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ABSTRACT

Many users have reported that their smartphones shut off unex-

pectedly, even when they show >30% remaining battery capacity.

After examining the problem from both the user and phone sides,

we discovered the cause of these unexpected shutoffs to be a large

and dynamic internal voltage drop of the phone battery, which is, in

turn, caused by the dynamics of both battery’s internal resistance

and the phone’s discharge current. To fix these unexpected shutoffs,

we design a novel Battery-aware Power Management (BPM) mid-

dleware that accounts for these dual-dynamics in phone operation.

Specifically, BPM profiles the battery’s internal resistance — which

varies with battery state-of-charge (SoC), temperature, and aging —

using a novel duty-cycled charging method. BPM then regulates, at

run-time, the phone’s discharge current based on the constructed

battery profile. We have implemented and evaluated BPM on 4

commodity smartphones from different OEMs with the latest bat-

tery firmware, demonstrating that BPM prevents unexpected phone

shutoffs and extends their operation time by 1.16–2.03×. Our user

study, which includes 121 mobile phone users, also corroborates

BPM’s usefulness/attractiveness.

CCS CONCEPTS

•Hardware→ Batteries; Power and energy; • Computer sys-

tems organization → Embedded software.
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1 INTRODUCTION

Unexpected Phone Shutoffs. ManyAndroid and iOS users are re-

ported to have suffered unexpected shutoffs of their mobile phones,

even when the phones are shown to have >30% remaining battery

capacity [9, 13, 17, 18, 20, 22, 58]; this problem occurred more often

in cold environments [10, 27]. Our user study, which includes 121

mobile phone users, shows that 60% of the participants have expe-

rienced unexpected phone shutoffs, which is a concern to 79% of

them. Apple acknowledged this problem and introduced an update

to iOS 10.2.1 [12] to fix unexpected phone shutoffs, but this did

not fully resolve the issue [58]. The aforementioned user study
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Fig. 1. Distribution of the mobile benchmark scores before

and after the iOS 10.2.1 update shows a performance loss of

9.1% after the update [16].2

shows that 43% of iPhone users still experience unexpected shut-

offs, even after the update. Moreover, users experienced noticeable

performance loss (see Fig. 1).1

Causes: Large and Dynamic Internal Voltage Drop. Our ex-

periments show that the cause of these unexpected phone shutoffs

is a large voltage drop across the battery’s internal resistance, caus-

ing an insufficient voltage supply to the phone, which shuts off the

device.3 The internal voltage drop is determined by the battery’s

resistance and the phone’s battery drain, both of which vary during

phone’s operation: (i) the battery’s resistance fluctuates with the

SoC — the percentage of remaining capacity relative to the total

usable capacity when the battery is fully charged — and rises as

the battery ages or temperature falls [40] and (ii) a mobile phone’s

battery drain often fluctuates with foreground user activities [55],

background activities [34], and wireless signal strength [38]. These

“dual-dynamics” of battery resistance and battery drain magnify

the uncertainty of the battery’s internal voltage drop, making it

difficult to predict/regulate the battery’s voltage output (§3).

Fixes: Battery-Aware Power Management. To mitigate unex-

pected phone shutoffs, we present a novel Battery-aware Power

Management (BPM) middleware that is compatible with commod-

ity phones and does not require any additional hardware (except a

typical charger) or OS modifications. BPM captures the dynamic

battery resistance at different SoCs and temperatures, updates it

as the battery ages, and regulates the phone’s runtime discharge

current based on the battery resistance to ensure a sufficient voltage

supply to operate the phone whenever possible; this results in reli-

able and extended phone operation (§4.1). Specifically, BPM fixes

unexpected phone shutoffs by jointly managing battery charging

1Apple recently agreed to pay up to $500M settlement for this performance loss [15].
2This experiment was conducted to highlight the performance loss after the update.
3Mobile phones require a minimum voltage (e.g., Vbat>3.4V) to operate. Also, phones
may shut offwhen their batteries/chips are overheated. These shutoffs are intentionally-
triggered (for safety) and well-tracked by both Android and iOS. So, we don’t consider
this type of shutoff as “unexpected” here.

206



MobiSys ’20, June 15–19, 2020, Toronto, Canada Youngmoon Lee, Liang He, and Kang G. Shin

Fig. 2. Battery-aware power management middleware.

and discharging via its close interactions with the (lower) OS layer

and (upper) application layer (see Fig. 2).

• Duty-Cycled Charging. BPM becomes battery-aware by profiling

the battery resistance at different SoCs via a novel duty-cycled

charging: the battery is rested after being charged to a set of

discretized SoC levels, and the battery resistance is characterized

at a specific SoC level by using the voltage during the concomitant

rest period. BPM further captures the dependency of battery’s

resistance on temperature using a set of data-driven regression

models. BPM applies this duty-cycled charging — which extends

the time needed to fully charge the battery — only when the

phone is charged overnight, as is done by most mobile users [42].

This gives BPM sufficient time to fully charge and characterize

the battery without degrading the user experience, while also

updating the thus-profiled battery resistance as the battery ages

(§4.2).

• Battery-Aware Discharging. Based on its awareness of the phone

battery, BPM adaptively regulates the phone’s operation (and the

battery discharging) at runtime. Specifically, BPM (i) estimates

the runtime battery resistance based on the constructed battery

profile, (ii) identifies the maximum allowed discharge current,

(iii) regulates the phone’s discharge current below the allowed

maximum by limiting the maximum processor frequency, and

(iv) schedules rest periods to restore the battery voltage to a safe

voltage level whenever possible (§4.3). BPMuses the processor

frequency and scheduling to regulate the discharge current, —

instead of the operation of other phone modules (e.g., display and

networking) — is driven by our empirical observation that the

processor is a major contributor to the dynamics of the phone’s

discharge current. Moreover, BPM limits the maximum processor

frequency only as necessary, thus minimizing degradation in the

user-perceived experience.

