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Mobile Device Ba�eries as Thermometers
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The ability to sense ambient temperature pervasively, albeit crucial for many applications, is not yet available, causing problems

such as degraded indoor thermal comfort and unexpected/premature shuto�s of mobile devices. To enable pervasive sensing

of ambient temperature, we propose use of mobile device batteries as thermometers based on (i) the fact that people always

carry their battery-powered smart phones, and (ii) our empirical �nding that the temperature of mobile devices’ batteries is

highly correlated with that of their operating environment. Speci�cally, we design and implement Batteries-as-Thermometers
(BaT), a temperature sensing service based on the information of mobile device batteries, expanding the ability to sense

the device’s ambient temperature without requiring additional sensors or taking up the limited on-device space. We have

evaluated BaT on 6 Android smartphones using 19 laboratory experiments and 36 real-life �eld-tests, showing an average of

1.25oC error in sensing the ambient temperature.
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1 INTRODUCTION
Sensing the ambient temperature pervasively is key tomany applications, such as smart homes/buildings/cities [26,

43, 47, 50]. The ability of pervasive temperature sensing, however, is still de�cient. In this paper, we propose a

novel temperature sensing service, called Batteries-as-Thermometers (BaT), by exploiting mobile devices’ batteries

(and their management chips) without requiring additional sensors or taking up the limited on-device space. BaT
enables mobile devices to become thermometers, thus pervasively sensing their operating ambient temperature

all the time wherever we go with them. The thus-sensed temperature information can be made available to both

devices and their users, enabling/improving important applications including but not limited to:

• Indoor Thermal Map Construction. People spend >80% of their lives inside buildings, and thus the indoor

thermal comfort is crucial to their wellness/productivity [29, 35, 37, 40, 48, 54], especially in view of its spatial

non-uniformity as revealed by our empirical measurements (see Fig. 1). For example, about 8% of human

mortality was shown to be due to non-optimum ambient temperature according to the data collected from 384

locations during 1985–2012 [32]. The West Midlands Public Health Observatory in UK also acknowledged an

increased mortality rate with ambient temperature below 20
o
C. Such temperature-related mortality is expected
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Fig. 1. Non-uniform indoor temperature renders its sensing crucial to achieve occupants’ indoor thermal comfort.
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Fig. 2. Lack of ambient temperature information prevents mobile devices from predicting the end-of-discharge conditions of
their ba�eries accurately, causing unexpected device shuto�s in a cold environment.

to rise with the rapid aging of populations [52]. BaT, by providing pervasive temperature sensing with mobile

devices’ batteries, not only allows occupants to acquire the temperature of their surrounding environment

— e.g., by placing BaT-enabled devices in an open space like ordinary thermometers — but also facilitates (i)

the construction of a building’s thermal map when integrated with crowdsourcing, thus helping improve

occupants’ indoor thermal comfort, and (ii) detecting the malfunction of a building’s heating, ventilation, and

air conditioning (HVAC) system [22].

• Environment-Aware Battery Management. The ambient temperature of mobile devices is crucial to their opera-

tion. A cold environment reduces the temperature of device battery, causing unexpected device shuto�s, as

frequently reported by mobile users on both iOS and Android platform [11, 13–15, 21]. Fig. 2(a) shows such an

unexpected shuto� using an Xperia Z phone: during video streaming in a −15oC environment, the phone shut

o� even when it was shown to have 30% State-of-Charge (SoC). Such unexpected phone shuto�s are due to

its inability to sense the environment temperature correctly, thus preventing the accurate prediction of the

end-of-discharge battery conditions [7, 38] and displaying erroneous remaining SoC values, as illustrated in

Fig. 2(b). On the other hand, a hot environment aggravates the heating of device battery due to impeded heat

transfer from the battery to the environment, accelerating battery degradation and risking device safety. For

example, we have observed overheated batteries when operating the three phones shown in Fig. 3 in a 35
o
C

environment, where (i) Galaxy S5 and S6 Edge phones didn’t shut o�, but most of their services were disabled,

and (ii) the Pixel XL phone completely shut o�. BaT senses the devices’ ambient temperature, which allows

the prediction of future battery temperature in that environment, thus facilitating devices in precautiously

adapting their operation to the environment to avoid/minimize the degradation of user-perceived experience.
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Galaxy S6 Edge Pixel XLGalaxy S5

Fig. 3. Disabled phone service in a hot environment.

0 200 400 600 800

Time (min)

20

30

40

50

T
e
m

p
e
ra

tu
re

 (
o
C

) Bat. Temp. Amb. Temp.

Fig. 4. The temperature of amobile device’s ba�ery is strongly
correlated with that of its ambient environment.

BaT is grounded on our empirical discovery and analytical interpretation thereof: the temperature of a commodity
mobile device battery is highly correlated with that of its ambient environment. Fig. 4 visualizes this correlation of a

Nexus 5X smartphone,
1
which we will empirically quantify further in Sec. 3. BaT captures such a correlation

to estimate the device’s ambient temperature, thus “sensing” the physical world without requiring additional

thermometers or taking up the limited space on mobile devices, i.e., sensing the temperature for free.2

There are two key challenges in designing BaT.

(1) Battery temperature is a�ected by its current, the ambient temperature, and the heating by other phone

components, such as chips or screen. Such thermal interplays have traditionally been captured analytically

in electrochemical and heat transfer models [36, 51, 56, 59], which may need up to 22 describing parameters,

depending on complexity/accuracy, e.g., [36]. Not all these parameters, however, are available on smart

phones. To facilitate its deployability, BaT captures the battery’s thermal behavior via integration of physical

& data-driven modeling: (i) abstracting the electrochemical models into generalized and empirically-

validated observations, and (ii) estimating the ambient temperature with such observations steered in a

data-driven way.

(2) Battery could be in either transient or stable thermal state [42], according to which its correlation with

devices’ ambient temperature needs to be decoded di�erently. This is particularly critical because mobile

devices’ dynamic current [39], together withmobile users’ frequent movements and thus change of ambients,

cause device battery to make frequent state transitions. BaT identi�es the battery’s thermal states based on

its recent temperature/current, and applies di�erent (but closely-coupled via a control loop) techniques to

estimate the ambient temperature.

