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Incentivizing Platform–User Interactions for
Crowdsensing

Chaocan Xiang, Suining He, Kang G. Shin, Life Fellow, IEEE , Yuben Qu, and Panlong Yang

Abstract—For effective crowdsensing, it is essential to incentivize the interactions of participants and platforms. Existing approaches
do not tailor users’ bidding to their preferences, i.e., personalized bidding (PB). To meet this need, we design an incentive mechanism,
called Picasso, that achieves not only the expressiveness and description efficiency of PB for users, but also minimal social cost,
computational efficiency, and strategy-proof for platform owners. This design is, however, challenging due to the intrinsic conflicting
goals of the platform owner and users. To handle these conflicts, Picasso represents bids in a novel 3-D expression space by
orchestrating three logical operations to balance among expressiveness, computational complexity, and description efficiency.
Moreover, we equivalently decompose and recombine the complex task dependencies of bids originated from the expressiveness of
PB, thus achieving a constant-factor approximation of optimal task allocation with strategy-proof in polynomial time. These properties of
Picasso are proven theoretically. In addition to a detailed simulation study, our trace-driven evaluations show that, compared to existing
approaches, Picasso can enable each user to bid 9.7x more tasks, on average, and decrease the description length by 74%, thus
encouraging more users’ participation. Picasso also reduces the platform owner’s payment by more than 61%, hence yielding a
win-win solution for incentivizing platform–user interactions.

Index Terms—Crowdsensing, Incentive Mechanism, Auction Model.
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1 INTRODUCTION

THE potential of crowds and pervasiveness of mobile
devices have made crowdsensing increasingly popu-

lar and attractive, yielding numerous crowdsensing sys-
tems and platforms [21], [41], [43], such as Crowdsensing
Map [44], Amazon Mechanical Turk, and Gigwalk1. The
success of crowdsensing hinges on interactions between the
platform (or the platform owner) and the crowdsensing
participants [39]. It is, therefore, essential to incentivize the
interactions of participants and platforms as witnessed from
various proposals [22], [48], [51].

Of existing incentive mechanisms, the auction model has
been widely studied as it increases competitiveness among
bidding participants and incentivizes them better [12], [36].
Users bid for published tasks according to their preferences
in describing bids, and then the platform uses certain criteria
to allocate task(s) to each user. In practice, users have
diverse preferences in bidding for a combination of tasks,
owing to the differences in their in-situ context, interest,
location, available time, etc [11]. For example, two users,
Lucy and Bob, are interested in bidding for the same N
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Fig. 1: Incentivization of platform–user interactions with win-
win benefits using Picasso .

tasks, but Lucy prefers only one of them due to her limited
availability of time, while Bob with enough time wants any
subset of these N tasks.

Enabling users’ bidding tailored to their personal pref-
erences, called personalized bidding (PB) [34], is key to incen-
tivizing crowdsensing with benefits to both the participants
and the platform owner. According to a recent survey [2] of
over 1,500 users between the ages of 18 and 60, more than
56% of them prefer a service with personalized experience.
In other words, PB can encourage the users to participate
in crowdsensing by accommodating their personal pref-
erences, raising the intrinsic motivation of psychological
factors [9], [37]. Furthermore, users can be motivated to bid
for more tasks for higher utility, promoting the competi-
tion among users, which, in return, reduces the platform’s
cost/payment.

However, prior work only focused on the design of
task allocation with the minimum social cost, computa-
tional efficiency, and strategy-proof, all from the platform’s
perspective without considering the users’ preference of
PB [36]. On the one hand, most studies [27], [32], [49], [53]
used single-minded bids, which cannot express the users’
diverse preferences in PB [23]. For example, these single-
minded bids, which let participants bid for either the bundle
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of all tasks or nothing [24], [49], do not allow Lucy to
express her preference for a combination of tasks. Thus,
they cannot support the expressiveness of PB, i.e., the ability
that a mechanism allows users to express all possible task
combinations in their bids. On the other hand, a few re-
searchers [15], [23], [50] have recently considered the users’
expressiveness by using multi-minded bids. Nevertheless,
they do not satisfy expressiveness or description efficiency
of PB from the user’s perspective.

To fill this gap, as illustrated in Fig. 1, we propose a
comprehensive incentive mechanism that achieves (i) expres-
siveness and (ii) description efficiency of PB in describing users’
bids; (iii) minimal social cost, (iv) computational efficiency, and
(v) strategy-proof in the platform owner’s allocation of tasks
to the users [15], [50]. However, it is very challenging to
achieve all of these simultaneously due to the intrinsically
conflicting goals of the platform owner and participants:
• Chg1. Describing bids: PB’s expressiveness enables a

much larger space of candidate task allocations due to
the increasing number of task bids (i.e., task bundles),
at the expense of significantly higher computational
complexity for the optimal task allocation. Moreover,
the required bidding flexibility via PB’s expressiveness
lengthens the users’ bid descriptions, rendering them
inefficient to use. Hence, it is difficult to achieve ex-
pressiveness without degrading description efficiency.

• Chg2. Allocating tasks: various bidding options owing
to expressiveness add more complex constraints upon
the allocation of different tasks to users, called task de-
pendency, making it difficult to solve the task-allocation
problem for minimizing social cost. This problem is
proved to be NP-hard in Sec. 3.4. Moreover, such de-
pendency can be abused by selfish users to strategically
misreport and manipulate for higher utility, making the
task allocation less strategy-proof.

To address these two challenges, we propose a novel
incentive mechanism for crowdsensing, called Picasso2. As
shown in Fig. 1, in contrast to prior work, Picasso achieves
all five features (i)-(v) from the perspectives of both the
platform and users in the following two key steps.

To address Chg1, in Sec. 4.1, we build a formal frame-
work of bid description in 3-D expressive space by com-
bining three logical operations, i.e., AND, XOR, and OR.
Further, based on this framework, a new PB description
method is proposed to achieve an excellent balance among
expressiveness, computational complexity, and description
efficiency.

To address Chg2, in Sec. 4.2, we first construct a task
dependency graph to model the dependencies of task al-
locations in a user’s PB. Then, by jointly considering the
relationships among the logical operations, we decompose
the complex graph of a user’s PB into multiple subgraphs of
independent single-minded bids for more tractable task al-
location. Moreover, we recombine such subgraphs of a user
to design an adaptive critical-payment computation scheme,
preventing users’ strategic exploitation of task dependencies
for high utility. Finally, the above properties of Picasso are

2. Like the Cubist painting pioneered by Pablo Picasso, we describe
the bids in 3-D space by decomposing and recombining the graph.

evaluated via theoretical analyses in Sec. 4 and trace-based
Gigwalk case-studies in Sec. 5.

In summary, this paper makes three main contributions:
• Design of a comprehensive framework for describing

users’ bids and generalizing prior work. Based on this
framework, a new PB description method is devised by
leveraging a 3-D expression space with orchestration
of AND, XOR, and OR, achieving a good trade-off
among expressiveness, computational complexity, and
description efficiency.

• Design of a dependency-aware task allocation algo-
rithm, achieving constant-factor approximation and
strategy-proof in polynomial time by decomposing and
then re-combining the task dependency graph.

• Extensive theoretical analyses and trace-driven Gig-
walk case-studies to evaluate the performance of Pi-
casso . Our trace-driven evaluations show that unlike
existing approaches [15], [27], [50], Picasso enables each
user to bid for 9.7x more tasks, on average, and decrease
the description length by 74%, encouraging more user
participation. As a result, it reduces the social cost and
the platform’s payment by more than 60% and 61%, re-
spectively. That is, Picasso provides a win-win solution
to incentivize interactions between the users and the
platform owner, promoting long-term crowdsensing.

