
Off is Not Off: On the Security of Parked Vehicles
Kyong-Tak Cho

University of Michigan, Ann Arbor
ktcho@umich.edu

Kang Shin
University of Michigan, Ann Arbor

kgshin@umich.edu

Yu Seung Kim
Ford Motor Company

ykim41@ford.com

Byung-Ho Cha
Ford Motor Company

bcha@ford.com

Abstract—While various ways of attacking and thus controlling
the vehicle have been demonstrated, all these attacks were shown
to be feasible and effective only while the vehicle is running,
i.e., ignition is on. In this paper, we invalidate the conventional
belief that remote vehicle attacks are feasible and hence their
defenses are required only when the vehicle’s ignition is on. We
first analyze how operation (e.g., normal, sleep, listen) modes
of electronic control units (ECUs) are defined in various in-
vehicle network standards and how they are implemented in
real vehicles. From this analysis, we discover that an adversary
can exploit the wake-up function of in-vehicle networks—which
was originally designed for enhanced user experience/convenience
(e.g., remote diagnosis, remote temperature control)—as an
attack vector. Ironically, the battery-saving feature in in-vehicle
networks makes it easier for an attacker to wake up ECUs
and, therefore, mount Battery-Drain (BD) or Denial-of-Body-
control (DoB), and Unattended Control (UC). In particular, we
show that the adversary mounting the BD attack can completely
drain the vehicle battery within an hour in the worst case, the
attack mounting the DoB attack can disable the communications
between the vehicle and its key-fob by shutting down the
associated ECU, thus immobilizing the vehicle, and the adversary
can physically access a vehicle by controlling the door and/or
trunk locks via the UC attack.

I. INTRODUCTION

Software-defined ECUs and wireless connectivity of modern
vehicles have enabled new vehicle applications/functions, such
as remote Over-The-Air (OTA) update and diagnostics, Ad-
vanced Driver Assistant System (ADAS), and Passive Keyless
Entry and Start (PKES). Meanwhile, they have introduced
more attack surfaces and thus vulnerabilities that an adversary
can exploit remotely for controlling vehicle functions [12–
14, 28]. Researchers have demonstrated how vulnerabilities
in vehicles can be exploited remotely to compromise an
ECU and access the in-vehicle network [13, 27]. Via remotely
compromised ECUs, researchers have shown to be able to
control vehicle maneuvers or even shut down a vehicle via
packet injection in the in-vehicle network [10, 14, 22, 25].

While various ways of attacking vehicles using vulnera-
bilities have been demonstrated, all of them are shown to
be feasible and effective, only when the vehicle power is on
and thus ECUs are turned on. That is, attacks are commonly
believed feasible and hence their defenses are necessary only
when the vehicle is running. This has led to the lack of
understanding of, and attention to what an adversary can do
while the vehicle’s ignition is off. In this paper, we show
such a common belief does not hold by demonstrating three
attacks — Battery-Drain (BD), Denial-of-Body-control (DoB),
and Unattended Control (UC) — through which an adversary

can disable, abuse, and/or access parked vehicles with the
ignition off. Ironically, the main reason for this feasibility is
the “wake-up functions” — which are intended to enhance the
driver’s convenience — let the adversary wake up ECUs (of
a parked vehicle) and then control them. That is, the wake-
up functions that were originally designed for a good cause
become an attack vector. Wake-up functions are standardized,
implemented, and provided in various in-vehicle networks so
that manufacturers can provide remote standby functions, such
as remote diagnostics, door control, and anti-theft. Although
only a few ECUs of a parked vehicle can be awakened by the
wake-up function and then controlled, these attacks are still
feasible mainly because they are achieved by controlling ECUs
that are asleep, but not completely turned off. The rationale
behind our findings is as follows.

• A common irony of the three demonstrated attacks is that
the wake-up function of ECUs — originally for enhanced
user convenience — is exploited as an attack vector.

• The ease of mounting the attacks stems from the fact
that the wake-up signal was defined to be very simple. A
simple (agreed-on) wake-up message facilitates extended
battery operation time, which is defined as the time
duration the battery can provide enough power for the
driver to start the vehicle. From a security perspective,
this battery-saving feature makes it easier for the attacker
to wake up ECUs and then drain the vehicle battery.

• It is nontrivial to use message authentication code (MAC),
message encryption, or some state-of-the-art defenses
against a compromised ECU to send a wake-up signal
due to the way the signal was designed and thus defined
in the first place; in Controller Area Network (CAN), the
wake-up signal is simply a single 0-bit.

• The number of ECUs that can/must be awakened, tends
to increase as more enhanced standby features are added
to newer vehicle models. This will allow the attacker to
immobilize the newer models far more quickly and easily
than the older ones.

Through extensive experimental evaluations of 11 test ve-
hicles — i.e., 2008–2017 model-year (compact to mid-size)
sedans, coupe, crossover, Plug-in Hybrid Electric Vehicle
(PHEV), Sport Utility Vehicles (SUVs), truck, and a Battery
Electric Vehicle (BEV) — with Commercial Off-The-Shelf
(COTS)/customized OBD-II dongles and connected vehicle
apps, we show that all but one 2008 model-year of the test
vehicles are equipped with the wake-up functions, rendering
BD, DoB, and UC attacks feasible. Moreover, we demonstrate



the BD attack on 4 different representative vehicle types —
compact & mid-size SUVs, sedans, and pickup truck built by
different OEMs — and show that the adversary can speed up
the average battery consumption, draining the vehicle battery
within an hour. We also demonstrate the DoB attack on one
of our test vehicles and show that the attacker can shut down
an ECU indefinitely and thus completely disable the key-fob
function, thus preventing the victim from entering and starting
his vehicle. Our test vehicles are also used to evaluate the
feasibility of an attacker controlling the door and trunk locks
via the UC attack and thus accessing the victim’s vehicle.

