
Received March 11, 2020, accepted April 30, 2020, date of publication May 6, 2020, date of current version May 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992868

Response-Time Analysis for Multi-Mode Tasks in
Real-Time Multiprocessor Systems
HYEONGBOO BAEK 1, KANG G. SHIN 2, (Life Fellow, IEEE),
AND JINKYU LEE 3, (Member, IEEE)
1Department of Computer Science and Engineering, Incheon National University, Incheon 22012, South Korea
2Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
3Department of Computer Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Jinkyu Lee (jinkyu.lee@skku.edu)

This work was supported in part by the National Research Foundation of Korea (NRF) through the Ministry of Science and ICT under
Grant 2019R1A2B5B02001794, Grant 2019R1F1A1059663, and Grant 2017H1D8A2031628, in part by the NSF under Grant
CNS-1446117 and Grant CNS-1739577, in part by the ONR under Grant N00014-18-1-2141, and in part by LG Chem Ltd.

ABSTRACT Recently, traditional real-time systems that played a dedicated role in a limited environment
have been evolving to interact with dynamically varying environments. In modern real-time systems,
characteristics of real-time tasks such as computational demand and resource allocation can vary over time
according to different circumstances, which is referred to as mode transition. In this paper, we focus on the
problem of timing guarantees of a set of multi-mode tasks associated with mode transitions and develop an
offline schedulability analysis, which does not require any online information; this is an important problem in
the real-time systems area. The proposed schedulability analysis not only generalizes an existing framework
designed for single-mode tasks, but also significantly improves the state-of-the-art framework designed
for multi-mode tasks. Building on the proposed analysis, we also address the problem of enforcing the
order of tasks within each mode transition and propose a task-level transition order assignment algorithm,
yielding further improvement in schedulability performance. Through simulations, our proposed framework
is shown to improve schedulability up to 777.3% over an existing schedulability analysis for multi-mode
tasks, depending on the experiment setting under our evaluation environment.

INDEX TERMS Real-time scheduling, multi-mode tasks, schedulability analysis, real-time multiprocessor
systems.

I. INTRODUCTION
Traditional real-time systems for dedicated roles with special-
ized hardware have been evolving to interact with dynam-
ically changing environments through ubiquitous networks
and sensor devices. Such modern real-time systems contin-
ually sense the physical environment and receive feedback
from sensors. As a result, the characteristics of real-time
tasks such as computational demand and resource allocation
vary over time according to different circumstances, which
is referred to as mode transition. A compelling example
is an unmanned reconnaissance aircraft, involving landing,
takeoff, and normal/specialized reconnaissance modes, each
representing a different goal under the corresponding envi-
ronment it faces [1], [2]. Such mode transition may require
activation of a new task, and deactivation or changes in
existing tasks.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Such changing characteristics of real-time systems on
varying environments necessitate designing distinct task
models that potentially characterize multiple execution
modes, referred to as multi-mode task models. Multi-mode
task models are generalized from a traditional real-time task
model specified by a collection of independent recurrent
tasks, each of which generates a series of jobs. While a task in
the traditional task model [3] is characterized by fixed values
for three parameters (i.e., minimum job separation, worst-
case execution time (WCET), and relative deadline), multi-
mode task models assume multiple values for each parameter
of a task. For uniprocessor systems, timing guarantees on
the multi-mode task models have been extensively studied
by considering various mode-transition protocols, scheduling
algorithms, and system domains [5]–[11] (also see the survey
in [2]).

In contrast, few studies have been conducted for mul-
tiprocessor real-time systems in the classes of partitioned
and global scheduling. For partitioned scheduling, Niz and

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 86111

https://orcid.org/0000-0001-8750-8373
https://orcid.org/0000-0003-0086-8777
https://orcid.org/0000-0002-2332-1996

H. Baek et al.: RTA for Multi-Mode Tasks

Phan considered a criticality transition of tasks [12], whereas
Huang and Chen addressed the situation where each task
changes its execution independent of other tasks [13].
Regarding global scheduling, a few studies proposed mode-
transition protocols that incur additional delay for a mode
transition and tried to minimize the delay without any dead-
line miss [14]–[16]. The mode-transition protocol in our pre-
liminary conference paper [17] is distinct from such studies
in that it supports a system-wide mode transition where all
tasks may switch to their new parameters without additional
delay or task drop. Extending an existing popular schedula-
bility analysis framework for single-mode tasks, called the
deadline-based schedulability analysis (DA) [18], our pre-
vious study succeeded in developing a new schedulability
analysis for multi-mode tasks in the presence of a mode
transition. Despite the advantages of the transition protocol
in our previous study, such advantages have not been fully
utilized owing to the limited analytical capability of the DA
framework.

In this study, we target the system-wide mode transition
protocol without imposing additional transition delay and
task drop (to be detailed in Section II-B), and we develop
a sufficient, offline response-time analysis (RTA) frame-
work [19] that guarantees timely execution of all tasks in
the presence of system-wide mode transitions; RTA signif-
icantly improves the analytical capability over DA, as RTA
analyzes the worst-case scenario that each task may expe-
rience less pessimistically than DA. The key technique of
RTA distinguished from DA is the slack reclamation scheme
that effectively utilizes the notion of slack (of each task)
defined as the minimum interval length between the finishing
time and the deadline of any job of a task. We present how
the slack reclamation scheme systematically identifies the
slack of each task, and incorporate it into RTA to improve
the schedulability by reducing the pessimism in analyzing
the worst-case scenario that the task may experience. We
make RTA independent of online information, such as the
time instant when the transition starts, and task release and
execution patterns; otherwise, the systemwould have to mon-
itor/predict the information, and hence the analysis could not
provide any offline guarantee.

Also, we further improve the analytical capability of our
RTA framework by proposing a mechanism that controls the
order for tasks to complete their mode transitions within a
system-wide mode transition. In a prior system-wide mode
transition protocol, the transitions of tasks occur concurrently
in every individual mode transition. Thus, the order for tasks
to complete their mode transitions within a system-wide
mode transition depends on job release patterns and the mode
transition request time. If the transition order of tasks in
each system-wide mode transition can be controlled and thus
predetermined offline by the system designer, we can further
improve schedulability by reducing interference.

We perform extensive simulations to show the effective-
ness of the proposed RTA framework. Our proposed frame-
work is shown to improve schedulability up to 777.3%,

over an existing schedulability analysis for multi-mode tasks,
depending on the experiment setting under our evaluation
environment. In particular, schedulability improves as the
number of modes increases.

In summary, this paper makes the following contributions.
• Development of a new RTA framework for a mode tran-
sition (without any additional transition delay) in real-
timemultiprocessor systems, which outperforms the DA
framework;

• Development of a new interference calculation method
to be used for the new RTA framework;

• Development of a slack reclamation scheme to further
improve the schedulability;

• Identification of the problem of task-level transition
order assignment, and development of a grouping frame-
work for the transition-order assignment using the
derived properties under a given condition; and

• Demonstration of the effectiveness of the RTA frame-
work via simulation.

The remainder of this paper is organized as follows.
Section II presents our system model and the transition pro-
tocol we consider, and recapitulates an existing RTA frame-
work for single-mode tasks. Section III presents challenges
and overview of developing RTA framework for multi-mode
tasks. Section IV develops a new RTA framework for a mode
transition. Section V develops a task-level transition-order
assignment framework. SectionVI evaluates the effectiveness
of this framework. Section VIII discusses related work, and
Section IX concludes the paper.

II. BACKGROUND
In this section, we first describe the system model, assump-
tions, and notations to be used throughout this paper. Then,
we summarize an existing RTA framework for single-mode
tasks, which will be used as the basis for our RTA framework
for multi-mode tasks.

A. SYSTEM MODEL, ASSUMPTIONS AND NOTATIONS
We consider a periodic task model [3], [20] associated with
µ different operation modes. We letMg,Mh, andMg

⇒ Mh

denote the g-th mode, the h-th mode, and a mode transition
fromMg toMh where g and h are positive integers that satisfy
1 ≤ g ≤ h = g + 1 ≤ µ. A task set τ is denoted by τ g

when the parameters of tasks in τ are associated with Mg. A
task τ gi in τ g is specified by τ gi (p

g
i , e

g
i , d

g
i) where p

g
i is the

time separation between two successive invocations (called a
period), 1 egi is the WCET, and dgi is the relative deadline of
τ
g
i . Our focus is confined to constrained deadline tasks, each
of which satisfies the inequality dgi ≤ pgi . Different modes
imply not only the change of task parameters (e.g., satisfying
at least one of pgi 6= pg+1i , egi 6= eg+1i or dgi 6= dg+1i) but also
addition/deletion of tasks. For convenience of presentation,

1Note that all the analytical results in this paper are also applicable to
sporadic tasks in which pgi represents the minimum separation, not the exact
separation.

86112 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

TABLE 1. Notations and their description.

we let τ denote the set of all tasks existing in at least one
mode; if a task τi does not exist in a mode Mg, τ gi represents
a dummy task (pgi = 1, egi = 0, dgi = 1), and does not affect
the actual execution of other tasks. Whenever g is irrelevant,
we omit it, i.e., using τi, pi, ei, and di instead of τ gi , p

g
i , e

g
i ,

and dgi .
A task τ gi invokes a series of jobs, each separated from

its predecessor by pgi time units and is supposed to finish its
execution within dgi time units taking at most egi time units for
its execution. We call the interval between the release time
and deadline of a job Ji, the scheduling window of Ji. We
assume a quantum-based time slot, and consider the length
of a quantum as one time unit without loss of generality. All
task parameters are specified in multiples of this quantum.

We target multiprocessor systems containing m identi-
cal processors. We consider global, preemptive, and work-
conserving scheduling algorithms under which the execution
of a job can migrate from one processor to another; a job
can be preempted at any time, and there should be no idle
processors as long as there is a job ready to be scheduled. We
also assume that a job cannot be executed in parallel.

B. TRANSITION PROTOCOL
We consider a series of transitions of a task set τ , and each
transition is separated from its predecessor and successor
transitions, meaning that any time unit in the interval between
the start and end of a transition (e.g., [t1, t2) for Mg

⇒ Mh

in Fig. 1) cannot be included in the other transitions’ one
(e.g., ([t−1, t0) for M f

⇒ Mg or [t3, t4) for Mh
⇒ M i

in Fig. 1). In other words, the schedulingwindow of a jobwith
a mode can overlap only with either that of any job with its
previous and current modes, or that of any job with its current
and next modes. Within a single transition, multiple tasks can
change their task parameters; recall that addition or deletion
of tasks is also expressed as a change of task parameters by
using dummy tasks, as explained in Section II-A. Note that we
assume the mode transition protocol itself does not impose
additional transition delay and task drop as most existing
studies do.

To support a transition that does not result in miss-
ing/delaying any task’s control update, we follow the protocol
in [21], as explained next. For a mode transition Mg

⇒ Mh,
suppose that a mode transition request (MTR) is released
at t1 and the transition is completed at the completion of

FIGURE 1. A Mode Transition Request (MTR) from Mg to Mh is released
at t1: while the mode transition does not change any task parameter of
τ1, it extends the period of τ2 and introduces a new task τ3 (meaning τg

3
is a dummy task).

at least one job from every task. The transition completion
cannot be later than t2 when it is the earliest time at which
jobs of all tasks with Mh are released or in active already, as
shown in Fig. 1; Mh starts at no later t2. We consider two
types of tasks: (i) tasks whose parameters are not affected
by the transition (i.e., pgi = phi , e

g
i = ehi , and d

g
i = dhi)

and (ii) other tasks, which satisfy at least one of pgi 6= phi ,
egi 6= ehi , or d

g
i 6= dhi . Then, the protocol does not affect

release patterns of each task in (i) at all, e.g., τ1 in the figure.
For each task τi in (ii), the next release time (i.e., the earliest
release time of jobs of τi after t1) is not different from the
time without the transition. However, there is a difference in
that at the next release time, a job of τ hi (associated with a
new mode Mh) is released instead of that of τ gi (associated
with an old mode Mg), e.g., at t2, a job of τ h2 is released in
the figure. After the release of the job withMh, jobs of τ hi are
periodically released until anotherMTR is released. Note that
if τ gi is a dummy task, then a job of τ hi is released when an
MTR is released; for example, τ g3 in Fig. 1 is a dummy task,
so a job of τ h3 is released as soon as the MTR is released at
t1. Therefore, this transition protocol supports not only each
task’s transition without missing/delaying its control update,
but also immediate task migration from other systems caused
by any failure.