The rest of this paper is organized as follows. First, we
discuss the related work in Sec. 2, then state the system
model and formalize the problem in Sec. 3. We also propose
an incentive mechanism called Picasso along with theoret-
ical analyses in Sec. 4. In Sec. 5, we conduct traces-driven
evaluations, followed by discussing influenced factors in
Sec. 6 and concluding remarks in Sec. 7.

2 RELATED WORK

Overview: There have been numerous studies of incen-
tivized crowdsensing [47], [51], most of which use the
reverse auction model [13], [36]. As Picasso falls into this
category, we focus on reviewing its related studies in terms
of users’ bids, classified as single-minded and multi-minded
bids [19], [30], [50]. Other orthogonal studies, such as the
posted-pricing model [20], [35], can be found in [36], [51].

Single-minded bids: from the platform’s perspective,
most existing studies are based on single-minded bids
(SMB ) due to ease of design, and focus on task alloca-
tion. For example, many of them aim at maximizing the
platform’s profit [32] or achieving constant-factor approx-
imation [27] subject to other constraints, such as compu-
tational efficiency [7], [53], strategy-proof [38], [49], quality
constraint [27], budget limitation [53], or social network [29],
[31], [40], [46]. Despite their reported promising results for
the platform, all of them are based on single-minded bids,
i.e., each user is allowed to select one bundle of tasks in a
‘win all or nothing’ fashion [19]. Thus, they fail to consider
users’ diverse preferences for task bundling [42]. Without di-
versified bid design [19], they cannot satisfy the design goal
of expressiveness, thus discouraging users’ participation by
decreasing psychological intrinsic motivations [9], [17]. In
contrast, from the users’ perspectives, Picasso caters for the
user’s diverse bids in terms of their social and psychological
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TABLE 1: Comparison between our work and existing works from the perspectives of platform and users.
Researches User’s Perspective Platform’s Perspective

References Bid’s type Expressiveness Description Guaranteed near-minimal Computational Strategy
efficiency social cost efficiency proof

Yang et al. [24], [49] Single-mind × X × X X
Jin et al. [26], [27] Single-mind × X X × X

Tang et al. [25], [38] Single-mind × X X X X
Feng et al. [15] Multi-mind × X X X X
Jin et al. [23] Multi-mind X × X X ×

Zhang et al. [50] Multi-mind X × × X X

Our work Multi-mind X X X X X

differences [37]. Picasso is complementary to these state-
of-the-arts, and can further incentivize the users with both
extrinsic and intrinsic motivations [9].

Multi-minded bids: Recently, a few researchers [15],
[19], [23], [30], [50] considered multi-minded bids in de-
signing incentive mechanisms from the perspective of users.
Han et al. [19] focused on the posted-pricing model, which is
bid-independent. Hence, it is inapplicable to our scenarios
based on the bid-dependent auction model [19]. Lin et al.
[30] focused on the protection of user privacy and security
attack, which is orthogonal to our work.

One line of prior works [15], [23], [50], highly related to
this paper, investigates the design of incentive mechanisms
with multi-minded bids in the auction model. Feng et al. [15]
designed the TRAC mechanism, where each user can submit
multiple disjoint bids, and get any subset of them. We
generalize it to the Single-OR-Bidding (SOB ) model, which
is proved to be inexpressive (Sec. 4.1.2). Although QoI-
MRC [23] and IMC-SM [50] can satisfy the user’s expres-
siveness, they neglect the impact of multi-minded bids on
the allocation of tasks and payments. For example, QoI-
MRC is untruthful for payment allocation, while IMC-SM
cannot achieve guaranteed near-optimal social cost in task
allocation. Moreover, their designs [23], [50], as a special
case of the Single-XOR-Bidding (SXB ) model, are proved
to be description-inefficient with exponential length. In con-
trast, we build a generic framework of bid description which
easily accommodates these results [15], [23], [50]. Based on
this framework, we design a novel bid description scheme,
decreasing the description length to polynomial complexity.
Moreover, we propose a new task allocation algorithm,
achieving constant-factor sub-optimization and truthfulness
in polynomial time.

In addition, researchers [5], [6], [28] studied the bid-
ding language of combinatorial auction, based on which
bidders express their complex preferences on bundles of
expected tasks. They focus on either the expressiveness to
exhaustively elicits user’s preferences [28] or the descrip-
tion efficiency which promotes user-friendliness and com-
munication [6]. Instead of studying the bidding language
independently, our work jointly considers the relationship
between its design and task allocation in crowdsensing
scenarios. It is fed back to refine the bid description scheme
to balance the features of platform and users.

Summary: as summarized in Table 1, in comparison with
existing approaches, Picasso is a novel incentive mechanism
from the perspectives of both the platform and users ful-
filling all the five important features. With such ‘win-win’
benefits, Picasso augments the platform–user interaction
and incentivizes the entire crowdsensing, promoting long-
term development of the crowdsensing community [48].

Fig. 2: System model of incentive mechanism with design goals.

3 SYSTEM MODEL & PROBLEM FORMULATION

We first introduce the system model of the auction-based
incentive mechanism, followed by giving a toy example of
personalized bidding in Gigwalk. We then formulate the
mechanism design problem with perspectives of both users
and platform owner. Finally, this problem is theoretically
proved to be NP-hard.

3.1 System Model

Fig. 2 illustrates the general model for the incentive mech-
anism of crowdsensing, whose workflow consists of the
following three phases.
Step 1 (Task publishing): The platform publishes sensing
tasks to the crowd of users who might be interested in
this crowdsensing campaign. Let T be the set of tasks,
i.e., T = {τj |j ∈ {1, . . . ,M}}, where τj and M denote
the j-th task and the number of tasks, respectively. For
each τj , there is a corresponding valuation vj > 0. As-
sume there are N users interested in the tasks, and let
U = {ui|i ∈ {1, . . . , N}} denote the set of users.
Step 2 (Task bidding): According to the description method,
each user ui makes her/his PB for those tasks based on
their preference ri, including the tasks they want to per-
form and the desired payments. We define the PB of ui as
Bi = {bi,k|bi,k = (Ti,k, ai,k), k ∈ {1, . . . , δi}}, where bi,k
and δi denote the atomic bid of ui as Def. 1 and the number
of atomic bids, respectively. Last, they send the PBs to the
platform.

Definition 1. Atomic bid, also called single-minded bid (SMB):
a user can submit a bid bi,k = (Ti,k, ai,k), where Ti,k is a subset
of tasks (i.e., Ti,k ⊆ T ) and ai,k is the desired payment for
executing these tasks. The user may execute all the tasks in Ti,k
with the payment ai,k, or not execute any task with no payment.
Such a bid is said to be atomic, i.e., the basic unit of bid description.
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Fig. 3: Toy example of Gigwalk for user’s personalized bidding,
where τj denotes the j-th task.

In addition to the desired payment ai,k, ui incurs a
real cost ci,k of executing Ti,k, which is in practice private
information and only known to herself/himself. Due to the
human’s selfishness and rationality, users prefer not to ask
for their real costs in the bids so as to earn more. Hence
ci,k ≤ ai,k.
Steps 3, 4 & 5 (Allocation, execution, and payment of tasks):
based on their bids (i.e., {Bi|i = 1, . . . , N}), the platform
determines the set of allocated tasks Si and the payment
pi for ui, according to the task allocation and the payment

rules (Step 3). Note that Si =
δi⋃
k=1
Si,k, where Si,k denotes

the set of task allocation for Ti,k, i.e., Si,k ⊆ Ti,k. Let
pi =

∑δi
k=1 pi,k, where pi,k denotes the payment of the task

allocation Si,k, depending on its desired payment ai,k. Each
ui then executes the tasks (i.e., Si) assigned to her/him by
sensing, and reports the sensing results to the platform (Step
4), which then pays pi to ui (Step 5). We assume that all the
tasks can be executed successfully, thanks to a large number
of potential users with diverse skills in crowdsensing [15].
We also assume that the users can successfully finish their
allocated tasks, while discussing the users’ unreliability in
Sec. 6.