II. BACKGROUND

A. Operation Modes of ECUs

Even when the ignition is off, in order to provide various
functions while minimizing their power consumption, not all
ECUs are completely turned off; some ECUs simply go to
sleep. The need of ECUs asleep to be awakened is increasing
for enhanced user/driver experience/convenience. For example,
vehicle OEMs are introducing new useful functions, such
as PKES, overnight remote diagnostics, remote temperature
& door control, and anti-theft while the vehicle is parked
and turned off. We refer to such functions that are exe-
cutable/executed while the ignition is off as standby functions.
Safety-related controls such as powertrain/engine controls are
not standby features since the ECUs controlling them are
usually configured to be completely turned off when parked
with the ignition off. To meet such an increasing need, those
ECUs asleep are configured to be awakened via a local or bus
wake-up. A local wake-up is triggered when a switch attached
to the ECU (e.g., a receiver for the remote key) is turned on.
This drives a logic state change on its WAKE pin and thus
re-activates the whole ECU. Another mechanism in which an
ECU wakes up is whenever it sees a specific (i.e., wake-up)
message/signal on the bus. Upon detection of a wake-up signal
by the ECU’s transceiver, which remains ON even while the
ignition is off, it turns on the power supply of the ECU, wakes
up the whole ECU, and thus enters normal operational mode.
We will later elaborate on the wake-up signals along with how
the proposed attacks work. If no additional wake-up signal is
received within a certain (preset) time period, the ECU goes
back to sleep.

B. Fault Confinement and Bus-off Recovery

Error handling is built in the CAN protocol and is impor-
tant for its fault-tolerance. It aims to detect errors in CAN
frames and enables ECUs to take appropriate actions, such
as discarding a frame, retransmitting a frame, and raising
error flags. If an ECU experiences or incurs continuous errors
while transmitting or receiving a message, the CAN protocol
specifies that its Transmit Error Counter (TEC) or Receive
Error Counters (REC) should be increased [19, 21]. If its TEC
exceeds a pre-defined threshold of 255 due to persistent errors,
the ECU is forced to enter a state called bus-off and shut
down. Exploiting such a standardized CAN feature, Cho and
Shin [14] proposed a new attack called the bus-off attack,

which enforces other healthy/uncompromised ECUs to shut
down. See [14] for more details of the bus-off attack.

The bus-off mechanism enables recovery of nodes. There
are two recovery modes of bus-off status: (1) automatic bus-off
recovery and (2) manual bus-off recovery upon a user request.

III. THREAT MODEL

Like previously-known attacks [13, 14, 22, 27], we consider
the adversary capable of remotely (but not physically) compro-
mising an in-vehicle ECU via numerous attack surfaces, and
can thus gain its control; physically compromising an ECU
requires physical access and is thus out of this paper’s scope.

An adversary under consideration can
AV1. compromise a COTS OBD-II dongle/device in advance,

and gain remote control of the vehicle once the driver
plugs it into his car [16];

AV2. compromise an in-vehicle ECU (e.g., Telematics Control
Unit (TCU)) remotely [13, 22, 25]; or

AV3. compromise a connected vehicle app (e.g., GM OnStar
RemoteLink, Nissan Leaf App, FordPass, BMW Con-
nected, Mercedes me) so as to access the in-vehicle
network [9].

The practicability of such adversaries (i.e., gaining control of
such attack vectors) has already been proved and demonstrated
in [9, 13, 16, 22, 25].

Fig. 1: Illustration of various attack vectors in connected vehi-
cles. Modern vehicles have external interfaces such as OBD-II
port, Telematics, and Bluetooth, enabling communication with
cloud servers or smartphones for enhanced user experience.

Note that as depicted in Figure 1, the attacker can also at-
tempt to compromise the cloud service that links the connected
vehicle app to the vehicle (AV4). However, due to its lack of
practicality and feasibility, we do not consider this as an attack
vector.

Since such an adversary would have access to the vehicle’s
CAN bus and would be able to inject a message, we call
such an adversary a CAN attacker. Through a compromised
in-vehicle ECU (AV1–AV2), the CAN adversary can inject
any message with forged ID, DLC (Data Length Code), and
data.1 Through a compromised app (AV3), the attacker can
at least issue commands to inject predefined messages (e.g.,

1Once plugged in, as COTS OBD-II dongles will also be just another ECU
on the in-vehicle network, we consider them as an in-vehicle ECU.



turn on heater, or request diagnostic results) or can even inject
arbitrary messages in the worst case. As these messages are all
initiated and controlled by the attacker, we call such injected
messages attack messages. Also, since CAN is a broadcast bus,
the adversary can sniff messages on CAN bus. We also assume
that the compromised in-vehicle ECU can be continuously
powered on — even while the ignition is off — or (at least)
has a separate power source/supply during its operation. This
can easily be achieved by an adversary as we will elaborate in
Section IV. Note that for the compromised app attack vector,
such an assumption is neither applicable nor required.

We consider a threat that was never explored before: the ad-
versary’s objective is to immobilize the victim’s vehicle and/or
steal valuable items inside by controlling a parked vehicle with
its ignition off, and make its forensic reconstruction as difficult
as possible. The adversary achieves this by first waking up
in-vehicle ECUs (through the attack vectors) and thereby
controlling them. Here, difficult forensic reconstruction (e.g.,
resembling typical mechanical/electronic failures) is the main
motivation to mount cyber (not physical) attacks since it
will likely result in replacing wrong parts (wasting money
unnecessarily), extending service outage, or blaming wrong
suppliers/OEMs. Although the adversary could immobilize a
vehicle by simply flooding the in-vehicle network when the
driver tries to start the car, thus preventing any other ECUs
from receiving/processing commands, we do not consider such
an adversary since its symptom is very different from typical
mechanical/electronic failures, thus exposing itself for easy
detection and removal.

As the attacks under consideration focus on parked vehicles
with the ignition off, the adversary must “play” within the
given boundaries of its CAN bus. In parked vehicles, only
those ECUs that contribute/relate to standby features are
asleep, while others are completely turned off. This imposes a
certain restriction: the CAN attacker only controls ECUs that
remain asleep (i.e., not completely off), once the ignition goes
off. That is, the attacker’s capability is limited to controlling
only those ECUs equipped with standby features, e.g., door
and lighting ECUs. So, we consider the CAN attacker to be
incapable of, for example, driving/crashing a car since the
powertrain/engine ECUs are completely turned off when its
ignition is turned off, due to its irrelevance to standby features.