We have evaluated BaT with 6 Android phones via 19 laboratory experiments and 36 real-life �eld-tests, and

compared it with 13 o�-the-shelf apps from Google Play, showing an average error of 1.25oC in sensing the

ambient temperature, which is comparable to the ±2oF (or ±1.1oC) accuracy of the o�-the-shelf Acurite Weather

Station [1]. Such an accuracy of BaT is good enough to steer many HVAC systems to provide the indoor thermal

comfort, e.g., TE-6700 Series Johnson Controls thermostat [12] keeps the indoor temperature within a ±2oF

bound [22].

2 STATE OF THE ART
Below we brie�y compare BaT with the state-of-the-art.

1
The device battery’s temperature was collected from its fuel-gauge chip and the ambient temperature was collected with an external Elitech

RC-5 temperature logger [8].

2
As opposed to the $3.4 cost of the temperature sensor used in, e.g., Galaxy Note 3 [6].
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Fig. 5. Galaxy Note 3 estimates ambient temperature by cal-
ibrating sensor reading linearly with fixed coe�icients [16].

Fig. 6. Only 13 of the 48 apps could be used for ambient
temperature estimation but with coarse accuracy.

• Traditional Approaches of Temperature Sensing. The traditional approach to deploying static thermome-

ters for temperature sensing/monitoring [27, 34] does not work for the pervasive sensing of ambient temperature

for two reasons.

(1) Ambient temperature is spatially non-uniform in both outdoor and indoor environments [44, 46]: (i)

statistics show a temperature di�erence of up to 12
o
C between urban and rural outdoor areas, caused by

the urban heat island e�ect [41] resulting from urbanization; (ii) the non-uniformity of indoor ambient

temperature can be seen from Fig. 1, which summarizes the air temperature collected from 13 sites in our

air-conditioned Department building — the temperature di�ers by up to 5.1oC. A temperature di�erence of

5.25oC in an indoor environment was also reported in [44].

(2) Humans’ activities cover a large spatial area due to their frequent movements: Gonzalez et al. [33] reported
the fact that most people travel for tens of kilometers daily, while some could regularly travel up to hundreds

of kilometers, based on the trajectories of 100, 000 mobile phone users over 6 months; similar observations

on human’s large activity area were also reported in [57].

These two facts imply the high deployment/maintenance cost when traditional static thermometer deployment

is used to monitor ambient temperature pervasively, thus rendering it ine�ective.

• BaT vs. Hardware Thermometers. The ideal way of sensing temperature pervasively is to have everyone

carry a thermometer all the time, as s/he carries a mobile phone. Inspired by this, Android provides the function

of acquiring the device’s ambient temperature, but such a function is applicable only when device manufactures

have built hardware-based thermometers into their devices [9], as with Samsung’s Galaxy S4 and Note 3

smartphones [20]. Clearly, such built-in thermometers increase the device cost (e.g., the sensor chip of Note

3 costs $3.48 apiece [6]) and take up the limited device space. Moreover, our examination of Galaxy Note 3’s

ambient thermometer driver [16] revealed that it just calibrates the raw thermo readings linearly with �xed

coe�cients (see Fig. 5), making the thus-estimated ambient temperature unreliable and su�er from up to 10
o
C

errors [19].
3
Hardware thermometers that can be installed to mobile devices as add-on components are also

available in the market, costing over $20 apiece [18].

3
Samsung has removed these hardware thermometers in its later models.
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Table 1. Classification of the 48 apps from Google Play.

Type Description # of apps
I estimates body temperature based on heartbeats 6

II returns the outdoor temperature of users’ current location 11

III requires additional hardwares/gears 9

IV returns the reading of phone’s certain thermometer 9

V estimates based on phone’s certain thermometer 13

Table 2. Error (in absolute value) of the 13 Type-V apps in estimating phones’ ambient temperature.

Experiment Settings Error of Apps (oC)
Phone Ambient Temp. DChg Current #1 #2 #3 #4 #5 #6 #7 #8–#13

Nexus 5X 22
o
C ≈ 256mA 1.1 5.6 6.1 2.1 4.1 5.1 7.4 2.6

Nexus 5X 23
o
C ≈ 836mA 10.7 9.5 9.7 7.7 5.7 10.7 11.7 6.7

Nexus 5X 24
o
C ≈ 1,220mA 15.1 11.0 14.1 12.1 4.1 15.1 15.4 10.9

Nexus 6P 22
o
C ≈ 329mA 1.0 1.8 3.0 1.0 3.0 2.0 3.0 1.6

Nexus 6P 23
o
C ≈ 600mA 9.7 7.7 8.7 6.7 2.7 9.7 10.2 5.4

Nexus 6P 24
o
C ≈ 1,550mA 12.8 8.7 11.8 8.8 10.8 11.8 12.4 7.5

Instead of requiring additional hardware thermometers, BaT, as a (semi-)software-de�ned thermometer, enables

mobile devices to sense, when needed, their ambient temperature using the thermometers built in their batteries,

which are pervasively available on all commodity mobile devices.

• BaT vs. Software-De�ned Thermometers. To the best of our knowledge, little has been done to explore

the software-de�ned thermometers, i.e., extracting/estimating ambient temperature from device batteries, and

the closest to BaT are [28, 42, 49]. Crowdsourcing is used in [49] to estimate the air temperature in highly

populated areas. The design therein, however, only estimates daily average air temperature with coarse spatial

granularity (e.g., of city level) and accuracy (e.g., up to 20% error [44]), thus making it inaccurate and also untimely.

Chau has developed a method to estimate air temperature using smartphone batteries [28], which is however,

applicable only to batteries that are in a stable thermal state. The temperature of mobile device battery is used to

estimate/predict devices’ surface temperature in [42], achieving <2oC error. BaT extends further the exploration

to estimate the temperature of devices’ ambient.

• BaT vs. Commercial Apps. There exist many apps called “thermometer" or similar in Google Play/Apple

Store. To study these apps, we installed the �rst 48 apps found by searching Google Play with the key word

“thermometer" (see Fig. 6), and summarized their functionalities in Table 1 — only 13 of them (i.e., Type-V) can

potentially be exploited to estimate devices’ ambient temperature. To further examine the accuracy of these 13

apps (indexed as #1–#13), we ran them with varying settings as listed in Table 2. Speci�cally, we use an app

BatteryDrainer [4] to regulate phones’ operation (and hence control their discharge rate), and use a Benchmark
thermal chamber [5] to control the phones’ ambient temperature. The phones are placed in the chamber for 30–60

minutes, and then the estimated ambient temperature with these apps are recorded. These measurements show

(i) 6 of these apps (i.e., #8–#13) always return the same estimations, and thus they are of the same estimation

algorithm; (ii) these apps su�er from up to 15
o
C error in estimating the devices’ ambient temperature, especially

when the discharge current is large. We will compare these apps with BaT in Sec. 6.

