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ABSTRACT
As a healthy, efficient and green alternative to motorized urban

travel, bike sharing has been increasingly popular, leading to wide

deployment and use of bikes instead of cars. Accurate bike-flow

prediction at the individual station level is essential for bike sharing

service. Due to the spatial and temporal complexities of traffic net-

works and the lack of data-driven design for bike stations, existing

methods cannot predict the fine-grained bike flows to/from each

station.

To remedy this problem, we propose a novel data-driven spatio-

temporal Graph attention convolutional neural network for Bike
station-level flow prediction (GBikes). We develop data-driven and

spatio-temporal designs, and model bike stations (nodes) and inter-

station bike rides (edges) as a graph. In particular, we design a novel

graph attention convolutional neural network (GACNN) with atten-

tion mechanisms capturing and differentiating station-to-station

correlations. Multi-level temporal closeness, spatial distances and

other external factors (e.g., weather and points of interest) are

jointly considered for comprehensive learning and accurate pre-

diction of bike flows at each station. Extensive experiments upon

a total of over 11 million trips collected from three large-scale

bike-sharing systems in New York City, Chicago, and Los Angeles

have corroborated GBikes’s significant improvement of accuracy,

robustness and effectiveness over prior work.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems.
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1 INTRODUCTION
As one of the most popular forms of urban shared economy and

smart cities, bike sharing has been changing the metropolitan trans-

portation and people’s daily lives in a significant way. Powered

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380097

by recent advances in urban computing and big data, it provides

an efficient, green and healthy alternative to motorized modalities,

enabling the first/last-mile connectivities within a city. 35 million

bike-sharing trips in the US are reported to have taken place in

2017 alone, while the global bike-sharing market is predicted to

post a compound annual growth rate of close to 21% during the

period 2018–2022 [31].

Considering the economic/social significance and rapid growth

of bike sharing, it is essential to accurately predict the number of

bike pick-ups/drop-offs at each station (dock). It also enables respon-

sive demand-supply balancing [34], city route planning [1], station

relocation [24], and fine-grained mobility analytics [6] improving

the service providers’ or operators’ profitability and enhancing the

public welfare. Despite the various approaches proposed thus far,

station-level bike-flow prediction or traffic forecasting remains to

be challenging due to following issues and concerns:

(1) Complex and dynamic bike-flow patterns: The large degrees
of freedom in the first/last-mile city connectivity make bike

pick-ups/drop-offs at each station highly complex and dy-

namic over time. In many previous studies, neighboring

stations are often clustered into groups or aggregated within

discretized zones (as illustrated by (a) and (b) in Fig. 1), lead-

ing to coarser granularity and making it difficult to balance

each station.

(2) Data-driven studies and designs of bike-sharing stations: De-
spite the numerous time series and machine learning mod-

els studied so far, few of them have taken comprehensive

data-driven approaches for deriving model parameters, com-

ponents and insights for enhanced learning of rides flows.

(3) Spatio-temporal correlations between bike stations: Drop-offs
and pick-ups (in/out flows, or (I,O)) can be greatly influ-

enced by station-to-station correlations. For example, a bike

is more likely to be picked up (dropped off) at a station with

more bike (dock) availability, which also depends on that of

neighboring stations. Bike stations, like a network graph, are
“linked” by riders’ trips, establishing spatio-temporal inter-

station correlations and particular neighbors’ “attentions”

(as Fig. 1(c)) which are required to predict bike flows in and

out of each station.

To address these concerns, we propose GBikes, data-driven bike-

flow prediction at each station based on spatio-temporal graph at-
tention convolutional neural network. In particular, this paper makes

the following contributions:

• Comprehensive data-driven designs for bike-sharing
station networks: We have conducted comprehensive data

analytics for bike station networks to design/derive data-

driven components and parameters. As illustrated in Fig. 2,
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(a) Station Group/Cluster

(b) Zone Discretization & Aggregation
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Figure 1: Difference of our formula-
tion with previous studies.
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Figure 2: Illustration of comprehensive data-driven designs (upper) and graph attention (lower) in
GBikes for a bike station network graph.

we have studied spatio-temporal factors, such as spatial

station-to-station connections, multi-level temporal (I,O)

trip correlations, points-of-interest (POIs) and other exter-

nal factors, and then derived the corresponding component

designs for GBikes.
• Anovel spatio-temporal graph attention convolutional
neural network for fine-grained station bike-flow pre-
diction: Based on the data-driven designs, we propose a

novel spatio-temporal design based on graph attention con-

volutional neural network (GACNN). Specifically, we formal-

ize the bike station network (stations as nodes and trips as

edges) into a graph with attention upon each station’s neigh-

borhood structure, as illustrated in Fig. 2. By incorporating

spatio-temporal and multi-level features as well as compre-

hensive external factors, GBikes captures the complex bike-

flow patterns. Station neighbors with stronger correlations

are further identified and discriminated by our attention

mechanism, leading to fine-grained correlation modeling

and accurate bike-flow prediction.