IV. WAKING UP ECUS

In order to attack and control a parked car, the attacker first
needs to wake up ECUs so that they can be controlled. In this
section, we provide details of how the attacker can achieve this
and also evaluate its feasibility using different connectivity of
the considered attack vectors (AV1—AV3).

A. Wake-Up Function

When the ignition is off, some ECUs are configured to run in
sleep mode and continuously monitor if there is any incoming
bus wake-up signal. The adversary needs to determine the type
of bus wake-up signal to wake up ECUs.

Standardized wake-up. The remote wake-up behavior of
a CAN ECU was first introduced and specified in the ISO

11898-5 standard which defines the bus wake-up behavior as
“One or multiple consecutive dominant (0-bit) bus levels for
at least tFilter, each of them separated by a recessive (1-bit)
bus level, trigger a bus wake-up.” While tFilter is defined
to be within [500ns, 5µs], its actual value depends on the
transceiver being used.

+ Attack method : Without back-off control
(Limitations…)

0 ID
R
T
R

I
D
E

R
0

DLC Data CRC
CRC 
Del

A
C
K

ACK 
Del

EOF

Arbitration Control Data CRC ACK

Dominant (0s) Recessive (1s)

Fig. 2: Format of a CAN data frame.

In a CAN bus with bit rates up to 200kBit/s, i.e., bit width
longer than 5µs, any 0-bit within a CAN frame triggers a
wake-up. For bit rates up to 500kBit/s, the wake-up condition
is always met for any normal CAN data message since its 1)
RTR, 2) IDE, and 3) r0/FDF bit are all defined to be dominant
(0s) as shown in Figure 2. That is, in a 500kBit/s bus, since
those three bits—each with width 2µs—are sent consecutively,
the resulting duration of dominant bus level becomes at least
6µs, thus always satisfying the wake-up trigger condition.

Note that the ISO standard specifies such dominant bus
levels to be separated by a recessive bus level. This is easy
to satisfy since CAN always 1) stuffs a recessive 1-bit after
5 consecutive 0 bits, i.e., bit-stuffing [14, 21]; 2) has certain
fields fixed with a 1-bit, e.g., CRC delimiter, ACK delimiter as
shown in Figure 2; and 3) the user can determine what value(s)
to fill in such fields as ID, DLC, and DATA. The same also
applies to the extended CAN format with 29-bit ID. However,
in this paper, we only consider the basic/standard CAN data
format (with 11-bit ID) since the extended format is seldom
used (due to its bandwidth waste) in contemporary vehicles.

The reason for OEMs’ agreement on a standardized and
simple wake-up signal was to not only guarantee a 100ms
link acquisition time [20] but also to allow for a low-power
design (e.g., RC-circuit) of wake-up detection, i.e., an energy-
efficient sleep mode [20]. That is, the simple design/definition
of a wake-up signal was to prolong the battery operation time.

Although a similar design is also found in other in-vehicle
networks (e.g., FlexRay and Local Interconnect Network
(LIN)), we focus on CAN, the de facto standard in-vehicle
network, for a more in-depth treatment of the attacks.

Power source. One remaining requirement for a CAN
adversary to achieve this is that his attack vector has to remain
powered on in order to trigger the wake up signal; especially
when the attack vector is an in-vehicle ECU. The attacker
achieves this fairly easily thanks to two interesting facts. First,
the in-vehicle ECUs which a CAN adversary would (or can)
compromise or those that he gets to control via some other
compromised entities (e.g., connected vehicle app) are most
likely to be always powered on, or (at least) have a separate
power source/supply during their operation. A typical example
ECU that an attacker would target (to compromise) is the
TCU due to its wide variety of wireless connectivity. The
practicability of the TCU being compromised has already been
demonstrated in [13, 22, 25]. Interestingly, the TCU—which



is regarded as one of the most vulnerable ECUs [13–16]—
is usually completely (or at least periodically) powered on
so as to respond to external events (e.g., requests for remote
diagnosis, remote door/temperature control, anti-theft) even
after removing the ignition key [3]. Moreover, a TCU is
usually equipped with an alternative power supply so that it
can operate even when the vehicle power system is off [24].
Similarly, an OBD-II device/dongle, which is also a good
target for an adversary to compromise (as demonstrated in [13,
16]), can also be separately powered on (by the attacker) if
it is equipped with an external power source, which is often
observed in many aftermarket telematics implementations.

Second, although the operational mode of a (compromised)
ECU is preset to run in sleep mode when the ignition is off,
it does not restrict the adversary to change such a setting.
Two most common CAN controllers—Microchip MCP2515
and NXP SJA1000—both allow modification of their opera-
tion mode (e.g., normal, sleep, listen-only) through software
commands [1, 2]. For ECUs with the Microchip MCP2515
CAN controller, the Serial Peripheral Interface (SPI) remains
active even when the MCP2515 is in sleep mode, thus allowing
access to all registers. Thus, through the SPI, it is also pos-
sible for the user/adversary to read/write the CAN controller
registers, including the operational mode register [2]. Such
user-level features for configuring the CAN controller allow
attackers to easily switch from sleep to normal mode via
software commands.

As a result, a CAN adversary can inject wake-up messages
to the CAN bus with the ignition off. The transceivers of ECUs
asleep observe a wake-up signal on the bus, switch on the
ECUs’ power supply (usually via an interrupt), and boot up
the microcontroller. Hence, the ECUs will return to normal
operational mode. Since CAN is a broadcast bus, even a single
injected message wakes up all ECUs asleep.

