCI) to locate potential trigger logic. After verification
testing, they replace all unused logic with logic to raise
exceptions at run-time to be handled in software. Similarly,
Zhang et al. [9] propose VeriTrust, a dynamic analysis tech-
nique focused on the behavioral functionality, rather than
implementation, of the hardware. Conversely, Waksman et
al. [8] propose FANCI, a static analysis technique for locating
rarely used logic based on computing control values between

inputs and outputs. Lastly, Li and Subramanyan et al. [35],
[36] propose WordRev, a different static analysis approach,
whereby they search for counters in a gate-level netlist by iden-
tifying groups of latches that toggle when low order bits are 1
(up-counter), or low order bits are 0 (down-counter). As static
analysis approaches, FANCI and WordRev have the advantage
of not requiring verification simulation results. In §VI-C2
we leverage prior work on defeating such defenses [14]–
[16] to construct a TTT that bypasses these defenses—but
Bomberman detects. At run-time, Waksman et al. [13] thwart
TTTs, using intermittent power resets. As shown in §VI-C1,
power-resets are also incapable of thwarting all TTT variants.

IX. CONCLUSION

Bomberman is an effective example of a threat-specific
defense against TTTs. Unlike prior work, we do not attempt to
provide a panacea against all design-time Trojans. Instead, we
define the behavioral characteristics of a specific but important
threat, TTTs, and develop a complete defense capable of
identifying all TTT variants as we define them. Across four
open-source hardware designs, Bomberman detects all six TTT
variants, with less than 1.2% false positives.

Bomberman demonstrates the power of threat-specific ver-
ification, and seeks to inspire future threat-specific defenses
against hardware Trojans and common hardware bugs. We be-
lieve that no one defense will ever provide the level of security
achievable by defense-in-depth strategies. Thus, by combining
Bomberman with existing design-time Trojan defenses [8]–
[10], [13], along with future threat-specific defenses, we aim
to create an insurmountable barrier for design-time attackers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Ste-
fan Katzenbeisser, for their thoughtful feedback that enhanced
the quality of this paper.

DISTRIBUTION STATEMENT A. Approved for public
release. Distribution is unlimited. This material is based upon
work supported by the Under Secretary of Defense for Re-
search and Engineering under Air Force Contract No. FA8702-
15-D-0001. Additionally, the work reported in this paper was
supported in part by the US National Science Foundation
under Grant CNS-1646130 and Graduate Research Fellowship
Program under Grant DGE 1256260, as well as the US
Army Research Office under Grant W911NF-21-1-0057. Any
opinions, findings, conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] M. Lapedus, “10nm versus 7nm,” April 2016,
https://semiengineering.com/10nm-versus-7nm/.

[2] P. Gupta, “7nm power issues and solutions,” November 2016,
https://semiengineering.com/7nm-power-issues-and-solutions/.

[3] J. Blyler, “Trends driving ip reuse through 2020,” November 2017,
http://jbsystech.com/trends-driving-ip-reuse-2020/.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in USENIX Security Symposium, 2018.

[5] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE Symposium
on Security and Privacy (S&P), 2019.

[6] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in USENIX Security Symposium, 2018.

[7] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “De-
signing and implementing malicious hardware,” in USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), 2008.

[8] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: identification
of stealthy malicious logic using boolean functional analysis,” in ACM
SIGSAC Conference on Computer & Communications Security (CCS),
2013.

[9] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification
for hardware trust,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2015.

[10] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
“Overcoming an untrusted computing base: Detecting and removing
malicious hardware automatically,” in IEEE Symposium on Security and
Privacy (S&P), 2010.

[11] A. Waksman and S. Sethumadhavan, “Tamper evident microprocessors,”
in IEEE Symposium on Security and Privacy (S&P), 2010.

[12] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “Specs: A lightweight
runtime mechanism for protecting software from security-critical pro-
cessor bugs,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2015.

[13] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,”
in IEEE Symposium on Security and Privacy (S&P), 2011.