While many existing mode transition protocols require
discarding unfinished jobs of the old-mode tasks, ormust wait
until a given time instant for synchronous release of jobs of
the new-mode tasks (see the survey in [2]), this protocol does
not perform such functions. Therefore, the protocol is suitable
for real-time control systems, which require timely control

VOLUME 8, 2020 86113

H. Baek et al.: RTA for Multi-Mode Tasks

updates, even in the presence of transitions. For example,
consider commercial flight between Detroit and LA (which
are runmultiple times every day) or robots repeating the same
sequence of tasks (assembly, pick and place). In those appli-
cations, mode transitions caused by progress of application
execution can be predicted based on a history of applica-
tion execution. When it comes to mode transitions caused
by unpredictable events such as component/subsystem fail-
ures, the mode transitions will be difficult to deal with, but
the mode transitions are prepared (assigning and scheduling
tasks) in advance using ‘‘case’’ statements, e.g., in case the
left engine fails, we invoke new functions while removing
existing functions.

C. EXPRESSION OF THE SYSTEM MODEL AND
TRANSITION PROTOCOL
To provide better understanding of the proposed system
model and transition protocol, this subsection expresses them
using the existingwell-defined semantics and syntax of speci-
fication language provided in [22]. The study utilizes notions
of multiple types of tasks, jobs, actions and guards; action
A presents the operation (e.g., abort, update, etc.) that each
job/task should conduct during amode transition, while guard
G does the conditions (e.g., offsets after a mode-transition
signal) for such an action to be in effect. To this end, we first
categorize types of tasks and jobs under a mode transition
of our considered protocol, and then describe their behaviors
(during the mode transition) with notions of actions and
guards.

A task τi under a mode transitionMg
⇒ Mh (i.e., an active

task in an interval between an MTR and the completion
of the mode-transition) of our mode-transition protocol is
categorized into the following two types.

• UNCHANGED : Tasks that are active in both Mg and
Mh and all task parameters are not changed, and

• CHANGED : Tasks that are active in both Mg and Mh

and at least one parameter of τi is changed.

Although there exist two more definitions of the task types in
[22], which are OLD and NEW (i.e., τi that are active in Mg

but not in Mh, and vise versa, respectively), τi in our mode-
transition protocol does not belong to OLD and NEW since
we use a dummy task to present τi that is not active in one
of the two modes. That is, an OLD task in [22] is presented
by a CHANGED task whose parameters for Mg and Mh are
given and (phi = 1, ehi = 0, dhi = 1), respectively. A NEW
task in [22] is also presented by a CHANGED task whose
parameters for Mg and Mh are (pgi = 1, egi = 0, dgi = 1) and
given, respectively.

In addition, a job Ji under a mode transition Mg
⇒ Mh is

categorized as follows, which is the same as [22].

• PENDING: Unfinished jobs that are not currently exe-
cuting.

• EXECUTING: Unfinished jobs that are currently exe-
cuting.

• NEW: New jobs that will be released after the mode
transition request.

Next, we apply the following mode-transition action for
PENDING and EXECUTING jobs in [22] to our mode tran-
sition protocol.
• CONTINUE: The jobs continue to be scheduled by
a given scheduling algorithm with their current task
parameters.

In [22], ABORT and UPDATE actions are provided for
PENDING and EXECUTING jobs, which aborts the corre-
sponding jobs (if ABORT) and updates the jobs’ task param-
eters (if UPDATE); however, our mode transition protocol
does not enforce such actions to PENDING and EXECUT-
ING jobs.

For NEW jobs that should be released after a MTR, the fol-
lowing mode-transition actions can be applied.
• RELEASE: New jobs whose parameters are ofMh (i.e.,
destination mode) are released immediately as long as
associated guards are true

• RELASE_O: New jobs whose parameters are of Mg

(i.e., source mode) will be released after anMTR as long
as associated guards are true.

Note that the release of the first NEW job with the destina-
tion mode’s parameters is delayed until an associated guard
becomes satisfied. When it comes to action guards provided
in [22], our mode-transition protocol uses the following guard
only.
• OFFSET_LR: The corresponding action is applied after
the pre-defined offset time units elapse from the last
release time of the corresponding task.

To summarize, our mode transition protocol Mg
⇒ Mh is

expressed by the existing well-defined semantics and syntax
of specification language provided in [22]. That is, under
a mode transition Mg

⇒ Mh, a task τi is expressed by
UNCHANGED or CHANGED, and a job Ji is expressed by
PENDING, EXECUTING or NEW. The action applied to a
PENDING or EXECUTING job always follows CONTINUE
without any action guard, meaning that a PENDING or EXE-
CUTING job continues to be scheduled by the given schedul-
ing algorithm until its completion. Then, RELEASE with
‘‘OFFSET_LR: pgi ’’ is applied to a NEW job Ji of a
CHANGED task τi, and RELASE_O with ‘‘OFFSET_LR:
pgj ’’ is applied to a NEW job Jj of a UNCHANGED task τj.
This implies that a NEW job Ji will be released (after a MTR)
when pgi time units elapse after from the last release time of
the a CHANGED task τi. Also, a NEW job Jj will be released
(after a MTR) when pgj time units elapse after from the last
release time of the a UNCHANGED task τj.

D. EXISTING RTA FRAMEWORK
To assure no deadline miss of a set of single-mode tasks,
many schedulability analysis techniques have been devel-
oped. Among them, the RTA (response-time analysis) tech-
nique is popular owing to not only its applicability to many
scheduling algorithms such as earliest deadline first (EDF)

86114 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

FIGURE 2. τg = {τ1(period and relative deadline=3, execution time=2),
τ2(3,2), τ3(12,4)} as well as τh = {τ1

′(6,4), τ2′(6,4), τ3(12,4)} is
schedulable by FP assuming the priority of τ1, τ2, τ ′

1 and τ ′

2 is the same,
but higher than that of τ3 on two processors without any transition.
However, the task set is not schedulable in the presence of a transition
from τg to τh at t = 9.

and fixed-priority (FP), but also its schedulability perfor-
mance, e.g., it is (one of) the best schedulability tests of EDF
and FP on a multiprocessor platform [19], [23], [24].

For completeness, we now summarize the response-time
analysis technique for single-mode tasks in real-time mul-
tiprocessor systems, which was originally described in [19]
and has been recapitulated in many papers, e.g., [25]. The
technique employs the notion of interference [26]. The inter-
ference on τk in [a, b) (denoted by I (τk , a, b)) is defined as
the cumulative length of all intervals in [a, b) such that a job
of τk is ready to execute, but cannot execute owing to other
higher-priority jobs’ execution. Furthermore, the interference
of τi on τk in [a, b) (denoted by I (τk ← τi, a, b)) is defined
as the cumulative length of all intervals in [a, b) such that a
job of τk cannot execute although it is ready to execute, but a
job of τi executes instead. Because a job of τk cannot execute
only whenm other jobs execute, the following equation holds
under any global work-conserving algorithm [26]:

I (τk , a, b) =

∑
τi∈τ\{τk }

I (τk ← τi, a, b)

m
. (1)

A property between I (τk , a, b) and I (τk ← τi, a, b) has
been derived in [26] as follows:

I (τk , a, b) ≥ x

⇐⇒

∑
τi∈τ\{τk }

min
(
I (τk ← τi, a, b), x

)
≥ m · x. (2)

Using Eqs. (1) and (2), the technique calculates an upper-
bound of the time duration between the release and the com-
pletion of any job of τk (called the response time of τk). To do
this, we compute the maximum interference of τi (6= τk) on
τk in an interval of length ` starting from the release of any

job of τk (denoted by I(τk ← τi, `)), as follows:

I(τk←τi, `) , max
t|the release time of any job of τk

I (τk←τi, t, t+`).

(3)

Note that we define I(τk ← τi, `) only for 0 ≤ ` ≤ dk ,
because we are interested in satisfying the timing require-
ments.

If the sum of the execution time of τk (i.e., ek) and the
maximum interference on τk in an interval of length ` (≤ dk)
starting from the release time of any job of τk is equal to or
less than `, any job of τk successfully finishes its execution
within ` time units after its release. This leads to the following
response-time analysis framework, using Eqs. (1) and (2).
Lemma 1 (Theorem 6 in [19]): When a set of single-mode

tasks τ is scheduled by a global, preemptive, and work-
conserving algorithm, an upper-bound of the response time
of τk ∈ τ is rk = r (x)k such that r (x+1)k = r (x)k holds in the
following expression, starting from r (0)k = ek :

r (x+1)k

← ek +
⌊
1
m

∑
τi∈τ\{τk }

min
(
I(τk←τi, r

(x)
k), r (x)k −ek+1

)⌋
.

(4)

Then, if rk ≤ dk holds for all τk ∈ τ , τ is schedulable by the
target scheduling algorithm. Note that the iteration of Eq. (4)
for τk halts if r

(x)
k > dk , implying that τk is unschedulable.

While the interference I(τk ← τi, `) varies with tar-
get scheduling algorithms, upper-bounds on the interference
under EDF, FP, and any work-conserving algorithm were
given in [19]. We present their generalizations in Section IV.

III. CHALLENGES AND OVERVIEW OF DEVELOPING RTA
FRAMEWORK FOR MULTI-MODE TASKS
Developing the RTA framework for multi-mode tasks is much
more complex than the DA framework case, where the main
challenges arise in RTA when addressing the following ques-
tions:
Q1. How to identify the worst-case scenario inducing the

maximum interference on each task in the presence of
a mode transition, and how to effectively incorporate
it into the RTA framework? (Subsections IV-A, IV-B,
and IV-C)

Q2. How to safely upper-bound the slack value of each task
(which is a key part of an effective RTA framework) in
the presence of a mode transition? (Subsection IV-D)

Fig. 2 demonstrates the difficulty of addressing Q1 by
showing that timing guarantees with a transition cannot be
achieved even if the timing guarantees of both task sets before
and after the transition are made. As shown in Figs. 2(a)
and (b), the traditional RTA framework [27] for single-mode
tasks guarantees the schedulability of a task set τ g and that
of another task set τ h on two processors when each task set
is scheduled by fixed priority (FP) [20] assuming the priority
of τ1, τ2, τ ′1 and τ ′2 is the same, but higher than that of τ3.

VOLUME 8, 2020 86115

H. Baek et al.: RTA for Multi-Mode Tasks

However, if τ g makes a transition to τ h at t = 9, τ3 misses its
deadline at t = 12, as shown in Fig. 2(c). Therefore, we need
to develop a new RTA framework that can accommodate
mode transitions.

As regards Q2, the slack value of each task (defined by the
minimum interval between the finishing time and deadline
of any job of the task) is essential to significantly reduce
the worst-case interference from higher-priority tasks on a
task of interest. For single-mode tasks, the traditional RTA
framework conducts the slack reclamation scheme by iter-
atively reducing the worst-case response time of each task
to derive upper-bounded slack values. However, such slack
reclamation cannot be directly applied to multi-mode tasks
in the presence of mode transitions because the execution
pattern of other tasks in the presence of previous transitions
affects the response times (as well as slack values) of tasks
under the current transition, which does not occur in single-
mode systems; we elaborate this phenomenon in detail in
Section IV-D. By considering the trade-off between schedula-
bility and computational overhead, we propose two different
slack reclamation schemes in which (i) the slack value of each
task is derived considering the transition history of previous
modes, referred to as chaining slack reclamation, or (ii) the
slack value is derived independently (but providing restricted
analytical capability), referred to as independent slack recla-
mation.

Thus far, Q1 and Q2 focused on a system-wide mode tran-
sition protocol where the transitions of tasks occur concur-
rently in every individual system-wide mode transition. Thus,
the order for tasks to complete their mode transitions within a
system-wide mode transition depends on job release patterns
and the mode transition request time. If the transition order of
tasks in each system-wide mode transition can be controlled
and thus predetermined offline by the system designer, we can
further improve schedulability by reducing interference. That
is, while the thus-developed analysis for addressing Q1 and
Q2 provides safe guarantees on timing requirements, it can be
pessimistic owing to its applicability to any arbitrary transi-
tion order of tasks in each system-wide mode transition. This
entails the following question to improve schedulability of
the RTA framework assuming predetermined task transition
order in each system-wide mode transition.