Evaluation Results. We have implemented and evaluated BPM

on four smartphones: two Nexus 5X, one Nexus 6P, and one Pixel

(§5 and §6). Our experiments demonstrate that:

• BPM prevents unexpected phone shutoffs at the cost of only

a 1.1% reduction in the processor frequency, on average.
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Fig. 3. Equivalent circuit model of a mobile phone.
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Fig. 5. Phones need a mini-

mum operating voltage.

• BPM extends the phone operation by 1.16–2.03× compared

to the phone’s default battery saver mode;

• BPM’s advantage is magnified in cold environments and for

older phones;

• 66% of the participants in our user study are willing to use

BPM.

2 BACKGROUND

This section provides necessary background of phone batteries and

their management.

2.1 Mobile Phones and Their Batteries

Batteries power the hardware components of a phone, such as

the processors, displays, and communication modules. A typical

architecture is illustrated in Fig. 3. The phone battery is abstracted

by an equivalent circuit model (the left part of Fig. 3), consisting

of [61]:

(1) An ideal voltage source, providing the battery’s open-circuit volt-

age (OCV), defined as the voltage between its terminals without

loads/charger connected. A battery’s OCV has a monotonic

relationship with the battery’s remaining capacity (as plotted

in Fig. 4 using a Nexus 5X battery as an example), which is the

basis for SoC estimation in commodity phones.

(2) Serial and parallel resistances (R0,R1), which we call the bat-

tery’s internal resistance Rb = R0 + R1, and a parallel capacitor

(C1).

When the battery discharges a current Ib , the serial resistance R0
causes an instant voltage drop:

ΔVinst . = Ib · R0. (1)
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Fig. 6. Operating a Nexus 5X: playing a video, idling, and gaming until shutoff.
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The parallel connection of R1 and C1 further triggers a gradual

voltage drop of

ΔVtrans .(t) = Ib · R1 − R1 ·C1
dVb (t)

dt
, (2)

which converges (i.e., when
dVb (t )
dt

=0) at

ΔVtrans . = Ib · R1. (3)

A combination of Eqs. (1) and (2) show that the battery’s output

voltage Vb (t) can be described as

Vb (t) = OCV (SoC) − ΔVinst . − ΔVtrans .(t)

= OCV (SoC) − (R0 + R1) · Ib + R1 ·C1 ·
dVb (t)

dt
. (4)

When the voltage no longer changes (
dVb (t )
dt

= 0), the steady-state

voltage is:

Vb = OCV (SoC)0(R0 + R1) · Ib . (5)

Note that by defining the discharge/charge currentwith positive/negative

values, Eqs. (1)–(4) can be applied when charging phones, as well.

The phone on the right side of Fig. 3 requires a minimum voltage

to operate, called the cutoff voltage, V
cut f f

b
(e.g., typically below

3.4V [21, 41]). Fig. 5 summarizes our measurements of the cutoff

voltages of 8 phones when keeping them idle. This cutoff voltage

— usually implemented using voltage regulators [40] — ensures a

sufficient voltage to power the phone’s hardware components and

avoids deep discharging of the battery (which accelerates battery

degradation).

2.2 Battery Management of Mobile Phones

The battery management system (BMS) of commodity phones con-

sists of a fuel-gauge chip and the BMS driver/firmware in the OS

(see Fig. 2). The fuel-gauge chip monitors the battery information in

real time, including the voltage, current, and temperature [19]. The

BMS driver/firmware then estimates advanced battery information,

such as the SoC and battery health using this raw information [21].

The OS displays this battery information to users and takes coarse-

grained actions (e.g., enabling the battery saver mode [25, 26] or

disabling the camera) when the battery’s remaining capacity is low.

The OS also maintains phone/battery usage statistics to calculate

the power usage of each app or phone module [3, 14], and uses

these statistics to adjust the processor frequency with dynamic

voltage frequency scaling (DVFS) [4, 11, 58].

3 CAUSES OF UNEXPECTED SHUTOFFS

Based on our understanding of a phone’s power architecture, this

section analyzes and validates the causes of unexpected phone

shutoffs.

Phone Operation and Shutoff. We first use the empirical traces

shown in Fig. 6 to illustrate how mobile phones operate,4 from

which the following observations are made.

O1. The battery voltage decreases during the phone’s operation

until it reaches approximately 3.4V, at which time the phone

shuts off (see Fig. 6(a)).

O2. Both the discharge current and battery resistance vary dur-

ing phone operation (see Fig. 6(b)).

O3. The internal voltage drop of the battery — i.e., the difference

between “Battery OCV" and “Battery Voltage" in Fig. 6(a) —

depends on the discharge current and resistance. This can

be (i) observed in Fig. 6(c), where the voltage drop (i.e., the

y-axis) and the term Ib ·Rb (i.e., x-axis) are calculated from

Figs. 6(a) and (b), respectively, and (ii) derived from Eq. (4)

showing the battery’s output voltage Vb is determined by

its internal resistance and capacitance (i.e., R0, R1, and C1),

as well as by discharge current Ib . Note that the markers in

Fig. 6(c) are below the line of y = x because there was an in-

sufficient time for the battery voltage to stabilize during this

measurement (i.e., dVb (t)/dt>0 in Eq. (2)), i.e., the collected

voltage drop has not yet reached its maximum.

These observations led to our conjecture that a large voltage drop

over the battery’s internal resistance may reduce the battery voltage

too much to power the phone, thus causing unexpected phone shutoffs.