• Extensive experimentation and model validation: We

have conducted extensive data analytics and experimental

studies on over 1.13×107 bike trips from three metropolitan

bike-sharing systems in New York City (NYC), Chicago and

Los Angeles (LA). GBikes is shown to outperform state-of-

the-arts in terms of prediction accuracy (often by more than

20% in error reduction), effectiveness (fine-grained prediction

with short time intervals) and robustness given environmen-

tal variation.

Note that our data-driven design and prediction model can be

extended to applications in station-less bike-sharing [1] systems and

studies of other emergingmobility/transportation networks [14, 39],

including human mobility flows [22, 42], ride-sharing [10, 11, 19,

26, 35] and public transportation systems [36], and other graph

network applications [37].

The rest of this paper is organized as follows. We first review

the related work in Sec. 2. Then, we present the problem statement,

datasets and frameworks in Sec. 3, followed by the data-driven stud-

ies and designs in Sec. 4. We then show the core model formulation

of GBikes in Sec. 5, and the experimental results in Sec. 6. Finally,

we conclude in Sec. 7.

2 RELATEDWORK
Driven by increasing connectivity and exploding data in ubiquitous

computing, smart transportation [17, 33, 36], including the recent

bike sharing [9], has recently attracted significant attention [21, 22].

Various conventional time-series and statistical feature learning

analyses have been explored for bike traffic prediction [4, 7]. The

authors of [16] studied different feature learning algorithms for pre-

diction of bike demands at a station without considering station-to-

station correlations. Predicting the aggregated bike flows of stations

by grouping them into clusters has been studied [5, 21] (Fig. 1(a)),

which cannot support fine-grained prediction and re-balancing [16].

Sincemany cities have already been aware of irregular drop-offs and

road congestion caused by station-less bike sharing, and have thus

enforced geo-fenced deployment, we focus on the station-based

model thanks to its better social acceptance.

By discretizing a city map into grids or zones [40], image pro-

cessing techniques like deep residual network [43] and fusion of

CNN (Convolutional Neural Network) with LSTM (Long Short-

Term Memory) or RNN (Recurrent Neural Network) [27] have been

considered to predict aggregated flows for each zone (Fig. 1(b)).

However, the image-based formulation may not be easily extended

to fine-grained prediction of flows at each individual station.

With advances of geometric signal processing [2], deep graph

learning for the non-Euclidean data has been proposed and stud-

ied [37, 38]. Graph data in many real-world applications [15, 37],

with variable numbers of both un-ordered nodes and neighbors

for each node, makes conventional operations like convolutions

difficult to apply. To enable graph convolution, various theoreti-

cal foundations have been established, including those on spectral

89



graph theory [3], spatial-based aggregation [8] and pooling mod-

ules [12]. Despite the differences in notations and approximations,

their basic idea all tries to propagate and aggregate the neighbor

feature information of nodes in a graph iteratively until conver-

gence.

The graph convolutional neural network [18] has attracted at-

tention in formatting datasets as networks (say, knowledge graphs

and social networks). Recently, they have been extended to urban

traffic, investigating speed prediction for road segments and vehi-

cle flows in [4, 23, 41]. While others only considered correlating

zones or locations with their mutual geographical distances, GBikes
investigates comprehensive spatio-temporal features via data an-

alytics to enable more fine-grained model designs, differentiating

correlations of nearby stations and determining multiple levels of

temporal correlations. It designs spatio-temporal graph attention
mechanisms which efficiently capture inter-station flows, without

relying on sophisticated sequence matching via LSTM/RNN [30]

and complicated image convolutions.

In the neighborhood aggregation process, conventional graph

convolution assigns a weight upon two neighboring nodes based

on only their degrees. Unlike the above, graph attention in GBikes,
as illustrated in Fig. 2, introduces an additional network structure

between neighboring nodes, and thus more important/correlated

neighboring station nodes (say, stations 2 & 3 for target station 1)

are assigned with “stronger attentions” and larger weights than

others (say, station 4 in the example). This way, the stations which

are more correlated spatio-temporally can be further differentiated,

yielding better flow prediction.

