
Optimal Priority Assignment for Multiple
CAN/CAN-FD Buses with a Central Gateway

Taeju Park, Jiarui Lyu, and Kang G. Shin
Department of Electrical Engineering and Computer Science

The University of Michigan – Ann Arbor
Email: {taeju, jiaruil, kgshin}@umich.edu

Abstract—Automakers keep introducing new functions to ve-
hicles to entice customers, thus increasing the size/number of
in-vehicle buses. As a result, adopting multi-buses with a central
gateway is becoming a norm in current and future vehicles.
Since adding buses increases production cost, knowing whether
or not to add a bus at design time to meet the given require-
ments is essential to design a cost-optimized in-vehicle network.
However, due to the lack of an optimal priority-assignment
algorithm for multi-bus systems, it is difficult to determine
whether additional buses are needed. To address this difficulty,
we propose an optimal priority-assignment algorithm, called
OPMB, for multiple CAN/CAN-FD buses with a central gateway.
OPMB builds on backtracking, and is thus of exponential time
complexity. To reduce the execution time effectively for industry-
size problems, we identify several theory-proven search-space
reduction conditions. Our in-depth simulation has demonstrated
that OPMB outperforms the state-of-art priority-assignment
algorithms for multi-bus systems, and is suitable for high-speed
systems which represent future automotive systems. Also, OPMB
is shown to be feasible for most realistic automotive message sets.

I. INTRODUCTION

Automakers keep adding new functions to their products to
attract more customers. Since such newly-introduced functions
usually require communication with other electronic control
units (ECUs) to acquire & deliver sensor (e.g., speedometer,
radar, etc.) data, the amount of in-vehicle network traffic keeps
rising. Due to this increase of in-vehicle traffic, the controller
area network (CAN) — de facto standard of the in-vehicle
network which supports up to 1Mbps — reaches its bandwidth
limit. Thus, the automakers are adding more CAN buses and
connecting them via a central gateway to handle the increasing
vehicle data traffic. In other words, a system of multiple buses
connected via a central gateway has become a norm in new
vehicles. Recently, automakers have also begun replacing CAN
with a higher bandwidth protocol, Controller Area Network
with Flexible Data rate (CAN-FD), which can support up
to 12Mbps. However, since CAN has enough bandwidth and
speed to support certain domains like powertrain and is also
cheaper than CAN-FD, both CAN and CAN-FD are expected
to coexist in the foreseeable future.

Automakers are very conscious of production cost, and
hence want to design a cost-minimized in-vehicle network.
It is, therefore, important to know if a designed system
satisfies the requirements of given in-vehicle messages at
design time. If the system cannot meet the requirements, the
system designer must modify the designed system by either

adding more resources (e.g., more CAN/CAN-FD buses) or
optimizing the system further. Thus, it is necessary to have an
“optimal” priority assignment algorithm1 available at design
time. The optimal algorithm can then be used to determine
the (non)existence of a schedulable priority assignment for
the given set of messages on the designed system.

The priority-assignment problem has been studied by many
researchers for decades. Of them, Audsley’s optimal prior-
ity assignment (AOPA) [18] is proven optimal for a single
CAN/CAN-FD bus. Even though the central-gateway-based
architecture is commonly used in modern vehicles, to the
best of our knowledge, Joshi et al. [11] are the first and
the only one with focus on priority assignment for multi-
buses with a central gateway. Their algorithm is claimed to
be optimal for the multi-bus system under the assumption that
central gateway cannot change priority of in-coming network
traffic. However, the central gateway for automotive (e.g.,
AUTOSAR gateway) can easily change the priority of in-
coming network messages with very little cost, and hence there
is no reason to restrict priority changes at central gateway
in practice. Also, to the best of our knowledge, there is no
optimal algorithm proposed thus far for the multi-bus system
where the central gateway can change the priority of in-
coming network messages. Thus, we need an optimal priority
assignment algorithm for the system.

To meet this need, we propose an Optimal Priority-
assignment algorithm for Multiple CAN/CAN-FD Buses with
a central gateway (OPMB). It builds on backtracking (brute-
force search with theoretically-proven pruning) to assign pri-
orities to given messages. In particular, OPMB can tell the
system designers the (non)existence of priority assignments
which satisfy the timing requirements of the given set of
messages in a networked system. However, the brute-force
search incurs exponential time complexity, making it essential
to prune unnecessary searches. We have identified several ways
of pruning unnecessary searches and proved that the identified
pruning does not affect the discovery of a schedulable priority
assignment. We have also conducted extensive simulation by
generating realistic in-vehicle messages. Our simulation results
show OPMB is able to determine whether schedulable priority
assignment exists or not for 96.9% of realistic automotive

1If the optimal priority-assignment algorithm cannot find a schedulable
priority assignment, no other assignment algorithm can find a schedulable
priority assignment either.

message-sets within 1 second. Also, the results show that
OPMB outperforms the state-of-art priority assignment algo-
rithms in terms of schedulability coverage.2

This paper makes the following main contributions:
• A counter-example showing that global priority assign-

ment cannot be optimal for a multi-bus system where
the central gateway can alter the priority of in-coming
network messages.

• Development of an optimal priority-assignment algo-
rithm, OPMB, for a multiple CAN/CAN-FD bus system
with a central gateway;

• Demonstration of utility of OPMB for industry-
size problems and its superiority to existing priority-
assignment algorithms for the system consisting of mul-
tiple CAN/CAN-FD buses with a central gateway.

The rest of paper is organized as follows. We discuss the
related work in Section 2. We provide the primers of CAN
and CAN-FD in Section 3, and describe the system model
in Section 4. We prove that global priority assignment algo-
rithm cannot be optimal in Section 5, and state the priority-
assignment problem in Section 6. In Section 7, we present
the new optimal priority-assignment algorithm, OPMB, for
multiple CAN/CAN-FD buses with a central gateway. Section
8 evaluates the utility of OPMB by measuring its execution
time and performance in comparison with the existing priority-
assignment algorithms. We discuss the limitation of OPMB in
Section 9 and conclude the paper in Section 10.

II. RELATED WORK

A. Priority assignment for CAN/CAN-FD

Since priority assignment to CAN/CAN-FD messages
greatly affects the schedulability of a given set of messages,
there have been various priority-assignment algorithms pro-
posed for CAN/CAN-FD buses. The most representative of
them is Audsley’s optimal priority assignment (AOPA) [1],
which is proven optimal by Davis et al. [18] for a single
CAN/CAN-FD bus without priority inversion, but priority
inversions can occur in practice [6, 12, 13].

The variants of AOPA have also been proposed to address
practical problems. For example, Davis et al. [7] proposed
a robust priority assignment by maximizing the number of
successive tolerable transmission errors without any timing
violation, in order to account for transmission errors that may
happen in practice. Schmidt et al. [19] considered backward
compatibility in a priority assignment to reflect a condition
in which some messages have fixed IDs. Additionally, the
limitation of their approach due to the insufficient gap between
fixed IDs is addressed in [8]. Joshi et al. [11] proposed an
algorithm for multiple CAN-FD buses with a central gateway.
Even though their algorithm is claimed to be optimal for multi-
bus systems, we find that claim does not hold when buses have
different link speeds.

2Defined as the ratio of the number of schedulable cases (by using a priority
assignment algorithm) to the number of tested cases.