B. Wake-Up Evaluation
To verify whether ECUs in real vehicles can indeed be

awakened via simple wake-up messages while the ignition is
off, we setup three different remote control settings:

• RC1. COTS dongle plugged into the OBD-II port —
controlled via Wi-Fi or cellular

• RC2. Raspberry-Pi + PiCAN module to the OBD-II port
— controlled via Wi-Fi

• RC3. Connected vehicle app specific for the test vehi-
cle(s) — controlled via cellular

Note that the wake-up evaluation aims to verify if other
ECUs can be awakened under the considered remote control
settings (RC1—RC3), which are assumed to be already com-
promised. The detailed process and feasibility of compromis-
ing each attack vector were heavily studied and shown in other
literature and therefore are beyond the scope of this study.
Under the settings for RC1—RC2 which correspond to AV1,
we injected wake-up messages/signals to the CAN bus. The
wake-up message had its ID, DLC, and DATA fields—that a
user/adversary can control at the application layer—all filled
with 1s. This was to verify that messages with the minimum
number of 0s can also function as a valid wake-up message. In

RC3 where we evaluated using the connected vehicle app, we
simply executed any command that was available on the app
which therefore injected a pre-defined CAN message while
the ignition was off. This setting corresponds to not only AV3

but also AV2 in which the compromised TCU is consequently
awakened and can therefore be exploited.“Controlling” the Vehicle

Accessory 
Protocol

Instrumental
Panel

Telematic

Audio

Digital 
Signal 

Processing

Front
Control GPS

RCM
Remote 
Control

Auto
Temperature

Heating 
Ventilation

Rear trunk

Driver
Door

Driver
Seat

Passenger
Door

BCM
Body Control

Image
Processing

Power 
Steering

Restraint
Control

Proximity
Warning

Parking

Head
Lamp

ABS
Anti-lock Brake

SteeringOccupant
Classification

Head-up
Display

Powertrain

CAN-1

CAN-2

CAN-3 Awakened ECUs

Fig. 3: Vehicle architecture of one of our test vehicles.

In-depth analysis on a test vehicle. Figure 3 shows the
in-vehicle network architecture of one of our test vehicles
— a 2017 year model — and the ECUs that responded to
the (wake-up) messages. The results were equivalent in all
three evaluation settings RC1–RC3. Note that this network
architecture of the test vehicle is not unique for the OEM
of our test vehicle but is valid for the vehicles built by
other OEMs except for only slight variations in the network
architecture [26]. We verified which ECUs were awakened
by logging the CAN traffic that contains the message IDs
observed on the bus, and by mapping those IDs to the
corresponding transmitter ECUs using the test vehicle OEM’s
CAN Data Base Container (DBC). The CAN DBC describes
the properties of the CAN network, the ECUs connected to
the bus, and the CAN messages and signals.

When the wake-up message/signal was injected, one can
see from Figure 3 that not all ECUs were awakened. This
would be most probably due to different ECUs being attached
to different battery terminals (with different terminal control
policies) in order to minimize battery/power consumption and,
at the same time, provide various standby functions. In CAN-
1 which connects ECUs performing safety-critical functions,
only 4 of 13 of them were awakened. On the other hand, in the
CAN-2 bus where ECUs responsible for vehicle body control
were connected, almost all ECUs but two were awakened.
Considering the fact that contemporary/newer vehicles provide
various standby “body control” functions such as keyless entry,
hands (foot) free trunk opening, and anti-theft, more ECUs
being awakened in CAN-2 than CAN-1 would be the norm.

Verifying wake-up functionality in various vehicles. Us-
ing Raspberry Pi + PiCAN device (RC2), we also verified how
different vehicles (OEMs/years/models) react to the injection
of a wake-up message.2 To corroborate the existence of wake-
up function in different cars, when evaluating the wake-up

2As the results were equivalent in all settings RC1–RC3, the following
evaluations were done via just RC2.



function, we chose 11 different test vehicles with various types
like (compact and mid-size) sedans, coupe, crossover, PHEV,
SUVs, truck, and a BEV with model-years 2008–2017.

Figure 4 shows the number of distinct messages observed on
the CAN bus 1) when the ignition was on, and 2) when we
woke up ECUs on the bus by injecting a wake-up message
while the ignition was off. Since the feasibility of wake-up
stems from how the in-vehicle network standard is specified
and implemented, instead of OEMs’ design decisions, we have
chosen not to identify/reveal the particular make and model
used in our evaluation. Note, however, that the 11 test vehicles
(shown in Figure 4) we examined are from different OEMs
and also represent different models. For some vehicles, since
their OBD-II pinout was configured to not provide full access
to all of their buses, we only show those that were awakened
in the accessible bus(es).

When waking up ECUs in some old cars (most with low-
level trims), far less distinct message IDs and lower percent-
ages of them (compared to the case with the ignition on) were
observed on the bus than other newer cars. Since the number
of ECUs is proportional (albeit not linearly) to that of distinct
message IDs, we can infer that there were less awakened ECUs
transmitting them in older cars; not all messages can be sent
by a single ECU due to the high overhead. This would most
probably be due to the fact that the older cars (2008 and 2013
model-year) do not require/provide any (or not many) standby
functions (e.g., PKES).

On the other hand, when a wake-up message was injected
on the buses of nine 2015–2017 model-year test vehicles,
we observed that 49.12–94.95% (75.44% on average) of the
distinct message IDs sent while the ignition was on, were
also sent when ECUs were awakened while the ignition was
off. Such a high number/portion of ECUs being awakened
by a wake-up message and thus sending more message IDs
on the bus is because they had numerous standby functions
installed for enhanced driver’s experience and convenience
(e.g., PKES/Remote Keyless Entry (RKE), hands-free trunk
opening, anti-theft) — a trend that is expected to grow. These
results corroborate the fact that vehicle ECUs are indeed
equipped with the wake-up functionality (adhering to the
standard) and can thus be exploited by the CAN adversary
as an attack vector.

V. DETAILED ATTACK ANALYSIS

Figure 5 presents an attack flow diagram for BD, DoB,
and UC attacks. As one can see from the flow diagram, the
attacker exploits one of the three considered attack vectors
(AV1–AV3) to wake up ECUs on the bus(es). For DoB attack
(Section V-B), the attacker attempts to shut down awakened
ECUs by exploiting their error handling and recovery mech-
anisms, i.e., mounting a large-scale bus-off attack. In case
of BD attack (Section V-A) and UC attack (Section V-C),
however, the attacker attempts to exploit the awakened ECUs
to control certain functionalities of the vehicle (rather than
shutting them down). As a result, the attacker can drain the
vehicle battery and unlock certain doors or trunk to access the
vehicle, respectively.