3 PROBLEM, DATA & FRAMEWORK
Wefirst present the important concepts and core problem of GBikes
in Sec. 3.1. Then, we show the datasets for our data-driven designs

and experimental evaluation in Sec. 3.2, followed by an overview

of the data-driven forecasting framework of GBikes in Sec. 3.3.

3.1 Important Concepts & Core Problem
Definition 1. (Bike station network): The bike-sharing system

under consideration consists of N stations. Each station i is associated
with location coordinates [lati , loni ]. Each trip, as a link, corresponds
to a user’s bike ride from one station to another within a certain
amount of time. With stations as nodes and trips as edges, a graph
can be formed to characterize the bike station network.

Two bike stations are considered to be adjacent or neighbors if
there are trips between them. The adjacency matrix A ∈ RN×N

is

then formed as a weight function representing their correlations

(detailed in Secs. 4 & 5).

Definition 2. (Station-level bike flows): Let τ (i, j) be the total
number of rides with a start station i and destination j. Note that
τ (i, j) , τ (j, i). Then, the aggregated flows in and out of station i are,
respectively, denoted as

Ii =
N∑
j=1

τ (j, i), and Oi =

N∑
j=1

τ (i, j). (1)

For ease of flow studies, the time domain can be discretized

into slots of certain fixed length, which can be task-dependent,

balancing between granularity and efficiency. When initiating each

forecasting, we letk be the latest time interval with known historical

flows and k + 1 be the following interval.

Formally, let h(k)i =
(
I
(k )
i ,O

(k )
i

)
represent the numbers of aggre-

gated bike drop-offs (in) and pick-ups (out) at a station i in the time

interval k (h(k)i ∈ R2), and h(k ) =
[
h(k )
1
, . . . , h(k )N

]
be the flows of

all stations. Each set of flows h(k ), as the features of all stations, is
then formulated into an N×2 matrix for later model input. Let E(k )

be the set of other environment or external factors (say, weather)
related to the bike flows.

Definition 3. (Station-level bike-flow prediction): Givenw sets
of historical flows

H =
{
h(k−w ), h(k−w+1), . . . , h(k)

}
, (2)

at all stations, station-to-station correlations A, and other external
factors E(k ) at time interval k , we want to predict the station-level
bike flows ĥ(k+1) at the interval (k+1) by a prediction method F, i.e.,

ĥ(k+1) = F
(
H,A,E(k )

)
, ĥ(k+1) ∈ RN×2. (3)

3.2 Datasets for Analytics & Evaluation
We conduct extensive station network studies and model evalua-

tions based on the following three open datasets:

• Citi Bike, NYC: which consists of a total of N=502 stations

and 7,628,418 trips in 2015Q3Q4 and 2016Q1Q2.

• Divvy, Chicago: which consists of a total of N=607 stations

and 3,214,965 trips in 2018Q2-Q4.

• Metro Bike, LA: which consists of a total of N=135 stations

and 447,408 trips in 2017Q3Q4 and 2018Q1-Q4.

The trip datasets of τ (i, j)’s include start/destination stations

(GPS coordinates), and related pick-up/drop-off timestamps (and

trip duration). Regarding each dataset, we have conducted data

cleaning to filter out those with abnormal trip duration (say, nega-

tive readings or more than 24 hours) or missing pick-up/drop-off

locations. For each city, we also include the points of interests

(POIs), the city map (from the Open Street Map (OSM)), external

factors like events, time and weather (detailed in Sec. 4).

3.3 System Framework of GBikes
As shown in Fig. 3, the system framework of GBikes consists of data-
driven studies and designs (Sec. 4), and the in/out flow prediction

(Sec. 5), for both training and testing the GBikes model. In real-

world deployment by the bike-sharing service providers, the entire

system of GBikes can be run on a server or cluster.

In the model training and offline learning, the bike-sharing ser-

vice providers first provide the historical bike-sharing records, sta-

tion locations, city map (with points of interests) and other external

factors (including weather). GBikes pre-processes the above based

on the data-driven designs, and the studies provide the following

inputs to the in/out flow prediction F(·): the historical bike trips
and in/out flows H parsed in different levels of temporal closeness

(say, Levels 1 to J ; Sec. 4.2) from the target interval (k + 1) to be

predicted (with the corresponding correlations A between stations;

Sec. 5.1), and the external factors E (Sec. 4.3).

The inputs are, respectively, fed to the following two different

components: a set of total J Graph Attention Convolutional Neural
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Figure 3: System framework & information flow of GBikes.