Q3. How to improve schedulability by enforcing a transition
order of tasks in a mode transition? (Section V)

Based on the investigation of how interference is reduced
when a task-level transition order is enforced (called a
sequential transition, as opposed to a concurrent transition),
we address two issues: (i) how to guarantee timing require-
ments with a specific transition order of tasks? and (ii) how to
find a transition order that guarantees the timing requirements
of a task set specified by (i)? We achieve (i) by adapting the
proposed schedulability analysis to a given transition order of
tasks. For (ii), we derive some properties toward an optimal
order under a given (restricted) condition, and then develop
an effective transition order assignment.

IV. RTA FRAMEWORK FOR A MODE TRANSITION
In this section, we propose a new RTA framework for a
mode transition, by generalizing the existing RTA framework
considering a single mode in Lemma 1. We first extend it
to consider a mode transition for a given task of interest.
Then, we calculate upper-bounds of the interference for such
a task in the presence of a mode transition under any work-
conserving algorithm, EDF or FP. We finally present how to
conduct slack reclamation to improve schedulability of the
proposed RTA framework.

A. EXTENSION OF THE EXISTING RTA FRAMEWORK
The schedulability analysis framework in Subsection II-D
assumes there is only one mode of each task, so we must
extend the framework to multiple modes.

A task executing in the presence of a mode transition
Mg
⇒ Mh (1 ≤ g ≤ h = g + 1 ≤ µ) can interfere with

another task with either mode Mg or Mh. To express this, let
τ
g⇒h
i denote τi in the presence of a transition Mg

⇒ Mh.
Then, we define interference of τ g⇒h

i to τ uk (u is either g or h)
in [a, b) as the cumulative length of all intervals in [a, b)
such that a job of τ uk cannot execute although it is ready
for execution, because a job of τ gi or τ hi executes instead.
Let I (τ uk ← τ

g⇒h
i , a, b) denote such interference. Similar to

Eq. (3), we define I(τ uk ← τ
g⇒h
i , `) as follows.

I(τ uk ← τ
g⇒h
i , `)

, max
t|the release time of any job of τ uk

I (τ uk ← τ
g⇒h
i , t, t + `). (5)

For response time analysis of a given task τk in the presence
of a transitionMg

⇒ Mh, we also consider two modes of the
task because a task in one mode has different task parameters
from the same task in a different mode. This means that we
should calculate the response time of both τ gk and τ hk for a
transitionMg

⇒ Mh. Thus, we generalize the response-time
analysis framework in Lemma 1 as follows.
Lemma 2: Suppose that a task set τ makes a transition

Mg
⇒ Mh and is scheduled by a global, preemptive, and

work-conserving algorithm. Then, an upper-bound of the
response time of τ uk ∈ τ in the presence of M

g
⇒ Mh (u

is either g or h) is ruk = ru(x)k such that ru(x+1)k = ru(x)k holds
in the following expression, starting from ru(0)k = euk :

ru(x+1)k ← euk

+

⌊
1
m

∑
τi∈τ\{τk }

min
(
I(τ uk←τ

g⇒h
i , ru(x)k), ru(x)k −e

u
k + 1

)⌋
.

(6)

If ruk ≤ duk holds for all τ
u
k ∈ τ and u ∈ {g, h}, then τ is

schedulable by the algorithm.
Note that the iteration of Eq. (6) for τ uk halts if r

u(x)
k > duk ,

implying that τ uk is unschedulable.
Proof: The lemma holds by Lemma 1 and the definitions

of I(τ uk ← τ
g⇒h
i , `). �

86116 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

FIGURE 3. Release and execution patterns that derive W g
i (`),

W g⇒h
i (`, δg = 1), W g⇒h

i (`, δh = 2), Eg
i (`) and Eg⇒h

i (`, βh = 1), where an
interval of interest of length ` starts at ta or ends at tb.

Then, how to set the upper-bound of interference I(τ uk ←
τ
g⇒h
i , `) is the most critical part of the response-time analysis
for a mode transition, as addressed in the following subsec-
tion.

B. INTERFERENCE CALCULATION
Because the interference depends on the scheduling algo-
rithm, we now calculate two different types of upper-bounds
for the interference. First, we compute the maximum amount
of execution of jobs of a given task under any work-
conserving algorithm. Second, we calculate a tighter inter-

ference upper-bound for a specific scheduling algorithm; as
examples, we derive upper-bounds for EDF and FP.

1) INTERFERENCE UNDER ANY-WORK CONSERVING
ALGORITHM
For single-mode tasks, it has been identified which release
and execution patterns maximize the amount of execution of
a single task τ gi ’s jobs in an interval of length `. As shown
in Fig. 3(a), the patterns are either (i) the first job of τi
executes as late as possible and starts its execution at the
beginning of the interval (see an interval starting at ta), or
(ii) the last job of τi executes as early as possible and finishes
its execution at the end of the interval (see an interval ending
at tb). Both patterns derive the same amount of execution of
τ
g
i ’s jobs [19], [23], and the amount of execution in case of
(i) (denoted by W g

i (`)) is calculated by [19] as follows.

W g
i (`) , Fgi (`+ d

g
i − s

g
i − e

g
i), (7)

where Fgi (`) represents the amount of execution of jobs of
τ
g
i in an interval of length `, when the first job is released at
the beginning of the interval and all jobs of τ gi in the interval
execute as early as possible. Then, we can mathematically
express Fgi (`) as follows:

Fgi (`) ,

⌊
`

pgi

⌋
· egi +min

(
egi , `−

⌊
`

pgi

⌋
· pgi

)
, if l > 0,

0, otherwise.

(8)

Further, sgi denotes the slack value of τ
g
i , which represents the

minimum interval length between the finishing time and the
deadline of any job of τ gi . Then, any job of τ gi completes its
execution at least sgi time units ahead of its deadline. We will
present how to compute sgi in Section IV-D.

Regarding multi-mode tasks, it is more difficult to deter-
mine the maximum amount of execution of jobs of τi because
the amount depends not only on release and execution pat-
terns, but also on the time of an MTR. However, we note an
interesting property of the maximum amount, as stated in the
following observation.
Observation 1: Suppose that τ makes a transition from

τ g to τ h in an interval of length `, in which the scheduling
window of at least one job of τ gi and at least one job of
τ hi (partially or entirely) overlap with the interval as shown
in Figs. 3(b) and 3(c). Then, the amount of execution of jobs
of both τ gi and τ

h
i in the interval is maximized with one of the

following release and execution patterns: (i) when the first job
of τ gi is executed as late as possible and starts its execution
at the beginning of the interval of length `, and the last job of
τ hi is executed as early as possible as shown in Fig. 3(b), and
(ii) when the last job of τ hi is executed as early as possible
and finishes its execution at the end of the interval of length
`, and the first job of τ gi is executed as late as possible as
shown in Fig. 3(c).

Then, the following lemma proves the correctness of
Observation 1.

VOLUME 8, 2020 86117

H. Baek et al.: RTA for Multi-Mode Tasks

Lemma 3: The amount of execution of jobs of both τ gi and
τ hi in the interval of length ` is maximized with one of release
and execution patterns (i) and (ii).

Proof: Suppose that a release and execution pattern not
belonging to (i) and (ii) makes the larger amount of execution
of jobs of both τ gi and τ hi in the interval of length ` than
those belonging to (i) and (ii). If a release and execution
pattern belongs to neither (i) nor (ii), then shifting the release
pattern towards (i) or (ii) yields the larger (or equal) amount
of execution for jobs of both τ gi and τ hi . This contradicts the
supposition, and thus the lemma holds. �
A naive approach requires an exhaustive search for the

release time of an MTR because we develop a schedulability
analysis that an MTR can be released at any time in the
interval of interest. By applying Observation 1, we are able
to evaluate only the following two types of patterns:

P1. Release and execution patterns of (i) with a situation
where the scheduling window of a given number of
jobs of τ gi (denoted by δg) overlaps with the interval of
interest.

P2. Release and execution patterns of (ii) with a situation
where the scheduling window of a given number of
jobs of τ hi (denoted by δh) overlaps with the interval of
interest.

P1 with δg = 1 is depicted in Fig. 3(b). The amount of
execution of jobs of τ gi in the interval of interest (starting at
ta) is equal to δg · e

g
i , and that of τ hi is calculated by Fgi (`

′)
where `′ = `+ (dgi − s

g
i − e

g
i)− δ

g
· pgi as shown in Fig. 3(b).

With the reasoning, the amount of execution of jobs of τ gi and
τ hi in the interval of length ` with P1 and a given δg is upper-
bounded as follows.
Lemma 4: The amount of execution of jobs of τ gi and τ

h
i in

the interval of length ` with P1 and a given δg (denoted by
W g⇒h
i), is calculated by

W g⇒h
i (`, δg) , δg · egi + F

h
i (`
′), (9)

where 1 ≤ δg ≤ b(`+ dgi − s
g
i − e

g
i)/p

g
i

⌋
and `′ = `+ (dgi −

sgi − e
g
i)− δ

g
· pgi .

Proof: For a given δg, δg jobs of τ gi contribute to
W g⇒h
i (`, δg). Then, an interval of length `′ where the first job

of τ hi starts its execution at the beginning of `′ is calculated
by adding dgi − sgi − egi to `, and deducting δg · pgi from it
(i.e., `′ = `+ (dgi − s

g
i − e

g
i)− δ

g
· pgi). By exploiting F

h
i (`
′),

we can derive the amount of jobs of τ hi that can contribute to
W g⇒h
i (`, δg). Thus, the lemma holds. �
Similarly, P2 with δh = 2 is depicted in Fig. 3(c). The

amount of execution of jobs of τ hi in the interval of interest
(ending at tb) is equal to δh · ehi , and that of τ gi is calculated
by Fgi (`

′′) where `′′ = `+ phi − e
h
i − (pgi − d

g
i + s

g
i)− δ

h
· phi

as shown in Fig. 3(c).
With the reasoning, the amount of execution of jobs of τ gi

and τ hi in the interval of length ` in P2 and given δh (denoted

by W g⇒h
i) is upper-bounded as follows.

Lemma 5: The amount of execution of jobs of τ gi and τ
h
i in

the interval of length ` in P2 and given δh (denoted byW g⇒h
i)

is calculated by

W g⇒h
i (`, δh) , δh · ehi + F

g
i (`
′′), (10)

where 1 ≤ δh ≤ b(`+ phi − e
h
i)/p

h
i

⌋
and `′′ = `+ phi − e

h
i −

(pgi − d
g
i + s

g
i)− δ

h
· phi .

Proof: For a given δh, δh jobs of τ hi contribute to

W g⇒h
i . Then, an interval of length `′′ where the last job of

τ
g
i completes its execution at the end of `′′ is calculated by
adding phi − e

h
i to `, and deducting δh · phi and p

g
i − d

g
i + s

g
i

from it (i.e., `′′ = ` + phi − e
h
i − (pgi − d

g
i + s

g
i) − δ

h
· phi).

By exploiting Fgi (`
′′), we can derive amount of jobs of τ gi that

can contribute to W g⇒h
i (`, δg). Thus, the lemma holds. �

Then, an upper-bound of the amount of execution of jobs
of τ gi and τ hi in an interval of length ` is the maximum among
the cases where only jobs of τ gi are executed in the interval
(when the MTR occurs after the interval) and only jobs of
τ hi are executed in the interval (when the MTR occurs before
the interval), and the cases of P1 and P2 (in which the MTR
occurs within the interval). In summary, the upper-bound
(denoted byWg⇒h

i (`)) is calculated as follows:

Wg⇒h
i (`) , max

{
W g
i (`),W

h
i (`),

max
1≤δg≤

⌊
(`+dgi −s

g
i −e

g
i)/p

g
i

⌋W g⇒h
i (`, δg),

max
1≤δh≤

⌊
(`+phi −e

h
i)/p

h
i

⌋W g⇒h
i (`, δh)

}
. (11)

As a job can interfere with another job only when the job
is executed, I(τ uk ← τ

g⇒h
i , `) (u is either g or h, and ` ≤ duk)

in Lemma 2 is upper-bounded by Wg⇒h
i (`) under any work-

conserving algorithm.

2) INTERFERENCE UNDER FP AND EDF
FP schedules jobs according to pre-determined task-level
priorities. Therefore, under FP, if τi has a higher priority than
τk , then I(τ uk ← τ

g⇒h
i , `) is upper-bounded by Wg⇒h

i (`);
otherwise, any job of τi cannot interfere with the jobs of τk ,
meaning that I(τ uk ← τ

g⇒h
i , `) = 0.