Since BD and UC attacks require control of some ECUs, the
adversary may have to figure out which message ID(s) to use.
That is, the attacker may have to reverse-engineer messages
since IDs vary with vehicle manufacturers and models. This, in
general, becomes a (high) technical barrier for the adversary,
especially when mounting state-of-the-art attacks on different
vehicles. However, for the purpose of BD attack and UC
attack, the message reverse-engineering can be done easily
without fuzzing. Specifically, by reverse-engineering messages
based on the driver context, it becomes much easier for the
adversary to figure out which messages to use in mounting
BD attack and UC attack on different vehicles. Driver-context
based reverse engineering is achieved based on the routined
and expected driver’s behavior(s) of when s/he starts the car.

A. Battery-Drain (BD)
Once the CAN adversary wake up the ECUs asleep, they

switch to, and run in normal operational mode. Note, however,
that an awakened ECU goes back to sleep after a certain period
of time. Hence, by waking up ECUs as much and as frequently
as possible, the adversary can continuously force those ECUs
to run in normal mode, although they should remain asleep. If
ECUs are configured to stay in normal mode (after waking up)
for a duration of Twakeup, the frequency of wake-up messages
from the attacker has to be at least 1

Twakeup
.

Some ECUs are connected to physical actuators, which
consume high electric energy, thus becoming likely targets of
a BD attacker. Examples of such ECUs—which are mostly
related to vehicle body control functions—are the ones con-
trolling interior/exterior lights and Heating, Ventilation, and
Air Conditioning (HVAC). To further enhance the driver’s
convenience, OEMs are increasingly letting car owners control
their cars (e.g., unlock/lock, turn on heater) by using their
smartphone apps with an eventual goal to totally replace key-
fobs with smartphone software [5–7]. This indicates that an
adversary exploiting a connected vehicle app already has the
capability of indirectly/directly mounting BD attack.

Evaluation. We use the following controls that increase
battery consumption in our attack evaluation.
C1. Turning on lights by changing the power mode: An adver-

sary first reverse-engineers the control message (via driver
context) which determines the vehicle’s power mode (e.g.,
off, accessory mode, run, and start), wakes up ECUs on
the bus, and attempts to change the power mode using the
reverse-engineered message/ID. When we controlled the
power mode of a parked vehicle, various indicators on
the dashboard were (temporarily) illuminated. Likewise,
the infotainment system was also booted up.

C2. Turning on lights by unlocking/locking doors: A CAN
adversary can also attempt to repeatedly unlock/lock
the vehicle’s doors (while parked). When the driver (or
the adversary) unlocks the car, welcome lights of the
vehicle illuminate for enhanced visibility. Note that the
numbers and types of the welcome lights that illuminate
may vary with the vehicle manufacturer/year/model, and
also, depending on whether or not the lighting control
system is set to “automatic,” the default setting for most



Fig. 4: Verifying wake-up messages in 11 different vehicles. The number of distinct message IDs were observed when the
ignition was off and the ECUs were awakened via a wake-up message is compared with that when the ignition was on.

Compromise
OBDII dongles

Wake up ECUs

CAN message injection Bus-off attack

Compromise
mobile apps

Compromise
ECUs

BD
(Battery Drain)

UC
(Unattended Control)

DoB
(Denial of Body Control)

Driver-context
reverse engineering

Fig. 5: Depicted is how each attack is mounted after waking
up ECUs in a parked vehicle.

drivers [13]. An adversary can continuously illuminate
all the welcome lights and thus significantly increase
the average battery consumption. Similarly to the attack
case C1 where the power mode was controlled, the door
control module is another ECU which provides a standby
function and hence must not be completely off, but must
be asleep instead.

C3. Turning lights on by opening the trunk: The adversary
may attempt to open the trunk of a car. When the trunk
is opened, for enhanced visibility, vehicles are configured
to illuminate its interior map, dome, and trunk lights. In
contrast to C1 and C2, the attacker is only required to
inject a single trunk-control message into the bus if the
lights remain on while the trunk is open (as some vehicles
do). Even if the lights automatically go off after some
time, the attacker can re-inject the trunk-control message
to re-illuminate them. Note, however, that opening the
trunk could be visibly intrusive, and thus it needs to be
mounted at special situation (e.g., overnight parking).

C4. Turning on HVAC: Compared to the previous controls,
HVAC is visibly non-intrusive from outside, i.e., more
stealthy, and at the same time drains the battery faster.
Similarly to C1–C3, HVAC is another function that can
be controlled (and turned on) via message injections after
waking up the ECUs. In fact, C4 is one the most likely
features to be equipped on connected vehicle apps for

remote control; not to mention that C1-C3 are as well.
Many vehicles are now equipped HVAC functions such
as heating/cooling seat, air conditioning, defroster, and
they usually consume a large amount of electric power.

After verifying that the ECUs in our test vehicles can be
awakened via basically any wake-up message (even with all
1s in ID, DLC, and DATA fields), we measured the amount
of battery drain for the different controls mentioned above:
1) simple wake-up, 2) power mode control, 3) repetitive door
unlock & lock, 4) opening the trunk, and 5) HVAC operation.
Out of the 11 test vehicles, we picked 4 vehicles which each
represent the most popular vehicle types. We evaluated the
proposed attacks on the following test vehicles from different
OEMs: Vehicle A – 2019 model compact-size SUV, Vehicle
B – 2017 model mid-size SUV, Vehicle C – 2017 model
pick-up truck, Vehicle D – 2017 model BEV sedan. We were
able to reverse-engineer the control messages for the above
functionalities via driver-context-based reverse-engineering.

To measure the drained/discharged current from the car
battery, we placed the current clamp meter while the vehicle
was parked with its ignition off. Then, we injected (iterative)
sequence(s) of control messages to the vehicle through the
OBD-II port. Table I summarizes the average amount of
current measured to be drawn from the vehicle battery when
each attack was mounted additionally.3 When the ignition was
off and no ECU was awakened, less than 0.1A was consumed
in all test vehicles. As we controlled more functionalities,
the average battery consumption increased significantly. In
most vehicles, the HVAC functionality (with max A/C) drew
a vast amount of current from the battery. One interesting
finding during our experiments was that a negative current was
observed in the BEV (Vehicle D) when changing the power
mode and running the HVAC operations. It turned out that
these functions in the BEV activated the main battery pack

3The currents were averaged over 5-min measurements. We averaged them
across time, not trials; otherwise, each attack might have been mounted
when the car’s battery state is different, possibly making the measure-
ment/comparison inaccurate.