Hence, the utility of user ui is πu
i =

∑δi
k=1(pi,k − ci,k).

Furthermore, all the users finish the set of tasks as S =
N⋃
i=1
Si, and the utility of platform is πp =

∑
∀τj∈S(vj − cj).

Table 2 illustrates frequently used notations.

3.2 Example of Personalized Bidding Scenario
We take Gigwalk as an example to illustrate the PB in
crowdsensing. Gigwalk is a widely deployed crowdsensing
app. Its platform enables mobile participants to visit shops
at different locations to collect real-time data about specific
products, as shown in Fig. 3.

Suppose Gigwalk publishes three sensing tasks (i.e.,
τ1, τ2, and τ3) at three different locations, and has three par-
ticipants (i.e., Bob, Lucy, and Jack). Due to the differences in
their interests, contexts, and availabilities, these three users
have different preferences on task bidding. Specifically, both
Bob and Lucy will go through the locations of τ1 and τ2
along with the purple line routine in Fig. 3. As Bob has
enough time and expects to do any subset of τ1 and τ2
with the prices $50 and $10, respectively. However, Lucy
has limited time and expects to bid either τ1 or τ2 with the
prices $10 and $30, respectively. Jack has two alternative
routines as the black solid line and the black dashed line in
Fig. 3. He wants to either do the bundle of τ1 and τ2 in one
routine with prices $15 and $35, respectively, or take either
τ1 or τ3 for the price of $15 or $10, respectively.

Let u1, u2, and u3 denote Jack, Bob, and Lucy, respec-
tively. Then, according to the system model in Sec. 3.1,

TABLE 2: Frequently Used Notations
Symbols Definitions

τj , cj ,M, T j-th task; its cost; its number; set of tasks.
ui, N,U i-th user; its number; set of users.
Bi, bi,k ui’s bid; k-th atomic bid of ui, i.e., bi,k ∈ Bi.

Ti,k, ai,k, pi,k task set of bi,k ; its bidding price; its payment.
Si, uvi,k, set of allocated tasks for ui; k-th virtual user of ui.
E, ξ expressive power; cost-efficiency.
λ, π description length; utility of user(platform).

the personalized bids of Jack, Bob, and Lucy are for-
malized as B1 = {(τ1), (τ3), (τ1, τ2), (τ1, τ3)}, B2 =
{(τ1), (τ2), (τ1, τ2)}, and B3 = {(τ1), (τ2)}, respectively.

3.3 Problem Formalization

As shown in Fig. 2, the mechanism design problem for
personalized bidding can be stated as:

1) from the perspective of the platform, how to design the
task allocation algorithm Ψ(·) for the platform to allocate
all the tasks T to the users U with the payments based
on the users’ PBs (B = {B1, . . . , BN}) as Eq. (3), so as
to achieve (i) minimal social cost, (ii) strategy-proof, and
(iii) computational efficiency.

2) from the perspective of users, how to design a bid
description method Ω(·) for ui to describe PBs Bi based
on her/his preferences ri as Eq. (2), in order to satisfy
(iv) expressiveness and (v) description efficiency;

Let xi,j be the indicator variable (xi,j ∈ {0, 1}), i.e., xi,j = 1
if task j is allocated to ui, and xi,j = 0 otherwise. Xi =
{xi,j |j = 1, · · · ,M}. The problem is formulated as:

Min
N∑
i=1

M∑
j=1

xi,jci,j (1)

s.t. Bi = Ω(ri), i ∈ {1, . . . , N}, (2)
(Xi, pi) = Ψ(B, T ,U), i ∈ {1, . . . , N}, (3)
M∑
j=1

(pi,j − ci,j) ≥ 0,∀i ∈ {1, . . . , N}, (4)

πu
i (ci, a−i) ≥ πu

i (ai, a−i),∀i ∈ {1, . . . , N}, (5)
N∑
i=1

xi,j = 1,∀j ∈ {1, . . . ,M}, (6)

where the features of the platform owner and users are:
(i) Minimal social cost: from the perspective of the platform,
it aims at maximizing the platform utility, i.e.,

N∑
i=1

M∑
j=1

xi,j(vj − ci,j). (7)

As shown in Eq. (6), each task is constrained to be al-
located to at most one user, and all the tasks should be
completed [49]. Hence,

∑N
i=1

∑M
j=1 xi,jvj is a constant. The

objective function can be equivalently represented as Eq. (1),
i.e., minimizing the social cost (or called social welfare [38]),
which is the sum of the user’s real costs of all tasks s/he
finished [15].
(ii) Strategy-proof: the mechanism should have individual
rationality [27], i.e., all the users receive non-negative utilities
as Eq. (4). Also, it should satisfy truthfulness [53] as Eq. (5),
meaning that it is a dominant strategy in a Nash equilibrium
for all the users to claim the real costs ci in their bids, where
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ai denotes the bidding price of ui, and a−i denotes those of
the other users. As each user cannot improve her/his utility
by misreporting the costs individually, it makes the mecha-
nism truthful. This is based on the assumption that the users
are independent and will not collude with each other [52].
In addition, we only consider the tasks covered by bids of
at least two users for truthfulness, due to the large number
of potential users with diverse skills in crowdsensing [15].
(iii) Computational efficiency: an algorithm is computation-
ally efficient if and only if it can be completed in polyno-
mial time [53]. In the PB formulation, the task allocation
algorithm Ψ(·) should be computationally efficient for real-
time allocation, which is very important for incentivizing
users in practice [19]. To simplify the formulation, as Eq. (1),
we consider the additive cost/payments of tasks, where the
total cost/payments of multiple tasks are the summation of
that of each individual task [50] [51]. Also, we will discuss
the non-additive cost of tasks [10] in Sec. 6.
(iv) Expressiveness: the description method Ω(·) should be
flexible enough to allow the users to express their diverse
bidding preferences of task combinations [33]. The set of all
possible task combinations in users’ bids allowed by Ω(·)
is referred to as its expressive space [28]. The size of ex-
pressive space is then defined as expressive power (denoted
as E) which quantifies the expressiveness of a description
method [33]. The larger the expressive power is, the more
diversities of preferences the users can express.
(v) Description efficiency: (also referred to as Description
succinctness). The bid description method Ω(·) should be
efficient for users to express their preferences [28]. The
number of atomic bids in a bid description is defined as
its description length (λ) [34]. We also use average description
length (ADL) λ of all the descriptions to quantify the de-
scription efficiency of Ω(·). Intuitively, a shorter ADL eases
bidding description for participants, leading to higher de-
scription efficiency [34]. Moreover, the computational com-
plexity of Ω(·) is dominated by the maximum description
length (MDL) λ̂ of all the descriptions.

3.4 Analysis of Problem Complexity

Given the above comprehensive problem formalization for
both the platform and users, we analyze the computational
complexity of task allocation with personalized bidding.

Theorem 1. The optimal task allocation problem with PB is NP-
hard.

Proof. Recall that Bi is the PB of ui. Let bi,k := (Ti,k, ai,k) be
a single-minded bid by ui as Def. 1. Then, we have bi,k ∈ Bi.
If we replace Bi by bi,k for each ui ∈ U , constraint in Eq. (2)
can be relaxed and the optimal task allocation problem with
PB (called OTA-PB) becomes the one without PB (named as
OTA-NonPB).

We next demonstrate the NP-hardness of OTA-PB by
proving that OTA-NonPB is at least NP-hard. Let Si be
the set of sensing tasks assigned to ui to execute and ci be
the corresponding total cost. Thus, in problem OTA-NonPB,
constraint in Eq. (3) is equal to a set cover constraint over
task set T , i.e.,

⋃
i=1,2,...,N Si = T , meaning that all sensing

tasks will be executed.