This large voltage drop is likely to occur in practice because of the

dynamical changes in the battery resistance and discharge current,

especially in view of the fact that the battery resistance also varies

4These traces were collected with a Nexus 5X at a room temperature while the phone
was used to play a YouTube video (i.e., during the first 38 minutes), kept idle (i.e.,
during 38–86 minutes), and play a game until the phone shuts off (i.e., during 86–206
minutes).
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Fig. 8. Unexpected shutoff of a Nexus 5X in cold ambient

conditions.

with temperature Tb , i.e., the resistance rises as the temperature

falls, as shown in Fig. 7 with a Nexus 5X.

Assuming that this conjecture holds, the “Worst-Case Battery

Voltage" in Fig. 6(a) plots the lower-bound of the battery voltage, i.e.,

the lowest possible voltage without shutting the phone off, derived

using

Vworst = OCV (SoC) −max{Ib } ·max{Rb }, (6)

where max{Ib } and max{Rb } are extracted from Fig. 6(b), showing

the phone may shut off with an OCV as high as 3.95V, which maps

to an SoC of 70% (Fig. 4).

Case Studies of Unexpected Shutoffs. To corroborate this con-

jecture, we conduct case studies to trigger unexpected shutoffs of a

Nexus 5X by magnifying the voltage drop across its battery’s re-

sistance (i.e., Ib ·Rb ). Specifically, we operate a fully-charged Nexus

5X in a freezer (−5°C) with the User Interaction (UI) exerciser [24]

turned on until it shuts off (with increasing Rb and Ib ·Rb ), warm
it up to room temperature (Rb and Ib ·Rb decrease), and then (at-

tempt to) turn it on and operate it further without having its battery

charged. Fig. 8 plots the discharge current, battery resistance, volt-

age drop, and battery voltage supplied to the phone during this

measurement, showing that:

• the discharge current is highly dynamic/bursty;

• the battery’s internal resistance rises as the temperature

falls;

• the phone shuts off when the voltage drops to about 3.4V

and then turns back on successfully after being warmed to

room temperature to deliver another 330mAh capacity (or

operating for an additional 18 minutes), without having its

battery charged. The battery’s voltage drop before the unex-

pected shutoff is 0.49V, which reduces to 0.14V after being

warmed up to room temperature (e.g., at the 88-minute).
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We have also repeated this experiment with different ambient tem-

peratures (i.e.,−5–25°C) and maximum discharge currents (i.e., 1A
and 2A), and summarized the results in Fig. 9. The results in Fig. 9a

show the voltage drop at a shutoff to increase in a cold environment

and with an increased discharge current (blue and yellow bars),

which is much larger than the average voltage drop (red bars). The

results in Fig. 9b illustrate that unexpected shutoffs are observed at

all explored temperatures, and the phone with up to 33% SoC shuts

off when it is discharged with a large current in a cold environment.

We conducted similar experiments with a Nexus 6P and iPhone

5S/SE5 and made similar observations, as summarized in Fig. 10.

Note that the iPhone SE has the iOS 10.2.1 update to prevent un-

expected shutoffs, whereas the iPhone 5S does not. Although this

update alleviates unexpected shutoffs at −5°C , i.e., from 35% SoC on

iPhone 5S to 15% SoC for the iPhone SE, the problem still persists.

These case studies confirm our conjecture that a large voltage

drop across the battery’s internal resistance (i.e., Ib ·Rb ) causes un-
expected phone shutoffs, which are prevalent in Android and iOS

phones.

4 FIXES OF UNEXPECTED SHUTOFFS

The causes of unexpected phone shutoffs also inspire their solutions,

i.e., regulating the voltage drop across the battery resistance Ib ·Rb ,
where both Ib and Rb vary.

5All these phones are within their battery warranty (e.g., 500 complete
charge/discharge cycles [6]).

209



Causes and Fixes of Unexpected Phone Shutoffs MobiSys ’20, June 15–19, 2020, Toronto, Canada

Regulating
Processor Frequency

Voltage ResponseCharging Pulse

Battery Volt. ≥ 
Cutoff Vol.

Duty-Cycled Charging

Battery-aware Discharging

Battery Parameters
SoC(%)

Temp(°C) R0 R1 OCV 

Scheduling
Battery Resting

Regulate
Voltage 

Drop

Battery
Profile

Fig. 11. BPM profiles the phone battery during charging and

regulates the voltage drop during discharging.

4.1 Overview

As phones have little control over their battery’s internal resistance

Rb , BPM regulates Ib ·Rb by actively limiting Ib based on the real-

time estimation of Rb . Specifically, BPM uses (i) novel duty-cycled

charging to profile the dynamic battery parameters, thus facilitating

real-time estimation of Rb , and (ii) battery-aware discharging to

regulate the device’s discharge current Ib at runtime (see Fig. 11).

During battery charging (dotted line), BPM charges the phone with

the duty-cycled current (i.e., charging intermittently with rests

in between), and then determines the battery parameters — i.e.,

<OCV , R0, R1, C1> — at each SoC based on the voltage observed

during the rest period. At runtime, BPM further compensates for

these battery parameters based on the ambient temperature (§4.2).

During discharging (solid line), BPM (i) estimates the runtime bat-

tery resistance, (ii) identifies the maximum allowed discharge cur-

rent based on the battery resistance in real time, (iii) determines

the thus-allowed maximum processor frequency, and (iv) allocates

a rest period between operations to restore the battery voltage us-

ing the recovery effect of batteries [41] before executing the next

operation (§4.3).

Note that BPM implements duty-cycled charging and discharg-

ing management by using the commodity phone’s BMS and DVFS

drivers without requiring special hardware or OS modifications

(§5).