Fig. 1. CAN frame (Up) and CAN-FD frame (Down)

There are also different types of ID/priority assignment
algorithms for CAN/CAN-FD messages. Pölzlbauer et al. [17]
considered the extensibility problem of ID assignment for
CAN. Park et al. [15] proposed a message priority-assignment
algorithm for a bus shared by both CAN nodes and CAN-FD
nodes where changing the operation mode of CAN controller
is required. The algorithm is designed based on NP-EDF [10]
to minimize the number of operation-mode changes.

B. Priority assignment for distributed real-time system

Multiple buses with a central gateway can be regarded as
a distributed real-time system since we need to schedule each
message on two buses to meet its end-to-end deadline. The task
priority assignment in distributed real-time systems has been
studied extensively. This problem is NP-hard [22], and hence
various heuristic algorithms have been proposed. Garcia et
al. [9] proposed a heuristically optimized priority assignment
(HOPA) by leveraging those design parameters affecting the
worst-case response time. Azketa et al. [4] proposed use of the
genetic algorithm to find a schedulable priority assignment.
Yoon et al. [23] proposed zero slack priority assignment
(ZSPA), which decomposes an end-to-end deadline into local
per-task deadlines and assigns priorities to the sub-tasks using
AOPA. If the worst-case response time of a sub-task after
assigning a priority is smaller than its local deadline, the
remaining slack is used for other sub-tasks. Thus, initially-
determined local deadlines are automatically adjusted in the
priority assignment.

III. CAN AND CAN-FD PRIMERS

We briefly introduce necessary basics of CAN and CAN-FD
including frame format, bit rate change, message arbitration,
and the analysis of a CAN message’s worst-case latency.

A. Frame Format

As shown in Fig. 1, CAN and CAN-FD frames consist
of start-of-frame (SOF), arbitration, control, data, cyclic re-
dundancy check (CRC), acknowledgment (ACK), and end-
of-frame (EOF) fields. The SOF, ACK and EOF fields of
a CAN-FD frame are the same as those of a CAN frame.
However, there are several differences between CAN and
CAN-FD frames in the arbitration, control, data, and CRC

2

TABLE I
SUPPORTED PAYLOAD SIZE

Data Frame Type DLC Payload Size CRC Bits

CAN & CAN-FD

0000 0

CAN:15
CAN-FD:17

0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

CAN 1xxx 8

CAN-FD

1000 8
171001 12

1010 16
1011 20

21
1100 24
1101 32
1110 48
1111 64

fields. Especially, two special bits are added in the control
field of CAN-FD for boosting the transmission speed.
• Flexible Data-rate Format (FDF) bit indicates whether the

frame is encoded as CAN frame (dominant bit) or CAN-
FD frame (recessive bit).

• Bit Rate Switch (BRS) bit indicates whether the bit time
is changed in data phase (recessive bit) or not (dominant
bit).

Table I shows CAN and CAN-FD payload sizes. Since
CAN only supports at most 8 bytes data per frame, this small
payload size has been the roadblock in implementing several
functions, such as fast flashing of an updated firmware. To
solve these problems, CAN-FD supports up to 64 bytes data
per frame. However, since only 4 bits are used for DLC, it
is not enough to specify the payload size of 0–64. Thus, the
discretized payload size is supported as shown in Table I. Also,
the increased payload size requires more redundant bits to
check the correctness in transmitted data, thus increasing the
number of CRC bits along with the payload size.

B. Switching bit rate

Unlike CAN, CAN-FD is separated into two phases, arbitra-
tion and data phases, as shown in Fig. 1. The interval between
BRS bit and CRC delimiter bit is defined as the data phase.
The other intervals are defined as the arbitration phase.

The purposes of this separation are to support the CAN-
FD’s improved transmission rate and preserve the key features
of CAN, such as the non-destructive arbitration mechanism.
Thus, CAN-FD defines two bit times: nominal bit time (tnom)
and data bit time (tdata). These two bit times are configured
with the consideration of properties of a CAN-FD network
(e.g., the number of ECUs, the length of wire, limitations
of CAN-FD transceivers, etc.) when a CAN-FD controller is
initialized. Note that tdata has to be smaller than or equal
to tnom. The bit time for the arbitration phase is always
configured to tnom. However, the bit time for the data phase
is determined by the BRS bit value. If the BRS bit of a CAN-

FD frame is 1 (recessive bit), then the bit time is switched
from tnom to tdata in order to bump up the transmission rate.
Otherwise, tnom holds for the data phase.

C. Message scheduling on CAN/CAN-FD bus

CAN/CAN-FD schedules messages based on the value of
11-bits (or 29-bits) identifier (ID) field of messages in a decen-
tralized way. When multiple ECUs transmit CAN messages at
the same time, the message with the lowest ID value is selected
to be transmitted under the CAN protocol. ECUs take or filter
out the transmitted message based on the bit-pattern in ID field
using a hardware filter. If a message loses the arbitration, it will
contend again after the transmission of the currently selected
message. So, by assigning IDs properly, the system designer
can control the order of transmitting messages. That is, priority
assignment to CAN messages is equivalent to ID assignments.

D. Timing Analysis of CAN/CAN-FD

Applications that exchange messages on a CAN/CAN-FD
bus are often time-critical (e.g., engine control commands).
Thus, analyzing the worst-case response time (WCRT) of
CAN/CAN-FD messages and proving their WCRT to be less
than their deadline is essential for time-critical applications.
We will henceforth use the WCRT and the worst-case delay
interchangeably.

Davis et al. [18] proposed a way of analyzing the WCRT of
CAN messages on a single bus. They decompose the WCRT
(Ri) of a CAN message (mi) into three parts: (1) release jitter
(Ji), (2) queuing delay of the q-th instance of CAN message
at a transmission buffer in CAN controller (wi(q)), and (3)
transmission time of the message on the bus (Ci). Since the
worst-case release jitter and the transmission time on a bus
are constant, they focused on analysis of the queuing delay at
the transmission buffer.

To derive the worst-case queuing delay of a message, they
analyzed critical instant and busy period for every instance of
a message. They recursively derived the worst-case queuing
delay of a message as:

wn+1
i (q) = Bi + qCi +

∑
∀k∈hp(i)

⌈
wn

i (q) + Jk + τ

pk

⌉
Ck. (1)

Note that if wn+1
i (q) = wn

i (q) or wn
i (q) is larger or equal

to deadline of mi, the recursive computation terminates. They
selected the maximum of the response times for calculated
instances as the message’s WCRT:

Ri(q) = Ji + wi(q)− qpi + Ci (2)
Ri = max

q=0,...,qmax
Ri(q). (3)

where pi is the message’s period, Bi is the blocking time by
a lower-priority message on the CAN bus, hp(i) is a set of
messages whose priorities are higher than mi, and τ is a bit
time. Since the q-th instance of the message is released at qpi,
qpi is subtracted from the completion time of the q-th instance

3

Fig. 2. System model of multiple CAN/CAN-FD buses with a central gateway

to calculate the response time as in Eq. (3). The qmax can be
derived by computing the longest busy period (LBPi) as:

LBPi = Bi +
∑

∀k∈hp(i)∪{i}

⌈
LBPi + Jk + τ

pk

⌉
Ck. (4)

qmax =

⌈
LBPi + Ji

pi

⌉
− 1 (5)

Message scheduling and queuing for CAN-FD is the same
as those for CAN, so we can apply the above equations directly
to compute the WCRT of a CAN-FD message. The only differ-
ence between them is the computation of the transmission time
(Ci) since the bit-rate can be switched during a transmission
under CAN-FD.