Furthermore, constraint in Eq. (6) implies that the in-
tersection of any two different sets Si and Sj (∀i, j ∈
{1, 2, . . . , N}, i 6= j) is null, i.e., Si

⋂
Sj = ∅. As the strategy-

proof is decided by not the task allocation but the payment,
constraints in Eqs. (4) and (5) can be relaxed [36]. As a result,
OTA-NonPB will become:

Min
N∑
i=1

ci (8)

s.t.
⋃

i∈{1,...,N}

Si = T , (9)

Si
⋂
Sj = ∅,∀i, j ∈ {1, 2, ..., N}, i 6= j. (10)

The decision version of the above problem is a mini-
mum weighted set cover (MWSC) problem with the mutual
exclusiveness constraint as Eq. (10) [18]. Note that MWSC
is a well-known NP-complete problem [3]. Since checking
whether an obtained solution satisfies the mutual exclusive-
ness constraint or not could be completed in polynomial
time, the decision problem belongs to NP [3]. Therefore, the
OTA-NonPB is NP-hard, which establishes the NP-hardness
of OTA-PB.

4 DESIGN OF Picasso
To solve the mechanism design problem with PB in Sec. 3.3,
as illustrated in Fig. 4, we propose Picasso , which efficiently
allocates the tasks with the truthful payment to the users
according to their diverse preferences on the published
tasks. Specifically, Picasso consists of the following two
main components:
1) Bid description based on 3-D space (Sec. 4.1): we first

propose a formal framework of bid description based
on 3-D expressive space, created by the orchestration of
AND, XOR, and OR in Sec. 4.1.1. Then, in Sec. 4.1.2, it
is proved theoretically to balance among expressiveness,
description efficiency, and computational complexity, via
comparison with existing models.

2) Task allocation based on dependency graph (Sec. 4.2):
we first build the task dependency graph model to rep-
resent the user’s bid in Sec. 4.2.1. Then, in Sec. 4.2.2, we
design the task allocation scheme based on graph decom-
position to address the NP-hard problem. It achieves a
near-optimal solution with a guaranteed approximation
ratio in polynomial time cost. Finally, in Sec. 4.2.3, we
propose a novel payment method based on graph recom-
bination, leveraging the critical payment computation to
devise the strategy-proof payment scheme. Such scheme
can prevent selfish users from strategically exploiting the
complex PB to improve their utilities.

4.1 Bid Description in 3-D Space
4.1.1 PB Description in 3-D Space
We first build a formal framework for the bid description
using 3-D expressive space, and then propose a specific
description method along with a walk-through example.

(1) Formal framework of bid description using 3-D
expressive space.

To satisfy the expressiveness, description efficiency, and
computational efficiency, we leverage three basic logical
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Fig. 4: Framework of Picasso , incentivizing platform–user interactions. Fig. 5: PB description via 3-D space.

operators, i.e., AND, XOR, and OR, to describe users’ bids
as Def. 2.

Definition 2. XOR-of-OR Bidding Description: it is con-
structed based on AND, XOR, and OR in the following three
steps.
(1) Construct atomic bids: each ui can submit an atomic bid,
denoted by bi,k, including an arbitrary number (e.g., Hi,k) of
task pairs (τi,k,h, ai,k,h) by AND (∧), h ∈ {1, . . . ,Hi,k}.
It implies that the user expects to be allocated all of the tasks
Ti,k = {τi,k,h|h ∈ {1, . . . ,Hi,k}} with the total payment
ai,k =

∑Hi,k

h=1 ai,k,h, or none of the tasks with no payment. Thus,
bi,k = (Ti,k, ai,k).
(2) Construct OR bids: each ui can submit an OR bid, de-
noted by bOi , which includes an arbitrary number (e.g., Ki) of
disjoint atomic bids bi,k by the logical operator OR (∪), i.e.,

bOi =
Ki⋃
k=1

bi,k. ∀k1, k2 ∈ {1, . . . ,Ki} and k1 6= k2, we have

Ti,k1∩Ti,k2 = ∅. This implies that the user expects to be allocated
the tasks of any subset of these atomic bids with the sum of their
respective payments.
(3) Construct XOR-of-OR bids: each ui can submit an XOR-
of-OR bid denoted by bXO

i , including an arbitrary number (e.g.,
Li) of OR bids bOi,l by the logical operator XOR (⊕), i.e., bXO

i =
Li⊕
l=1

bOi,l =
Li⊕
l=1

Ki,l⋃
k=1

bi,l,k. It implies that the user expects allocation

of at most one of these OR bids, e.g., bOi,l.

Theorem 2. XOR-of-OR bidding description in terms of x
XOR and y OR operators has the expressive power EXO(x, y)
as Eq. (11) with λ̂ = O(x · y). Moreover, it can represent all the
PBs with the largest number of XORs and ORs (i.e., x = 2M

and y = M ).

EXO(x, y) =
x∑
i=1

EO(y)!

i!(EO(y)− i)!
, (11)

where the expressive power EO(y) with y OR operators is

EO(y) =
y∑
k=1

k∑
i=1

(−1)i(k−i)M
i!(k−i)! . Note that x ∈ {1, . . . , EO(y)},

and y ∈ {1, . . . ,M}.

Proof. We prove this theorem by using dynamic program-
ming and the Inclusion-Exclusion Principle theorem of com-
binatorics [18]. See Appendix for a detailed proof.

According to Eq. (11), the increment of EXO(x, y) w.r.t. x
is

∆xE
XO(x, y) =

EO(y)!

x!(EO(y)− x)!
. (12)

According to Eqs. (11) and (12), we can create a 3-D
expressive space as shown in Fig. 5. In this 3-D space,
the x-axis and y-axis represent the number of XORs (i.e.,
x) and ORs (i.e., y), respectively. The z-axis represents the
increase of expressive space by adding the x-th XORs
with y ORs as ∆xE

XO(x, y). Thus, we can use this 3-D
space to represent the expressiveness of XOR-of-OR bidding
description method. Moreover, according to Theorem 2, this
3-D expressive space with the largest number of XORs and
ORs is equivalent to that of PB. Thus, we can use AND, OR,
and XOR to describe all PBs in a 3-D space.

(2) PB description method: we use the above XOR-of-
OR bidding framework to describe PBs. In order to trade off
between expressiveness and computational complexity, we
reduce the 3-D expressive space by limiting the length of one
dimension (e.g., XOR or OR) with a constant R. According
to Eq. (11), the dominant dimension of entire expressive
space for computational complexity is the number of XORs.
Thus, we further constrain the number of XORs by a
constant R, and the expressive power is given by Eq. (13)
with λ̂ = R ·M .

EXO(R) =
R∑
i=1

EO(M)!

i!(EO(M)− i)!
, R ∈ {1, . . . , EO(M)}.

(13)
Hence, the PB description method consists of the following
steps.

1) Describe a bundle of tasks: if a user expects to be allocated
a bundle of tasks, s/he creates an atomic bid for this
bundle of tasks. Otherwise, s/he creates an atomic bid
for each task.

2) Describe union of tasks: if the user expects to be allocated
any subset of the tasks, s/he uses OR based on the
atomic bids to create the plan.

3) GenerateR exclusive plans: based on the above two steps,
each user can iteratively create exclusive plans with
the maximum limit R. Each participant uses XOR to
describe it, and expects to be allocated tasks of at most
one of these plans.

Let us consider the Gigwalk example in Sec. 3.2 to show
how to describe the PB based on 3-D space. Jack has two
exclusive plans and uses XOR to describe his PB as Eq. (14).
Similarly, the PBs of Bob and Lucy are given by Eqs. (15)
and (16), respectively. In addition, we will discuss how to
enable user-friendly PB description in Sec. 6.