3 OPPORTUNITY OF USING MOBILE DEVICE BATTERIES AS THERMOMETERS
We have chosen mobile device batteries as thermometers for the following three reasons.

• Readily-Available Battery Temperature. The batteries of mobile devices are always equipped with at least

one high-precision (e.g., 0.1oC for Galaxy S6 Edge) thermometer to monitor their temperature in real time, to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 12. Publication date: March 2020.



12:6 • He et al
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Fig. 7. Ba�ery temperature experiences less disturbance, thus being more stable
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ture have correlation coe�icients >0.8.

ensure both energy-e�ciency [55] and safety [31]. Also, the thus-collected battery temperature can be accessed

on commodity platforms (i.e., Android and iOS) without requiring any privilege from users. For example, battery

temperature can be accessed by reading /sys/class/power_supply/battery/temp on Android, and via IOKit on iOS.

• Reliable Battery Temperature. Mobile devices use multiple built-in thermometers to monitor their tem-

perature at di�erent components/zones, e.g., batteries and chips. Of these readings, the temperature of device

battery su�ers less disturbance from the dynamic power usage of mobile devices and is thus more reliable (or

less bursty) than others, thanks to batteries’ (relatively) large thermal capacitance [59] — rendering the battery

temperature a promising way to estimate the device’s ambient temperature. This has been corroborated with

the readings of 15 thermometers of a Nexus 5X phone (including the one for its battery) over ≈6 hours,
4
as

shown in Fig. 7(a). The battery discharge current varies within [209, 1415]mA during this logging. These battery

temperature measurements have a Fano factor — a metric widely used to quantify signal reliability — of 0.43 and
a standard deviation of 3.6oC, both of which are much smaller than those of other thermo readings (i.e., 0.78–1.02
Fano factor and 5.7–6.7oC standard deviation), and are thus more reliable. We have also empirically veri�ed the

reliability of battery temperature with other devices, as summarized in Fig. 7(b) where the circles denote the Fano
factor of battery temperature and the boxes denote the max/minimum Fano factor of other thermo readings. Note

that Galaxy S6 Edge has only one more thermal reading besides the battery temperature.

• Correlated Temperature. The temperature of mobile device battery is strongly correlated with that of the

device’s ambient environment — an empirical �nding from our extensive measurements. Speci�cally, we collected

44 traces of real-life device battery temperatures, including Nexus 6P, Nexus 5X, Galaxy S6 Edge, Galaxy S5, and

Xperia Z, each lasting 1–40 hours and covering the temperature range of [14, 55]oC, over which the batteries are

discharged with the current of 15–2491mA. We logged the corresponding ambient temperature at 0.1Hz for each
of these measurements, ranging from 7–34

o
C. We calculate the cross-correlation of the thus-collected 44 pairs of

battery and ambient temperatures, and observe strong correlations (with >0.8 correlation coe�cients) in 35 of

them, as summarized in Fig. 8.

These three facts together demonstrate the opportunity/feasibility of estimating mobile devices’ ambient

temperature using their battery temperatures.

4 MODEL-AIDED DESIGN PRINCIPLE
The empirically-observed correlation between battery temperature and the device’s ambient temperature can be

modeled analytically, which also steers BaT to estimate the ambient temperature.

4
These readings can be accessed under /sys/class/thermal/.
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• Thermal Analysis of Device Battery. Mobile device battery operates in a context de�ned by the device’s

ambient and other components such as processors, GPS, etc. As a result, the temperature of mobile device battery

is jointly determined by its internal heating and the heat transfer from/to other device components and the

ambient environment, as illustrated with a heat transfer model in Fig. 9(a), where Pb is the battery’s internal heat

generation, ÛQb is the heat stored in the battery (i.e., as increased temperature), ÛQa is the heat transfer between

battery and device’s ambient environment, and ÛQi (i = 1, 2, · · · ) denotes the heat transfer between battery and

other device components.
5
As heat conserves, we have

Pb =
∑
i

ÛQi + ÛQb + ÛQa (i = 1, 2, · · · ). (1)

This heat-transfer model can be transformed further to an electric resistance-capacitance model [25], as shown

in Fig. 9(b), where the temperature di�erence and heat transfer rate are analogues of the electric potential and

current in circuit theory, i.e., R = ∆T /Q [17]. Speci�cally, for Fig. 9, we know

ÛQa =
Tb(t) −Ta

Ra

, (2)

ÛQi =
Tb(t) −Ti

Ri
(i = 1, 2, · · · ), (3)

where Ta, Tb, and Ti are the temperatures of ambient environment, device battery, and other device components;

Ra and Ri are the thermal resistance between (i) battery and device’s ambient environment and (ii) battery and

other device components, capturing the heat conductivity jointly determined by the conduction coe�cient and

contacting surface area [25, 42].

Also, by de�nition, the heat stored in the battery ÛQb can be captured by the battery’s thermal capacitanceCb as

ÛQb = Cb · dTb(t)/dt . (4)

5
The heat transfer could be either negative or positive.
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Last but not the least, the internal heating of battery is dominated by its Ohmic heating due to its resistance rb:

Pb(t) = I (t)2 · rb, (5)

where I (t) is the (dis)charge current.
Combining Eqs. (1)–(5) can capture the interplay between Ta and Tb (and hence their correlation explained) by

I 2(t) · rb =
∑
i

Tb(t) −Ti
Ri

+Cb ·
dTb(t)

dt
+
Tb(t) −Ta

Ra

. (6)

Moreover, Eq. (6) inspires the following three components in estimating Ta in a data-driven way.