Although there are variations [12, 13, 5, 3, 16] of the above
analysis to consider various practical issues that could affect
the WCRT of a CAN message, we will use the basic analysis
in this paper.

IV. SYSTEM MODEL

Fig. 2 illustrates the system under consideration which is
composed of multiple CAN/CAN-FD buses, ECUs, and a
central gateway. This central gateway-based networked system
is commonly used in modern vehicles (e.g., Volkswagen Atlas
2018). Several ECUs and the gateway are connected to a bus,
and they use the shared medium to transmit messages to other
ECUs or the gateway on the bus.

A. Bus and message models

If every ECU connected to a shared bus has the abil-
ity to receive a CAN-FD data frame using its CAN-FD
controller/transceiver, we call the shared bus CAN-FD bus.
Otherwise, we call the shared bus CAN bus. We assume that
only messages compatible with the CAN data frame format
can be transmitted on a CAN bus. Likewise, we assume
that only messages compatible with the CAN-FD data frame
format can be transmitted on a CAN-FD bus. Thus, a bus (bi)
can be modeled as bi = { ~ecui, typei, ls

arb
i , lsdatai } where

• ~ecui: a set of ECUs connected to bi;
• typei ∈ {CAN,FD}: type of bi;
• lsarbi : link speed of bi during the arbitration phase;
• lsdatai : link speed of bi during the data phase.
ECUs generate periodic messages (mi) which usually con-

tain sensor data and/or control commands. We call the ECU
that generates (receives) a message mi source (destination)

Fig. 3. Message routing in the gateway based on the embedded routing table

ECU of mi and the bus connected to the ECU source (des-
tination) bus. Since a sensor data can be used by multiple
applications on different ECUs, a message can have more than
one destination ECU. When the source ECU of a message and
its destination ECU(s) are on different buses, the message is
forwarded and routed to the destination ECU(s) via the central
gateway. In addition, due to the characteristics of vehicle
functions, the sensor data or control command carried in a
message has a valid time, thus imposing a timing constraint
on the message. For example, a braking command from an
ADAS3 application (e.g, cruise control) should be delivered to
the brake module within 10ms to avoid a crash. Consequently,
a message is modeled as mi = {srci, ~desti, pi, di, li}, where
• srci: source ECU of mi;
• ~desti: a set of destination ECUs of mi;
• pi: period of mi;
• di: relative deadline of mi;
• li: payload size of mi.
Since a message can be transmitted on multiple (source and

destinations) buses, we need to treat a message on different
buses as different messages so as to assign different priorities
for each bus. Thus, we let mi,j denote mi on bus j. In our
priority-assignment algorithm, mi,j has a ”local” deadline di,j ,
so mi,j is described as {pi,j , di,j , li,j , tri,j , χi,j}, where
• pi,j : period of mi,j , (pi,j = pi);
• di,j : relative deadline of mi,j ;
• li,j : payload size of mi, (li,j = li);
• tri,j : transmission time of mi,j ;
• χi,j : class of mi,j (χi,j ∈ {NOF,SRC,DEST}).
We classify a message mi,j to be one of three types:
• χi,j = NOF if the message is not forwarded through the

central gateway, i.e., mi is only transmitted on bus j;
• χi,j = SRC if mi is forwarded via the gateway and j is

the source bus;
• χi,j = DEST if mi is forwarded via the gateway and j

is one of the destination buses.

B. Gateway model

The central gateway processes in-coming messages to be
routed to their destination ECUs based on the embedded
routing table in the gateway. Fig. 3 illustrates the message
routing in the gateway. If the source ECU and a destination
ECU are connected to the same type of buses (e.g., source
and destination ECUs are connected to a CAN bus), only

3Advanced Driver-Assistance System

4

the identifier (ID) field of the in-coming message is changed
and the message is forwarded to the destination ECU like in
AUTOSAR 4 PDU-based routing [2].

On the other hand, if the source and destination ECUs are
connected to different types of bus (e.g., the source ECU is
connected to CAN bus, but the destination ECU is connected
to CAN-FD bus), a frame format conversion is required. A
conversion from CAN frame to CAN-FD frame is simple
because only the header and tail format changes are required.

However, a conversion from CAN-FD frame to CAN frame
is tricky because the maximum payload size of CAN-FD frame
is much larger than that of a CAN frame. For example, a 16-
byte CAN-FD frame cannot be transformed into a single CAN
frame because the maximum payload size of CAN frame is
8 bytes. If a CAN-FD frame with the payload of > 8 bytes
needs to be forwarded to a CAN bus, the gateway must split
the CAN-FD frame into multiple CAN frames. For example, if
a 12-byte CAN-FD frame has to be forwarded to a CAN bus,
then the CAN-FD frame will be fragmented into one 8-byte
CAN frame and one 4-byte CAN frame by the gateway. The
gateway then applies the same ID to the fragmented frames
based on the routing table as described in Fig. 3.

Our model accounts for the conversion of a CAN-FD frame
to multiple CAN frames by summing up the transmission times
of the fragmented frames. For example, if 12-byte CAN-FD
frame is fragmented into one 8-byte CAN frame and another
4-byte CAN frame to transmit on CAN bus j, then tri,j is
the sum of the transmission times of 8-byte and 4-byte CAN
frames.

V. GLOBAL PRIORITY ASSIGNMENT VS. PER-BUS PRIORITY
ASSIGNMENT FOR A CAN/CAN-FD MULTI-BUS SYSTEM

There are two possible ways of assigning priorities to mes-
sages for a multi-bus system: (1) global priority assignment
and (2) per-bus priority assignment. Global priority assignment
algorithms assign a unique priority to each message for the
entire system. For example, under a global priority assignment
policy, if the priority of mi on b1 is 1, then that of mi on any
other bus is also 1. Also, the priority of mi should be different
from the priority of mj if mi 6= mj . The Modified Audsley’s
Algorithm (MAA) [11] is an example of global priority
assignment. On the other hand, per-bus priority assignment
algorithms assign a unique priority to each message on a bus.
For example, under a per-bus priority assignment policy, any
value can be the priority of mi on bj if the value is a unique
priority for bj . ZSPA [23] is an example of per-bus priority
assignment. We compare these two priority assignments with
respect to implementation and schedulability.

A. Implementation

Since the value in the identifier field represents the priority
of a CAN/CAN-FD message, to implement the per-bus prior-
ity, the central gateway must be able to change the ID value of
in-coming messages according to the embedded routing table.

4AUTomotive Open System ARchitecture

However, to implement global priority, the central gateway
only needs to forward incoming messages to destination buses
according to the embedded routing table. Thus, additional
memory space is needed for the per-bus assignment as a
penalty to store new IDs for incoming messages in the central
gateway. The required additional memory space increases with
the size of routing table. For example, if we assume there
are 500 entries in the routing table, additional 500× 2Bytes
(assuming 2Bytes used for an ID) for the new ID are required.
Also, the execution time for changing ID is also the penalty of
per-bus assignment. However, because changing the value of
ID requires a single memory copy instruction, the execution
time would be very small.