Jack :
{

(τ1 ∧ τ2, $50)
}
⊕
{

(τ1, $15) ∪ (τ3, $10)
}
,(14)

Bob :
{

(τ1, $50) ∪ (τ2, $10)
}
, (15)

Lucy :
{

(τ1, $10)⊕ (τ2, $30)
}
. (16)
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4.1.2 Theoretical Analysis
Based on the framework in Sec. 4.1.1, we first present the
models of SOB and SXB as Defs. 3 and 4, respectively,
generalizing the multi-minded bids [15], [23], [50]. We then
compare ours with SMB , SOB , and SXB in terms of the
expressiveness and the description efficiency via theoretical
analysis.

Definition 3. SOB Bidding Description: it is constructed
using operators AND and OR in two steps:
(1) construct atomic bids: same as in Def. 2.
(2) construct OR bids: same as in Def. 2.

Definition 4. SXB Bidding Description: it is constructed
using operators AND and XOR in two steps:
(1) construct atomic bids: same as in Def. 2.
(2) construct XOR bids: each ui can submit an XOR bid denoted
by bXi , which includes an arbitrary number (e.g., Ki) of atomic

bids bi,k by XOR operations (⊕), i.e., bXi =
Ki⊕
k=1

bi,k. It implies

that the user expects allocation of at most one of these atomic bids,
e.g., getting the set of tasks Ti,k of bi,k with payment ai,k.

According to Defs. 3 and 4, we have the following
propositions.

Proposition 1. SOB bidding description has the expressive power
EO(x) which is formally given by

EO(x) =
x∑
k=1

k∑
i=1

(−1)i(k − i)M

i!(k − i)!
, x ∈ {1, . . . ,M}, (17)

with the MDL λ̂ = x, when the number of OR operations is x.
However, it cannot represent all the PBs with the largest number
of ORs.

Proof. We prove that EO(x) is equal to Eq. (17) by using
dynamic programming and the Inclusion-Exclusion Princi-
ple theorem of combinatorics. Then, we exploit the reductio
ad absurdum method to prove the SOB bidding description
cannot represent all PBs. In fact, it only represents one kind
of bids with no substitutability [34]. See Appendix for a
detailed proof.

Proposition 2. SXB bidding description has the expressive power
EX(x) as Eq. (18) with the MDL λ̂ = x, when the number
of XOR operators is x. Moreover, SXB has the same expressive
power as Picasso, and both of them can represent all the PBs with
the largest number of XORs.

EX(x) =
x∑
i=1

(2M )!

i!(2M − i)!
, x ∈ {1, . . . , 2M}. (18)

Proof. We prove this using Def. 4 and a detailed proof is
provided in Appendix.

Proposition 3. Given M tasks, ADL of Picasso isO(M) that is
on the same scale as SMB and SOB, while that of SXB is O(2M )
for the same expressive power.

Proof. We prove it based on Eqs. (11), (17), and (18), and a
detailed proof is provided in Appendix.

Summary: according to Props. 1, 2, and 3, both SMB and
SOB are inexpressive, which cannot accommodate all the

expressive space of PB. Although SXB can satisfy the ex-
pressiveness, it is not description-efficient with ADLO(2M ).
In contrast, Picasso achieves a better trade-off between the
expressiveness and description efficiency than XOR, i.e., to
achieve the same expressive power, Picasso reduces ADL
from O(2M ) to O(M).

4.2 Task Allocation Based on Dependency Graph
4.2.1 Construction of Task Dependency Graph
According to the formal framework of bid description in
Sec. 4.1, ui’s PB can be formally described as

bXO
i =

Li⊕
l=1

Ki,l⋃
k=1

Hi,l,k∧
h=1

(τi,l,k,h, ai,l,k,h), (19)

where (τi,l,k,h, ai,l,k,h) denotes a task. ∧, ∪, and ⊕ repre-
sent 3 different dependencies between task allocation, i.e.,
AND, OR, and XOR, respectively. For example, in Jack’s PB
description as Eq. (14), τ1 and τ2 have AND dependency
and should be allocated together; τ1 and τ3 have OR depen-
dency, and any subset of them can be allocated. (τ1∧τ2) and
(τ1 ∪ τ3) have XOR dependency, and at most one of them
can be assigned. Thus, the PB description of a user consists
of many different kinds of complex task dependencies.

As illustrated in Fig. 6b, we use a graph G = (T , e),
called task dependency graph, to represent the PB description
in Fig. 6a. Specifically, the vertices represent tasks τj , j ∈
{1, . . . ,M}. The edge e = (τj , τj′) ∈ T × T represents
the allocation dependency between τj and τj′ . They include
AND, OR, and XOR dependencies, which are represented
by the purple, green, and red edges, respectively, in Fig. 6b.

Using this task dependency graph, we propose a
dependency-aware task allocation and adaptive critical-
payment computation method by decomposing and then
recombining the task dependency graph of PB.

4.2.2 PB Decomposition for Efficient Task Allocation
The task dependency graph is usually complex due to PB
description, making the direct allocation rather difficult.
To address this, we transform this complex problem with
PB description into a simple problem with independent
SMB ones by decomposing the task dependency graph. We
then propose a greedy-based allocation algorithm to achieve
constant-factor approximation with polynomial time cost
for this NP-hard problem.

(1) Problem transformation by decomposing the task
dependency graph: we leverage the properties of the logical
operators and their intrinsic relationships to decompose the
XOR and OR dependencies for the problem transformation.

First, as shown in the red circles in Fig. 6b, we use
dummy tasks d with no intrinsic values and costs to ex-
press XOR constraints indirectly, decomposing the XOR
dependencies. It is because the XOR dependency between
the task sets Ti and Ti′ is equivalent to the OR depen-
dency by adding a dummy task di,i′ for each of them,
i.e., Ti⊕Ti′ ⇐⇒ (Ti∧di,i′ )∪(Ti′∧di,i′ ), where di,i′ repre-
sents the dummy task which is added for Ti and Ti′ .
Specifically, as shown in Lines 2–3 of Alg. 1, for bi,l,k in ui’s
PB, we add a dummy task dl,k,l′ ,k′ for each bi,l′ ,k′ inside
different OR bids with bi,l,k, i.e., l

′ 6= l.
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Fig. 6: Construction, decomposition, and recombination of task
dependency graph based on PB model.

Thus, as shown in Fig. 6b, by adding the dummy tasks
to decompose these XOR dependencies, we transform the
XOR-of-OR bidding description in Eq. (19) to that with SOB

bidding description as
Ki,l⋃
k=1

Hi,l,k∧
h=1

(τi,l,k,h ∧ di,l,k,h, ai,l,k,h).

Furthermore, we transform the PB description with OR
to that with independent SMBs by decomposing OR depen-
dencies. We add virtual users with SMBs to represent OR
dependency. Specifically, as shown in Line 4 of Alg. 1, for
each bi,l,k of ui, we create a virtual user uvi,l,k with an SMB

bi,l,k, where bi,l,k =
Hi,l,k∧
h=1

(τi,l,k,h ∧ di,l,k,h, ai,l,k,h).

Let δi be the number of virtual users for ui, i.e., δi = Ki,l.
Such transformation is to leverage the similarity of proper-
ties between the OR dependency and the task allocation.
According to Def. 2, atomic bids of an OR bid have disjunc-
tion and independent properties. In other words, like the
task allocation of different users, the disjoint atomic bids for
each virtual user can be independently assigned to this user.

In summary, based on the above decomposition of XOR
and OR dependencies, the task allocation problem with a
complex PB description as Eq. (19) is equivalently trans-
formed to the simple problem only with SMBs.

Proposition 4. A user’s PB description of length λ can be
equivalently transformed to λ independent SMB bids of λ virtual
users by adding at most λ2 dummy tasks.

Proof. See Appendix for the proof.