EDF determines jobs’ priorities based on their deadlines;
a job with an earlier deadline has a higher priority than a job
with a later deadline. Therefore, a job JA can interfere with
another job JB only when the deadline of JA is no later than
that of JB. We derive a property that can be used to derive an
upper-bound of the interference under EDF, as stated in the
following observation.
Observation 2: Suppose that τ makes a transition from τ g

to τ h in an interval of length `, in which at least one job of
τ
g
i and at least one job of τ

h
i (partially or entirely) overlap

with the interval as shown in Fig. 3(e). Then, the amount of
execution of jobs of τ gi and τ

h
i in the interval of length ` is

maximized in the following scenario: (iii) deadlines of jobs

86118 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

of τ gi and τ hi are no later than the end of the interval (tb
in Fig. 3(e)), and the deadline of the last job of τ hi is equal
to the end of the interval, and the first job of τ gi executes as
late as possible as shown in Fig. 3(e).

Then, the following lemma proves the correctness of
Observation 2.
Lemma 6: The amount of execution of jobs of both τ gi and

τ hi in the interval of length ` under EDF is maximized with
the release and execution patterns (iii).

Proof: Suppose that a release and execution pattern not
belonging to (iii) makes the larger amount of execution of
jobs of both τ gi and τ hi under EDF in the interval of length
` than those belonging to (iii). If we shift the job releases of
(iii) to slightly later, the last job’s deadline is later than the end
of the interval, which means that the last job cannot interfere
with a job whose deadline is the end of the interval under
EDF. Shifting the job releases to the other direction also does
not increase the amount of interference. This contradicts the
supposition, and thus the lemma holds. �

Let βh denote the number of jobs of τ hi whose scheduling
windows overlap the interval of interest when the release and
execution patterns accord with Observation 2, e.g., βh = 1
in Fig. 3(e). Then, the amount of execution of jobs of τ hi in
the interval is equal to βh · ehi , and that of τ

g
i is calculated by

Fi(`′′′) where `′′′ = `+ phi − d
h
i − (pgi − d

g
i + s

g
i)− β

h
· phi .

With the reasoning, the amount of execution of jobs of
τ
g
i and τ hi in an interval of length ` whose deadlines are no
later than the end of the interval (denoted by Eg⇒h

i (`, βh)), is
upper-bounded as follows
Lemma 7: The amount of execution of jobs of τ gi and τ

h
i in

the interval of length ` whose deadlines are no later than the
end of the interval (denoted by Eg⇒h

i (`, βh)), is calculated by

Eg⇒h
i (`, βh) , βh · ehi + F

g
i (`
′′′), (12)

where 1 ≤ βh ≤ b(`+phi −d
h
i)/p

h
i c and `

′′′
= `+phi −d

h
i −

(pgi − d
g
i + s

g
i)− β

h
· phi .

Proof: For a given δh, δh jobs of τ hi contribute to

W g⇒h
i . Then, an interval of length `′′′ where the last job of

τ
g
i completes its execution at the end of `′′′ is calculated
by adding phi − dhi to `, and deducting δh · phi and pgi −
dgi + sgi from it (i.e., `′′ = ` + phi − dhi − (pgi − dgi +
sgi) − β

h
· phi). By exploiting Fgi (`

′′′), we can derive amount
of jobs of τ gi that can contribute to W g⇒h

i (`, δg). Thus,
the lemma holds. �

Similar to Wg⇒h
i (`), an upper-bound of the amount of

execution of jobs of τ gi and τ hi in an interval of length `
whose deadlines are no later than the end of the interval is the
maximum among the cases when the MTR occurs outside of
the interval (either only the jobs of τ gi or those of τ hi execute
in the interval, which is calculated by Egi (`) , Fgi (` − sgi)
or Ehi (`) , Fhi (` − shi) [19], as shown in Fig. 3(d)), and
the case when the MTR occurs in the interval Eg⇒h

i (`, βh)
with different βh. In summary, the upper-bound (denoted by

Eg⇒h
i (`)) is calculated by

Eg⇒h
i (`)

, max
(
Egi (`),E

h
i (`), max

1≤βh≤
⌊
(`+phi −d

h
i)/p

h
i

⌋Eg⇒h
i (`, βh)

)
.

(13)

Because a job with a later deadline cannot interfere with a
job with an earlier deadline, I(τ uk ← τ

g⇒h
i , `) (u is either

g or h, and ` ≤ duk) in Lemma 2 is upper-bounded by
Eg⇒h
i (duk) under EDF. Incorporating this into an upper-bound

of the amount of execution under any work-conserving algo-
rithm, then I(τ uk ← τ

g⇒h
i , `) under EDF is finally upper-

bounded by min
(
Wg⇒h

i (`),Eg⇒h
i (duk)

)
.

C. NEW RTA FRAMEWORK FOR FP AND EDF
Using Lemma 2 and the derived upper-bounds on the amount
of interference, we derive the RTA framework for a mode
transition under FP and EDF as follows:
Theorem 1: Suppose that a task set τ makes a transition

Mg
⇒ Mh and is scheduled by FP (likewise EDF). Then,

an upper-bound of the response time of τ uk ∈ τ in the presence
of Mg

⇒ Mh (u is either g or h) is ruk = ru(x)k such that
ru(x+1)k = ru(x)k holds in Eq. (14) (likewise Eq. (15)), starting
from ru(0)k = euk :

ru(x+1)k ← euk

+

⌊
1
m

∑
τi∈τ\{τk }

min
(
Wg⇒h

i (ru(x)k), ru(x)k − euk + 1
)⌋
,

(14)

ru(x+1)k

← euk +
⌊
1
m

∑
τi∈τ\{τk }

min
(
Wg⇒h

i (ru(x)k),

Eg⇒h
i (duk), r

u(x)
k − euk + 1

)⌋
. (15)

Then, if ru(x)k ≤ du(x)k holds for all τ uk ∈ τ and u ∈ {g, h}, τ is
schedulable by FP (likewise EDF). The iteration of Eq. (14)
(likewise Eq. (15)) for τk halts if r

u(x)
k > du(x)k , implying τ uk

is unschedulable. Note that Eq. (14) holds only when τi has
a higher priority than τk ; otherwise, W

g⇒h
i (ru(x)k) should be

replaced with 0.
Proof: The theorem holds by Lemma 2 and the deriva-

tion of Wg⇒h
i (`) and Eg⇒h

i (duk). �

D. SLACK RECLAMATION SCHEMES
In the previous subsection, we developed the RTA framework
for a mode transition in Theorem 1 and upper-bounds on the
interference under any work-conserving, FP and EDF. In this
subsection, we present the mechanism deriving slack values
sgi and s

h
i for the computation of Wg⇒h

i (`) and Eg⇒h
i (duk) in

an iterative manner, which is referred to as slack reclamation.
By definition, we can calculate the slack value by the

relative deadline minus the response time, e.g., sgi = dgi − r
g
i .

VOLUME 8, 2020 86119

H. Baek et al.: RTA for Multi-Mode Tasks

Algorithm 1 RTA Framework With CSR
1: Si =∞ for all τi ∈ τ
2: for every mode transitionM x

⇒ M y fromM1
⇒ M2 to

Mg
⇒ Mh do

3: sxi ← 0 and syi ← 0 for all τi ∈ τ .
4: for every task τi do
5: while true do
6: rxi ← dxi − s

x
i and r

y
i ← dyi − s

y
i for all τi ∈ τ .

7: for τ xi ∈ τ
x do

8: Calculate new rxi using Theorem 1 with
the upper-bounds according to the scheduling
algorithm.

9: if rxi < dxi then
10: sxi ← min(dxi − r

x
i , Si)

11: end if
12: end for
13: for τ yi ∈ τ

y do
14: Calculate new ryi using Theorem 1 with the

upper-bounds according to the scheduling
algorithm.

15: if ryi < dyi then
16: syi ← dyi − r

y
i (no upper-bound)

17: end if
18: end for
19: if there is no update of sxi and s

y
i for all τi ∈ τ in

Steps 7 and 13 then
20: if rxi ≤ d

x
i and r

y
i ≤ d

y
i hold for all τi ∈ τ then

21: Si = syi
22: goto Step 26.
23: end if
24: Return UNSCHEDULABLE.
25: end if
26: end while
27: end for
28: end for
29: Return SCHEDULABLE.

This means, however, that when we compute τk ’s response
time, we need the response times of other tasks τi (6= τk)
as shown in Eqs. (14) and (15). To solve this chicken and
egg problem, the response time analysis for single-mode
tasks [19] employs iterations for slack reclamation. In the first
loop, all slack values are assumed to be zero, and we calculate
all tasks’ response times. After the calculation, the slack
value is updated only if the response time is strictly less than
the relative deadline (meaning a positive slack value). Then,
with the updated slack values, this process is repeated until
all response times are no larger than their relative deadlines
(schedulable) or there is no more update of slack values
(unschedulable).

This slack reclamation process is correct because of two
reasons. First, the response time analysis finds a task that
triggers the first deadline miss; therefore, when we calculate
the response time of a task, we can assume that all other tasks
do not miss their deadlines, i.e., non-negative slack values.

FIGURE 4. Procedure of chaining slack reclamation for τg and τh in the
presence of a mode transition Mg ⇒ Mh .

Second, there exists only one mode of each task; the response
time of a task is only affected by task parameters of a given
task set with a single, fixed mode.

However, such slack reclamation cannot be directly applied
to multi-mode tasks because the slack values of tasks in each
mode transition Mg

⇒ Mg+1 are affected by the behavior
of the previous transitions, which is explained as follows.
Suppose that a task set τ experiences two transitionsMg−1

⇒

Mg and Mg
⇒ Mg+1, and we want to utilize a slack value

sgk of τ gk in the presence of a mode transition Mg
⇒ Mg+1.

By applying Theorem 1 separately for Mg−1
⇒ Mg and

Mg
⇒ Mg+1, we obtain two response times of τ gk (i.e., rgk),

and two slack values of τ gk (i.e., sgk = dgk − rgk). Therefore,
to utilize a slack value sgk of τ gk in the presence of a mode
transitionMg

⇒ Mg+1, wemust choose the lowest of the two
slack values of sgk , and use it for calculating τ

g
k ’s interference

to other tasks τi (6= τk) in Eqs. (11) and (13). This phe-
nomenon also occurs for sg+1k , meaning that sg+1k is derived
by considering both Mg

⇒ Mg+1 and Mg+1
⇒ Mg+2.

Therefore, we must track each slack value of each task for
every transition from M1

⇒ M2 to Mg
⇒ Mh sequentially

to derive upper-bounds of sgk and s
h
k , which we call chaining

slack reclamation (CSR). Alg. 1 describes how the RTA
framework works for a given mode transition Mg

⇒ Mh

with CSR, where we denote the upper-bound of sgi by S
g
i that

is derived in the calculation for a previous mode. It first sets
infinity to the upper-bound of each slack value Si for all tasks
τi ∈ τ (Line 1). Then, it sequentially considers each transition
M x
⇒ M y (1 ≤ x ≤ y = x + 1 ≤ h) from M1

⇒ M2 to
Mg
⇒ Mh (Line 2). In each sequence, the slack values of

each task τi for mode M x and M y are initialized to 0 (Line
3) and each task τi is considered one by one (Line 4). For
each task τi, sxi (likewise, s

y
i) is set to the difference between

the response time derived by Theorem 1 and the absolute
deadline of τi with the upper-bound forM x , i.e., Si (likewise,
without the upper-bound for M y) as shown in Lines 7–12
(likewise, Lines 13–18). If there is no update for both modes
M x andM y, the schedulability of τi is judged; if τi is deemed
schedulable, Si for the next mode is updated by the slack value
of τ yi (Lines 19–25). Then, the task set is deemed schedulable
if every task is deemed schedulable for every mode transition
(Line 29). Note that the RTA framework with CSR does
not require any information involving release or execution
patterns of jobs and the release time of an MTR; instead,
it only requires the order of system-wide mode transitions.
Fig. 4 presents how slack values sxi and s

y
i are updatedwhile

Alg. 1 is conducted. As shown in Fig. 4, the RTA is con-
ducted g times each with its corresponding mode transition

86120 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

M x
⇒ M y (1 ≤ x ≤ y = x + 1 ≤ h) (as Line 2 in

Alg. 1 indicates) and sgi is upper-bounded by Si that is derived
in the previous iteration. For example, s3i in the present of
a mode transition M3

⇒ M4 is upper-bounded by Si that
is obtained from the previous iteration for a mode transition
M2
⇒ M3. Because s3i is calculated with the consideration of

interference from τ 2i ∈ τ
2 in the presence of amode transition

M2
⇒ M3, it needs an upper-bounded value of s2i . Also,

it holds for s2i that is upper-bounded by Si obtained from the
previous iteration for a mode transition M1

⇒ M2. Such
chaining effect requires tracking slack value of each task for
every transition from M1

⇒ M2 to Mg
⇒ Mh sequentially

to derive upper-bounds of sgk and s
h
k .