B. Schedulability

Even though global priority assignment has advantage in
memory usage over per-bus priority assignment, it has a
disadvantage in finding schedulable priority assignment. The
following example shows that global priority assignment can-
not be optimal for a CAN/CAN-FD multi-bus system where
the gateway can change the IDs of messages.
• b1 = {{ecu1}, 0, 1Mbps, 1Mbps};
• b2 = {{ecu2}, 1, 500Kbps, 5Mbps};
• m1 = {ecu1, ecu2, 400us, 400us, 8byte};
• m2 = {ecu1, ecu2, 400us, 400us, 8byte}.
With a global priority assignment, there are two ways of

priority assignment for the above example. The first way is
that m1 has priority 1 (higher) and m2 has priority 2 (lower).
In this case, the WCRT of m1 on b1 is 135µs, and that of
m1 on b2 is 86.6µs according to Eq. (3). Thus, the worst-case
end-to-end (e2e) delay of m1 (135µs + 86.6µs = 221.6µs)
is smaller than its deadline (400µs). However, the WCRT of
m2 on b1 is 270µs, and that of m2 on b2 is 173.2µs. Thus,
the worst-case e2e delay of m2 (270µs+173.2µs = 443.2µs)
exceeds its deadline (400µs).

The second way is that m1 has priority 2 (lower), and m2

has priority 1 (higher). However, the worst-case e2e delay of
m1 is larger than its deadline. Thus, any global priority assign-
ment algorithms cannot find a schedulable priority assignment
for this example.

However, there is a schedulable priority assignment if the
same messages on different buses can have different priorities
(per-bus priority assignment) as follows: (priority 1 to m1,1),
(priority 2 to m2,1), (priority 1 to m2,2), and (priority 2 to
m1,2). With these priority assignments, the WCRT of m1 on b1
is 135µs, and that of m1 on b2 is 173.2µs according to Eq. (3).
Thus, the worst-case e2e delay of m1 (135µs + 173.2µs =
308.2µs) is less than its deadline (400µs). Also, the worst-
case e2e delay of m2 (270µs + 86.6µs = 356.6µs) is less
than its deadline (400µs). Hence, global priority assignment
cannot be optimal.

VI. PROBLEM STATEMENT

Determining whether a designed in-vehicle network can
meet the requirements of a given set of messages is of great

5

Fig. 4. Priority-assignment table

importance to minimization of the in-vehicle network cost,
thus calling for an optimal priority-assignment algorithm.

To meet this need, we first want to determine whether there
exists a schedulable priority assignment for a given set of
messages M = {m1, . . . ,mn} on a designed network of buses
B = {b1, . . . , bm} such that

∀i, delay+i,src + delay+cgw + delay+i,dest ≤ di,

where delay+i,src is the worst-case delay on the source network
(the time between mi’s release at srci and its arrival at a
Rx buffer of the central gateway), delay+cgw is the worst-case
processing delay in the gateway (the time between mi’s arrival
at the Rx buffer of the source network and its arrival at the
Tx buffer of the destination network within the gateway), and
delay+i,dest is the worst-case delay on the destination network
(time between mi’s arrival at the Tx buffer of the destination
network in the gateway and its arrival at the destination ECU).

Our additional goal is to find and provide a schedulable
priority assignment, if exists, for the given set M of messages
on the set B of buses.

VII. OPMB

We now present an Optimal Priority assignment for Multi
CAN/CAN-FD Buses (OPMB). OPMB is a backtracking-
based priority-assignment algorithm. Since backtracking is ba-
sically a brute-force search with theoretically-proven pruning,
it can always determine whether a solution exists or not. That
is, our algorithm is intrinsically optimal priority assignment
algorithm. However, without efficient pruning, it may consume
a huge amount of time before it terminates. Thus, we need to
overcome the key challenge of identifying theoretically-proven
pruning.

A. Input parameters and return values

Before delving into OPMB, we first need to define the state
of buses and the failure state, S and Sfail, respectively, which
are used as the input parameter and the return value in OPMB.

The state S of buses consists of the states of individual
buses, i.e., S = {S1, . . . , Sn}. The state Sj of a bus j consists
of a set of assigned messages (AMj), a set of unassigned
messages (UMj) on the bus, and the current lowest priority
(CLPj) of the bus. Thus, Sj = {AMi, UMi, CLPi}. For
example, if there is no assigned message for bus j, then
CLPj = 1 (the lowest priority) as shown in Fig. 4 (Bus m).
If there is one assigned message for bus j, then CLPj = 2

Algorithm 1: OPMB
Input : S: the current state of buses
Output: Sfail: the failure state

1 if isSolutionFound(S) == true then
2 return NULL;
3 end
4 Sfail ← NULL;
5 schd← getSchedulableAssignments(S);
6 fix← getF ixableAssignment(S);
7 if j = failureCheck(schd) then
8 Sfail.bus← j;
9 Sfail.state← S.Sj ;

10 return Sfail;
11 end
12 if fix 6= ∅ then
13 S′ ← applyF ixableAssignment(S, fix);
14 Sfail ← OPMB(S′)
15 return Sfail;
16 end
17 for i← 1 to |schd| do
18 correctable← false;
19 if Sfail 6= NULL then
20 if schd[selIdx].bus == Sfail.bus or

isCrpdInUMf (schd[selIdx], Sfail) then
21 correctable = true;
22 end
23 if correctable == false then
24 continue;
25 end
26 end
27 selIdx← i;
28 S′ ← applySchedulableAssignment(S, schd[i]);
29 Sfail ← OPMB(S′);
30 if Sfail == NULL then
31 return NULL;
32 end
33 end

(the second lowest priority) as shown in Fig. 4 (Bus 1), and
so on. Also, If the source or the destination of a message (mi)
is on bus j, it (mi,j) must belong to either AMj or UMj .

The failure state FS consists of the index of failed bus j
and the state of bus j at the time of failure Sf

j ← Sj , and
thus FS = {j, Sf

j }.

B. Initial state

In the initial state of a bus, every message belongs to the
unassigned message set, i.e., ∀i, j mi,j ∈ UMj , AMj = ∅.
Also, CLPj is initialized to 1 (the lowest priority for each
bus) in the initial state.

Since mi,j needs a local deadline, we have to assign it a
local deadline di,j . Initially, we assume that mi,j can fully
consume the given time margin di for mi. Thus, we assign
the value of di to di,j if χi,j = SRC or χi,j = NOF , and
we assign the value of di − tri,srci to di,j if χi,j = DEST .
For example, if di = 5 and mi is transmitted on buses 1 and
2, then di,1 = 5 and di,2 = 5 − tri,1. The local deadline is
changed during the execution of OPMB.

After assigning the local deadline, we subtract delay+cgw
from di,j if χi,j = SRC or χi,j = DEST to ignore

6

Fig. 5. Overall procedure of OPMB

the gateway processing time in the process of OPMB. For
example, if delay+cgw is 1, then di,1 = 4 and di,2 = 4− tri,1.