• Heating from Other Components
∑
(Tb(t) −Ti )/Ri

∑
(Tb(t) −Ti )/Ri

∑
(Tb(t) −Ti )/Ri . Description of the heat transfer between battery and

individual device components requires identi�cation of Ris which, in turn, requires a signi�cant e�ort. As an

alternative, we have conducted sensitivity tests on Tb and empirically �nd that Ti’s impact on Tb is dominated by

that of I (t). Speci�cally, we analyze Tb’s sensitivity to individual components’ operation and the aggregated I
— i.e., how large does the individual components’ operation and the aggregated I attribute to Tb — based on a

5-hour trace collected with a Nexus 5X phone while using BatteryDrainer to control the operation of the phone’s

major power-consuming components. Fig. 10 plots the thus-obtained results, showing I (t) has a dominating

impact on Tb, when compared to the other components. We have also conducted sensitivity tests on devices such

as Xperia Z and Nexus 6P, and made similar observations. This is consistent with our intuition as I (t) is the
cumulative result of device components’ operation, and thus representative to their heating e�ects on device

batteries. More importantly, this allows BaT to estimateTa based on onlyTb and I (t), i.e., shieldingTi(i = 1, 2, · · · )
from consideration and thus simplifying the estimation signi�cantly. We will further experimentally validate this

simpli�cation in Sec. 6 by operating mobile devices with di�erent loads/intensities.

• Battery’s Internal Heating I 2(t) · rbI 2(t) · rbI 2(t) · rb. The battery current is needed to capture the battery’s internal heating.

Current information — albeit available on most recent mobile devices, e.g., at /sys/class/power_supply/battery/ —
is not always available on older or low-end devices as their fuel-gauge chips may not support current sensing,

e.g., the MAX17043 chip used in 2011 Galaxy W [45]. More information on the availability/reliability of current

information on di�erent phone models can be found in [3]. For devices without current sensing capability, BaT

estimates battery current based on the physical principle of ∆C =
∫ t+∆t
t I (t)dt , whereC is capacity and I is current.

This is feasible because all battery-powered devices support SoC estimation, rendering C available pervasively.

Let us consider the case where the phone battery’s SoC has changed from SoC(t) at time t to SoC(t + ∆t) at time

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 12. Publication date: March 2020.
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t + ∆t . Let C0 denote the device battery’s full charge capacity, e.g., 1, 500mAh for Galaxy W, then the (average)

battery current during time [t , t + ∆t] can be estimated as

Ī = C0 · (SoC(t + ∆t) − SoC(t))/(100 · ∆t), (7)

where Ī<0 for discharging, and otherwise charging. Fig. 11 compares the thus-estimated battery current with that

provided by the fuel-gauge chip of a Nexus 5X phone, showing good accuracy except for a few large errors caused

due to signi�cant current pikes. We will further evaluate BaT’s sensitivity on the error of current information in

Sec. 6.

The internal heating of device battery is also a�ected by its resistance r . Resistance is traditionally measured

based on Ohm’s law (i.e., r = dV /dI ) [53, 58, 60, 61]. Application of this principle on mobile devices, however,

is non-trivial due to devices’ dynamic usage patterns — the dynamic current of device battery renders it hard

to quantify dV and dI reliably in practice. BaT collects reliable dV and dI by exploiting the fact that users often

charge their devices over-night — the charging duration is so long that the charger is kept connected even after

the device is fully charged [23, 30, 57]. This is because device chargers use separate power paths to charge the

battery and power the device [24], allowing a fully charged battery to rest (i.e., with a 0mA current) if the charger

is kept connected, thus making the dV /dI reliable:

r =
dV

dI
=
Vcuto� −Vrested

Icuto� − 0

=
Vcuto� −Vrested

Icuto�
, (8)

where Vcuto� and Icuto� are the battery voltage and charging current when stopping charging the battery, and

Vrested is the voltage of a fully-rested battery afterwards, as illustrated in Fig. 12.

• Battery’s Thermal StatedTb(t)/dtdTb(t)/dtdTb(t)/dt . Eq. (6) also indicates two cases of battery’s thermal behavior — the stable
or transient thermal state depending on whether dTb(t)/dt = 0 or not. We have experimentally validated this

two-state thermal behavior of device battery with a Nexus 5X phone: (i) Fig. 13(a) plots the temperature of the

phone battery when its battery current increased from ≈280mA to ≈480mA with �xed ambient temperature (e.g.,

when the user uses the phone with a higher intensity): battery temperature rises quickly and then slowly (i.e.,

|dTb(t)/dt |>0 and thus being in the transient state) until it converges (i.e., |dTb(t)/dt |=0 and thus entering the

stable state); (ii) similar two-state behaviors in battery temperature can be observed when the ambient temperature

changes (e.g., when the user moves to a di�erent environment) while keeping the battery current constant, as

shown in Fig. 13(b) where the ambient temperature changes from 27
o
C to 40

o
C. Such a state-dependent thermal

behavior of battery implies that the battery’s real-time thermal state, besides its temperature, is also needed to

estimate device’s ambient temperature.

The above three observations show that: (i) it is possible to use battery current, together with its internal

resistance, to (approximately) capture battery’s thermal behavior; (ii) the thermal state of device batteries must
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be accounted for in their thermal analysis. Steered by these, BaT estimates the ambient temperature of a mobile

device using the battery current and temperature of device battery, by applying di�erent but closely coupled data-

driven approaches when the battery is in stable and transient thermal state, respectively. Note these data-driven

approaches of BaT are approximation in essence, whose accuracy will be extensively validated in Sec. 6.

5 DESIGN OF BAT
Fig. 14 provides an overview of BaT with the core components shaded: collecting and processing the real-time

battery information, and then identifying the thermal states of mobile device batteries to estimate the ambient

temperature, such as SVM for stable-state batteries and a guided search for transient-state batteries, and connecting

the two methods with a control loop.

5.1 Data Pre-Processing
BaT takes as input the recent behavior (i.e., discharge current and temperature) of mobile device battery via a

moving window, as shown in Fig. 15 with a Nexus 5X phone. The pulsed battery discharge current introduces

two types of noises—i.e., those with high-frequency but low-magnitude and those with low-frequency but high-

magnitude—and thus needs pre-processing. BaT �rst interpolates the current samples linearly and then applies

a 10th-order low-pass �lter with 0.2Hz cuto� frequency, to remove their high-frequency but low-magnitude
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dynamics contributed probably by the device’s background activities [62], which do not a�ect battery temperature

much, as observed in Fig. 15. Also, BaT removes the top 10% of current samples in the time window to �lter their

spikes, possibly due to the user’s brief checking of his phone which does not a�ect battery temperature much

either due to the short duration (see Fig. 15). Finally, BaT smoothes the thus-obtained current samples with a

moving average. Fig. 16 depicts these data pre-processing using the raw trace in Fig. 15.