4.2 Profiling Batteries While Charging

BPM profiles the battery parameters as functions of the battery SoC

and temperature, and then stores them as lookup tables.

Duty-CycledCharging. BPM constructs and updates these lookup

tables by charging the phones with a customized duty-cycle: in each

cycle, the battery is charged with the current Ic for duration tc ,
and then rested for duration tr . BPM implements this duty-cycled

charging by enabling/disabling the phones charging, which can be

achieved by configuring /sys/class/power_supply/bms/battery_charging

_enable in the Linux kernel [21]. This implementation also simplifies

BPM because the charging current Ic will be determined automati-

cally by the phone’s charging chip — BPM only needs to control

tc and tr . Note that when the phone’s charging is disabled with

the charger connected, the phone’s operation is powered by the

charger, thus allowing the battery to rest.

Fig. 12 depicts BPM’s duty-cycled charging current, battery volt-

age, and SoC for a Nexus 5X, and compares them with the Constant-

Current Constant-Voltage (CCCV) charging, which is commonly

used in phones [42]. BPM’s duty-cycled charging prolongs the time

required to fully charge the battery, e.g., Fig. 12 shows that BPM

requires about 1.4 hours longer to fully charge the battery than

CCCV. To mitigate this, BPM applies duty-cycled charging only

when phones are charged overnight, which (i) is common for most

mobile users [42], (ii) provides sufficient time to fully charge (and

characterize) the battery, and (iii) allows fast charging during the

daytime. Resting the battery after each charging cycle also prevents

phone/battery overheating and slows down battery aging.

It is crucial to note that BPM’s duty-cycled charging — which

exploits the rest periods to profile the battery (as we explain next)

— differs from existing pulsed charging [5].

Battery Voltage During Resting. BPM uses the battery voltage

during rest periods to estimate battery parameters at specific SoC

levels. According to Eqs. (1)–(4), resting a battery at time 0 after

charging it with the current Ic yields the battery voltage:

Vb (0
−) = OCV − Ic · (R0 + R1), (7)

Vb (0
+) = OCV − Ic · R1, (8)

Vb (t) = OCV − Ic · R1 · e
− t
τ (t > 0), (9)

showing the battery voltage (i) drops instantly by ΔVinst . = Ic ·R0
due to the ohmic voltage drop across R0 (i.e., Eq. (7)–(8)), and (ii)

drops gradually afterwards according to Eq. (9) until converges to

the steady-state voltage ofOCV . The term τ=R1·C1 in Eq. (9) is the

time-constant of the R1 and C1 parallel network in Fig. 3, which

describes how quickly the battery voltage stabilizes. Eqs. (7)–(9)

are the basis that BPM uses to estimate the battery parameters

<OCV , R0, R1, C1> using the battery voltage, as we describe next.

Estimating Battery Parameters Using the Voltage. BPM pro-

files the battery parameters at a set of discretized SoC levels: {0%,Δ%,
2Δ%, · · · , 100%}. BPM charges the battery with the current Ic until

reaching the next SoC level, rests the battery by disabling the charg-

ing for tr , and then estimates the battery parameters at that SoC

level by using the battery voltage during resting, as illustrated in

Fig. 13 with Δ = 2 and a rest period of tl = 100s. BPM estimates the

battery parameters using the resting voltage based on Eqs. (7)–(9),

as follows:

• estimating R0 from the instantaneous voltage drop according to

R0 = ΔVinst ./Ic ;
• estimating R1 based on the transient voltage drop to the steady-

state voltage R1 = ΔVtrans ./Ic ;
• estimating C1 from the time constant (τ=R1·C1) of the voltage

curve via least-square curve-fitting;

• estimating OCV as the steady-state voltage.

The 100s rest period in Fig. 13 is determined based on Eq. (9), show-

ing that the battery voltage converges to OCV at a rate of 1−e
t
τ . For

example, with the maximum τ of about 25s observed in Fig. 14, a

100s rest allows the voltage to converge to OCV 1−e100s/25s ≈ 98%.

Fig. 14 plots the thus-estimated parameters of a battery used by

a Nexus 5X for the SoC range of [0, 30]% at the {1st, 100-th, 200-th}
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charging cycles. Unlike R0, which is relatively stable across a given

charging cycle, R1 and τ vary significantly with SoC due to phase

transitions [31], causing different voltage drops at different SoCs,

even with the same discharge current. Moreover, these battery

parameters change significantly over charging cycles: the battery

resistances increase while the time-constant (i.e., τ in Eq. (9)) de-

creases, thus reducing the battery’s power capacity over time. This

explains why phones with aged batteries suffer more unexpected

shutoffs.

Capturing theBattery’s Temperature-Dependency. BPMmust

also capture the temperature-dependency of the battery parame-

ters, and compensate this dependency at run-time based on the

operating environment. Fig. 15 plots the measured battery parame-

ters (circles) at battery temperatures ranging from −20oC to 40oC
over 100 charging cycles across various SoC levels. We then use

a set of exponential regression models (solid line) to capture the

temperature-dependency of individual battery parameters across

different SoCs and charging cycles. For example, BPM compensates

for the temperature’s impact on R0 using

R0(Tb ) = (a0 · e
b0 ·Tb + c0 · e

d0 ·Tb ) · Rr0(SoC%). (10)

where Rr0(SoC%) is the R0 at room temperature for the current SoC

level (SoC%) and a0,b0, c0, and d0 are regression coefficients.

Summary. During overnight charging, BPM records the battery pa-

rameters and the corresponding temperature, updates temperature-

dependency model, and then estimates the parameters at differ-

ent battery temperatures using the thus-constructed temperature-

dependency model. Finally, a set of lookup tables are constructed

and updated to store battery parameters as a function of different

SoC/temperatures at current phone aging.