C. OPMB overall procedure

OPMB is designed to fill the priority assignment table
shown in Fig. 4. Algorithm 1 and Fig. 5 describe the overall
algorithm flow of OPMB, which is implemented recursively.
On each function call, OPMB assigns CLPj to unassigned
messages mi,j ∈ UMj , and calls OPMB recursively for the
reduced problem (S′) as illustrated in Fig. 5. If assigning
priority to every message is completed successfully, OPMB
returns NULL. To determine the assignment to apply, OPMB
first finds the set of schedulable assignments and a fixable
assignment for the given state S. Note that we will define
and detail the schedulable and fixable assignments. Before
applying either a schedulable or a fixable assignment, OPMB
checks whether there is a failure condition in the given
state S as stated in Lines 7-11 of Algorithm 1. If there is
no schedulable assignment for bus j and UMj 6= ∅, the
failureCheck procedure returns the failed bus j as well as its
state.

If there is a fixable assignment, then OPMB applies that
assignment for the given state S. Otherwise, OPMB applies
a schedulable assignment. If OPMB gets a failure return for
the reduced problem (with a schedulable assignment), OPMB
tries another schedulable assignment. For instance, suppose
m1,1, m1,2, m2,1 and m2,2 are unassigned messages for the
given state S as illustrated in Fig. 5. Also, suppose OPMB
assigns priority CLP1 to m1,1 and calls OPMB with the
reduced problem (S′), recursively. If OPMB gets a failure
return for the reduced problem, OPMB tries another way of
assigning priorities to unassigned messages (e.g., CLP1 to
m2,1).

D. Pruning unnecessary searches

1) Schedulable assignments: For a given state S, if a
certain assignment immediately violates the requirement, we
have to discard the branch with that assignment and select
a different assignment to find a solution for the given state.
Thus, for the given state, OPMB discards any assignment that
violates timing constraints (delay+i,j > di,j) as shown in Lines

Algorithm 2: getSchedulableAssignment
Input : S: the current state of buses
Output: schd: a set of schedulable assignment

1 schd← φ
2 UM = UM1 ∪ ... ∪ UMm // m is the number of buses
3 for mi,j ∈ UM do
4 compute delay+i,j by applying CLPj to mi,j

5 if delay+i,j ≤ di,j then
6 add (CLPj to mi,j) to schd
7 end
8 end
9 delList← φ

10 for (CLPj to mi,j) ∈ schd do
11 for (CLPj to mp,j) ∈ schd do
12 removeF lag ← true
13 for k ← 1 to |B| do
14 if mi,k exists and mp,k exists then
15 if min(di,k, di − delay+i,j) ≤

min(dp,k, dp − delay+p,j) then
16 removeF lag ← false
17 end
18 end
19 end
20 if removeF lag == true then
21 add (CLPj to mp,j) to delList
22 end
23 end
24 end
25 return schd− delList;

5-7 of Algorithm 2. Note that we compute delay+i,j based on
Eq. (3). OPMB only selects schedulable assignments which
are defined as:
• CLPj to mi,j when delay+i,j ≤ di,j .
Suppose OPMB applies a schedulable assignment (CLPj

to mi,j), then delay+i,j is determined. So, the local deadline of
mi,j’s corresponding messages (∀k mi,k such that χi,k 6= χi,j)
has to be re-evaluated because the amount of time can be used
by mi,k is reduced, i.e., di,k is re-evaluated after applying a
schedulable assignment as:

di,k = min(di,k, di − delay+i,j).

We can further prune the unnecessary searches by excluding
some schedulable assignments from the set of schedulable
assignments. Suppose a schedulable assignment A assigns
CLPj to the message mi,j and a schedulable assignment A′

assigns CLPj to the message mp,j . Also, suppose that if mi,k

exists, then mp,k also exists for every bus k. We can exclude
the assignment A′ from the set of schedulable assignments if
min(dp,k, di − delay+p,j) < min(di,k, di − delay+i,j) for every
bus k. Because the corresponding messages on the other bus
can have a larger local deadline by selecting A than selecting
A′, A is a better choice than A′. Note that large time margin
is always better than small time margin to be schedulable.
Thus, we exclude A′ from the set of schedulable assignments
as stated in Line 25 of Algorithm 2.

2) Fixable assignments: Suppose state S becomes S′

when we select an assignment as illustrated in Fig. 6. If the

7

Algorithm 3: getFixableAssignment
Input : S: the current state of buses
Output: fix: a set of fixable assignments

1 fix← φ;
2 UM = UM1 ∪ ... ∪ UMm; // m is the number of buses
3 for mi,j ∈ UMj do
4 compute delay+i,j by applying CLPj to mi,j ;
5 if (χi,j == NOF and delay+i,j ≤ di,j) or

(χi,j == DEST and mi,srci ∈ AMsrci and
delay+i,j ≤ di,j) then

6 add (CLPj to mi,j) to fix;
7 continue;
8 end
9 addF lag ← true;

10 for k ← 1 to m do
11 if mi,k exists and χi,j == SRC and

χi,k == DEST and
delay+i,j + delay+i,k > di − delay+cgw then

12 addF lag ← false;
13 break;
14 end
15 end
16 if addF lag == true then
17 for k ← 1 to |B| do
18 if mi,k exists then
19 add (CLPk to mi,k) to fix;
20 end
21 end
22 end
23 end
24 return fix;

non-existence of a solution for S′ can guarantee the non-
existence of a solution for S, we do not need to search a
solution with other assignments for the given state S. Thus, the
number of assignments we have to explore for the given state
S becomes 1. We call such assignments fixable-assignments
for the given state S. For example, in Fig. 5, if failure to find a
solution with the assignment of CLP1 to m1,1 can guarantee
the non-existence of a solution for the given state, we do not
need to try any other assignments such as CLP1 to m2,1. We
have identified three fixable-assignments as:

• FA1: CLPj to mi,j when χi,j = NOF , delay+i,j ≤ di,j .
• FA2: CLPj to mi,j when χi,j = DEST , mi,srci ∈
AMsrci , delay

+
i,j ≤ di,j .

• FA3: CLPj to mi,j and CLPk to mi,k when χi,j =
SRC, χi,k = DEST , ∀k delay+i,j + delay+i,k ≤ di −
delay+cgw.

How to obtain these fixable assignments for a given state S
is described in Algorithm 3.

Lemma 1. Suppose the given state S is changed to S′ after
applying a FA1. Then, the non-existence of a solution for S′

guarantees the non-existence of a solution for S.

Proof: Since χi,j = NOF , mi is not forwarded via a
central gateway. Thus, the assignment (CLPj to mi,j) only
affects the state of bus j (Sj) from the given state S. Hence,
the assignment only affects the message schedulability on bus

Fig. 6. If CLPj to mi,j is a fixable assignment for a given state S, we do
not need to move forward with other assignments from S.

j.
Suppose there is no solution for S′, but a solution exists for

S. That is, every message on bus j is schedulable in state S,
but the assignment makes ∃k mk,j ∈ UMj unschedulable.

When CLPj is assigned, delay+k,j of messages (∀k mk,j ∈
UMj) is not affected by the assignment. Also, the assignment
does not change dk,j . Hence, the assignment does not affect
the schedulability of ∀k mk,j ∈ UMj . That is, the assignment
cannot make ∀k mk,j ∈ UMj unschedulable. It contradicts
the supposition. Thus, if there is no solution for S′, then there
is no solution for S.

Lemma 2. Suppose the given state S is changed to S′ after
applying a FA2. Then, the non-existence of a solution for S′

guarantees the non-existence of a solution for S.