The time complexity of Algorithm 1 is derived as follows.
In Line 2, Algorithm 1 considers each transition M x

⇒ M y

(1 ≤ x ≤ y = x + 1 ≤ h) from M1
⇒ M2 to Mg

⇒

Mh (O(µ)). Then, each task τi is considered one by one in
Line 4 (O(n) where is n is the number of tasks in τ). Lines
5–26 can be conducted until there is no update of sxi and syi
in Line 19, and values of sxi and syi are in [0, maxD) where
maxD is the largest value among all di of tasks in τ x ∪ τ y

(O(maxD)). In Lines 7–12, Theorem 1 is utilized (O(n)) for
each task τ xi ∈ τ

x (O(n)); the same is conducted for τ yi ∈ τ
y in

Lines 13–18. Therefore, the time complexity of Algorithm 1
is O(µ) · O(n) · O(maxD) · 2 · O(n) = O(µ · maxD · n2).
As shown in Alg. 1, the RTA framework with CSR is

conducted for every mode transition M x
⇒ M y, which

may require high computational overhead for a large value
of g. To relieve such overhead, we propose another slack
reclamation scheme, called independent slack reclamation
(ISR). The RTA framework with ISR assumes no information
of the tasks of the previous modes in τ g, and sgi is fixed
to zero meaning that we only use the fundamental assump-
tion that there is no deadline miss so far. Thus, the RTA
framework with ISR is conducted for the current transition
Mg
⇒ Mh and reclaims a slack value of τ h only, not that of

τ g. Hence, Alg. 1 is simplified when ISR is applied instead
of CSR; the change is as follows. M x

⇒ M y indicates
Mg
⇒ Mh only (Line 2). sxi is not updated (Lines 9–

11). Also, Si needs not to be updated by syi for the next
mode transition’s sxi because sxi is fixed to zero under ISR
(Line 21).

Now, we discuss which information is necessary to the sys-
tem designer in order to utilize the proposed RTA framework.
Since we aim at developing offline schedulability analysis for
online scheduling algorithm for multi-mode tasks, we assume
that only offline information of the target system is available.
Basically, task parameters (i.e., pi, ei, and di) for each mode
Mg (1 ≤ g ≤ µ) are only the given information before using
our RTA framework. When we use ISR, no further informa-
tion is necessary; on the other hand, the sequence of mode
transitions should be known when we apply CSR. When it
comes to task parameters, pi and di are naturally determined
by a system designer, and ei should be safely derived (i.e.,
upper-bounded) in the course of program analysis via var-
ious static or dynamic techniques; for example, the worst-

case execution time estimation upon multiple inputs. Then,
the system designer can utilize our RTA framework.

V. RTA FRAMEWORK FOR A SEQUENTIAL MODE
TRANSITION
In this section, we discuss how to improve schedulability of
the proposed RTA framework by enforcing a constraint in
order of individual tasks’ mode transitions when each mode
transition Mg

⇒ Mh is performed, and develop an effective
transition order assignment framework based on deriving key
observations.

A. SEQUENTIAL TRANSITION PROTOCOL
In the previous section, we presented the proposed RTA
framework for multi-mode tasks in the presence of a
mode transition conducted by the mode-transition protocol
described in Section II-B. The protocol assumes that tasks’
transitions occur concurrently starting from theMTR in every
individual system-wide mode transition, and thus tasks will
complete their mode transitions in arbitrary order, which
cannot be controlled by the system designer offline. Because
of this property, the proposed RTA framework should be
independent of job release and execution patterns and the
release time of anMTR, but it over-estimates the interference,
to be discussed below.

In Fig. 1, after the release of anMTR for a transitionMg
⇒

Mh at t1, the first jobs of τ h1 and τ h3 are released earlier than
t2, while that of τ h2 is released at t2. Therefore, the scheduling
window of any job of τ h2 does not overlap with that of any
job of tasks in Mg. If we enforce such a transition order of
tasks within a single transition (e.g., Mg to Mh), we can rule
out other tasks in mode Mg in the calculation of the amount
of interference to τ h2 during the transition Mg

⇒ Mh. This
reduces the interference and increases the possibility of τ h2 ’s
schedulability.
To exploit the merit of such interference reduction, we pro-

pose a new mode-transition protocol that allows only one
task’s transition at a time (whose order can be predetermined
by the system designer offline), which is referred to as a
sequential transition. The sequential transition is opposed to
the transition protocol described in Section II-B in that it
allowsmultiple tasks to transit from onemode to another con-
currently, which we call a concurrent transition. A sequential
transition can improve the schedulability performance over
a corresponding concurrent transition, and this improvement
can be achieved at the expense of increasing the system’s
transition time. Within a sequential transition, a task’s transi-
tion may be delayed until completion of the preceding task’s
transition, thereby prolonging the system’s transition time.
There are two challenges in making timing guarantees

under the sequential transition: (i) how to guarantee schedu-
lability with a given sequential transition, and (ii) how to find
the effective transition order of tasks, whose schedulability is
guaranteed by (i), whichwill be addressed in Subsections V-B
and V-C, respectively.

VOLUME 8, 2020 86121

H. Baek et al.: RTA for Multi-Mode Tasks

B. NEW RTA FRAMEWORK FOR A SEQUENTIAL
TRANSITION
We aim at developing a newRTA framework to accommodate
a sequential transition by modifying the one for a concurrent
transition proposed in Theorem 1. Suppose that a task set τ
makes a sequential transition Mg

⇒ Mh in a given order.
To express the relative transition order of tasks, let τ g⇒h

k ≺

τ
g⇒h
i denote a situation where τk ’s transition Mg

⇒ Mh is
performed before τi’s transition, meaning that the scheduling
window of any job of τ gk cannot overlap with that of any
job of τ hi , e.g., τ

g⇒h
1 ≺ τ

g⇒h
2 holds in Fig. 1. Therefore,

if τ g⇒h
k ≺ τ

g⇒h
i holds, then any job of τ hi cannot interfere

with any job of τ gk . This implies that the interference of τ g⇒h
i

on τ gk is reduced by that of τ gi on τ gk . Hence, if τ
g⇒h
k ≺ τ

g⇒h
i

holds, the upper-bound of I(τ gk ← τ
g⇒h
i , `) under FP (when

τi has a higher priority than τk) in Theorem 1 changes from
Wg⇒h

i (`) to gWg⇒h
i (`), where

gWg⇒h
i (`) ,

{
W g
i (`), if τ g⇒h

k ≺ τ
g⇒h
i (reduced),

Wg⇒h
i (`), if τ g⇒h

k � τ
g⇒h
i (no change).

(16)

On the other hand, any job of τ gi cannot interfere with any job
of τ hk , if τ

g⇒h
k � τ

g⇒h
i holds. Therefore, the upper-bound of

I(τ hk ← τ
g⇒h
i , `) by FP (when τi has a higher priority than τk)

in Theorem 1 changes from Wg⇒h
i (`) to hWg⇒h

i (`), where

hWg⇒h
i (`) ,

{
Wg⇒h

i (`), if τ g⇒h
k ≺ τ

g⇒h
i (no change),

W h
i (`), if τ g⇒h

k � τ
g⇒h
i (reduced).

(17)

Note that all theories developed in this section can be applied
to EDF by applying the same modification for Eg⇒h

i (`).
Our description is confined to FP because the interference
reduction described so far is trivially applicable to EDF.
That is, we can define gEg⇒h

i (`) and hEg⇒h
i (`) by replacing

Wg⇒h
i (`), W g

i (`) and W
h
i (`) with Eg⇒h

i (`), Egi (`) and E
h
i (`),

respectively, with the same reasoning.
We can now derive a new RTA framework for a sequential

transition, as stated in the following theorem.
Theorem 2: Suppose that a task set τ undergoes a sequen-

tial transition Mg
⇒ Mh with a given order under FP

(likewise EDF). An upper-bound of the response time of τk ∈
τ is ruk = ru(x)k (u is either g or h) such that ru(x+1)k = ru(x)k
holds in Eq. (18) (likewise Eq. (19)), starting from ru(0)k = euk :

ru(x+1)k ← euk

+

⌊
1
m

∑
τi∈τ\{τk }

min
(

uWg⇒h
i (ru(x)k), ru(x)k − euk + 1

)⌋
,

(18)

ru(x+1)k ← euk

+

⌊
1
m

∑
τi∈τ\{τk }

min
(

uWg⇒h
i (ru(x)k),

uEg⇒h
i (duk), r

u(x)
k − euk + 1

)⌋
. (19)

Note that Eq. (18) holds only when τi has a higher priority
than τk ; otherwise, uWg⇒h

i (ru(x)k) should be replaced with 0.
Proof: The theorem holds by Lemma 2 and the deriva-

tion of uWg⇒h
i (`) and uEg⇒h

i (duk); recall u is either g or h.
�

From the definition of Wg⇒h
i (`), the upper-bound of the

amount of interference with a sequential transition (i.e.,
gWg⇒h

i (`) or hWg⇒h
i (`)) is always less than or equal to

that with a concurrent transition (i.e., Wg⇒h
i (`)). Therefore,

the following observation is useful in developing the transi-
tion order assignment framework discussed in the next sub-
section.
Observation 3: Suppose that τ makes a transition Mg

⇒

Mh. If τ gk and τ
h
k are deemed schedulable with a concurrent

transition (proven by Theorem 1), then they are also deemed
schedulable for any sequential transition order (proven by
Theorem 2).

C. TASK-LEVEL TRANSITION ORDER ASSIGNMENT
As we stated in Subsection V-A, the transition order of tasks
within each sequential transition can be predetermined offline
by the system designer, and as shown in Eqs. (16) and (17),
enforcing a task-level transition order will reduce (or at least
stay) the interference on each task, yielding the possibility of
finding additional schedulable task sets that are not deemed
schedulable with a concurrent transition. Then, an important
question arises: ‘‘How can we find an effective transition
order of tasks to improve schedulability for a sequential
transition?’’

Themost critical factor to address this question is to exploit
a slack value sk of a task τk on our RTA framework. That is, sk
is affected by the amount of the worst-case interference on τk
from other tasks τi ∈ τ \ τk (e.g., W

g⇒h
i (`)) as we discussed

in Subsection IV-D, and the amount of such interference on
τk is determined by the transition order of other tasks in a
sequential transition as we also discussed in Subsection V-
A. This indicates that even if τk is deemed schedulable in a
given task-level transition order, it may not be unschedulable
if the order is changed. For example, for three given tasks,
τa and two higher priority tasks τb and τc in the presence of
a transition Mg

⇒ Mh, τa suffers from different amount of
interference (and different slack values of τa) depending on
whether τ g⇒h

a � τ
g⇒h
b � τ

g⇒h
c or τ g⇒h

a � τ
g⇒h
c � τ

g⇒h
b .

This is because slack values of τb and τc are determined by
such a different task-level transition order, which changes the
values of uWg⇒h

b (`) and uWg⇒h
c (`) for τa, where u is either

g or h.
Such phenomenon on slack values may enforce us to use

an exhaustive search, which requires investigating O(|τ |!)
transition orders, and thus, we need to develop an effi-
cient means to find an effective task-level transition order
to improve schedulability. To achieve this goal, we consider
the DA framework proposed in our preliminary conference

86122 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

paper [17], where slack values are not used and useful prop-
erties are derived, and we use the properties for our RTA
framework.