4.3 Regulating the Battery Voltage Drop

BPM uses the above-constructed battery profile to mitigate unex-

pected shutoffs of phones and extend their operation, by (i) regulat-

ing the discharge current based on real-time battery resistance via

controlling the maximum processor frequency, and (ii) restoring

the battery voltage to a safe level by resting the battery before per-

forming the next operation. BPM employs the processor frequency

and scheduling to regulate the phone’s discharge current because

the processor dominates the dynamics thereof.

Modeling the Phone’s Discharge Current. Processor, network

and display modules are the dominant energy consumers of a mo-

bile phone [33, 62]. Fig. 16 plots the current required to run these

modules on a Nexus 5X, as collected with PowerTutor [63] dur-

ing web browsing, video streaming, and 3D gaming. Whereas the

currents drawn by the display and network modules are relatively

stable, the processor’s current varies significantly, implying that

the processor dominates the dynamics of the phone’s discharge

current. We further examined the discharge current of each module

with different configurations. Specifically, Fig. 17 plots (i) the pro-

cessor’s discharge current at different frequencies (Fig. 17a), (ii) the

display’s discharge current at different brightness levels (Fig. 17b),

and (iii) the network module’s discharge current at different packet

transmission rates (Fig. 17c). These results show that the proces-

sor’s discharge current is much more sensitive to its configuration

(i.e., frequency) than those of the display and network modules.

Inspired by the above-mentioned empirical observations, we

abstract the discharge current of mobile phones based on two com-

ponents: a stable background current Ibд and a dynamic current

Idyn . The background current Ibд is determined by components

other than the processor and the idle processor’s leakage, while

the dynamic current Idyn is drawn by the active processor while

it performs computations. Thus, the discharge current during the

busy period I
busy

b
and the idle period I idle

b
can be captured using:

I
busy

b
= Idyn + Ibд and I idle

b
= Ibд . (11)

Furthermore, the dynamic current Idyn is usually described by

the dynamic power model [33, 59]:

Idyn = V
2
p · fp · α , (12)
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than other components.

where Vp and fp are the processor voltage and frequency,6 and α
is a scaling factor that can be empirically identified based on the

relationship between the discharge current and processor frequency

(as shown in Fig. 17a) [51, 62]. In this way, we can obtain the average

discharge current using the processor utilization Up :

I
avд

b
= Idyn (Up ) + Ibд . (13)

Controlling the Processor Frequency. BPM regulates the pro-

cessor frequency to control the dynamic discharge current, which

is achieved without making a noticeable impact on the user experi-

ence (e.g., dimming of the screen as in the battery saver mode). At

every control period, BPM checks the constructed battery profile

with the current SoC/temperature to determine the maximum al-

lowed discharge current (i.e., the cutoff current Icutof f ) and then

determines the maximum feasible processor frequency based on

Icutof f .

6On commodity phones, the processor voltageVp is set based on a given frequency fp
in a pre-defined DVFS table, i.e., there is a one-to-one mapping between the voltage
and frequency [7].

The cutoff current is determined using Eq. (4) to maintain the

battery voltage above V
cut f f

b
:

Vb (t) = OCV − (R0 + R1)Ib + R1C1
dVb (t)

dt
≥ V

cut f f

b
. (14)

To meet the constraint, in the extreme case of τ→0 (e.g., in the low

SoC levels shown in Fig. 14(d)), we obtain:

Ib ≤
OCV −V

cut f f

b

R0 + R1
= Icutof f . (15)

Note that both R0 and R1 depend on battery SoC and tempera-

ture, making Icutof f SoC/temperature-dependent as well. At every

control period, BPM first identifies the dynamic and background

currents (i.e., Idyn and Ibд ). Idyn is determined based on the current

processor frequency using Eq. (12). By sampling the processor uti-

lizationUp and average discharge current I
avд

b
, BPM then estimates

Ibд based on {I
avд

b
, Idyn ,Up } using Eq. (13). BPM then identifies

the maximum processor frequency that regulates the average dis-

charge current I
avд

b
below Icutof f ; this is done by plugging Ibд

and Up into Eq. (13). This way, BPM allows the processor to run

at the maximum available frequency when the battery voltage is

high, and adaptively reduces the maximum processor frequency

to the required degree when the battery is low. Additionally, BPM

is compatible with existing low-power DVFS schemes because it

only enforces the bound of the maximum frequency, within which

the processor frequency can still be dynamically adapted to the

workload. Finally, BPM also needs to determine its control period.

Inspired by the fact that the battery voltage changes gradually with

the time-constant τ=R1·C1 in Eq. (9), we use the time-constant for

the current SoC as the control period.

Resting the Battery to Restore the Voltage. Atop the system-

level regulation of the average discharge current, BPM also inserts

rest periods at application-level task executions to regulate the

peak discharging behaviors. Specifically, BPM schedules an idling
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Fig. 18. Battery voltages with and without inserting rest pe-

riods between task executions.

thread on the processor with the highest priority upon every task

completion, while preserving the user-perceived experience. 7

To efficiently schedule battery resting, we need to determine

when and for how long to insert such rest periods. Fig. 18 compares

the battery voltages with and without rest periods between task

executions. While both cases have the same average discharge

current, (i) a continuous workload without resting reduces the

battery voltage below the operable level (see Fig. 18a), and (ii) by

efficiently distributing rest periods (see Fig. 18b), the battery voltage

can be restored during these rest periods, and thus stays above the

operable level. According to Eq. (5), we obtain two voltage levels:

(i) when the processor is busy and drawing I
busy

b
, the steady-state

battery voltage is

V
busy

b
= OCV − (R0 + R1) · I

busy

b
, (16)

and (ii) when the processor is idle, the battery voltage recovers to

V idle
b

= OCV − (R0 + R1) · I
idle
b
. (17)