5.2 Identifying Ba�ery’s Thermal States
BaT identi�es battery’s thermal state based on the collected temperature samples, as illustrated in Fig. 17:

a stable-to-transient transition occurs if battery temperature deviates from its previously equilibrated level,

i.e., Tb (t + ∆) − Tb (t) > η where η is an empirical threshold (e.g., η=0.1oC in our implementation of BaT on

Nexus 5X, which is also the phone’s precision in sensing its battery temperature), and a transient-to-stable
transition is triggered when battery temperature converged (i.e., Tb (t + ∆) −Tb (t) = 0) for a set of consecutive

temperature samples. BaT then estimates the ambient temperature based on whether the device battery is stable

or transient. Note that a transient battery will reset its equilibrating process if either its discharge current or

ambient temperature changes again, causing its temperature to deviate from the equilibrating process, as shown

with the sub-states for transient batteries in Fig. 17. We will elaborate this further in Sec. 5.4.

5.3 BaT with Stable-State Ba�eries
BaT, upon concluding a stable-state battery, estimates the ambient temperature with an o�ine-constructed SVM

model describing the battery’s stable-state thermal behavior. Let us consider the model construction for Nexus

5X phones as an example. We collected the stable-state battery temperature of a Nexus 5X phone, with di�erent

but constant discharge current (with BatteryDrainer) and ambient temperature (with the thermal chamber).

We conducted 62 such experiments with [10, 40]oC ambient temperature, each lasting at least 1 hour to allow

battery temperature to converge and thus become stable. The battery temperature and current are logged at

1Hz during these experiments. Fig. 18 summarizes the converged stable-state battery temperature T st

b
, together

with the corresponding ambient temperature Ta and discharge current I during the experiments, from which the

following observation is made.

Observation 1. The interplays among <T st

b
, Ta, I> can be captured by

T st

b
= a · I 2 + b ·Ta, (9)

where a and b are regression coe�cients.

Fig. 18 also plots the �tting of the collected samples according to Eq. (9), achieving a high goodness-of-�t of 0.8
RMSE and 0.9 Adjusted R-Squared. This observation can also be explained using Eq. (6) by letting dTb(t)/dt = 0,

i.e., when the battery is stable.
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Fig. 19. BaT, upon concluding a stable-state ba�ery, estimates the ambient temperature with a�adratic SVM model.

Inspired by Observation-1, BaT �lters and smoothes the o�ine-collected samples using Eq. (9), and then trains

a regression model with Ta as the dependent variable and <T
st

b
, I> as predictors. We tried di�erent regression

techniques as shown in Fig. 19, and found Quadratic SVM achieving the best accuracy (94%) under 5-fold

cross-validation, which is not surprising because of the quadratic form of Eq. (9).

Also, the thermal behavior of device battery changes gradually over usage due to battery aging, observed as

the increased internal resistance rb and thus visible Ohmic heating, leading to an increased T st

b
even under the

same conditions as when the training set was collected. To mitigate this, BaT, inspired by the linear e�ect of rb
on battery heating (i.e., P = I 2 · rb), calibrates the trained model according to

T st

b
= T st

′

b
· rb/r

′
b
, (10)

whereT st
′

b
and r ′

b
are the originally collected battery temperature and resistance, respectively, and rb is the battery

resistance estimated using Eq. (8). Such calibration allows BaT to collect the training set o�ine, and only once for
a given device model. The regression model is thus agnostic of the user. To use BaT, the user need not perform any

initial training. Also, it is critical to note that such training data set is readily available to device manufacturers as

they have already been collecting the thermal behaviors of device batteries during their product testing (e.g., in

Samsung’s 8-point battery check), making BaT ideally an OEM-provided service.

Algorithm 1 BaT with transient batteries: Trans(Tmin,Tmax).

1: T̄a = (Tmin +Tmax)/2;

2: predict T tr

b
based on T̄a;

3: if the predicted T tr

b
matches the collected value then

4: calibrate T̄a based on the previous estimations with stable batteries;

5: return T̄a;
6: else if the predicted T tr

b
is larger than the collected value then

7: Trans(Tmin, (Tmin +Tmax)/2);

8: else if the predicted T tr

b
is smaller than the collected value then

9: Trans((Tmin +Tmax)/2,Tmax);
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ba�ery temperature to a decaying process.
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5.4 BaT with Transient Ba�eries
In practice, the battery of a mobile device switches between stable and transient state frequently, because of

its dynamic usage pattern (and thus dynamic current) and the user’s frequent movement (i.e., the ambient

temperature is likely to change). So, BaT must also capture the thermal behavior of transient-state batteries to

ensure reliable temperature sensing. The de�ciency of describing transient-state batteries is also the reason why

existing solutions achieve only limited accuracy, as seen from (i) Samsung’s �xed linear model when estimating

Note 3’s ambient temperature using its built-in ambient thermometer (Fig. 5), (ii) Eq. (1) of [49], and (iii) many

of the Type-V apps in Table 1 recommend to keep the phone idle for some time before using it again to ensure

accuracy.

For transient batteries, BaT is steered by an empirically-learned model capturing how the battery temperature

equilibrates. Speci�cally, BaT estimates Ta as the one matching the prediction with empirically collected battery

temperature (as in the binary search of Alg. 1), which is calibrated further based on the previous estimations with

stable batteries (line 4 of Alg. 1). The binary search of Alg. 1 is enabled by the monotonic relationship between

Ta and Tb (see Eq. (9)). The prediction of transient battery temperature T tr

b
with assumed T̄a (line 2 of Alg. 1) is

enabled by the following observation.

Observation 2. Battery temperature is equilibrated according to an exponential decay process:

T tr

b
(t) = |T 0

b
−T st,1

b
| · e−λ ·(t−t0) +T st,1

b
(t > t0), (11)

where t0 and T 0

b
are the starting time of the equilibrating process and the battery temperature thereon, and T st,1

b
is

the eventually converged stable-state battery temperature (estimated based on the assumed T̄a, as we explain below).

Again, we corroborate this observation empirically. The equilibrating process of battery temperature — tem-

perature rising or falling — can be transformed to a decaying process by designing the corresponding coordinate

systems, as shown in Fig. 20. Fig. 21(a) plots such a decaying process of a Nexus 5X phone battery with a good

exponential �t. We have collected 62 such temperature equilibrating processes and �tted them exponentially, as

summarized in Fig. 21(b): the close-to-1 Adjusted R-Squared indicates high �tting accuracy. Observation-2 can

also be explained analytically with Eq. (6), as elaborated in Appendix.