Note that if an interval of length ` is fixed to duk and slack
values sgi and s

h
i are fixed to 0, our RTA framework becomes

the existing DA framework for multi-mode tasks [17]. That
is, the following equation is used instead of Eqs. (14) and (15)
in Theorem 1.

ruk←euk +
⌊
1
m

∑
τi∈τ\{τk }

min
(

uXg⇒h
i (duk), d

u
k − e

u
k + 1

)⌋
,

(20)

where uXg⇒h
i (duk) is

uWg⇒h
i (duk) with s

g
i = shi = 0 for FP,

and uEg⇒h
i (duk) with s

g
i = shi = 0 or EDF, where u is either

g or h.
Following the same reasoning, our RTA framework in

Theorem 2 is equivalent to the DA framework for a
sequential transition, i.e., Eq. (20) with uXg⇒h

i (duk) =
uWg⇒h

i (duk) or uEg⇒h
i (duk) (where u is either g or h for

τ
g
i or τ hi) is used instead of Eqs. (18) and (19) in Theorem 2.
Note that the DA framework is only exploited for assigning

a transition order of tasks, and we apply our RTA framework
using Theorem 2 to judge schedulability after a transition
order of tasks is determined using useful properties under the
DA framework. We then investigate how the transition order
of a given task affects the interference of other tasks on the
task itself under the DA framework, as stated in the following
observation.
Observation 4: Suppose that τ makes a sequential transi-

tion Mg
⇒ Mh under the DA framework. If τk ’s transition

order is placed first (likewise last), the right-hand side of
Eq. (20) with Xg⇒h

i (duk) =
uWg⇒h

i (duk) or
uEg⇒h

i (duk) for
τ
g
k is minimized (likewise maximized) while that for τ hk is
maximized (likewise minimized).

As shown in Eq. (16), if τ g⇒h
k ≺ τ

g⇒h
i holds, the upper-

bound on I(τ gk ← τ
g⇒h
i) is reduced from gWg⇒h

i (dgk) to
W g
i (d

g
k). Therefore, the right-hand side of Eq. (20) with

uXg⇒h
i (duk)=

uWg⇒h
i (duk) or

uEg⇒h
i (duk) for τ

g
k is minimized,

if the order of τk ’s transition is the earliest. Likewise, the case
for τ gk and both cases for τ hk also hold.
Using the above observation, we now derive some proper-

ties of our task-level transition order assignment under theDA
framework. Let us focus only on the schedulability of τk (i.e.,
both τ gk and τ hk), rather than on other tasks. If τ hk is schedu-
lable with a concurrent transition under the DA framework
(proven by Theorem 1 with Eq. (20) in which uXg⇒h

i (duk) is
uWg⇒h

i (duk) or
uEg⇒h

i (duk)), placing τk ’s transition order in
the earliest position not only maximizes the possibility of the
schedulability of τ gk as shown in Observation 4, but also guar-
antees the schedulability of τ hk by Observation 3 (regardless
of the transition order). However, such a favorable assignment
for τk ’s schedulability may increase the interference of τk on
other tasks. To address this, we introduce two notations.

First, we use τ gk
I (τ ′)
> τ hk (likewise, τ gk

I (τ ′)
< τ hk), if

min(uWg⇒h
k (dui), d

u
i − e

u
i + 1) = min(W g

k (d
u
i), d

u
i − e

u
i + 1)

(likewise, min(uWg⇒h
k (dui), d

u
i −e

u
i +1)= min(W h

k (d
u
i), d

u
i −

eui + 1)) holds for all τi ∈ τ ′ \ {τk} and u ∈ {g, h}
under the DA framework. Its physical meaning is that the
interference of τ g⇒h

k on other tasks is dominated by that of
τ
g
k . Thus, min(uWg⇒h

k (dui), d
u
i − e

u
i + 1) in Eq. (20) is fixed

as min(W g
k (d

u
i), d

u
i −e

u
i +1) regardless of the transition order.

Second, let τ ∗ denote a set of tasks in τ , which are schedu-
lable with a concurrent transition under the DA framework;
then, any task τk ∈ τ ∗ with Mg and that with Mh are
schedulable with a sequential transition for any task-level
transition order according to Observation 3.

Let us focus on a task τk which satisfies that (i) τ hk is
schedulable with a concurrent transition under the DA frame-
work, and (ii) τ gk

I (τ\τ∗)
> τ hk holds. Then, we determine the

order of τk by considering two aspects: (a) τk is schedula-
ble or not; and (b) τk makes other tasks schedulable or not.
For (a), we should place τk ’s transition in the earliest position,
because this placement maximizes the chance of the schedu-
lability of τ gk by Observation 4 and τ hk is schedulable with any
task-level transition order by Observation 3. For (b), placing
τk ’s transition first yields a lower min(hWg⇒h

k (dhi), d
h
i −e

h
i +

1) (= min(W h
k (d

h
i), d

h
i − ehi + 1)) for a given τ hi while

min(gWg⇒h
k (dgi), d

g
i − e

g
i + 1) for a given τ gi is independent

of the task-level transition order. Therefore, in terms of (i)
and (ii), τk ’s transition should be performed earliest. Note
that we do not consider tasks in τ ∗ for (b) because they are
schedulable for any sequential order based on Observation 3.

With this reasoning, we develop a task-level transition-
order assignment framework that identifies three groups in
Alg. 2. In Steps 2 and 3, the algorithm identifies two groups
of tasks, whose transition orders should be placed the earliest
(τ (1)) and latest (τ (3)) as shown in Steps 5 and 7, respec-
tively; the remaining tasks belong to the second group (τ (2))
as shown in Step 6.

The remaining step is then to determine a transition order
of tasks within individual groups τ (1), τ (2), and τ (3) in
Steps 5–7 in Alg. 2. The following lemma finds an optimal
transition order for tasks in τ (1) and τ (3).
Lemma 8: Suppose that τ makes a sequential transition

Mg
⇒ Mh with a given transition order compliant with

Alg. 2. The relative transition order of tasks within τ (1)
(likewise, τ (3)) in Alg. 2 does not change the schedulability
of any task in τ under the DA framework.

Proof: Before proving this lemma, we intro-
duce a property to be used, as stated in the following
observation.
Observation 5: Suppose that τ makes a sequential tran-

sition Mg
⇒ Mh with a given order. Then, the right-hand

side of Eq. (20)with uXg⇒h
i (duk)=

uWg⇒h
i (duk) or

uEg⇒h
i (duk)

for a given task τ uk (u is either g or h) is not affected by the
relative transition order of tasks in τ ′ , {τi|τ

g⇒h
k ≺ τ

g⇒h
i }

and τ ′′ , {τi|τ
g⇒h
k � τ

g⇒h
i }, but is affected by the elements

of τ ′ and τ ′′.

VOLUME 8, 2020 86123

H. Baek et al.: RTA for Multi-Mode Tasks

Algorithm 2 Task-Level Transition Order Assignment
Framework
1: for τk ∈ τ do
2: Check whether τ gk

I (τ\τ∗)
> τ hk and τ hk is schedulable with

a concurrent transition (i.e., Theorem 1 with Eq. (20)
with uXg⇒h

i (duk) =
uWg⇒h

i (duk) or
uEg⇒h

i (duk)). If so,
add τi to τ (1).

3: Check whether τ gk
I (τ\τ∗)
< τ hk and τ gk is schedulable with

a concurrent transition (i.e., Theorem 1 with Eq. (20)
with uXg⇒h

i (duk) =
uWg⇒h

i (duk) or
uEg⇒h

i (duk)). If so,
add τi to τ (3).

4: end for
5: Determine the first |τ (1)| transition orders of tasks in
τ (1).

6: Determine the next |τ (2)| transition orders of tasks in
τ (2) , τ \ (τ (1) ∪ τ (3)).

7: Determine the last |τ (3)| transition orders of tasks in τ (3).

The observation holds because uWg⇒h
i (duk) depends only

on whether τ g⇒h
k ≺ τ

g⇒h
i or τ g⇒h

k � τ
g⇒h
i holds.

Suppose that τ is schedulable in the presence of a transition
from τ g to τ h by the DA framework, with a given task-level
transition order compliant with Alg. 2. Now, we investigate
how a change of the transition order of tasks in τ (1) affects
the schedulability of two groups of tasks: (i) tasks in τ (1) and
(ii) tasks in τ (2) ∪ τ (3).

For (i), the transition order of a task τk in τ (1) does not
affect the schedulability of τ gi for all τi ∈ τ (1)\ {τk}, because
min(uWg⇒h

k (dgi), d
g
i − e

g
i + 1) = min(W g

k (d
g
i), d

g
i − e

g
i + 1)

holds regardless of the relative transition order of τk and τi
(by the definition of τ gk

I (τ)
> τ hk). As to τ

h
i , it is also schedu-

lable with any task-level transition order by Observation 3,
meaning that the transition order of a task τk in τ (1) does not
affect the schedulability of τ hi for all τi ∈ τ (1) \ {τk}.
The schedulability of tasks in τ (2) ∪ τ (3) is also not

affected by the relative order of tasks in τ (1) according to
Observation 5.

In summary, the relative transition order of tasks in τ (1)
does not change the schedulability of every task in τ . This
holds for τ (3) with the same reasoning. Therefore, the lemma
holds. �

By applyingAlg. 2with any arbitrary order for tasks in τ (1)
and τ (3), we can derive an optimal task-level transition order
under the DA framework except for the relative transition
order of tasks in τ (2). To determine a transition order for tasks
in τ (2), we may apply an exhaustive search (if |τ (2)| is small)
or a heuristic transition order assignment algorithms.

So far, we have discussed how to effectively assign a task-
level transition order under the DA framework to simplify the
interference relationships among tasks. Then we apply our
original RTA framework in Theorem 2 based on the task-level
transition order determined byAlg. 2. This heuristic approach
is quite effective owing to the effectiveness of Alg. 2 under

the DA framework, whose performance will be demonstrated
via simulation results in the next section.

VI. EVALUATION
In this section, we demonstrate the effectiveness of the pro-
posed RTA frameworks in which a concurrent transition and
a sequential transition are associated with CSR and ISR.

We randomly generate task sets for a multiprocessor plat-
form using a well-known task set generation method, referred
to as UUnifast-discard [28]. Typically, three input parame-
ters are considered for UUnifast-discard: (i) the number of
processors m (2, 4, 8, and 16), (ii) the number of tasks n
(m + 1, 1.5 m, 2.0 m, 2.5 m, 3.0 m, 3.5 m, 4.0 m, 4.5 m,
and 5.0 m), and (iii) the task set utilization U =

∑
τi∈τ

ei/pi
(0.1 m, 0.2 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m, 0.7 m, and
0.8 m). As we consider multi-mode systems, we additionally
consider the number of modes µ (from 2 to 10 for positive
integer values). We generate 1000 task sets for every four-
tuple (m, n, U , µ). For a given task utilization for τi (ui), pi
is uniformly selected in [1, 1000]; Ci is computed based on
the given utilization and pi (i.e., ei = pi · ui); and di is set
to pi. The randomly generated task parameters are known to
sufficiently cover the general cases of real systems such as
antenna controller software in an unmanned aerial vehicle as
shown in the previous studies [35], [36].

As a baseline schedulability analysis, we take the DA
framework for multi-mode tasks proposed in our preliminary
conference paper [17]. For all generated task sets with the
four-tuple (i.e., 1000 · 4 · 9 · 8 · 9 task sets), we compare
the number of schedulable task sets with µ − 1 different
transitions Mg

⇒ Mh (1 ≤ g ≤ h = g + 1 ≤ µ) using
their corresponding schedulability analyses2:

• A concurrent transition tested by DA, RTA with CSR
and RTA with ISR (denoted by DAcon, RTA(C)con, and
RTA(I)con, respectively);

• A sequential transition tested by DA, RTAwith CSR and
RTA with ISR – the entire order is determined randomly
(denoted by DAseq, RTA(C)seq, and RTA(I)seq, respec-
tively); and

• A sequential transition tested by DA, RTAwith CSR and
RTA with ISR – the entire order is grouped by Alg. 2,
and then the relative order of tasks in each group is
determined randomly (denoted by DA∗seq, RTA(C)∗seq,
and RTA(I)∗seq, respectively).

Here, DAcon is conducted by Theorem 1 in [17], and
RTA(C)con and RTA(I)con are conducted by Theorem 1 in
Subsection IV-C. Further, DAseq and DA∗seq follow the anal-
ysis presented in Theorem 2 in [17], and the others are
conducted by Theorem 2 in Subsection V-B. We present the
simulation results for implicit-deadline tasks scheduled by
FP only, as those for implicit-deadline tasks scheduled by
EDF (or those for constrained-tasks scheduled by FP or EDF)
exhibit a similar trend.

2A task set is deemed schedulable if it passes a corresponding schedula-
bility test for every transition Mg

⇒ Mh with a given µ.

86124 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

FIGURE 5. Schedulability tests for implicit deadline task sets.

TABLE 2. Schedulable ratio for n = 1.5m, U = 0.2m and µ = 10.