Clearly, no rest is required if V
busy

b
≥ V

cutof f

b
. Let Texec be a

task’s execution time.8 BPM first identifies the safe voltage V
saf e

b
that enables task execution without dropping the voltage below

V
cutof f

b
,

Vb (Texec ) = (V
saf e

b
−V

busy

b
) · e

−Texec
R1 ·C1 +V

busy

b
= V

cut f f

b
. (18)

Then, we can find the rest period that recovers the battery voltage

from V
cutof f

b
to V

saf e

b
:

Vb (Tr est ) = (V
cut f f

b
−V idle

b
) · e

−Trest
R1·C1 +V idle

b
= V

saf e

b
. (19)

7 Streaming applications on the GPU remain unaffected because BPM schedules idling
threads on the CPU.
8The execution time of each task can be acquired from app log [1].

Fig. 19. Control flow of battery-aware discharging.
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Fig. 20. Experiment overview and setup.

This way, BPM determines the rest period Tr est based on Texec ,
and inserts it before executing the next task. Taking the task of

user touch interaction — including initiating user input and the

corresponding processing/communication — as an example, BPM

inserts the rest period between UI tasks, by calculating the rest

period using Eq. (19), and then inserting the rest period by sched-

uling an idling thread before executing each task. UI tasks have

a median execution time of 108ms (as shown in Sec. 6.3) and the

resting period required to restore the voltage is 10.3ms, on average.

Summary. Fig. 19 illustrates the control flow of BPM’s battery-

aware discharging. BPM collects the battery information at the

beginning of each control period, identifies the cutoff current based

on this battery information, and regulates the processor frequency

in the OS layer accordingly. Also, BPM encapsulates an app task

by appending a rest period before the task and then passing the

encapsulated task to the OS layer for execution.

5 BPM IMPLEMENTATION

We have implemented BPM as a user-level background service on

an unmodified Android kernel [2]; this automatically starts when

the phone is turned on. Specifically, BPM:

• monitors and records the battery voltage, current, SoC, and

temperature from voltage_now, current_now, capacity, located

at /sys/class/power_supply/bms/;

• generates charging pulses by dis/enabling the charging flag charg-

ing_enable, located at /sys/class/power_supply/battery/;

• limits the maximum CPU frequency at /sys/devices/system/cpu/

cpufreq/scaling_max_freq;

• inserts a rest period by scheduling an idling thread with the

highest priority, using the priority-based scheduling policy sched_

setscheduler(SCHED_FIFO).

Overhead Analysis. BPM stores the constructed battery profiles

as a set of lookup tables. For example, the lookup tables for a Nexus
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Fig. 21. Operating a Nexus 5X (143-rd cycle) until it shuts off, with and without BPM.

5X contain battery parameters from −20oC to 40oC battery temper-

ature at the intervals of 0.4°C , and from 0–100% SoC at intervals

of 2%; these lookup tables only take up 0.03MB (or 0.0015%) of the

phone’s memory. Finally, we compare the power consumption

with and without BPM running in the background. BPM incurs an

average power overhead of ≈15mA, which can be compensated for

by BPM’s ability to extract more battery capacity, as we explain

next.

6 EVALUATION

We have implemented and evaluated BPM on mobile phones with

different battery cycles: two Nexus 5X at the 143-rd and 263-rd

cycles, respectively, a Nexus 6P at the 414-th cycle, and a Pixel at

the 15-th cycle.9 All of them are equipped with the latest firmware

and BMS driver. Additionally, all these batteries are within the

warranty (e.g., 500 cycles [6]) and replacement (e.g., 2–3 years)

periods. We have also conducted a survey of 121 mobile phone

users recruited via Mechanical Turk to assess their opinions of

BPM. Our experimental results are highlighted as follows:

• With BPM, the phones shut offwhen showing an SoC close-to-0%,

validating BPM’s effectiveness in preventing unexpected device

shutoffs (§6.2).

• BPM enables phones to extract more battery capacity, thereby

extending their operation (§6.3).

• BPM’s advantages are more pronounced at low temperatures

and/or on aged phones (§6.4).

6.1 Methodology

To evaluate BPM in various real-life scenarios, we emulate realistic

user activities by using representative mobile apps. Specifically, we

consider three typical mobile apps:

• UI exerciser (UI): emulating a sequence of user events, such as

touch events and app launching [24];

9 Our experiments are done with older phones because unexpected shutoffs are more
pronounced in aged batteries. Unexpected shutoffs happen to all Li-ion batteries
regardless of the specific phone type or model [58].

• YouTube video streaming (Video): playing a video [29] using

YouTube [28];

• 3D gaming (Game): playing a 3D game called FarmVille, which

has 10M+ downloads [8].

Fig. 20 illustrates the overview and setup of our experiments

where the ambient temperature condition is controlled inside a

thermal chamber during both charging and discharging. We em-

ulate the user workload using the above 3 apps and log the app

performance and system/battery information, to compare the bat-

tery operation and system/app performance with and without BPM.

Note that without BPM, the phone’s default battery saver mode is

activated when the battery is low, in which case: (i) the interactive

DVFS lowers the processor frequency to the minimum level and

only raises it in response to user activities [7] and (ii) the location

service and background sync are disabled, and the phone waits

until the user activates an app (e.g., email or news) to refresh its

content. Unless otherwise specified, we run a full discharging cycle

from 100% SoC to a phone shutoff while executing one of the above

apps at a constant ambient temperature.