Attacks Discharged Current [A] Max. Battery Operation Time [Hours]
Vehicle A Vehicle B Vehicle C Vehicle D Vehicle A Vehicle B Vehicle C Vehicle D

Wake-up 2.5 (1.0x) 4.5 (1.0x) 5.0 (1.0x) 5.6 (1.0x) 18.0 10.0 9.0 8.04
Change Power Mode 12.7 (5.1x) 13.8 (3.1x) 20.0 (4.0x) -9.5 3.54 3.26 2.25 —
Lock&Unlock Door 9.2 (3.7x) 9.4 (2.1x) 8.7 (1.7x) 5.4 (1.0x) 4.89 4.79 5.17 8.33
Open Trunk 14.5 (5.8x) 20.0 (4.4x) — — 3.10 2.25 — —
HVAC (max A/C) 26.3 (10.5x) 33.1 (7.4x) 40.0 (8.0x) -4.7 1.71 1.36 1.13 —

TABLE I: Shown are the measured discharged current and maximum battery operation time under different BD controls. The
multiplication factor (Nx) shows the relative amplitude of discharged current. We estimate the (theoretical) maximum battery
operation time while assuming a 45Ah standard car battery for all test vehicles for easy comparison.

(for motors) to charge the start battery unit. This indicates that
the proposed attack can, in fact, even drain the main battery in
BEVs. In reality, an adversary will be able to combine multiple
controls to drain the vehicle battery quickly. For example,
when we launched the power mode change, heating seat, and
max A/C functions together on Vehicle A, the total current
draw was measured as 50.4A, which is approximately 25.0x
higher than when we simply woke up ECUs.

For an easy comparison of battery current consumption
under different BD attack controls, we summarize the es-
timate battery operation time in Table I while assuming a
45Ah standard car battery for all test vehicles. Note that the
estimation might be different from the reality with different
battery capacity and battery saving technique across the test
vehicles. With the HVAC operation — which seemed to drain
the most amount of current — the car battery is expected to be
completely depleted within 2 hours for all tested vehicles. Note
that such a figure is when only the HVAC was being controlled
by the adversary during the BD attack. So, when the adversary
controls not only HVAC but also other functionalities, s/he
can drain the victim’s vehicle battery much faster. Taking the
measurements from Vehicle A as an example, the time to
completely drain a fully-charged battery is estimated to be
approximately 53 minutes when the attacker launches all 5
attacks listed in Table I.

B. Denial-of-Body-control (DoB)

In addition to BD attack, the CAN adversary can mount
a Denial-of-Body-control (DoB) attack. While the ignition is
off, the CAN adversary wakes up ECUs from the compro-
mised modules so as to make them responsive to his injected
messages. Then, the adversary switches its bit rate (e.g., from
500 kBits/s to 250 kBits/s). According to the CAN error-
handling mechanism, this makes all awakened ECUs on the
bus continuously experience and incur errors, and eventually
enter the bus-off state, i.e., shut-down. This way, the adversary
not only mounts the bus-off attack on a target ECU (as
demonstrated in [14]) but also on all ECUs on the bus. Instead
of changing the bit rates, changing internal resistances or
capacitances can be an alternative way of achieving this. As a
result, per bus-off recovery specification, depending on the
ECUs’ software configurations, some ECUs would recover
from the bus-off state, whereas some others will not.

The DoB attack is mounted similarly to the bus-off attack,
except it further exploits the following fact specified in the
ISO 11898-1 standard [4]: “a node can start the recovery

from the bus-off state only upon a user’s request,” where the
user’s request depends on the ECU software configuration.
DoB attack thus exploits this definition of bus-off recovery as
follows. Depending on the car manufacturer and year/model,
ECUs such as Body Control Module (BCM) or Remote
Control Module (RCM) — that authenticates each message
to and from the remote key-fob — can be configured/defined
not to recover from the bus-off state mainly for either safety
(since bus-off is a serious problem [14]) or anti-theft purposes.
Hence, if the CAN adversary were to mount the DoB attack on
such a vehicle, then s/he can indefinitely shut down BCM or
RCM, thus cutting off the communication channel between the
(driver’s) remote key-fob and the vehicle. Contemporary/newer
vehicles are usually equipped with PKES, which allows users
to unlock and start their cars while keeping their key-fobs
in their pocket [17] and is installed in BCM or RCM. For
the vehicle to be unlocked/started, PKES must verify that the
legitimate key-fob is in the vehicle’s vicinity. Therefore, by
shutting down BCM/RCM (and thus PKES), the vehicle will
not be allowed to receive and authenticate any remote key
signals (sent by the key-fob).

Once the attacker succeeds in mounting DoB attack, there
is no need for the attacker to mount the attack again because
some ECUs that have entered bus-off will never boot up again
anyway. This allows the attacker to succeed in mounting the
attack in a very short period of time without leaving any trace,
thus making its forensic difficult.

Evaluation. Through experiments on one of our test ve-
hicles, we also verified the consequences of the proposed
DoB attack. After launching the DoB attack on one of our
parked test vehicles, only in a few seconds, we confirmed from
the CAN traffic that all ECUs on the bus were continuously
incurring and/or experiencing errors, causing all the ECUs to
enter the bus-off state. After mounting the DoB attack, we
observed most, but not all of the ECUs, recovered from the
bus-off state as configured. We observed that the number of
distinct message IDs sent on the bus was actually reduced
by 6 after the DoB attack. By mapping those missing IDs
to the actual transmitter ECU using the DBC file, we found
that RCM did not recover from the bus-off, i.e., remained
shut down, most probably due to its distinct recovery policy
configuration. For new functions such as anti-theft or engine
immobilizers to be materialized, RCM might have to be set in
that way, which ironically benefits the attacker in mounting and
succeeding in the DoB attack. Since the RCM was indefinitely
off, the key-fob was not authenticated and thus could not



establish a connection to the vehicle. In our testing, the vehicle
could not detect that the key was in its vicinity although the
key was in fact placed right in front of the dashboard.