[14] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating UCI:
Building stealthy and malicious hardware,” in IEEE Symposium on
Security and Privacy (S&P), 2011.

[15] J. Zhang, F. Yuan, and Q. Xu, “DeTrust: Defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans,” in ACM
SIGSAC Conference on Computer & Communications Security (CCS),
2014.

[16] A. Waksman, J. Rajendran, M. Suozzo, and S. Sethumadhavan, “A red
team/blue team assessment of functional analysis methods for malicious
circuit identification,” in ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), 2014.

[17] V. Patankar, A. Jain, and R. Bryant, “Formal verification of an ARM
processor,” in International Conference on VLSI Design (VLSID), 1999.

[18] C. Wolf, “Picorv32,” https://github.com/cliffordwolf/picorv3#cycles-per-
instruction-performance.

[19] OpenCores.org, “Openrisc or1200 processor,”
https://github.com/openrisc/or1200.

[20] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in IEEE International
Conference on Computer Design (ICCD), 2013.

[21] X. Wang, S. Narasimhan, A. Krishna, T. Mal-Sarkar, and S. Bhunia,
“Sequential hardware trojan: Side-channel aware design and placement,”
in IEEE International Conference on Computer Design (ICCD), 2011.

[22] F. Imeson, S. Nejati, S. Garg, and M. Tripunitara, “Non-deterministic
timers for hardware trojan activation (or how a little randomness can
go the wrong way),” in USENIX Workshop on Offensive Technologies
(WOOT), 2016.

[23] T. Trippel, “Bomberman,” December 2020,
https://github.com/timothytrippel/bomberman.

[24] J. Cross, “Inside apple’s A13 bionic system-on-chip,” October 2019,
https://www.macworld.com/article/3442716/inside-apples-a13-bionic-
system-on-chip.html.

[25] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
hardware: Identifying and classifying hardware trojans,” Computer,
2010.

[26] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, 2010.

[27] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson, “Trojan
side-channels: Lightweight hardware trojans through side-channel en-
gineering.” in International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), 2009.

[28] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in IEEE Symposium on Security and Privacy
(S&P), 2016.

[29] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, “Parametric trojans
for fault-injection attacks on cryptographic hardware,” in Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2014.

[30] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), 2013.

[31] S. Ghosh, A. Basak, and S. Bhunia, “How secure are printed circuit
boards against trojan attacks?” IEEE Design & Test, 2014.

[32] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
Threats and emerging solutions,” in IEEE International High Level
Design Validation and Test Workshop (HLDVT). IEEE, 2009.

[33] Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint,” in IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST), 2008.

[34] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “Towards
trojan-free trusted ics: Problem analysis and detection scheme,” in ACM
Conference on Design, Automation and Test in Europe (DATE), 2008.

[35] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. Seshia, “WordRev: Finding word-level structures in
a sea of bit-level gates,” in IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST), 2013.

[36] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in ACM Conference on Design, Automation and Test in Europe
(DATE), 2013.

[37] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan
detection using IC fingerprinting,” in IEEE Symposium on Security and
Privacy (S&P), 2007.

[38] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, “Hardware
trojan horse detection using gate-level characterization,” in ACM/IEEE
Design Automation Conference (DAC), 2009.

[39] S. Narasimhan, X. Wang, D. Du, R. S. Chakraborty, and S. Bhunia,
“Tesr: A robust temporal self-referencing approach for hardware trojan
detection,” in IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), 2011.

[40] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic circuit
fingerprints for hardware trojan detection,” in IEEE International Sym-
posium on Electromagnetic Compatibility (EMC), 2015.

[41] J. Li and J. Lach, “At-speed delay characterization for ic authentica-
tion and trojan horse detection,” in IEEE International Workshop on
Hardware-Oriented Security and Trust (HOST), 2008.

[42] D. Forte, C. Bao, and A. Srivastava, “Temperature tracking: An inno-
vative run-time approach for hardware trojan detection,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2013.