6.2 Preventing Unexpected Phone Shutoffs

We first validate BPM’s effectiveness in preventing unexpected

phone shutoffs. Specifically, we repeat the experiments shown in

Fig. 8, i.e., running the UI exerciser on a Nexus 5X in a cold envi-

ronment, both with and without BPM. These cold conditions are

used to trigger unexpected shutoffs. Fig. 21 plots the (a) discharge

current, (b) battery resistance, (c) voltage drop across the battery

resistance, (d) battery voltage supplied to the phone, (e) battery

SoC, and (f) discharged capacity during a full discharge cycle, from

which two main observations are obtained.

First, without BPM, the discharge current fluctuates significantly

due to OS-level power management because the processor fre-

quency increases as the workload rises without awareness of the

battery resistance [7]. The peak current at about 61min causes an

excessive voltage drop across the battery resistance, reducing the

battery voltage to below the cutoff level; this causes the phone to

shut off when the battery has an SoC of 23%.
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Fig. 22. BPM prevents unexpected phone shutoffs and extends phone operation, especially for aged phones.
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Fig. 23. Trade-off between performance and operation time.

Second, BPM adaptively regulates the discharge current based

on the increased resistance of the battery (due to the cold temper-

ature), thus mitigating the sudden and significant voltage drops.

Specifically, with BPM, the phone:

• shuts off when the battery SoC reduces steadily to 0%, thus pre-

venting unexpected shutoff;

• extracts about 730mAhmore capacity from the battery to support

its operation, a 730/1897 = 38.4% improvement over the case of

without BPM;

• operates for 79min before it shuts off, i.e., 79/61≈1.3× longer

than a phone without BPM.

To further corroborate BPM’s effectiveness for different phones,

we repeat similar experiments with a Google Pixel with a battery

at the 15-th cycle, another Nexus 5X with a battery at the 263-rd

cycle, and a Nexus 6P with a battery at the 414-th cycle. Fig. 22

summarizes the discharging processes, showing that BPM (i) pre-

vents unexpected shutoffs as demonstrated by the phones’ shutoff

when the SoC reduces steadily to about 0%, and (ii) extends the

phone operation from 43min to 50min for the Google Pixel, 33min

to 54min for the Nexus 5X, and 17min to 34min for the Nexus 6P.

This represents an increase of the phone’s operation time by up to

2.03× (in the Nexus 6P), and this increase is more pronounced for

the phones powered by aged batteries.

6.3 Trade-off Between Performance and
Operation Time

BPM achieves the above-mentioned reliable and extended phone op-

eration by limiting the processor frequency (and thus the discharge

current), trading the phone’s computation power with its operation

reliability/time. To examine this trade-off closely, we repeated the

full discharging experiment 10 times on a Nexus 5X by running the

UI exerciser (Fig. 21) at an ambient temperature of 25oC. Fig. 23a

plots BPM’s tradeoff between the average discharge current and

operation time, and then compares it with the case without BPM.

Note that multiplying the average discharge current (y-axis) by
the operation time (x-axis) yields the extracted capacity. This way,

the markers toward the top-right corner of the figure — as with

the results of BPM — indicate a higher effectiveness in extracting

battery power to operate the phone. Fig. 23b plots a (similar) trade-

off between the average processor frequency and operation time,

where the markers at the top-right corner (again, as with BPM)

indicate a higher overall computation ability of the phone before

its shutoff. BPM achieves these improvements at an average cost

of a 1.1% reduction in the processor frequency from 1.193GHz to

1.179GHz (Fig. 23b).

We repeat the full discharging experiment on a Nexus 5X at

ambient temperatures of 25oC and −15oC. Fig. 24 plots the CDFs

of the discharge current, processor frequency, and operation time

during these experiments. BPM reduces the peak discharge current
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(Fig. 24a) by limiting the processor frequency (Fig. 24b), and thus

extending the phone’s operation by up to 30 min and 17 min on

average (Fig. 24c). In particular, BPM mitigates the unpredictability

of the operation time by reducing its variation by 19.8%, while also

extending the minimum operation time by 19 min.

We also investigate whether this tradeoff causes noticeable degra-

dation in the user-perceived app performance. To examine its im-

pact on application-level performance, we use response latency to

quantify the user experience when running the UI exerciser (i.e., the

latency for the phone to respond to user’s actions, such as touching

the screen), and use frames per second (FPS) as the metric to evaluate

user experience during video streaming and gaming. We repeated

the full discharging experiments 10 times while running each app

at ambient temperatures of 25oC and −5oC, respectively.

Fig. 25 compares the {50th, 95th}-percentiles of the response

latency, operation time, and total number of processed UI events

while running the UI exerciser on a fully charged Nexus 5X until it

shuts off. BPM increases the median latency from 108ms to 119ms
at 25oC and from 77ms to 104ms at the −5oC due to the lower pro-

cessor frequency; however, such an increase is only about 11ms and
27ms per action, which are below the average response times that

human can perceive [53]. Moreover, by increasing the operation

time by 1.15× at 25oC and 2.2× at −5oC , BPM allows the phone

to perform 1.07× and 1.49× more user actions before the phone

shuts off. For video streaming as shown in Fig. 26, BPM slightly

reduces the FPS by 0.94× at 25oC and 0.98× at −5oC , but the phone
is able to stream for 1.23× and 1.71× longer. As a result, the phone

processes 64.3K and 86.2K more frames with BPM before it shuts

off; this is 1.16× and 1.68× as many as frames as with DVFS. Similar

observations are made with the gaming app shown in Fig. 27. Note

that BPM’s improvements of the operation time and total computa-

tion ability at 25oC — an ideal temperature for battery operation —

are not as significant as those at −5oC , i.e., {1.15×, 1.23×, 1.27×}
v.s. {2.2×, 1.71×, 1.74×} in terms of extending phone operation as

shown in Figs. 25–27. This is because the phone’s performance at

25oC is already close to optimal even without BPM, leaving less

room for improvement.