Proof: Since χi,j = DEST and mi,srci ∈ AMsrci , the
assignment CLPj to mi,j only changes the state of bus j
(Sj) from the given state S. Thus, the assignment can only
affect the message schedulability on bus j. Similarly to the
proof of Lemma 1, we can show that the assignment cannot
make ∀k mk,j ∈ UMj unschedulable. Thus, if there is no
solution for S′, then there is no solution for S.

Lemma 3. Suppose the given state S is changed to S′ after
applying a FA3. Then, the non-existence of a solution for S′

guarantees the non-existence of a solution for S.

Proof: Unlike FA1 and FA2, FA3 makes multiple assign-
ments at once, and changes the state of multiple buses (j and
k) from the given state S. Thus, FA3 can affect the message
schedulability on the multiple buses.

Suppose there is no solution for S′, but a solution exists
for S. It means that every message on the multiple buses is
schedulable in the state S, but the assignments make at least
one unassigned message on the buses unschedulable.

Since CLPj is assigned to mi,j and CLPk is assigned to
∀k mi,k at once, the assignments do not change any local
deadline of messages on the buses. Also, the worst-case delay
of unassigned messages on the buses is not affected by the
assignments. Thus, like the proofs of Lemma 1 and 2, the
assignments cannot make a message unschedulable on the
buses. Thus, if there is no solution for S′, then there is no
solution for S.

3) Restriction from Failure State: Suppose OPMB per-
forms a schedulable assignment A in the given state S, and
the assignment returns a failure state. To find a solution for
the state S, OPMB tries a different schedulable assignment

8

Fig. 7. Encountering failure without resolving its cause

(A′) if exists. However, if A′ does not resolve the cause of
failure OPMB experienced with A, OPMB will encounter
the same failure again as illustrated in Fig. 7. Thus, to prune
the unnecessary search (A′), OPMB checks whether A′ can
potentially resolve the received failure state or not.

When OPMB cannot find any schedulable assignment for
bus j, OPMB returns the failure state (FS = {j, Sf

j }). To
resolve the failure state (there is no schedulable message in
UMf

j), at least one applied assignment related to UMf
j has to

be revoked. Thus, OPMB allows A′ to be tried only when A is
related to UMf

j . In other words, OPMB allows an assignment
(A′) to be tried only when (1) A assigns CLPj to a message on
the failed bus j or (2) A assigns a priority to the corresponding
message in UMf

j as stated in Lines 19–26 in Algorithm 1.

Lemma 4. Suppose OPMB fails to find a schedulable priority
assignment for a given state S with an assignment A and get
a failure state FS = {j, Sf

j }. Also, suppose A does not assign
priority to a message on the failed bus j and A does not assign
priority to the corresponding message in UMf

j . Then, OPMB
cannot find a schedulable priority assignment with any other
schedulable assignment (A′) for the given state S.

Proof: Suppose OPMB can find a schedulable priority as-
signment with an arbitrary assignment A′, i.e., every message
on bus j is schedulable with A′. In other words, assignment
A makes messages in UMf

j unschedulable. However, the
local deadlines of messages in UMf

j are not affected by
the assignment A because A does not assign priority to the
corresponding message in UMf

j . Also, the worst-case delays
of messages in UMf

j are not affected by the assignment
A because A does not assign priority to a message on the
failed bus j. Hence, A cannot make a message in UMf

j

unschedulable. It contradicts the supposition. Thus, OPMB
cannot find a schedulable priority assignment with an arbitrary
assignment A′.

VIII. EVALUATION

We have conducted extensive simulation to evaluate OPMB
in comparison with (i) deadline-monotonic (DM) — simple
heuristic, (ii) ZSPA — the state-of-art fixed-priority assign-
ment algorithm for general distributed real-time systems [23]
— and (iii) MAA (Algorithm 2 in [11]) — the state-of-art

TABLE II
SYSTEM MODEL CONFIGURATION

Number of buses 3 - 8
Bus type CAN or CAN-FD

CAN bus link speed 250Kbps, 500Kbps
CAN-FD bus arbitration phase link speed 500Kbps

CAN-FD bus data phase link speed 2Mbps, 5Mbps, 8Mbps
250Kbps: 3 - 4ECUs
500Kbps: 4 - 7 ECUs

Number of ECUs 2Mbps: 7 - 10 ECUs
5Mbps: 8 - 12 ECUs

8Mbps: 10 - 15 ECUs

TABLE III
SIGNAL CHARACTERISTICS

Period (ms) share Size (Bytes) share
1 4% 1 35%
2 3% 2 49%
5 3% 4 13%
10 31% 5 - 8 0.8%
20 31% 9 - 16 1.3%
50 3% 17 - 32 0.5%

100 20% 33 - 64 0.4%
200 1%
1000 4%

TABLE IV
CONFIGURATION FOR SIGNAL GENERATION

Number of signals Number of buses × (10 - 200)
Number of destinations 1 - 4

Probability of gatewayed signal 10− 100%

fixed-priority assignment algorithm for a multi-domain system
with a central gateway [11].

The main goals of this evaluation are to (1) compare the
schedulability coverage of different algorithms for industry-
size problems, (2) identify the strength of OPMB over MAA,
(3) understand the reason for the identified OPMB’s strength,
and (4) check the feasibility of OPMB for the industry-size
problems. To meet these goals, we measured schedulability
coverage and execution time of each algorithm. To assess the
schedulability coverage, we have designed and implemented
a simulator5 which randomly generates multi-domain system
models and message sets. Generation of the system models
and the message sets is detailed next.

A. Simulator Setup

1) System model generation: The simulator generates
a multi-domain system model based on the configuration
in Table II. To scale up to industry-size problems, we use
the maximum number of domains in [11] as the maximum
number of buses. Our simulation adopted the CAN bus link
speeds commonly used in the automotive industry. Also, the
listed CAN-FD data phase speeds are supported by current
commercial CAN-FD transceivers/controllers. The maximum
number of ECUs on each bus is restricted to its data phase
link.

5Available at https://github.com/TaejuPark/OPMB RTSS 2020

9

https://github.com/TaejuPark/OPMB_RTSS_2020

Fig. 8. (a) Schedulability coverage of the applied algorithm for ’overall’; (b) Schedulability coverage of OPMB for ’overall’ with different timeouts

Fig. 9. Schedulability coverage of the applied algorithm for (a) fixed number of buses, (b) fixed bus-type, (c) fixed bus link speed and (4) different maximum
number of destinations of a signal

2) Message set generation: Our simulator generates sig-
nals (instead of messages) and packs them using Algorithm 1
in [11]. We also use the same signal characteristics used in [11]
because they generate realistic in-vehicle signals based on real-
world automotive benchmarks [20]. The signal characteristics
are provided in Table III.

When the simulator generates a signal, the source ECU
of the generated signal is randomly chosen with an equal
probability. Also, the simulator determines whether the signal
is forwarded to other buses or not. If a signal is determined
to be forwarded to other buses, the destination ECUs are
randomly chosen among all ECUs with an equal probability.
Otherwise, only those ECUs that share the same bus with the
source ECU of the signal are chosen as the destination ECUs
for the signal.