(2) Task allocation with constant-factor approximation:
based on the above transformation, the optimal task alloca-
tion problem with PB is transformed to the one with SMB
bids. This problem is proved to be NP-hard in Sec. 3.4.
Thus, we propose an approximate task allocation scheme
by greedily selecting the virtual users uvi∗,k∗ who are the
most cost-efficient as

uvi∗,k∗ = arg max
∀uv

i,k∈Uv

(ξi,k|Ti,k ∩ S = ∅), (20)

where Ti,k denotes the task set of the virtual user uvi,k. Uv

denotes the set of unselected virtual users. S represents the
set of selected tasks. ξi,k denotes the cost efficiency of uvi,k

with SMB bid (Ti,k, ai,k), i.e., ξi,k =

√
|Ti,k|
ai,k

, where |Ti,k| is
the number of tasks in Ti,k, and the dummy tasks (e.g., di,k)
contribute 0.

Specifically, as in Line 7 of Alg. 1, we first sort all the
virtual users (e.g., uvi,k) according to the decreasing cost
efficiency ξi,k. Then, we iteratively select the most cost-
effective virtual user uvi,k whose bidding task set Ti,k is
disjoint with the set of the allocated tasks S , until all the

tasks are allocated, as illustrated in Lines 8-15 of Alg. 1.
Note that Bs in Line 11 of Alg. 1 denotes the set of selected
atomic bids.

Algorithm 1 : Task & Payment Allocation in Picasso

Input: Task set: T = {τ1, τ2 · · · , τM}; Bid set of users:

{bXO
i |bXO

i =
Li⊕
l=1

Ki,l⋃
k=1

Hi,l,k∧
h=1

(τi,l,k,h, ai,l,k,h), i ∈ [1, N ]};

Output: Task&payment allocation of users: {(Si, pi), i ∈
[1, N ]};

1: %Equivalent Decomposing of Task Dependency Graph
2: while (∀i ∈ {1, . . . , N}, ∀bi,l,k ∈ Bi) do
3: ∀bi,l′ ,k′ ∈ Bi and l

′
6= l, Create dl,k,l′ ,k′ , Ti,l,k = Ti,l,k ∧

{dl,k,l′ ,k′ };
4: Create uv

i,l,k with bi,l,k = (Ti,l,k, ai,l,k);
5: end while
6: %Greedy Allocation of Tasks based on Cost Efficiency
7: With ξi,k, sort uv

i,k (∀i ∈ {1, . . . , N}, ∀k ∈ {1, . . . , δi}) in
descending order as Uv. Let S = ∅,Bs = ∅;

8: while (T \S 6= ∅) do
9: Let uv

i∗,k∗ denote the first user of Uv;
10: if (Ti∗,k∗ ∩ S 6= ∅) then
11: Uv = Uv\{uv

i∗,k∗};
12: else
13: S = S ∪ Ti∗,k∗ , Bs = Bs ∪ bi∗,k∗ ;
14: end if
15: end while
16: %Strategy-proof Payment Allocation
17: while (∀i ∈ {1, . . . , N}, ∀k ∈ {1, . . . , δi}) do
18: if (bi,k ∈ Bs) then
19: Compute pi,k according to Eqs. (23) and (24);
20: else
21: pi,k = 0;
22: end if
23: end while

24: return Si =
⋃

∀bi,k∈Bs
Ti,k, pi =

δi∑
k=1

pi,k, ∀i ∈ {1, . . . , N}.

(3) Theoretical analysis: we analyze the proposed task
allocation scheme in terms of the approximation ratio and
the computing complexity as follows.

Lemma 1. Alg. 1 solves the problem with a constant factor
√
M

of the optimal solution, given M tasks.

Proof. Let Bs and B∗ be the set of selected atomic bids
for Picasso and the optimal solutions, respectively. For
∀bk ∈ B∗, we create Bs

k = {bi ∈ Bs|ξi ≥ ξk, Ti ∩
Tk 6= ∅}. As ci ≤ ck ·

√
|Ti|/

√
|Tk|, we have

∑
bi∈Bs

k

ci ≤
ck√
|Tk|

∑
bi∈Bs

k

√
|Ti|. Using the Cauchy-Schwarz inequality,

we have
∑
bi∈Bs

k

√
|Ti| ≤

√
|Bs

k|
√∑

bi∈Bs
k
|Ti|. As ∀bi ∈

Bs
k, Ti∩Tk 6= ∅ and ∀bi1 , bi2 ∈ Bs

k, Ti1∩Ti2 = ∅, |Bs
k| ≤ |Tk|.

Moreover,
∑
bi∈Bs

k
|Ti| ≤ M . Hence, based on the above

derivations, we have∑
bi∈Bs

k

ci ≤
√
M · ck. (21)

We define Bs∗ =
⋃
∀bk∈B∗ B

s
k. Then, according to Eq. (21),∑

bi∈Bs∗ ci ≤
√
M ·

∑
bk∈B∗ ck. Since Bs ⊆ Bs∗,

∑
bi∈Bs ci

≤
∑
bi∈Bs∗ ci. Finally, we have∑

bi∈Bs
ci ≤

√
M ·

∑
bk∈B∗

ck, (22)
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where
∑
bi∈Bs ci and

∑
bk∈B∗ ck denote the social cost

achieved by Picasso and the optimal solution, respectively.
Thus, Lemma 1 holds.

Lemma 2. Given M tasks and N users, the time complexity of
Alg. 1 is O(M2N2), while those of SMB, SOB, and SXB are
O(N2), O(M2N2), and O(N2), respectively.

Proof. See Appendix for the proof.

Based on Lemmas 1 and 2, we finally have Theorem 3.

Theorem 3. Picasso achieves computational efficiency and ap-
proximates the optimal solution with a constant factor

√
M .

4.2.3 PB Recombination for Strategy-proof Payment
In Sec. 4.2.2, by decomposing the complex PB into inde-
pendent SMBs, we transform the problem to a form with
efficient task allocation. Given this transformation, we first
design the truthful payment scheme based on the critical
value for independent SMBs without considering PB, i.e.,
non-PB. We then show the PBs make the user’s bids more
complex, thus leading to the untruthfulness issue for the
payment scheme. To address this new issue, we also design
the payment scheme for PB based on graph recombination,
which is finally proved to have truthfulness and individual
rationality.

(1) Truthful payment scheme for non-PB based on
critical prices: according to the Truthful Theorem [34], the
auction-based mechanisms on single parameter domain are
truthful if and only if the following two conditions hold:
• monotonicity: the task allocation scheme is monotone.

Specifically, for ui, if the bid bi = (Ti, ai) is selected for
task allocation, then her/his bid b̃i = (Ti, ai − δ) is still
selected when δ > 0.

• critical price: each user should be paid the critical price for
her/his selected bid. The critical price pi is the minimum
one for ui, such that her/his bid (Ti, ai) would not be
selected if ai > pi.

As we use the task allocation scheme based on greedy
selection in Sec. 4.2.2, it satisfies the monotone condition for
truthfulness. Thus, in order to hold the truthful property, we
utilize the critical payment to compute remittance of each
virtual user for her/his SMB.

Specifically, as in Lines 17–23 of Alg. 1, the virtual users
without task allocation get no payment. On the other hand,
according to the bid (Tî∗,k̂∗ , aî∗,k̂∗) of the critical user uv

î∗,k̂∗
,

the selected virtual user uvi,k with bi,k = (Ti,k, ai,k) gets the
payment as

pi,k = aî∗,k̂∗ ·
√
|Ti,k|√
|Tî∗,k̂∗ |

, (23)

where uv
î∗,k̂∗

= arg max
uv
î,k̂

{ξî,k̂|Tî,k̂ ∩ Ti,k 6= ∅, ξî,k̂ 6= ξi,k}.

(2) Truthful payment scheme for PB based on graph
recombination: although the above mechanism based on
the critical payment guarantees the users to be truthful in
terms of the SMB bidding, it does not work for users’ PBs.
Taking Jack in Fig. 3 as an example, we assume that uv1,2 is
selected, and uv1,1 is the critical user of uv1,2. According to
Eq. (23), the payment of Jack is a1,1 ·

√
|T1,2|/

√
|T1,1|. Thus,

Jack can strategically misreport a1,1 to improve his own
total utility. The reasons are as follows. A user with PB can
be decomposed into multiple virtual users with SMB bids.
An individual virtual user cannot directly improve his own
utility (i.e., earnings) by misreporting, he may strategically
help other virtual users improve their respective utilities,
thus enhancing the total utility of that actual user. As a
result, the PB can be strategically utilized by the selfish users
to improve their utilities, hence inducing untruthfulness.