6.4 Impacts of Temperature and Aging

To obtain a clear view on BPM in different runtime thermal scenar-

ios, we run the UI exerciser as the workload on a Nexus5X until

it shuts off. In this experiments, ambient temperatures vary from

room temperature (i.e., 25oC) to freezing temperature (i.e., 0oC).

Fig. 28 summarizes the discharge current and operation time (av-

eraged over 10 experimental runs), showing that BPM extended

the phone operation by (154 − 135)/135 = 14.1%, as compared to

the case without BPM, at 0oC. Furthermore, the discharge current

increases gradually as the temperature falls. This is because the bat-

tery’s internal resistance increases as the temperature falls, which,

in turn, reduces the battery’s output voltage (i.e., Vb=OCV−I ·Rb ).
As a result, a larger discharge current is required to supply the same

power (i.e., Pb=Vb ·Ib ). Without BPM, the unregulated discharge

current shortens the operation time, especially at cold tempera-

tures; the operation time at a freezing temperature is shortened

by (159 − 135)/159 = 15.1%, as compared to that at room tempera-

ture. BPM’s adaptive discharge current control mitigates premature

shutoffs in cold temperatures; for phones using BPM, the operation

time is reduced from 163min to 154min — only 6.1% — when the

ambient temperature falls from 25oC to 0oC.
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Fig. 28. Average discharge current and operation time with

different temperatures.
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Fig. 29. Extracted capacity and operation time with batteries

of different ages.

Lastly, we evaluate BPM on Nexus 5X phones powered by two

batteries of different ages (i.e., at the 50th and 300th dis/charging

cycles, respectively) at room temperature (25oC). Fig. 29 plots the

experimental results, demonstrating BPM’s magnified advantages

with aged batteries/phones — a 42.8% increase in capacity delivery

and a 26 min longer operation time for the battery at the 300th

cycle.

6.5 User Study

We also conducted a user study to collect mobile users’ feedback

on BPM, including whether users are concerned about unexpected

phone shutoffs and whether users are willing to use BPM to miti-

gate unexpected shutoffs, despite its slower charging and 1.1% slow

down of the processor with increased latency. We surveyed 121 mo-

bile users from 5 countries (US, Canada, Korea, China and Germany)

between the ages of 26 and 73. Among these participants, 98 use

Android devices from various OEMS (Samsung, LG, Xaomi, Oppo,

Google, Lenovo, Motorola, and Vivo) and 23 use iOS devices (iPhone

5S to the latest iPhone 11). See [23] for more details. The survey

results corroborate the prevalence of unexpected phone shutoffs

and demonstrate BPM’s attractiveness to users. Specifically,

• 107(88%) participants use their phones in a cold environment (<

0oC), 96(79%) are concerned about unexpected phone shutoffs,

and 73(60%) have experienced it;

• 80(66%) participants expect to use their phones for >2 years and

104(85%) are concerned about battery aging that may magnify

unexpected phone shutoffs;

• 89(74%) participants arewilling to spend a longer time for overnight

charging to profile their phone batteries;

• 80(66%) participants are willing to use BPM and 83(69%) think

preventing unexpected shutoffs is more important than achieving

maximum performance.

7 RELATEDWORK

Battery Management of Phones. Sudden voltage drops and a

crowd-sourced approach to the analysis of fading battery capac-

ities are discussed in [36, 43–45]. Inaccurate SoC estimation due

to changes in battery temperature was addressed in [40], aiming

to provide accurate SoC or full charge capacity monitoring. These

approaches, however, only passively monitor/estimate the battery

status; they are not able to proactively operate the system based on

the battery characteristics.

Power Management of Phones. At the other end of the spec-

trum, extensive research has been done to analyze the sources of

energy consumption by focusing on the system [48, 63], applica-

tion/network modules [62] and user contexts [39, 50], in order to

prolong the operation of mobile phones. These analyses have led to

various proposals for reducing the energy consumption in systems

[37, 57], apps [32, 46, 60] and networks [54, 64]. However, these do

not consider batteries, meaning they miss a crucial dimension for

reliable phone operation.

Battery andPowerManagement.Among the limited explorations

that consider battery dynamics in power management, Benini et al.

explored hardware-level power management policies in a digital

audio recorder using discrete-time battery models [30]. Another

study proposed software approaches using task sequencing and

DVFS [56] to optimize the operation time based on an offline battery

model. Recent studies also focus on application scenarios includ-

ing wireless sensor networks [35, 52], mobile data services [41]

and real-time applications [47, 49] to manage battery power ca-

pacity. A pulsed discharge pattern in wireless sensor networks for

communications was proposed to enhance the delivered battery

capacity [35]. Additionally, B-MODS [41] used battery-aware inter-

mittent discharge patterns to exploit the battery relaxation effect

for mobile data services. Unlike these approaches, BPM investigates

unexpected shutoffs of mobile phones by identifying the causes

and developing their fixes.

8 CONCLUSION

We have presented BPM, i.e., a novel battery-aware power man-

agement middleware for mobile phones, to mitigate unexpected

phone shutoffs frequently experienced by users. Steered by the

causes of unexpected phone shutoffs that we empirically identi-

fied/verified, i.e., the dynamic voltage drop across the internal re-

sistance of phone batteries, BPM regulates such voltage drops by

(i) capturing the dynamically-changing battery resistance during

charging, and (ii) adaptively regulating the runtime discharge cur-

rent. We have implemented and evaluated BPM on 4 commodity

smartphones, demonstrating that BPM prevents unexpected phone

shutoffs and extends phone operation by up to 2.03×. Our user

study also corroborates BPM’s usefulness/attractiveness.
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