3) Gateway processing delay: We use the state-of-art
analysis in [14] for CAN message processing to compute the
worst-case gateway processing delay (delay+cgw):

Twait(ISRrx)+Te(ISRrx)+

k∑
i=1

θ+Tc+Te(Tasktx), (6)

where Twait(ISRrx) is the waiting time for Rx interrupt
service routine (ISR), Te(ISRrx) is the execution time for Rx
ISR, θ is the time to compare the received ID with the ID value
in the routing table, Tc is the time for converting the source
bus message to the destination bus message, Te(Tasktx) is the
execution time for Tx task, and k is the number of elements
in the routing table.

We set Te(ISRrx) = 5µs, θ = 1µs, Tc = 5µs,
Te(Tasktx) = 20µs according to the measurement results in
[14], and set Twait(ISRrx) = 0 since the gateway is assumed
to have a dedicated core for each bus in this simulation.

4) OPMB timeout: Even though we try to reduce the
execution time of OPMB as much as possible, its execution
time could be unacceptably large. Thus, OPMB is forced
to terminate upon expiration of a timer. That is, OPMB is
terminated whenever the execution time exceeds a pre-defined
expiration time (10,000s in this simulation) on Intel Xeon E5-
2683 @ 2.10GHz, 128GB Memory. If OPMB is terminated
due to a timeout, we regard it as OPMB’s failure to find a
schedulable priority assignment.

B. Test cases

To compare OPMB with the existing algorithms for the
various system configurations, we generated test cases by
randomly selecting parameters in Tables II and IV as follows:
• Overall: generate 36,000 cases randomly.
• Fixed number of buses: generate 6,000 test cases for

each fixed number of buses (e.g., 6,000 cases of a 3-bus
system, 6,000 cases of a 4-bus system,. . .).

• Fixed bus-type: generate 6,000 test cases for each
fixed bus-type (CAN only, CAN-FD only, and mixed
CAN/CAN-FD). Note that the system is set to have 3
bus types for these test cases.

• Fixed bus link speed: generate 6,000 test cases for each
fixed bus link speed (250Kbps, 500Kbps, 2Mbps and
5Mbps). Note that the system is set to have 3 bus-types
for these test cases.

• Fixed the maximum number of destination ECUs:
generate 36,000 test cases for each configuration (the
maximum number of destinations of a signal is 1,2,3 and
4).

Note that we only use valid cases, where every bus has
less than 1.0 utilization (load), from the generated test cases
to find a schedulable priority assignment using DM, ZSPA,

10

Fig. 10. Schedulability coverage gap between OPMB and MAA for (a) fixed number of buses, (b) fixed bus-type, (c) fixed bus link speed, and (4) different
maximum number of destinations of a signal

Fig. 11. Maximum room (schedulability coverage) to improve by using per-bus priority assignment over global priority assignment for (a) fixed number of
buses, (b) fixed bus-type, (c) fixed bus link speed, and (4) different maximum number of destinations of a signal

Fig. 12. OPMB timeout ratio for (a) fixed number of buses, (b) fixed bus-type, (c) fixed bus link speed, and (4) different maximum number of destinations
of a signal

MAA, and OPMB. Also, when we generate the test cases,
the number of buses, the average number of signals per bus
and the probability of gatewayed-signals are given manually
as command line arguments.6

C. Evaluation results and analyses

1) Comparison of schedulability coverage: First, we
compare the schedulability coverage of the algorithms.
Fig. 8(a) shows that the schedulability coverage of the eval-
uated algorithms for industry-size problems. As we expected,
for ‘overall’ test cases, OPMB outperforms DM by 7%, ZSPA
by 16%, and MAA by 4% in schedulability coverage. Also,
Fig. 8(b) shows that even though increasing the expiration
time of OPMB helps to cover more cases, the increase of
schedulability coverage is not significant. Fig. 9 shows OPMB
outperforming the existing algorithms regardless of system
configuration.

2) Where does OPMB have strength and why?: The
schedulability coverage gap between OPMB and MAA shown
in Fig. 10. It shows that OPMB has strength for systems with
a smaller number of buses, higher bus link speed, and a larger
number of destinations of a signal. In fact, OPMB also has
strength for systems composed of only CAN-FD buses, and

6./run -c 3 -s 50 -p 70 means 3 buses, average 50 signals per bus, 70% of
gateway signals.

the strength comes from the higher bus link speed of CAN-FD
buses.

This can be reasoned about as follows: higher bus link
speed and larger number of destinations of a signal make the
problem more complex as it increases the available number of
combinations for message priority assignment. For example,
a higher link speed means a larger number of signals can be
scheduled on a bus without exceeding the bus utilization limit
(= 1.0). Also, a larger number of destinations of a signal
means that a signal can have more priorities, e.g., priority 1
for bus 1, priority 2 for bus 2, . . . Thus, OPMB shows strength
over MAA in these cases.

However, it is difficult to infer the reasons for strength in the
case of smaller number of buses. So, we have investigated how
much of room (in perspective of schedulability) to improve
by using per-bus priority assignment over global priority
assignment for various system configurations. If there is more
room to improve for the system with a smaller number of
buses, OPMB can have more chances to outperform MAA.
Thus, it makes sense that OPMB has strength for systems with
a smaller number of buses. To investigate the maximum room
to improve, we count the following test cases since OPMB
is the optimal per-bus priority assignment and MAA is the
optimal global priority assignment.

• OPMB finds a schedulable priority assignment while

11

TABLE V
OPMB EXECUTION TIMES (IN SECONDS)

t <= 1 1 < t <= 10 10 < t <= 100 100 < t <= 1000 1000 < t <= 10000 Timeout
Schedulable 2327 3 2 5 3 0

Unschedulable 1286 14 17 7 9 56
Total 3613 17 19 12 12 56

TABLE VI
EXECUTION TIME (IN SECOND)

DM ZSPA MAA OPMB
Min 0.0004 0.0007 0.0001 0.0001
Max 0.1166 3.885 0.8056 10000

Average 0.0099 0.0912 0.0136 164.6877
Standard deviation 0.0108 0.2012 0.0343 1245.41

5% Percentile 0.0012 0.0028 0.0003 0.0005
25% Percentile 0.0032 0.011 0.0012 0.0018
50% Percentile 0.0065 0.0308 0.0035 0.0049
75% Percentile 0.0127 0.089 0.0111 0.0134
95% Percentile 0.0298 0.3641 0.0595 0.1306

MAA cannot;
• OPMB cannot find a schedulable priority assignment due

to the timeout (not decidable).
The percentage of room to improve (counted cases / valid

cases) is shown in Fig. 11. We can see the percentage of
the maximum room to improve increases with the decrease
of the number of buses and the increase of bus link speed and
the number of signal destinations. This trend is exactly same
as the pattern in schedulability coverage gap between OPMB
over MAA. That is, the amount of benefit from OPMB is
proportional to the possible room to improve by using per-bus
priority assignment.

3) Feasibility of OPMB: Since DM, ZSPA and MAA are
polynomial-time algorithms, their execution times are expected
to be small enough for industry-size (automotive) problems.
In contrast, OPMB is basically an exponential-time algorithm,
and hence its completion could take very long. To see the
differences in execution time, we first measure the average
execution time and standard deviation of each algorithm for
‘overall’ test cases as shown in Table VI.

The average execution times of DM, ZSPA and MAA are
less than 1 second and the standard deviations are also small.
Thus, about 1 second would be expected for industry-size
problems. However, the average execution time of OPMB
is about 164x larger than those of ZSPA and MAA, and its
execution time varies widely (i.e., a large standard deviation)
for the test cases. Thus, we investigate the distribution of
OPMB’s execution time as shown in Table V. OPMB is
shown to take less than 1 second for most of the test cases
(96.9% for ‘overall’ test cases).