Observation-2 allows for estimation of T tr

b
(t), if we know (i) the to-be-reached stable temperature T st,1

b
, (ii) the

decaying rate λ, and (iii) the time since equilibrating t − t0.

• EstimatingT st,1
b

T st,1
b

T st,1
b

. BaT determines T st,1
b

based on Observation-1, by assuming a known and �xed Ta.
• Estimating λλλ. BaT learns λ based on the equilibrating process it observed: estimating λ every time it sees

a (sub)-equilibrating process conforming to the exponential decaying with a high goodness-of-�t. Fig. 22

plots the thus-estimated λs based on the temperature trace shown in Fig. 15, with a 30s time window: (i)
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Fig. 23. BaT samples a transient ba�ery adaptively based
on how fast its temperature changes.

the estimation of λ is triggered frequently, ensuring its availability to BaT, and (ii) the estimated λs are
close and thus reliable.

• Estimating t − t0t − t0t − t0. BaT estimates t − t0 by identifying the sub-state transitions for transient batteries in

Fig. 17: t = t + ∆t if transition-A is triggered (i.e., if the battery temperature follows the exponential model

learned since t0 and thus changes as in the equilibration) and t0 = t if transition-B is triggered.

This way, BaT searches through the range of Ta via binary search, predicts T tr

b
based on each assumed Ta, and

concludes the Ta that matches the predicted with empirically collected T tr

b
as the ambient temperature.

BaT calibrates the estimated Ta further based on the previous estimations with stable batteries, to mitigate

the variance caused by the high dynamics of transient-state batteries. Speci�cally, BaT: (i) applies the SVM- and

search-based methods upon concluding a stable battery, yielding T SVM

a
and T search

a
, respectively, (ii) estimates the

ambient temperature to be T SVM

a
, and then (iii) uses δ = T SVM

a
−T search

a
to compensate the estimation when the

battery switches to transient state later, thus connecting the two cases with a control loop. BaT updates δ when

the battery becomes stable again.

5.5 Adaptive Sampling
BaT alleviates its energy overhead by sampling the device battery temperature at a reduced frequency: (i) with

the device’s default and low frequency (e.g., 1/30Hz for Nexus 5X) for stable batteries, and (ii) with adaptive

sampling of transient battery temperature based on how fast their temperature changes — a battery only needs

to be sampled when its temperature has changed by at least θ , i.e., the device’s precision in sensing battery

temperature. Speci�cally, for transient batteries, BaT predicts the cumulative change of θ in battery temperature

using Eq. (11) (as illustrated in Fig. 23), and samples the battery temperature at that time. Let T i−2
b

and T i−1
b

be the

battery temperature at time ti−2 and ti−1 when the (i − 2)-th and (i − 1)-th samples are collected. BaT takes the
i-th sample at time

ti = −
1

λ
· ln[(1 +

θ

T i−2
b

−T i−1
b

) · e−λ ·(ti−1−t0) −
θ

T i−2
b

−T i−1
b

· e−λ ·(ti−2−t0)] + t0. (12)

6 EVALUATION
We have evaluated BaT using both laboratory experiments and �eld-tests with 6 smartphones: 2 Nexus 5X, 1

Nexus 6P, 1 Galaxy S6 Edge, 1 Xperia Z, and 1 Pixel XL. The current information of Nexus 6P, Nexus 5X, Galaxy

S6 Edge, and Xperia Z is collected by reading /sys/class/power_supply/battery/current_now, and that of Pixel XL is

estimated according to Eq. (7).
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Table 3. Experimental comparison of BaT with the 13 Type-V apps in Table 1.

Settings Error of Apps (oC)
Test ID Amb. T. Curr. BaT #1 #2 #3 #4 #5 #6 #7 #8–#13

#1 16
o
C 471mA 0.5 6.0 6.8 5.0 3.0 -3.0 6.0 7.5 3.0

#2 16
o
C 763mA 0.2 13.0 16.2 12.0 11.0 13.0 14.0 15.0 10.2

#3 20
o
C 803mA 1.4 10.0 10.4 9.0 7.0 14.0 10.0 11.2 6.4

#4 21
o
C 279mA 0.1 -2.0 -0.1 -3.0 -3.0 -1.0 3.0 4.3 -0.3

#5 21
o
C 542mA 0.7 0 -0.5 2.0 -1.0 1.0 3.0 4.8 0.1

#6 22
o
C 819mA 1.0 10.0 3.8 9.0 7.0 9.0 10.0 10.8 6.0

#7 22
o
C 836mA -0.5 10.7 9.5 9.7 7.7 5.7 10.7 11.7 6.7

#8 23
o
C 256mA 0.6 1.1 5.6 6.1 2.1 4.1 5.1 7.4 2.6

#9 24
o
C 1220mA 1.1 15.0 10.9 14.0 12.0 4.0 15.0 15.3 10.8

#10 25
o
C 283mA -0.9 1.0 2.2 2.0 -2.0 0 1.0 2.1 -2.6

#11 25
o
C 575mA 0.6 5.0 4.3 4.0 2.0 4.0 5.0 6.6 1.8

#12 25
o
C 678mA 0.3 10.0 7.8 9.0 7.0 9.0 10.0 11.0 4.7

#13 30
o
C 346mA -0.7 -1.0 -3.0 -2.0 -4.0 1.0 0 0.7 -4.1

#14 30
o
C 442mA 0.3 3.0 0 3.0 0 1.0 4.0 4.2 -0.7

#15 30
o
C 615mA 1.1 7.0 3.3 6.0 4.0 6.0 7.0 7.5 2.0

#16 35
o
C 680mA -0.8 6.0 2.7 5.0 3.0 5.0 6.0 5.5 0.5

#17 35
o
C 704mA 0.5 9.0 8.3 8.0 6.0 5.0 8.0 7.4 2.5

#18 40
o
C 343mA -0.5 1.0 -2.3 1.0 -2.0 1.0 1.0 1.6 -4.3

#19 40
o
C 639mA 0.3 6.0 4.6 5.0 3.0 0 6.0 4.0 -0.9

Overall Range [-0.9, 1.4] [-2, 15] [-3, 16.2] [-3, 14] [-4, 12] [-3, 14] [0, 15] [0.7, 15.3] [-4.3, 10.8]

Mean of Absolute Error 0.63 6.15 5.38 6.04 4.57 4.57 6.57 7.29 3.69

Standard Deviation 0.68 4.96 4.99 4.46 4.63 4.60 4.24 4.26 4.31

Table 4. Summary of tests in common usage scenarios.