As discussed earlier, this consequence comes from the
fact that OEMs (or their ECUs) may have different bus-off
recovery configurations. In our test vehicle, the setting of an
RCM to not recover from the bus-off “favors” the attacker in
mounting a critical DoB attack. We found the only way to
restore the vehicle back to its original state after a DoB attack
was to disconnect the battery, wait for a few minutes, and
re-connect the battery. Such a process resets the states stored
in each ECU and thus lets them run in their original/intended
states. However, imagining a victim confronting the symptoms
of DoB attack, i.e., the key-fob neither working nor being
detected, he might first try to change the key-fob battery.
Obviously, since that won’t work, he would consider the car
battery completely dead and therefore, would probably have
the car towed to the service station for a battery replacement,
wasting money and time unnecessarily.

We tested the DoB attack on only one test vehicle due
to the restriction imposed by the OEM that provided the
vehicle and collaborated with us. For safety, warranty, and
legal reasons, we did not launch the DoB attack on our
personal cars or other test vehicles, including those that we
had tested for the BD attack. DoB attack, however, can be
generalized since its effectiveness depends on the targeted
ECU’s software configuration (as specified in the ISO 11898-
1) and some ECUs are required to be set so that they do not
recover from bus-off.

C. Unattended Control (UC)

An interesting consequence of waking up ECUs is not
only the increased battery consumption but also the pathway
it provides for the attacker to control ECUs. After waking
up, since ECUs previously asleep now run in normal op-
erational mode—the same as when the ignition is on—the
CAN adversary becomes capable of controlling them. We refer
to “controlling an ECU” as executing the ECU’s function(s)
via message injections. The severity of malicious controls
when the vehicle’s ignition is on and moving would be very
different from that when the vehicle is parked with its ignition
off. Meanwhile ensuring that the brakes do not unwillingly
engage/disengage in a moving vehicle is safety-critical, it is
not when the ignition is off. However, harmful consequences
are still caused by an attacker targeting an unattended vehicle.

Unattended control of a vehicle has been shown to be
feasible by thieves and researchers using a device to mimic a
key-fob to unlock/lock doors or by mounting attacks on the
remote keyless entry systems [8, 11, 18]. Interestingly, attack-
ers can, in fact, achieve the same goal — launch the proposed
UC attack — by injecting messages from the compromised
modules via the wake-up functions and driver-context reverse
engineering. As a result, the adversary/thief can steal the
victim’s valuable items inside the car by unlocking the door or
opening the trunk without any key-fob, thus causing financial
losses to the victim.

With the similar evaluation set-up in BD attack, we were
able to unlock the door and opened the trunk on 4 test vehicles
via message injections. We omit the detailed results.

VI. RELATED WORK

Exploiting a remotely compromised ECUs, researchers have
shown how various vehicle maneuvers can be (maliciously)
controlled by injecting packets into the in-vehicle network [22,
25]. Similarly, in 2015, researchers were able to compromise
and remotely kill a Jeep Cherokee running on a highway [27],
which triggered a recall of 1.4 million vehicles. In 2016 and
2017, researchers were able to hack Tesla cars and control their
maneuvers [10]. Researchers have also demonstrated that an
adversary can shut down a specific ECU or even the entire
in-vehicle network merely via packet injections [14]. Also
proposed is new hardware that can generate/fabricate magnetic
fields, spoof the wheel speed sensor of a running vehicle, thus
activating the Anti-lock Braking System (ABS) [29].

Although such attacks were effective, they were mounted
and thus considered malicious only when ECUs were turned
on while the vehicle was running. To the best of our knowl-
edge, there has been no study on what the adversary can
achieve while the ignition and thus the ECUs are turned off.

VII. DISCUSSION

Countermeasures. As of the current CAN standard, since
the wake-up itself can be achieved with any CAN message
having a 010 bit-sequence, adding MAC or message encryp-
tion cannot prevent the adversary from waking up ECUs; a
message with MAC/encryption will still have such a sequence.

One may think of continuously running an IDS even when
the ignition is off in order to capture any abnormal wake-up
messages, e.g., wake-up messages should not be seen very
frequently. However, since the operation of an IDS would
increase the current drawn from the battery, such an approach
may defeat the very purpose of reducing battery consumption.
Like other ECUs asleep, the IDS ECU can also be configured
to sleep most of time and wake up only when it sees a wake-up
message. As a countermeasure against both types of attack, the
wake-up pattern of an IDS can then be modeled and used to
detect any abnormal wake-up requests without continuously
running it. Similarly, the IDS can be configured to wake
up periodically, check the battery SoC—if there was any
significant drain recently—and react accordingly. Moreover,
especially for the DoB attack, how to recover from the bus-
off state has to be re-examined in order to withstand the DoB
attack, as we had demonstrated.

The instant behavior of UC attack will make the (wake-up
pattern) model-based IDS ineffective, which can be addressed
by secure hardening against each attack vector in Figure 1.

Enhanced wake-up functionality. Partial deactivation of
subnets within a given network has been discussed and planned
by car manufacturers, mainly to reduce energy consumption
and CO2 emissions [23]. In such a setting, only the pre-defined
wake-up messages that pass the wake-up masks/filters of
selective ECUs can wake them up during operation. However,
since that message is “pre-defined” and can easily be learned



from the CAN traffic and its sudden change in the number of
message IDs, the wake-up message itself can still be learned
and used by an adversary.

Limitations. Although we succeeded in mounting the three
attacks on most test vehicles, not many ECUs were awakened
when a wake-up message was injected in older vehicles,
because they had less standby functions than newer models,
and thus had less ECUs asleep when the ignition was off. For
DoB attack, since its success will totally depend on how the
OEMs configured their “bus-off recovery” for different ECUs,
it might not be as feasible as BD and UC attacks. The BD and
UC attacks will still be feasible unless the standard wake-up
procedure is changed or standby functions are not installed.