We also measured the timeout ratio for the other test cases
as shown in Fig. 12 with the expiration time of 10,000s.
The results show that OPMB has the worst timeout ratio for
systems with 5Mbps bus link speed. Because the worst timeout
ratio is about 5.3%, we expect OPMB to be feasible for about
95% of real-world scenarios.

IX. EXTENSIONS

Switched Ethernet is prevalent in modern vehicles for
ADAS and infotainment to handle large amounts of net-
work traffic from camera/lidar/radar sensors. The raw data
is processed and transformed into smaller-sized data and
then forwarded to other (e.g., powertrain or body) domains.
However, the current OPMB only covers the system composed
of multiple CAN/CAN-FD buses with a central gateway, and
thus cannot handle the switched Ethernet. However, OPMB
can be extended to the system that includes the switched
Ethernet. From OPMB’s perspective, the differences between
CAN/CAN-FD and switched Ethernet are (1) computing the
worst-case delay in a network and (2) the limited number of
priorities. We can use the timing analysis for the switched
Ethernet [21] instead of Eq. (3). For the limited number (up
to 8) of priorities, OPMB needs to assign the same priority
to multiple messages on a network because the number of
messages might be greater than 8. Thus, CLPk should not be
incremented by 1 after assigning priority to a message, but
CLPk should be incremented when there is no schedulable
message with CLPk.

X. CONCLUSION

Determining whether or not a designed in-vehicle network
can meet the timing requirements of a given set of messages
is important to minimize the in-vehicle network cost, thus
calling for optimal priority assignment. To meet this need,
we have proposed an optimal priority-assignment algorithm,
OPMB, for multiple CAN/CAN-FD buses with a central
gateway. It is designed based on backtracking (brute-force
search with theory-proven pruning). Our in-depth simulation
has demonstrated that OPMB outperforms the state-of-art
priority-assignment algorithms for multi-bus systems, and has
strength especially in high-speed systems which represent
future automotive systems. OPMB is also shown to be feasible
for most realistic automotive message sets.

ACKNOWLEDGEMENT

The work reported in this paper was supported in part by the
Office of Naval Research under Grant No. N00014-18-1-2141.

REFERENCES

[1] N. C. Audsley. On priority assignment in fixed priority schedul-
ing. Information Processing Letters, pages 79(1):39–44, 2001.

[2] AUTOSAR. Specification of PDU Router, AUTOSAR CP
Release 4.4.0, 2018.

[3] P. Axer, M. Sebastian, and R. Ernst. Probabilistic response
time bound for CAN messages with arbitrary deadlines. In
2012 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1114–1117, March 2012.

12

[4] E. Azketa, J. P. Uribe, M. Marcos, L. Almeida, and J. J.
Gutierrez. Permutational genetic algorithm for the optimized
assignment of priorities to tasks and messages in distributed
real-time systems. In 2011IEEE 10th International Conference
on Trust, Security and Privacy in Computing and Communica-
tions, pages 958–965, Nov 2011.

[5] I. Broster, A. Burns, and G. Rodriguez-Navas. Comparing
real-time communication under electromagnetic interference.
In Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th
Euromicro Conference on, pages 45–52, 2004.

[6] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka. Con-
troller Area Network (CAN) Schedulability Analysis with FIFO
Queues. In 2011 23rd Euromicro Conference on Real-Time
Systems, pages 45–56, July 2011.

[7] Robert I. Davis and Alan Burns. Robust priority assignment
for messages on Controller Area Network (CAN). Real-Time
Systems, 41(2):152–180, 2009.

[8] Robert I. Davis, Alan Burns, Victor Pollex, and Frank Slomka.
On Priority Assignment for Controller Area Network when
Some Message Identifiers Are Fixed. In Proceedings of the 23rd
International Conference on Real Time and Networks Systems,
RTNS ’15, pages 279–288, New York, NY, USA, 2015. ACM.

[9] J. J. G. Garcia and M. G. Harbour. Optimized priority as-
signment for tasks and messages in distributed hard real-time
systems. In Proceedings of Third Workshop on Parallel and
Distributed Real-Time Systems, pages 124–132, April 1995.

[10] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive
scheduling of period and sporadic tasks. In Proceedings of
Twelfth Real-Time Systems Symposium, pages 129–139, Dec
1991.

[11] Prachi Joshi, Haibo Zeng, Unmesh D. Bordoloi, Soheil Samii,
S. S. Ravi, and Sandeep K. Shukla. The Multi-Domain Frame
Packing Problem for CAN-FD. In 29th Euromicro Conference
on Real-Time Systems (ECRTS 2017), 2017.

[12] U. Keskin. Evaluating Message Transmission Times in Con-
troller Area Network (CAN) without Buffer Preemption Re-
visited. In Vehicular Technology Conference (VTC Fall), 2013
IEEE 78th, pages 1–5, Sept 2013.

[13] D. A. Khan, R. J. Bril, and N. Navet. Integrating hard-
ware limitations in CAN schedulability analysis. In Factory
Communication Systems (WFCS), 2010 8th IEEE International
Workshop on, pages 207–210, May 2010.

[14] J. H. Kim, S. Seo, N. Hai, B. M. Cheon, Y. S. Lee, and J. W.
Jeon. Gateway framework for in-vehicle networks based on
can, flexray, and ethernet. IEEE Transactions on Vehicular
Technology, 64(10):4472–4486, 2015.

[15] T. Park and K. G. Shin. Optimal priority assignment for
scheduling mixed can and can-fd frames. In 2019 IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

[16] Taeju Park and Kang G. Shin. Eacan: Reliable and resource-
efficient can communications. ACM Trans. Embed. Comput.
Syst., 18(1), February 2019.

[17] Florian Pölzlbauer, Robert I. Davis, and Iain Bate. A practical
message id assignment policy for controller area network that
maximizes extensibility. In Proceedings of the 24th Interna-
tional Conference on Real-Time Networks and Systems, RTNS
’16, page 45–54, New York, NY, USA, 2016. Association for
Computing Machinery.

[18] R. I. Davis and A. Burns and R. J. Bril and J. J. Lukkien. Con-
troller Area Network (CAN) Schedulability Analysis: Refuted,
Revisited and Revised. Real-Time Syst., 35(3):239–272, April
2007.

[19] K. W. Schmidt. Robust Priority Assignments for Extending
Existing Controller Area Network Applications. IEEE Trans-
actions on Industrial Informatics, 10(1):578–585, Feb 2014.

[20] Arne Hamann Simon Kramer, Dirk Ziegenbein. Real world

automotive benchmark for free. In 6th International Workshop
on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS 2015), 2015.

[21] D. Thiele and R. Ernst. Formal worst-case performance analysis
of time-sensitive ethernet with frame preemption. In 2016 IEEE
21st International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 1–9, 2016.

[22] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard
real-time tasks: An np-hard problem made easy. Real-Time
Systems, 4(2):145–165, Jun 1992.

[23] H. Yoon and M. Ryu. Guaranteeing end-to-end deadlines for
autosar-based automotive software. International Journal of
Automotive Technology, 16(4):635–644, Aug 2015.

13