Scenario Current Battery Temp. Duration
Idling 28–602mA 22–32

o
C 2.5–15 hours

Listening-to-Music 324–991mA 22–33
o
C 1.1–2 hours

Youtubing 214–1,317mA 24–38
o
C 0.9–2.8 hours

Gaming 438–1,091mA 25–45
o
C 0.8–1.2 hours

6.1 Comparison with O�-the-Shelf Apps
We �rst compared BaT with the 13 Type-V apps in Table 1 via 19 laboratory experiments. Again, we use

BatteryDrainer to regulate the discharge rate of a Nexus 5X phone at a (relatively) �xed level, and use the thermal

chamber to control the ambient temperature. The ambient temperature is estimated after putting the phone in the

chamber for 30–60 minutes to allow the equilibration of battery temperature. Table 3 summarizes the estimation

errors obtained with BaT and the 13 apps, together with the corresponding ground truth of ambient temperature

and the phone’s discharge current during the experiments. BaT senses the ambient temperature with errors in

[−0.9, 1.4]oC across all the 19 cases and an average of 0.64oC, which is much more accurate than these apps and

is comparable to the ±2oF (or ±1.1oC) accuracy of the o�-the-shelf Acurite Weather Station [1].

6.2 BaT in Common Usage Scenarios
We have evaluated BaTwhen the phones operate in scenarios commonly seen by phone users, i.e., idling, listening-
to-music, Youtubing, and gaming. The app of Amazon Music [2] is used when listening to music online with screen

o� and an earphone, and Fishdom [10], a game requiring intensive human-phone interactions with over 10 million

downloads on Google Play, is used for the gaming scenario. The phones operate with di�erent components

& intensities in these scenarios, facilitating validation of BaT’s simpli�cation of excluding Tis in Eq. (6) from

its temperature sensing. The phones are placed on a desk during these experiments. The Elitech RC-5 thermal

loggers are placed near (but not in contacting with) the phones to collect the true ambient temperature. Table 4
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(d) Gaming

Fig. 24. BaT’s accuracy in estimating the ambient temperature of phones under common usage scenarios.
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Fig. 25. BaT’s accuracy at dif-
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phone thermal logger
separator

(a) A separator is inserted

0

1

2

C
u

rr
. 

(A
)

0 5 10 15 20 25 30 35

Time (min)

30

40

T
e
m

p
. 
(o

C
)

Batt. Temp. Logger Reading

(b) w/ Nexus 5X

0
1
2
3

C
u

rr
. 

(A
)

0 5 10 15 20 25

Time (min)

25
30
35
40

T
e
m

p
. 
(o

C
)

Batt. Temp. Logger Reading

(c) w/ Nexus 6P

Fig. 26. A heat separator is inserted between the phone and the logger to reduce the distur-
bance of the logger’s readings caused by the phone’s heating.

summarizes the phones’ discharge current and battery temperature during these experiments and the durations

thereof. The maximum currents of 602/991mA with idle/listening-to-music phones are incurred when the screen

is turned on to start/terminate the experiments. Fig. 24 plots the accuracy of BaT in estimating the phones’

ambient temperature obtained in these experiments, in terms of the 10-th, mean, and 90-th percentiles of the

absolute estimation errors. BaT achieves 0.25-0.7
o
C mean estimation errors with idle phones, and even the 90-th

percentile of the error is below 1.3
o
C. The estimation error increases in scenarios of listening-to-music, Youtubing,

and gaming, because of the larger and more dynamic currents, especially for the gaming scenario with frequent

user–device interactions, but the error is still below 2.1/3.3
o
C for the 50/90-th percentiles.

6.3 BaT with Common Device Placements
The phones are kept on a desk in the above experiments. We have further evaluated BaT’s accuracy when the

devices are placed at other common places, i.e., in backpack, in handbag, in pant/jacket pocket, and in hand.
Fig. 25 plots the results collected with a Nexus 5X phone, where each experiment lasts 50-140 minutes. The

temperature inside the backpack/handbag/pockets, collected with a thermal logger, is taken as the ground truth

in the corresponding experiments, in which cases BaT achieves an average error of less than 0.85oC. The case of
holding the phone in hand, however, is tricky because of the lack of clear de�nition of the phone’s operating

ambient environment — it will be a combination of the holding hand and the surrounding air. We have used (i) the

temperature of the holding hand, and (ii) the air temperature of the room in which the experiment is conducted,

as the upper and lower bounds of the ground truth, respectively. As expected, BaT under/over-estimates the

ambient temperature, when it is (approximately) de�ned as the temperature of hand/room, respectively.

6.4 BaT in Real-Life Usage
After validating BaT’s performance in speci�c scenarios/ambient, we next evaluate BaTwith 36 real-life �eld-tests,

i.e., using BaT to estimate, in real time, the phones’ ambient temperature during their daily usage. These �eld-tests

cover di�erent phone usage patterns and ambient changes, e.g, when the user moves from an air-conditioned

o�ce to an outdoor park in summer afternoons. Each of these �eld-tests lasts 4–22 hours, during which the
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Fig. 27. We have evaluated BaT with 36 real life field-tests, showing (i) BaT senses the ambient temperature with average
errors of 0.46–2.07oC, and (ii) BaT achieves much be�er accuracy when the ba�eries of mobile devices are stable.

discharge current, battery temperature, and ambient temperature vary from 152–2, 491mA, 12–55
o
C, and 6–41

o
C,

respectively.

We attached the Elitech RC-5 thermal loggers to the phones to collect the ground truth of phones’ ambient

temperature at 0.1Hz, with a 2.5′′ × 1.1′′ × 0.6′′ heat separator in between to reduce the disturbance caused by

the phone’s heating, as shown in Fig. 26(a). We have validated the e�ectiveness of the heat separator with the

Nexus 5X and 6P phones, as plotted in Figs. 26(b) and (c): the logger’s readings are insensitive to the dramatically

increased discharge current (and hence battery temperature), validating the reliability of the thus-collected

ground truth. The attachment of logger/separator to the phones, albeit increasing the physical size, is acceptable

for the �eld-tests as the phones may still be held in hand easily. Also note that the logger/separator are only for

the collection of ground truth and are not needed when deploying BaT in the real-world.