To address such untruthfulness, we recombine the task
dependency graph of PB and design an adaptive critical-
payment computation. Specifically, for each selected user,
we find a critical user from the group of different actual
users who have intersecting (common) tasks with the se-
lected one.Formally, for the k-th virtual user of ui, i.e., uvi,k,
we find the critical user uv

î∗,k̂∗
as

uv
î∗,k̂∗

= arg max
uv
î,k̂

{ξî,k̂ |̂i 6= i, Tî,k̂ ∩ Ti,k 6= ∅}. (24)

Based on Eq. (24), recombination of the task dependency
graph of PB won’t select Jack’s uv1,1 as the critical user. Thus,
Jack cannot improve his utility strategically.

(3) Theoretical analysis: we analyze the strategy-proof
of the above payment design and have Theorem 4.

Theorem 4. Picasso is individually rational and truthful, both
of which are called strategy-proof.

Proof. In what follows, we will prove the individual ratio-
nality and the truthfulness one by one.

Proof of individual rationality: for each ui, if uvi,k is
not selected, according to Alg. 1, pi,k = 0, ci,k = 0. Oth-
erwise, pi,k = aî∗,k̂∗ ·

√
|Ti,k|

/√
|Tî∗,k̂∗ |. As

√
|Ti,k|/ai,k ≥√

|Tî∗,k̂∗ |
/
aî∗,k̂∗ , pi,k ≥ ai,k. Since ai,k ≥ ci,k, ui’s utility∑Ni

k=1(pi,k−ci,k) ≥ 0. Thus, Picasso is individually rational.
Proof of truthfulness: we prove it in terms of (i) inde-

pendent SMBs which are proved truthful in many existing
studies [15], [24], [53], and (ii) dependent SMBs. In what
follows, we prove that Picasso is still truthful even with
dependent SMBs, using reductio ad absurdum method.

We assume that the original proposition is not true, i.e.,
there exists a user (say ui) who can improve his utility
by unilaterally misreporting his costs. Specifically, ui im-
proves his utility by changing the bids of his virtual users
uvi,k(k = 1 . . . Ni) from Bi = {(Ti,k, ci,k)|k = 1, . . . , δi} to
B̃i = {(Ti,k, ai,k)|k = 1, . . . , δi}, where (ci,1, . . . , ci,δi) 6=
(ai,1, . . . , ai,δi). We prove this theorem in terms of two
different cases, i.e., ui is unselected/ selected with Bi. The
detailed proofs are provided in the Appendix.

In summary, even if users strategically use the task
dependencies, Picasso achieves the truthfulness and the
individual rationality by recombining the task dependency
graph of PB.

5 PERFORMANCE EVALUATION OF Picasso
We first conduct extensive simulations to evaluate the per-
formance of Picasso , which is further tested by conducting
a real case study of Gigwalk based on real traces.
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(a) Picasso vs SMB (b) Picasso vs SOB
Fig. 7: Comparison of the social cost and the total payment for
different numbers of users.

(a) Picasso vs SMB (b) Picasso vs SOB
Fig. 8: Comparison of the social cost and the total payment for
different numbers of tasks.

10 20 30 40 50
0

10

20

30

40

E
x
e
c
u
ti
o
n
 t
im

e
(s

)

# of tasks

 

 

Ours
SOB
SSB

(a) Different number of tasks

100 140 180 220 260 300
0

5

10

15

20
E

x
e
c
u
ti
o
n
 t
im

e
(s

)

# of users

 

 

Ours
SOB
SSB

(b) Different number of users
Fig. 9: Comparison of time cost with different numbers of users
and tasks by comparing SSB and SOB.
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(b) Different number of users
Fig. 10: Comparison of average description length (ADL) for
different numbers of users and tasks.

5.1 Simulations

5.1.1 Simulation Methodology & Settings

There are N users to provide PBs for M tasks. The number
L of OR bids for one PB and the numberK of atomic bids in
one OR bid are both uniformly distributed, i.e., L ∼ U(1, R)
(R = 5) and K ∼ U(1, 0.6M). The real cost of each user
in executing a task is normally distributed as N(µ, σ2),
where µ ∼ U(20, 40) and σ ∼ U(5, 15). Each data point is
obtained by averaging 20 execution results. Our simulation
has been conducted on a PC with 2.3 GHz dual-core Intel
Core i5 CPU and 8 GB RAM. Picasso is compared to the
aforementioned four baseline methods, SMB [24], SOB [15],
SXB [23], [50], and OPT. SMB, SOB, and SXB use the
greedy algorithm and the critical payment in task allocation
and payment computation which are similar to Picasso .
OPT utilizes brute-force search and Vickrey Clarke Groves
mechanism [34] for the optimal solution using the same
description method as Picasso . We use four performance
metrics, i.e., social cost, total payment, time cost, and ADL.

5.1.2 Results

We first compare Picasso with SMB and SOB in terms of
social cost and total payment for different numbers of users.
We set M = 30 and vary N from 100 to 300. As shown
in Figs. 7a and 7b, the social cost and total payment of
Picasso are always less than those of SMB and SOB by a
large margin. In terms of both social cost and total payment,
Picasso outperforms SMB and SOB by more than 32.6% for
a varying number of users. We also vary M from 10 to 50
and set N = 200. Figs. 8a and 8b show that the social cost
and total payment of Picasso are always much smaller than
those of SMB and SOB. Picasso outperforms SMB and SOB
in both social cost and total payment by more than 34.9%
for different numbers of tasks.

We evaluate the computation time for different numbers
of users. Figs. 9b and 9a show that although the time cost

of Picasso is higher than that of SMB and SOB, it increases
roughly quadratically with N and M . In particular, Picasso
costs only 16.5 s in the worst case and 9.8 s on average
when the number of users is changed from 100 to 300.
Also, it costs 28.1 s in the worst case and 11.6 s on average
when the number of tasks is changed from 10 to 50. We
also compare the execution times of Picasso and OPT in
Fig. 11a. As the problem is NP-hard, OPT takes significantly
long (the time complexity is O(MMNM )), e.g., running for
more than 68,859 s (about 19 h) only when M = 8 and
N = 12, while Picasso completes within 0.6 s, which can be
negligible in practice. Moreover, its execution time sharply
increases with the number of tasks and users, making it
much less applicable to large-scale systems. These results
are consistent with the theoretical analysis in Lemma 2.

We use the ADL in Figs. 10a and 10b to evaluate the
description efficiency of Picasso in comparison with SOB
and SXB. As SMB has much worse expressiveness than SOB
and its ADL is always 1, we do not include it here. As
the ADL of SXB is extremely large, we show its logarithm
for ease of presentation. Fig. 10a shows that ADL increases
linearly with the number of tasks for both Picasso and SOB,
while it increases exponentially with the number of tasks for
SXB. ADL of SOB and Picasso are 9.1 and 23.7 on average,
respectively, while that of SXB rises dramatically up to 216.9.
As illustrated in Fig. 10b, we also observe that ADL changes
slightly with the number of users for all of these three
methods. ADL of SOB and Picasso are 9.1 and 23.8 on
average, respectively, while that of SXB explodes to 211.2.
These results are consistent with the theoretical analysis
in Sec. 4.1.2. In conclusion, Picasso is more description-
efficient than SXB, achieving an excellent trade-off among
expressiveness, description efficiency, and computational
complexity.