[43] S. Kelly, X. Zhang, M. Tehranipoor, and A. Ferraiuolo, “Detecting
hardware trojans using on-chip sensors in an asic design,” Journal of
Electronic Testing, 2015.

[44] Cadence Design Systems, “JasperGold,”
https://www.cadence.com/en US/home/tools/system-design-and-
verification/formal-and-static-verification/jasper-gold-verification-
platform.html.

[45] Synopsys, “VC Formal,” https://www.synopsys.com/verification/static-
and-formal-verification/vc-formal.html.

[46] S. Williams, “Icarus verilog,” http://iverilog.icarus.com/.
[47] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin ii-an open-

source verilog hdl synthesis tool for cad research,” in IEEE International
Symposium on Field-Programmable Custom Computing Machines, 2010.

[48] C. H. Kingsley and B. K. Sharma, “Method and apparatus for identifying
flip-flops in hdl descriptions of circuits without specific templates,” 1998,
US Patent 5,854,926.

[49] OpenCores.org, “Openrisc or1k tests,” https://github.com/openrisc/or1k-
tests/tree/master/native/or1200.

[50] U. of California, “Risc-v gnu compiler toolchain,”
https://github.com/riscv/riscv-gnu-toolchain.

[51] OpenCores.org, “Or1k-elf toolchain,” https://openrisc.io/newlib/.
[52] Arm, “Arm Cortex-M0,” https://developer.arm.com/ip-

products/processors/cortex-m/cortex-m0.
[53] M. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler,

and P. Shivakumar, “The optimal logic depth per pipeline stage is 6 to
8 FO4 inverter delays,” in IEEE International Symposium on Computer
Architecture (ISCA), 2002.

[54] T. Trippel, K. G. Shin, K. B. Bush, and M. Hicks, “ICAS: an extensible
framework for estimating the susceptibility of ic layouts to additive
trojans,” in IEEE Symposium on Security and Privacy (S&P), 2020.

[55] E. Biham, Y. Carmeli, and A. Shamir, “Bug attacks,” in Annual Inter-
national Cryptology Conference, 2008.

[56] M. Banga and M. S. Hsiao, “A region based approach for the identifica-
tion of hardware trojans,” in IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST), 2008.

[57] M. Banga, M. Chandrasekar, L. Fang, and M. S. Hsiao, “Guided test
generation for isolation and detection of embedded trojans in ics,” in
ACM Great Lakes Symposium on VLSI (GLSVLSI), 2008.

[58] Google LLC, “RISCV-DV,” https://github.com/google/riscv-dv.

APPENDIX

A. Ticking Timebomb Trigger Variants

In these Verilog examples of TTT triggers, we use a three
letter naming convention to describe their building blocks:
SSC type (C or D), increment value (U or N), and incre-
ment event (P or S). For example, a CNS TTT indicates a
Coalesced (C) SSC, with a Non-uniform (N) increment value,
and a Sporadic (S) increment event. For TTTs comprised of
distributed SSCs we use the “D-<type>” naming convention
to indicate the type: homogeneous or heterogeneous. This list
is not comprehensive, but rather a representative sampling of
the TTT design space. Note, all examples assume a processor
victim circuit, with a pageFault flag, overflow flag, and a 32-
bit program counter (PC) register.

1 // 1. CUP = Coalesced SSC, Uniform increment, Periodic event
2 reg [31:0] ssc ;
3 always @posedge(clock) begin
4 if (reset)
5 ssc <= 0;
6 else
7 ssc <= ssc + 1;
8 end
9 assign doAttack = (ssc == 32’hDEAD BEEF);

1 // 2. CUS = Coalesced SSC, Uniform increment, Sporadic event
2 reg [31:0] ssc ;
3 always @posedge(pageFault) begin
4 if (reset)
5 ssc <= 0;
6 else
7 ssc <= ssc + 1;
8 end
9 assign doAttack = (ssc == 32’hDEAD BEEF);