Fig. 27(a) plots one such �eld-test with a Nexus 5X phone, including (i) the battery information collected during

the ≈7.5-hour test, and (ii) the thus-estimated ambient temperature which is further smoothed with moving

average, together with the collected ground truth of ambient temperature for comparison. The phone was kept at

di�erent places such as in pocket, in bag, in hand, and on desk during this test, and the user’s activities include

working in o�ce, driving, running in a park, and at home. Note this �eld-test covers many transition scenarios in

which the phone’s ambient temperature changes because of the user’s activities, e.g., returning to home after

running in a park. BaT estimates the ambient temperature with a mean error of 1.07oC and with 10-th and 90-th

percentiles of 0.29oC and 2.06oC, respectively. Also, BaT achieves a smaller estimation error when the battery

temperature is relatively stable, as compared to transient state batteries. Fig. 27(a) also shows that estimating

the ambient temperature simply to be that of the device battery — like some of the Type-IV apps in Table 1 — is

not accurate. Moreover, even estimating the ambient temperature by shifting the battery temperature with a

posteriori-identi�ed optimal o�set leads to an averaged estimation error of 2.25
o
C and a 90-th percentile of 5.02

o
C,

which are much larger than BaT. Fig. 27(b) summarizes the estimation errors for each of these 36 �eld-tests,

ranging from 0.46–2.07oC. An overall mean error of 1.25oC is achieved across all the tests, with an average 90-th

percentile of 2.44oC.
To further examine BaT’s accuracy with stable and transient batteries, we categorize its estimations of ambient

temperature based on the battery’s thermal state. Fig. 27(c) plots the CDFs of the estimation errors in these two

cases, showing BaT achieves an average estimation error of 1.76oC when the phone battery is in transient-state,

which reduces further to 0.54oC for stable batteries. This also implies that ensuring a stable device battery is an

e�ective direction to improve BaT’s accuracy further.
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6.5 E�ectiveness of Adaptive Sampling
BaT adaptively samples the battery information to reduce its energy overhead, by focusing only on crucial battery

thermal behaviors. Fig. 28 compares BaT’s performance with and without adaptive sampling using 18 tests,

in terms of sampling overhead and estimation accuracy, respectively. The battery information is sampled at

0.2Hz in case of non-adaptive sampling. Adaptive sampling reduces the number of samples by about 75–97%,

when compared with the case of a �xed sampling rate, signi�cantly reduces BaT’s overhead. Moreover, adaptive

sampling causes no clear accuracy degradation in estimating the ambient temperature — it leads to estimation

errors of about 0.6–1.6x of that when sampling constantly, with an average of 0.99x across all tests.

6.6 Accuracy with Estimated Current
To further check BaT’s deployability on phones without current sensing capability, we implement BaT based

on the discharge current (i) reported by phones’ fuel-gauge chips and (ii) estimated based on battery SoC (i.e.,

Eq. (7)), with a Nexus 5X and a Nexus 6P phone. Fig. 29 plots the thus-obtained results: the estimated current

only slightly degrades BaT’s accuracy when compared to the current measured by the chip, demonstrating BaT’s
pervasive deployability.

6.7 Overhead Analysis
To quantify BaT’s energy overhead, we logged the battery current of an idle Xperia Z phone for about 50 minutes

with all other services/apps disabled, and then start BaT and log the discharge current for another 70 minutes.

This way, the di�erence between the discharge currents in the two cases will be the energy overhead of BaT.
Note that to reduce the randomness of the thus-measured energy consumption, the adaptive sampling of BaT is

disabled and a �xed sampling rate of 1/30Hz — which is much higher than that with the adaptive sampling —

is used in this experiment. Fig. 30 plots the thus-collected current trace, where the high spikes are caused by

human interactions when starting/switching/terminating the experiment: BaT causes only a 15mA increase in

discharge current even without adaptive sampling.

7 CONCLUSIONS
In this paper, we have designed and implemented BaT to sense mobile devices’ operating ambient temperature

using their batteries, expanding the ability to sense the physical world pervasively without requiring additional

thermometers. BaT is inspired by (i) the fact that people always carry their mobile devices, and (ii) our empirical

�nding that the temperature of device battery correlates highly with that of devices’ ambient temperature. We

have evaluated BaT using both laboratory experiments and �eld-tests on multiple Android devices, showing an
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average of 1.25oC error in sensing ambient temperature. Such an accuracy of BaT is su�cient to steer many

applications such as facilitating the environment-aware battery management for mobile devices or helping users

�nd their comfort areas in a building.
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APPENDIX: ANALYSIS OF OBSERVATION 2
From Eq. (6), we get

I 2(t) · rb =
Tb (t)

Rb
−
T ′
a

Rb
+Cb ·

dTb(t)

dt
, (13)

where
1

Rb
= 1

Ra
+
∑

i
1

Ri
and T ′

a =
Ta
Ra
+
∑
i
Ti
Ri

1

Ra
+
∑
i

1

Ri

. Multiplying Rb to both sides, we have:

Rb · rb · I 2(t) +T ′
a = Tb (t) + Rb ·Cb ·

dTb(t)

dt
, (14)

meaning that the battery temperature will converge at

T st,1
b
= Rb · rb · I 2(t) +T ′

a . (15)

Combining Eqs. (14) and (15) leads to

T st,1
b
= Tb (t) + Rb ·Cb ·

dTb(t)

dt
. (16)

Multiplying
1

Rb ·Cb
· e

t−t
0

Rb ·Cb to both sides and taking their integration, we get:∫
1

Rb ·Cb
· e

t−t
0

Rb ·Cb T st,1
b

=

∫
e

t−t
0

Rb ·Cb (
Tb (t)

Rb ·Cb
+
dTb(t)

dt
)

e
t−t

0

Rb ·Cb T st,1
b
+C =

∫
(e

t−t
0

Rb ·Cb ·Tb (t))
′

T st,1
b +C · e

−
t−t

0

Rb ·Cb = Tb (t). (17)

where C is the integration constant. Letting the initial condition be Tb (t0) = T
st,0
b , we have C = T st,0

b −T st,1
b , and

the transient solution is

T tr

b (t) = (T st,0
b −T st,1

b ) · e
−

t−t
0

Rb ·Cb +T st,1
b . (18)

Thus, the battery temperature equilibrates as an exponential decay process and Observation 2 follows.
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