Finally, we evaluate the individual rationality of our
method. We plot the CDF for the ratio of user’s extra
payment to her/his real cost called overpayment ratio for four
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Fig. 12: Trace-based Gigwalk case studies: a) Driver’s trajecto-
ries; b) Performance comparisons.
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Fig. 14: Evaluation of users’ utility and system’s time cost with
different settings of the XOR-OR limits.

different settings (i.e., user and task number). As illustrated
in Fig. 11b, the overpayment ratio is above 0 for 100%,
below 1 for 60%, and below 2 for 80%. The results show
that all of the payments for users are more than their real
cost. Moreover, the overpayment, i.e., within double of real
cost for 80%, is reasonable. Thus, our method achieves
individual rationality.

5.2 Trace-Driven Case Study of Gigwalk

5.2.1 Evaluation Methodology & Settings
To strengthen our evaluation, we have conducted a case
study, emulating Gigwalk based on the real traces of
drivers3 with the following setup.

Traces & Participants: as shown in Fig. 12a, we use
the real trajectories of 200 drivers to emulate the mobility
of users, and randomly select 20 locations (represented by
the blue triangles) in these trajectories. Each location has a
random number of tasks, following the distribution U(1, 5).
For example, there are multiple different tasks at a shop
or in its neighborhoods. We emulate 500 crowdsourcing
participants expecting the Gigwalk tasks on their driving
paths. Each participant randomly chooses a starting point,
such as her/his home or work location. We use the real
driving paths within 3 km from the participant’s starting
point as her/his potential paths, along only one of which
s/he will drive.

Time & Price: it takes time for each participant to do
the tasks, as one needs to find a parking lot [1] and then
picks up the task. We set 10 min per location on average
as her/his dwelling time according to the report in [1].
Moreover, different users have different available time limits
following U(10, 120) (min). Each user randomly chooses a
limited number of locations up to her/his time limit on

3. The traces are collected by a smartphone app called Go!Track, in-
cluding 200 trajectories with 16,664 GPS coordinates from 200 different
drivers. https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories.

her/his path, and performs the tasks at any subset of these
locations. At each location, a participant chooses a random
number of tasks, and expects to do either all of them after
parking there, or none without stopping, owing to her/his
own rationality. The bidding price for each task is initiated
according to the user, driving paths, and locations within a
distribution U($1, $100), and its actual price depends on the
task type, platform, and area. For example, if the platform
sets the maximum price $10, the bidding price randomly
changes from $0.10 to $10.

Metrics: besides ADL for description efficiency, we use
the Average bidding task Number per User (ANU) to eval-
uate the user’s expressiveness. The more tasks each user can
bid, the more user’s expressiveness this mechanism enables.
On the other hand, we exploit the Average social Cost per
executed Task (ACT) and Average platform Payment per
executed Task (APT) to represent platform utility.

5.2.2 Results

First, we evaluate the influences made by the settings of
XOR-OR limits on the performance of Picasso . As the max-
imum available time of users is set to 120 min and the
dwelling time is 10 min, the number of OR operations is no
more than 12. Thus, we change the settings of XOR-OR lim-
its (RXOR, ROR) as (1,1), (1,4), (1,8), (1,12), (4,12) and (8,12),
where RXOR and ROR denote the limits of XOR and OR
operations, respectively. As illustrated in Figs. 13a and 13b,
the ACT and APT of the platform decrease gradually with
the limits of XOR and OR operations, while both ANU and
ADL are increasing with them. On the other hand, as shown
in Figs. 14a and 14b, the high XOR-OR limits diminish the
utility of each user, and increase the execution time of the
proposed algorithm. The results indicate that the higher
XOR-OR limits bring more bidding freedom, encouraging
users to bid more tasks, which increase the description
length and the computation time. However, both the ADL
and the time cost of Picasso grow slowly with the XOR-
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OR limits, which is a polynomial increase as illustrated
in Figs. 13b and 14b. Interestingly, more bidding freedom
stimulates competition between users for the allocation of
limited tasks, decreasing the utility of each user, hence
resulting in much lower social cost (and platform payment).
Similar to economic freedom, it empowers people and un-
leashes their powerful forces of choice, thus enhancing the
market competition and improving the overall economy [4].

Moreover, we compare Picasso with existing schemes,
i.e., SMB, SOB, and SXB. The presented means are out of
20 emulations. Fig. 12b shows that, compared to SMB and
SOB, Picasso reduces ACT and APT by more than 60% and
61%, respectively, while increasing ANU by at least 9.7x.
So, Picasso effectively enables the user’s expressiveness and
significantly reduces the social cost as well as the platform
payment. On the other hand, compared to SXB, Picasso cuts
ADL by more than 74%, despite their similar ACT, APT,
and ANU. Thus, Picasso achieves powerful expressiveness
without compromising description efficiency.

In summary, Picasso is shown to benefit not only the
platform owner by significantly lowering its payment, but
also the participants by raising their intrinsic motivation
with more expressiveness and description efficiency. That is,
these Gigwalk case studies confirmed the effectiveness of Picasso
in incentivizing both the platform owner and the participants.

6 DISCUSSION & FUTURE WORK

We discuss the influences of practical factors in crowdsens-
ing applications on Picasso as follows.

Task execution unreliability: After task bidding and
allocation, the users may fail to execute these allocated tasks,
owing to users’ unreliability and their mobility’s uncer-
tainty [16]. To address this issue of task execution unreliabil-
ity, Picasso only rewards the users who successfully execute
the tasks, such as uploading the sensed data. Furthermore,
to avoid the user’s bidding misbehavior (i.e., bidding as
many tasks as possible), we can introduce a penalty to the
users who do not finish their allocated tasks, such as not
allocating tasks to them in the future. In addition, we can
extract the users’ reliability from their historical behaviors
using deep learning methods [14], which is fed back to
design the task allocation scheme. In the future, we would
like to explore the allocation of tasks based on the users’
task execution probability model.

Non-additive cost of tasks: owing to the law of di-
minishing return in economics [10], a user may pay less
cost when conducting multiple tasks together, than the
summation of costs when conducting each task individu-
ally. For example, in Gigwalk application, when multiple
tasks are located very close to each other, some users with
enough time may pay a discounted cost when executing
all the tasks. However, Picasso can be easily extended to
the case of non-additive cost with a simple modification.
Specifically, this case happens only when the user wants to
finish multiple tasks together, which are represented by the
atomic bid in Picasso. Hence, the users can set the minimal
cost and the desired payment for this atomic bid according
to their actual cost, thus taking account into a diminishing
cost. In addition, the diminishing-cost property of the tasks’

cost can be further exploited to improve the total utility of
the platform owner [49], which is part of our future work.

User-friendly preference expression: In practice, based
on the formal bid description in Sec. 4.1, a user-friendly
preference expression system should be designed while
considering the underlying applications. In what follows,
we take the practical personalized bidding in Gigwalk as an
example. First, the users input their source and destination
locations as well as their available time slots. Then, simi-
larly to the Google navigation, the system returns multiple
candidate routes from the source to the destination. Each
route consists of several Gigwalk tasks. Moreover, the users
express their preferences using user-friendly interfaces, such
as binding those tasks expected to be done together. Fur-
thermore, we can utilize machine learning [45] to automat-
ically extract the users’ preferences based on their behavior
datasets [8], further facilitating the users’ input. Finally,
the system automatically creates the formal bid description
using Picasso .

7 CONCLUSION

We have designed and evaluated a novel PB-based incen-
tive mechanism, called Picasso , that consists of two main
components. First, we have proposed a PB description
method in 3-D expressive space with AND, XOR, and OR,
achieving a good trade-off among expressiveness, compu-
tational complexity, and description efficiency. Second, we
have designed schemes for constant-factor approximation in
optimal task allocation and strategy-proof in payment with
computational efficiency, by decomposing and recombining
task dependency graph of PB. Both the theoretical analysis
and trace-based Gigwalk case studies have validated the
above essential properties of Picasso .
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