VIII. CONCLUSION

In this paper, we have analyzed architectural vulnerabilities
and discovered Battery-Drain (BD), Denial-of-Body-control
(DoB), and Unattended Control (UC). They are counter-
intuitive in that attacks are commonly believed to be possible
and effective only with the ignition on. Specifically, an attacker
is shown to be able to remotely wake up ECUs and mount
attacks through the compromised dongle, TCU, or connected
vehicle app, even while the ignition is off. Through extensive
experiments on 11 real vehicles using 3 different remote
connectivities, such attacks are shown to be easy to mount
and very critical. Ironically, the adversary exploits, as attack
vectors, the in-vehicle network features originally designed
for either energy-efficiency or enhanced user experience (e.g.,
standby functions). There may still remain different types of
unknown and unintuitive vehicle vulnerabilities. It is therefore
important to understand what consequences existing stan-
dardized functionalities can lead to. It calls for concerted
efforts from both academia and industry on this possibility
and countermeasures thereof to build more secure vehicles.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF Grant CNS-
1646130 and the ONR Grant N00014-18-1-2141.

REFERENCES

[1] “Philips/NXP SJA1000 Stand-alone CAN controller datasheet.
[Online] Available: http://web.archive.org/web/20170926054355 /
https://www.nxp.com/,” 1997.

[2] “Microchip MCP2515 Datasheet.[Online] Avail-
able: http://web.archive.org/web/20171029071459 /
http://www.microchip.com/,” 2003.

[3] “Application-driven power management keys in-car telematics
[online] available: https://web.archive.org/web/20171105225654
/ https://www.eetimes.com/,” 2004.

[4] “ISO 11898-1. Road Vehicles interchange of digital informa-
tion controller area network (CAN) for high-speed communica-
tion [Online] Available: http://web.archive.org/web/20170609150140 /
https://www.iso.org/,” 2015.

[5] “Volvo wants your phone to be the only car key you ever need
[online] available: https://web.archive.org/web/20170703130519 /
https://www.theverge.com/,” 2016.

[6] “Lexus 2018 technology [online] available:
http://www.herbchamberslexusofhingham.com,” 2017.

[7] “Tesla model 3 has no key: so don’t forget your phone [online] available:
https://web.archive.org/web/20171115054847 / https://www.cnet.com/,”
2017.

[8] “Thefts spike as thieves harness technology to get inside locked cars
[online] available: https://newyork.cbslocal.com/2017/01/24/stolen-cars-
key-fob -technology,” 2017.

[9] “A reverse engineered interface for the bmw i3 electric car [online]
available: https://github.com/edent/bmw-i-remote,” 2018.

[10] “Tesla Responds to Chinese Hack With a Major Security Up-
grade. [Online] Available: http://web.archive.org/web/20171104002232
/ https://www.wired.com/,” WIRED, Sep. 2016.

[11] R. Benadjila, M. Renard, J. Lopes-Esteves, and C. Kasmi, “One car, two
frames: Attacks on hitag-2 remote keyless entry systems revisited,” in
Proceedings of the 11th USENIX Workshop on Offensive Technologies
(WOOT). USENIX Association, 2017.

[12] R. R. Brooks, S. Sander, J. Deng, and J. Taiber, “Automobile security
concerns,” IEEE Vehicular Technology Magazine, vol. 4, no. 2, pp. 52–
64, June 2009.

[13] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive experimental analyses of automotive attack surfaces,”
in Proceedings of the 20th USENIX Conference on Security, ser.
SEC’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 6–6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2028067.2028073

[14] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: ACM, 2016, pp. 1044–1055.

[15] ——, “Fingerprinting electronic control units for vehicle intrusion
detection,” in 25th USENIX Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, 2016, pp. 911–927.

[16] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and vulnera-
ble: A story of telematic failures,” in 9th USENIX Workshop on Offensive
Technologies (WOOT 15). Washington, D.C.: USENIX Association,
2015.

[17] A. Francillon, B. Danev, and S. Capkun, “Relay attacks on passive
keyless entry and start systems in modern cars,” in In Proceedings Of
The 18th Annual Network and Distributed System Security Symposium
(NDSS), 2011.

[18] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlid, “Lock it and still lose
it —on the (in)security of automotive remote keyless entry systems,”
in Proceedings of the 25th USENIX Security Symposium. USENIX
Association, 2016.

[19] B. Gaujal and N. Navet, “Fault confinement mechanisms on can:
Analysis and improvements,” IEEE Trans. on Vehicular Technology,
vol. 54, no. 3, pp. 1103–1113, 2005.

[20] T. Hogenmuller and H. Zinner, “Tutorial for Wake Up Schemes and
Requirements for Automotive Communication Networks [Online] Avail-
able: http://grouper.ieee.org/groups/802/3/RTPGE/,” Jul. 2012.

[21] CAN Specification Version 2.0, Robert Bosch GmbH [Online] Available:
http://web.archive.org/web/20170926054355 / https://www.nxp.com/, In-
ternational Standards Organisation (ISO) Std., 1991.

[22] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in 2010 IEEE
Symposium on Security and Privacy, May 2010, pp. 447–462.

[23] T. Liebetrau, U. Kelling, T. Otter, and M. Hell, “Energy
Saving in Automotive E/E Architectures [Online] Available:
https://www.infineon.com/,” Dec. 2012.

[24] J. Mikulski, Transport Systems Telematics: 10th Conference, TST 2010,
Katowice - Ustron, Poland, October 20-23, 2010. Selected Papers, ser.
Communications in Computer and Information Science. Springer Berlin
Heidelberg, 2010.

[25] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” Defcon 21, 2013.

[26] ——, “A survey of remote automotive attack surfaces,” Black Hat USA,
2014.

[27] ——, “Remote exploitation of an unaltered passenger vehicle,” Black
Hat USA, 2015.

[28] D. Nilsson and U.Larson, “A Roadmap for Securing Vehicles against
Cyber Attacks,” in NITRD National Workshop on High-Confidence
Automotive Cyber-Physical Systems, Apr. 2008.

[29] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in Proceedings of
the 15th International Conference on Cryptographic Hardware and
Embedded Systems, ser. CHES’13. Berlin, Heidelberg: Springer-Verlag,
2013, pp. 55–72.