Fig. 5 plots the percentage of generated task sets that are
deemed schedulable by each schedulability analysis (referred
to as the schedulable ratio) according to varying values of
input parameters (i.e., m, n, U , and µ). Fig. 5(a) shows it for

varying values of U over fixed values of n = 1.5m, m = 4,
and µ = 2, and Fig. 5(c) does it for varying values of n over
fixed U = 0.2m, m = 4, and µ = 2, respectively. Fig. 5(e)
plots it for varying number of processors m over fixed values

VOLUME 8, 2020 86125

H. Baek et al.: RTA for Multi-Mode Tasks

of n= 1.5m, U = 0.2, and µ= 2. Fig. 5(b), (d), and (f) show
it of (a), (c), and (e) for µ = 10 instead of µ = 2. From the
figures, we note the following.

O1. Each schedulability analysis of the RTA(C) series (i.e.,
RTA(C)con, RTA(C)seq, and RTA(C)∗seq) outperforms
each corresponding schedulability analysis of theRTA(I)
series, which also holds between RTA(I) series and DA
series.

O2. As the value of µ increases, the performance gap
between the RTA(C) series and the RTA(I) series
becomes pronounced.

O3. For an increasing value of U , schedulability analyses
utilizing task order assignment in Algo. 2 (i.e., −∗seq)
shows less performance degradation than the others.

O4. As the number of tasks n increases, the schedulable ratio
of DA series decreases at a rate higher than the other
series.

O1 holds owing to different analytic capabilities between
the existing DA framework, and the two proposed RTA
frameworks with CSR and ISR. That is, although three anal-
yses commonly exploit interference calculations presented in
Subsection IV-B, the DA framework does not utilize a slack
value of each task while the RTA framework with CSR uses
it for both τ gi and τ hi (and the RTA framework with ISR
only uses it for τ hi). Further, the DA framework considers
interference on τk within an interval of length dk while the
others gradually increase such interval length from ek up
to dk during judging schedulability. Because of such differ-
ent capabilities, each schedulability analysis of the RTA(C)
series dominates the corresponding RTA(I) series in terms
of schedulable ratio, which also holds between RTA(I) and
DA. For example, as shown in Fig 5(a), the schedulable ratio
of RTA(C)∗seq, RTA(I)∗seq, and DA∗seq for 0.5m are 69.2%,
64.4%, and 50.3%, respectively.

O2 demonstrates the superiority of CSR compared to ISR
when it comes to multiple modes, meaning a larger number of
schedulable task sets are found by the RTA framework with
CSR than the RTA framework with ISR. This implies that it
is crucially important to capture how slack values of tasks
in two consecutive modes are correlated and to incorporate
them into the analysis for improving schedulability for multi-
mode tasks, which is successfully fulfilled by CSR but not
ISR. For example, RTA(C)∗seq and RTA(I)∗seq for n= 1.5m,U
= 0.2m,m= 4, andµ= 2 show the nearly same performance
(in Fig. 5(c)) while there is about 20% performance gap
between RTA(C)∗seq and RTA(I)∗seq for µ = 10 (in Fig. 5(f))
(66.6% vs. 46.0%).

O3 stems from the advantage of interference reduction by
utilizing task ordering assignment. High-utilization tasksmay
have fewer slacks while inducing a large amount of inter-
ference to lower priority tasks. Thus, reducing interference
from gWg⇒h

i (`) to W g
i (`) is a more effective approach for

achieving better schedulability rather than exploiting small
amount of slacks. For example in Fig. 5(a), DA∗seq performs
better than RTA(C)seq for U = 0.5m even though RTA(C)seq

utilizes slack values of both τ g and τ h while DA∗seq does not
(51.2% vs. 50.5%).

In contrast, O4 holds owing to the advantage of slack
reclamation subject to low-utilization tasks. The increasing
number of tasks in a task set with fixed system utilization
results in decreasing average task utilization. Low task uti-
lization possibly induces much slack for each task, and thus
it can compensate pessimistic interference calculation of a
large number of tasks in a task set. For example in Fig. 5(b),
the performance gap between RTA(C)seq andDA∗seq becomes
larger even though DA∗seq exploits task order assignment in
Algo. 2 while RTA(C)seq does not; the schedulable ratio of
RTA(C)seq is about 37% while that of DA∗seq is 16% for
n = 5m.
Table 2 shows the schedulable ratio of considered schedu-

lability tests for n= 1.5m,U = 0.2m, µ= 10 (corresponding
to Fig. 5(f)). As shown the table, RTA(C)∗seq (our best per-
forming test) improves DA∗seq (the existing one) by 17.1/2.2
= 777.3%.

VII. DISCUSSION
The underlying assumption under Liu and Layland’s task
model is that the worst-case execution time Ci of each
task encompasses the worst-case timing overheads stemming
from preemptions/migrations. However, considering such
timing overheads in every case is pessimistic since such a case
happens rarely in practice. This pessimism can be mitigated
by upper-bounding the number of preemptions that a job can
experience. Since we consider FP and EDF scheduling classi-
fied as a task- or job-level fixed priority assignment scheme,
the job priority never changes once it is assigned. Instead,
the priority order of jobs of currently running jobs can be
changed due to a newly-released job. Therefore, a preemption
occurs only when a job is released and the job’s priority is
higher than the currently-executing jobs. Also, a migration
occurs only when the preempted job resumes its execution on
a core different from the one on which the job was executed
before the preemption. Thus, the number of preemptions
that a job can experience cannot be larger than the number
of higher-priority jobs released during the job’s execution.
Also, the number of migrations that the job can experience
cannot be larger than the number of preemptions that the
job undergoes. Therefore, we can upper-bound the number of
migrations that a job can experience, by the number of higher-
priority jobs released during the job’s execution.

The Liu and Layland model also assumes that the worst-
case execution time Ci of each task implicitly includes the
worst-case blocking time resulted from mutual exclusion of
critical sections on shared resources such as main memory,
memory bus, and shared cache. The resource-locking pro-
tocol ensures that one job never enters its critical section
at the instance when another concurrent job enters its own
critical section, which has been extensively studied in a num-
ber of existing work for real-time systems [39], [40]. The
resource-locking protocol to be developed for our proposed
RTA framework for multi-mode tasks potentially improves

86126 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

analytic capability as it reduces response time of τk by reliev-
ing a pessimistic assumption of the Liu and Layland’s task
model regarding worst-case execution time Ci of each task.
In addition to the theoretical upper-bound, we also dis-

cuss how many migrations can occur during the considered
scheduling via well-known experimental results. As shown in
the previous experimental results in [37], the average actual
number of preemptions incurred by each implicit-deadline
(i.e., di = pi) task set scheduled by EDF during 100,000 time
units is 1,068.3 for m = 2 and 2,319.8 for m = 8, indicating
that possibility of the occurrence of a preemption at each time
unit ranges from 1.0% to 2.3%, depending on the number
of processors. Although our proposed RTA framework does
not explicitly include any method to upper-bound the number
of preemptions that occur during each job’s execution, such
experimental results imply that it is acceptable to ignore
preemption cost when the migration cost is not very high.

In this paper, we considered the system in which tasks’
parameters undergomultiple transitions, while the scheduling
policy (i.e., job prioritization policy) does not change. When
it comes to dynamic scheduling in which the scheduling
policy changes according to online schedulability analysis,
we may consider another system model proposed in [38]
where task parameters and the scheduling policy change dur-
ing operation. Also, the applicability of the current version
of our proposed RTA framework is limited to the mode-
transition protocol for predetermined (fixed) sequence of
mode transitions (CSR case), or the analytical capability of
that is sacrificed when the sequence of mode transitions is not
known (ISR case). It would be worth relieving such the lim-
itations to improve the applicability of our RTA framework
while improving the schedulability.

VIII. RELATED WORK
Starting from [29], a number of studies proposed task models
considering potential mode transitions for uniprocessor plat-
forms, such as the generalizedmultiframe (GMF)model [30],
the digraph real-time (DRT) model [6], the acyclic task
model [31], and the variable rate-dependent behavior (VRB)
task model (also known as the adaptive variable-rate (AVR)
model) [1], [8], [32], [33]. In the GMF model, each task
invokes static types of jobs sequentially, each with potentially
different WCETs and relative deadlines. The DRT model is a
more expressive one, in which the release of different types
of jobs are represented by a directed graph; each vertex in the
directed graph indicates a specific type of job labeled with an
ordered pair of WCETs of the corresponding job and relative
deadline, and each edge represents the order in which jobs are
generated by the corresponding task. A job in the acyclic task
model has any arbitrary execution time, which assumes that
the absolute deadline and the arrival time of the next job of
a task are determined by the arrival time of the job plus the
utilization multiplied by the execution time of the job. Tasks
in the VRBmodel are related to angular velocity of a specific
device (e.g., the crankshaft, gears, or wheels). Such a device’s
activation rate is proportional to the angular velocity thereof,

which determines the execution mode assuming different
corresponding task parameters.

For multiprocessor platforms, there have been few stud-
ies addressing multi-mode tasks for partitioned and global
scheduling, respectively. For partitioned scheduling, Niz and
Phan addressed the system-wide mode transition for multi-
mode tasks in which each task’s criticality may change dur-
ing a mode transition while the other parameters (i.e., pi,
ei and di) do not change [12]. They considered zero-slack
rate-monotonic scheduling [34] and proposed a partitioned
scheduling scheme maximizing the schedulable utilization
while ensuring the absence of criticality violation. Huang and
Chen addressed a mode transition (which is different from
our protocol) for single-criticality tasks and proposed bin-
packing task allocating algorithms guaranteeing utilization
bound of tasks [13]. For global scheduling, three studies
[14]–[16] developed system-wide mode-transition protocols
aiming at minimizing the transition delay occurring in the
presence of a mode transition without deadline miss under
a target global scheduling. The first work [14] suggested the
notion of a relative enablement deadline for each task and
proved the correctness of the proposed transition protocol
by showing that every transition delay is no larger than the
enablement deadline of each task. The other two studies
aimed at incorporating single-mode tasks (i.e., independent
of mode transitions) into the transition protocol [15] and
reducing transition delay by exploiting a rate-based global
dynamic-priority scheduling algorithm [16]. Unlike such
studies, our study in the preliminary conference paper [17]
supports a transition without imposing additional transition
delay or task drop. Our previous study extended the existing
DA framework developed for single-mode tasks on multipro-
cessor platforms to judge schedulability of multi-mode tasks
in the presence of a given single mode transition.

IX. CONCLUSION
In this paper, we focused on the problem of guaranteeing the
timing requirements of task sets with system-wide mode tran-
sitions in real-time multiprocessor systems. We developed an
offline schedulability analysis that does not require any online
information, and generalizes the existing RTA framework
designed for single-mode tasks and the DA schedulability
analysis designed for multi-mode tasks. To improve the anal-
ysis, we enforced the transition order of tasks, and proposed
a transition sequence assignment algorithm by deriving the
useful properties of an effective transition order under a given
restricted condition. Our proposed RTA framework is shown
to improve performance up to 777.3% depending on the
experiment setting under our evaluation environment. In the
future, we would like to extend our study towards the mecha-
nism providing less computational complexity or supporting
other platforms/frameworks such as heterogeneous multi-
processor platforms and hierarchical scheduling frameworks.

ACKNOWLEDGMENT
An earlier (shorter) version of this paper was presented at the
IEEE RTSS 2013 [17].

VOLUME 8, 2020 86127

H. Baek et al.: RTA for Multi-Mode Tasks

REFERENCES
[1] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, ‘‘Schedulability tests for tasks

with variable rate-dependent behaviour under fixed priority scheduling,’’
in Proc. IEEE 19th Real-Time Embedded Technol. Appl. Symp. (RTAS),
Apr. 2014, pp. 51–62.

[2] J. Real and A. Crespo, ‘‘Mode change protocols for real-time systems:
A survey and a new proposal,’’ Real-Time Syst., vol. 26, no. 2,
pp. 161–197, Mar. 2004.

[3] A. Mok, ‘‘Fundamental design problems of distributed systems for the
hard-real-time environment,’’ Ph.D. dissertation, Dept. Elect. Eng. Com-
put. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 1983.

[4] B. Andersson, ‘‘Uniprocessor EDF scheduling with mode change,’’ in
Principles of Distributed Systems, vol. 5401. Berlin, Germany: Springer,
2008, pp. 572–577.

[5] Q. Guangming, ‘‘An earlier time for inserting and/or accelerating tasks,’’
Real-Time Syst., vol. 41, no. 3, pp. 181–194, Apr. 2009.