1 // 3. CNP = Coalesced SSC, Non−uniform increment, Periodic
event

2 reg [31:0] ssc ;
3 always @posedge(clock) begin
4 if (reset)
5 ssc <= 1;
6 else
7 ssc <= ssc << PC[3:2];
8 end
9 assign doAttack = (ssc == 32’hDEAD BEEF);

1 // 4. CNS = Coalesced SSC, Non−uniform increment, Sporadic
event

2 reg [31:0] ssc ;
3 always @posedge(pageFault) begin
4 if (reset)
5 ssc <= 0;
6 else
7 ssc <= ssc + PC[3:0];
8 end
9 assign doAttack = (ssc == 32’hDEAD BEEF);

1 // 5. D−Homogeneous = Distributed SSC, same sub−components
2 wire [31:0] ssc wire ;
3 reg [15:0] lower half ssc ;
4 reg [15:0] upper half ssc ;
5 assign ssc wire = {upper half ssc , lower half ssc };
6

7 // Two CUP sub−counters
8 always @posedge(clock) begin
9 if (reset) begin

10 lower half ssc <= 0;
11 upper half ssc <= 0;
12 end
13 else begin
14 lower half ssc <= lower half ssc + 1;
15 upper half ssc <= upper half ssc + 1;
16 end
17 end
18 assign doAttack = (ssc wire == 32’hDEAD BEEF);

1 // 6. D−Heterogeneous = Distributed SSC, different
sub−components

2 wire [31:0] ssc wire ;
3 reg [15:0] lower half ssc ;
4 reg [15:0] upper half ssc ;
5 assign ssc wire = {upper half ssc , lower half ssc };
6

7 // CUS sub−counter
8 always @posedge(pageFault) begin
9 if (reset)

10 lower half ssc <= 0;
11 else
12 lower half ssc <= lower half ssc + 1;
13 end
14

15 // CNP sub−counter
16 always @posedge(clock) begin
17 if (reset)
18 upper half ssc <= 0;
19 else
20 upper half ssc <= upper half ssc + PC[3:0];
21 end
22 assign doAttack = (ssc wire == 32’hDEAD BEEF);

B. Constrained Randomized Verification

Given the size and complexity of modern hardware designs,
verification engineers typically use randomly-generated test
vectors to maximize verification coverage. Similarly, for two
of the four designs we study (AES and UART), we use LFSRs
to generate random data-path inputs for test vectors. Thus, we
ask the question: does contrained random verification degrade
Bomberman’s performance? To demonstrate Bomberman is
test-case agnostic, we generate 25 random test sequences for
both the AES and UART designs by randomly seeding the
LFSR(s) in each design’s respective test bench (Fig. 6). Note,
we do not experiment with constrained random verification
of the RISC-V and OR1200 designs as these require random
instruction stream generators, for which (to the best of our
knowledge) none exist in the open-source community that
are compatible with open-source RTL simulators like IVL or
Verilator.7

For the AES design, we generate 25 random sequences of
seventy-five 128-bit keys and plaintexts. For the UART design,

7Google’s RISCV-DV open-source random instruction stream generator is
not compatible with either IVL or Verilator [58].

Distributed SSCs

Coalesced SSCs

Distributed SSCs

Coalesced SSCs

A) AES

B) UART

Fig. 10. Randomized Testing. Randomly generated verification test vectors
do not affect Bomberman’s performance. Rather, Bomberman’s performance
is dependent on verification coverage with respect to SSC Properties 1 & 2
(§IV-A) that define the behavior of a TTT. Namely, tests that cause more SSCs
to cycle through all possible values, or repeat a value, reduce false positives.

we generate 25 random sequences of 16 bytes (to TX/RX).
Similar to the false positive experiments (§VI-B), each test
sequence for each design was repeated twice, without a system
reset in between. Given Bomberman’s inability to produce
false negatives, we only study the effects of randomness
on Bomberman’s false positive rate. Thus, unlike the false
positive experiments, no TTT variants were implanted in either
design. In Fig. 10, we plot the suspicious SSC traces produced
by Bomberman across all randomly generated test vectors.
Across both designs, zero suspicious SSCs (false positives) are
observed at the end of all 25 simulations, and each simulation
trace is nearly identical. Thus, Bomberman’s performance is
not test-case specific, rather, it is dependent on verification
coverage, with respect to TTT invariants,8 i.e. Properties 1 &
2 in §IV-A.