[6] M. Stigge, P. Ekberg, N. Guan, and W. Yi, ‘‘The digraph real-time task
model,’’ in Proc. 17th IEEE Real-Time Embedded Technol. Appl. Symp.,
Apr. 2011, pp. 71–80.

[7] M. Ahmed, N. Fisher, and D. Grosu, ‘‘A parallel algorithm for EDF-
schedulability analysis of multi-modal real-time systems,’’ in Proc.
IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2012,
pp. 154–163.

[8] J. Kim, K. Lakshmanan, and R. Rajkumar, ‘‘Rhythmic tasks: A new task
model with continually varying periods for cyber-physical systems,’’ in
Proc. IEEE/ACM 3rd Int. Conf. Cyber-Phys. Syst., Apr. 2012, pp. 55–64.

[9] T. Kloda, B. Ausbourg, and L. Santinelli, ‘‘Towards EDF schedulability
analysis of an extended timing definition language,’’ ACM SIGBED Rev.,
vol. 11, no. 3, pp. 44–49, 2014.

[10] T. Kloda, B. Ausbourg, and L. Santinelli, ‘‘EDF schedulability analysis
of an extended timing definition language,’’ in Proc. IEEE Int. Symp. Ind.
Embedded Syst. (SIES), 2014, pp. 30–40.

[11] W.-H. Huang and J.-J. Chen, ‘‘Techniques for schedulability analysis in
mode change systems under fixed-priority scheduling,’’ in Proc. IEEE
21st Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2015,
pp. 176–186.

[12] D. de Niz and L. T. X. Phan, ‘‘Partitioned scheduling of multi-modal
mixed-criticality real-time systems on multiprocessor platforms,’’ in Proc.
IEEE 19th Real-Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2014,
pp. 111–122.

[13] W.-H. Huang and J.-J. Chen, ‘‘Utilization bounds on allocating rate-
monotonic scheduled multi-mode tasks on multiprocessor systems,’’ in
Proc. 53rd Annu. Design Autom. Conf. (DAC), 2016, pp. 1–6.

[14] V. Nelis, J. Goossens, and B. Andersson, ‘‘Two protocols for scheduling
multi-mode real-time systems upon identical multiprocessor platforms,’’
in Proc. 21st Euromicro Conf. Real-Time Syst., Jul. 2009, pp. 151–160.

[15] V. Nelis, B. Andersson, J. Marinho, and S. M. Petters, ‘‘Global-EDF
scheduling of multimode real-time systems considering mode indepen-
dent tasks,’’ in Proc. 23rd Euromicro Conf. Real-Time Syst., Jul. 2011,
pp. 205–214.

[16] P. Rattanatamrong and J. A. B. Fortes, ‘‘Mode transition for online schedul-
ing of adaptive real-time systems on multiprocessors,’’ in Proc. IEEE
17th Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2011,
pp. 25–32.

[17] J. Lee and K. G. Shin, ‘‘Schedulability analysis for a mode transition in
real-time multi-core systems,’’ in Proc. IEEE 34th Real-Time Syst. Symp.,
Dec. 2013, pp. 11–20.

[18] M. Bertogna, M. Cirinei, and G. Lipari, ‘‘Schedulability analysis of global
scheduling algorithms on multiprocessor platforms,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 20, no. 4, pp. 553–566, Apr. 2009.

[19] M. Bertogna and M. Cirinei, ‘‘Response-time analysis for globally sched-
uled symmetric multiprocessor platforms,’’ in Proc. 28th IEEE Int. Real-
Time Syst. Symp. (RTSS), Dec. 2007, pp. 149–160.

[20] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[21] K. W. Tindell, A. Burns, and A. J. Wellings, ‘‘Mode changes in priority
preemptively scheduled systems,’’ in Proc. Real-Time Syst. Symp., 1992,
pp. 100–109.

[22] T. Chen and L. T. X. Phan, ‘‘SafeMC: A system for the design and eval-
uation of mode-change protocols,’’ in Proc. IEEE Real-Time Embedded
Technol. Appl. Symp. (RTAS), Apr. 2018, pp. 105–116.

[23] N. Guan, M. Stigge, W. Yi, and G. Yu, ‘‘New response time bounds for
fixed priority multiprocessor scheduling,’’ in Proc. 30th IEEE Real-Time
Syst. Symp., Dec. 2009, pp. 387–397.

[24] M. Bertogna and S. Baruah, ‘‘Tests for global EDF schedulability analy-
sis,’’ J. Syst. Archit., vol. 57, no. 5, pp. 487–497, May 2011.

[25] J. Lee and K. G. Shin, ‘‘Controlling preemption for better schedulability in
multi-core systems,’’ inProc. IEEE 33rd Real-Time Syst. Symp., Dec. 2012,
pp. 29–38.

[26] M. Bertogna, M. Cirinei, and G. Lipari, ‘‘Improved schedulability analysis
of EDF onmultiprocessor platforms,’’ in Proc. 17th Euromicro Conf. Real-
Time Syst. (ECRTS), 2005, pp. 209–218.

[27] N. Audsley, A. Burns, M. Richardson, and A. Wellings, ‘‘Hard real-
timeăscheduling: The deadline-monotonic approach,’’ inProc. IEEEWork-
shop Real-Time Oper. Syst. Softw., 1991, pp. 127–132.

[28] R. I. Davis and A. Burns, ‘‘Priority assignment for global fixed priority
pre-emptive scheduling inmultiprocessor real-time systems,’’ inProc. 30th
IEEE Real-Time Syst. Symp., Dec. 2009, pp. 398–409.

[29] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, ‘‘Mode change
protocols for priority-driven preemptive scheduling,’’ Real-Time Syst.,
vol. 1, no. 3, pp. 243–264, Dec. 1989.

[30] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, ‘‘Generalized multiframe
tasks,’’ Real-Time Syst., vol. 17, no. 1, pp. 5–22, 1999.

[31] T. F. Abdelzaher, V. Sharma, and C. Lu, ‘‘A utilization bound for aperiodic
tasks and priority driven scheduling,’’ IEEE Trans. Comput., vol. 53, no. 3,
pp. 334–350, Mar. 2004.

[32] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo,
‘‘Exact interference of adaptive variable-rate tasks under fixed-priority
scheduling,’’ in Proc. 26th Euromicro Conf. Real-Time Syst., Jul. 2014,
pp. 165–174.

[33] G. C. Buttazzo, E. Bini, and D. Buttle, ‘‘Rate-adaptive tasks: Model,
analysis, and design issues,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), 2014, pp. 1–6.

[34] D. D. Niz, K. Lakshmanan, and R. Rajkumar, ‘‘On the scheduling of
mixed-criticality real-time task sets,’’ in Proc. 30th IEEE Real-Time Syst.
Symp., Dec. 2009, pp. 291–300.

[35] H. Baek and J. Lee, ‘‘Improved schedulability analysis of the contention-
free policy for real-time systems,’’ J. Syst. Softw., vol. 154, pp. 112–124,
Aug. 2019.

[36] H. Baek and J. Lee, ‘‘Task-level re-execution framework for improving
fault tolerance on symmetry multiprocessors,’’ Symmetry, vol. 11, no. 5,
p. 651, 2019.

[37] J. Lee, A. Easwaran, and I. Shin, ‘‘Contention-free executions for real-time
multiprocessor scheduling,’’ACMTrans. EmbeddedComput. Syst., vol. 13,
no. 2s, pp. 1–25, Jan. 2014.

[38] H. S. Chwa, K. G. Shin, H. Baek, and J. Lee, ‘‘Physical-state-aware
dynamic slack management for mixed-criticality systems,’’ in Proc.
IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2018,
pp. 129–139.

[39] F. Rabee, A. Onaizah, and A. F. Mahdi, ‘‘Shift-exchange synchroniza-
tion protocol (SESP) in hard real time system,’’ in Proc. IEEE 2nd
Adv. Inf. Technol., Electron. Autom. Control Conf. (IAEAC), Mar. 2017,
pp. 304–310.

[40] G. von der Brüggen, J.-J. Chen, W.-H. Huang, and M. Yang, ‘‘Release
enforcement in resource-oriented partitioned scheduling for multiproces-
sor systems,’’ in Proc. 25th Int. Conf. Real-Time Netw. Syst., Oct. 2017,
pp. 287–296.

HYEONGBOO BAEK received the B.S. degree in
computer science and engineering from Konkuk
University, South Korea, in 2010, and theM.S. and
Ph.D. degrees in computer science from KAIST,
South Korea, in 2012 and 2016, respectively.
He is currently an Assistant Professor with the
Department of Computer Science and Engineer-
ing, Incheon National University (INU), South
Korea. His research interests include cyber phys-
ical systems, real time embedded systems, and

system security. Dr. Baek received the Best Paper Award from the 33rd IEEE
Real Time Systems Symposium (RTSS), in 2012.

86128 VOLUME 8, 2020

H. Baek et al.: RTA for Multi-Mode Tasks

KANG G. SHIN (Life Fellow, IEEE) is currently
the Kevin & Nancy O’Connor Professor of com-
puter science with the Department of Electrical
Engineering and Computer Science, University
of Michigan, Ann Arbor. His current research
focuses on QoS-sensitive computing and net-
working as well as on embedded real-time and
cyber-physical systems. He has supervised the
completion of 78 Ph.D.’s. He has authored or coau-
thored more than 830 technical articles, a text-

book and more than 30 patents or invention disclosures. Dr. Shin received
numerous best paper awards, including the Best Paper Awards from the
2011 ACM International Conference on Mobile Computing and Networking
(MobiCom’11), the 2011 IEEE International Conference on Autonomic
Computing, the 2010 and 2000 USENIX Annual Technical Conferences,
the 2003 IEEE Communications Society William R. Bennett Prize Paper
Award, and the 1987 Outstanding IEEE Transactions of Automatic Control
Paper Award. He has also received several institutional awards, including
the Research Excellence Award, in 1989, Outstanding Achievement Award,
in 1999, the Distinguished Faculty Achievement Award, in 2001, and the
Stephen Attwood Award, in 2004, from the University of Michigan (the
highest honor bestowed toMichigan Engineering Faculty), the Distinguished
Alumni Award of the College of Engineering, Seoul National University,
in 2002, the 2003 IEEE RTC Technical Achievement Award, and the
2006 Ho-Am Prize in Engineering (the highest honor bestowed to Korean-
Origin Engineers). He was a Co-Founder of a couple of startups and also
licensed some of his technologies to industry.

JINKYU LEE (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer science from
the Korea Advanced Institute of Science and Tech-
nology (KAIST), South Korea, in 2004, 2006,
and 2011, respectively. He has been a Research
Fellow/Visiting Scholar with the Department of
Electrical Engineering and Computer Science,
University of Michigan until 2014. He joined the
Department of Computer Science and Engineer-
ing, Sungkyunkwan University (SKKU), South

Korea, in 2014, where he is currently an Associate Professor. His research
interests include system design and analysis with timing guarantees, QoS
support, and resource management in real time embedded systems and
cyber physical systems. Dr. Lee received the Best Student Paper Award
from the 17th IEEE Real Time and Embedded Technology and Applications
Symposium (RTAS), in 2011, and the Best Paper Award from the 33rd IEEE
Real Time Systems Symposium (RTSS), in 2012.

VOLUME 8, 2020 86129

	INTRODUCTION
	BACKGROUND
	SYSTEM MODEL, ASSUMPTIONS AND NOTATIONS
	TRANSITION PROTOCOL
	EXPRESSION OF THE SYSTEM MODEL AND TRANSITION PROTOCOL
	EXISTING RTA FRAMEWORK

	CHALLENGES AND OVERVIEW OF DEVELOPING RTA FRAMEWORK FOR MULTI-MODE TASKS
	RTA FRAMEWORK FOR A MODE TRANSITION
	EXTENSION OF THE EXISTING RTA FRAMEWORK
	INTERFERENCE CALCULATION
	INTERFERENCE UNDER ANY-WORK CONSERVING ALGORITHM
	INTERFERENCE UNDER FP AND EDF

	NEW RTA FRAMEWORK FOR FP AND EDF
	SLACK RECLAMATION SCHEMES

	RTA FRAMEWORK FOR A SEQUENTIAL MODE TRANSITION
	SEQUENTIAL TRANSITION PROTOCOL
	NEW RTA FRAMEWORK FOR A SEQUENTIAL TRANSITION
	TASK-LEVEL TRANSITION ORDER ASSIGNMENT

	EVALUATION
	DISCUSSION
	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	HYEONGBOO BAEK
	KANG G. SHIN
	JINKYU LEE