C. Example Hardware Data Flow Graph

An example hardware DFG generated by Bomberman’s SSC
Identification phase is shown below in Fig. 11.

8Verification coverage with respect to TTT invariants, is not to be confused
with generic verification coverage such as functional, statement, condition,
toggle, branch, and Finite State Machine (FSM) coverage. The former entails
exercising SSCs such that they violate TTT invariants (Properties 1–2 in
§IV-A).

or1200_fpu_div.coal_counter_1[31:0] [31:0]->[31:0]

or1200_fpu_div.dist_counter[63:0]

[31:0]->[31:0]

or1200_fpu_div.coal_counter_2[31:0]

[31:0]->[63:32]

[31:0]->[31:0]

or1200_fpu_div.s_div_zero_o[0:0]

or1200_fpu_div.div_zero_o[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_qutnt_o[26:0]

[3:0]->[31:0]

or1200_fpu_div.qutnt_o[26:0]

[26:0]->[26:0]

or1200_fpu_div.s_ready_o[0:0]

or1200_fpu_div.ready_o[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_rmndr_o[26:0]

[3:0]->[31:0]

or1200_fpu_div.rmndr_o[26:0]

[26:0]->[26:0]

or1200_fpu_div.s_dvsor_i[26:0]

[26:0]->[0:0]

[26:0]->[26:0]

or1200_fpu_div.s_dvd[26:0]

[26:0]->[26:0]

or1200_fpu_div.v_div_minus_s_dvsor_i[26:0]

[26:0]->[26:0]

or1200_fpu_div.s_dvdnd_i[49:0]

[49:0]->[0:0]

or1200_fpu_div.v_div[26:0]

[49:26]->[23:0]

or1200_fpu_div.sign_dvd_i[0:0]

or1200_fpu_div.s_sign_o[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_sign_dvd_i[0:0]

[0:0]->[0:0]

or1200_fpu_div.sign_o[0:0]

[0:0]->[0:0]

or1200_fpu_div.sign_div_i[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_sign_div_i[0:0]

[0:0]->[0:0]

or1200_fpu_div.s_count[4:0]

[4:0]->[0:0]

[4:0]->[4:0]

[4:0]->[4:0]

or1200_fpu_div.s_state[0:0]

[4:0]->[0:0]

[26:0]->[26:0] [26:0]->[26:0]

[25:0]->[26:1] [26:0]->[26:0]

[26:0]->[26:0]

[26:0]->[31:5]

[25:0]->[26:1]

or1200_fpu_div.clk_i[0:0]

[0:0]->[31:0][0:0]->[31:0]

[0:0]->[26:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[26:0] [0:0]->[49:0]

[0:0]->[4:0]

[0:0]->[26:0]

[0:0]->[0:0] [0:0]->[0:0]

or1200_fpu_div.s_start_i[0:0]

[0:0]->[0:0]

[0:0]->[0:0]

or1200_fpu_div.dvdnd_i[49:0]

[49:0]->[49:0]

or1200_fpu_div.dvsor_i[26:0]

[26:0]->[26:0]

or1200_fpu_div.start_i[0:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[4:0]

[0:0]->[26:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[0:0]

[0:0]->[26:0]

[0:0]->[4:0]

[0:0]->[26:0]

[0:0]->[0:0]

Fig. 11. Hardware Data-Flow Graph. Example data-flow graph, generated by Bomberman, of an open-source floating-point division unit [19]. Bomberman
cross-references this graph with verification simulation results to identify SSCs (red). In the graph, rectangles represent registers, or flip-flops, and ellipses
represent intermediate signals, i.e., outputs from combinational logic. Red rectangles indicate coalesced SSCs, while red ellipses represent distributed SSCs.