Network (GACNN) blocks regardingmulti-level bike flows (Sec. 5.2),

and a fully-connected neural network regarding external factor E
(Sec. 5.3). Finally, total (J +1) sets of predictions are merged into the

final predicted flows. The prediction values are compared against

the ground-truth in/out flows in the target interval, and the core

model is trained by minimizing the loss.

In model testing and online deployment, the station-level bike

flows are predicted given a batch of historical rides (parsed in mul-

tiple levels as above) and returned to the service provider, enabling

other advanced/high-level applications like station-level bike bal-

ancing [20] or anomaly detection. In a practical deployment, the

model can be updated, given new bike-flow records and external

factors via online learning [20] or model fine-tuning [33].

4 DATA-DRIVEN STUDIES & DESIGNS
In this section, we focus a representative data-driven design on the

Citi Bike system in NYC while presenting some variations in other

two systems. Fig. 4 shows the spatial distributions of NYC bike

stations with their total historical demands (aggregated within the

first week of 2015Q3). One can see most of the demands (warmer

colors) taking place at the stations in Central Business District of

Manhattan. Since the co-occurrence of those station bike demands is

dynamic and complex, our studies need to derive important designs

and data structures of the station network connection, benefiting

the subsequent traffic forecasting.

Given the complexity of bike trips linking stations, we further in-

corporate the following data-driven designs within GBikes’s model:

station-to-station distances (Sec. 4.1), levels of temporal closeness
(Sec. 4.2), and points-of-interest (POIs) & other factors (Sec. 4.3). Note
that the parameters derived from our data-driven studies are based

on the historical (training) data which is separate from the test data.

4.1 Station-to-station Distances
A bike station network caters for the first/last-mile urban commute.

Since a rider is likely to pick up or drop off a bike from the nearest

station, the station-to-station distances have the greatest effect

upon the bike flows.
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(NYC Citi Bike, Chicago Divvy & LA Metro).

Observations: Specifically, in a metropolitan area, we consider

the shortest road/street path between each pair of stations, which

is derived from its map from OSM (we find and use the street

centerlines of the three cities from OSM in this study).

To evaluate station-to-station correlations, we conduct negative

binomial regression (NBR) [13] on the station usage (total pick-ups

and drop-offs) against different shortest path distances d (km) to

the nearest peers. NBR finds the set of parameters b’s (b > 0) that

maximize the log-likelihood of

ln z = b0 + b · d . (4)

Fig. 5 shows that use of a station’s bikes is more correlated

with that of its neighbors’, and as distance grows, the positive

coefficient b between stations begins to decrease for all systems

due to fewer distant trips. Also, Fig. 6 shows the histograms of

stations’ distances (the shortest road paths on the map) to their

nearest neighbors, exhibiting the last/first-mile connectivity of the

bike station networks. We can also observe Divvy has much sparser

bike station network than other two systems. Therefore, despite far

more stations in total, the closely related neighbors for Divvy are

not significantly more than other systems in NYC and LA (which

will be reflected by the number of attention heads in Sec. 6.2).

Designs: To better differentiate the neighborsNi for each station

i , we select the knee point d in Fig. 5 (where a curve “turns”, or

formally, where a curve is best approximated by a pair of lines) w.r.t.
each curve, and decide i and j to be close neighbors if d(i, j) ≤ γ , and
distant neighbors otherwise. Since a station has trips both starting

from and returning to itself, we also consider i ∈ Ni in GBikes’s
formulation.
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4.2 Levels of Temporal Closeness
Recall that bike-flow prediction of GBikes takes into account the

historical bike trip records H at each station. Due to dynamic varia-

tions in people’s commute purposes, relations between station bike

flows may vary with time. We characterize in GBikes the variations
into multi-level temporal closeness from the target time interval to

be predicted.

Observations: We show in Fig. 7 the station-to-station corre-

lations vs. levels of temporal closeness. For each station pair, we

find the Pearson correlation of station bike pick-ups within a certain

sliding time window, and plot the means and standard deviations

(STDs) of all pairs’ correlations. Note that the correlation values

between some stations can be negative. We can see lower and more

dynamic short-term (say, less than 3 hours) correlations due to indi-

vidual pick-up patterns, and larger and more consistent long-term

(say, greater than 6 hours) patterns resulting from the general trend

of commute flows and the spatial functionality of the city regions.

We have studied the distributions of travel time between stations.

Since most bike rides are done within a certain period of time (due

to the nature of the first/last-mile connectivity), the size of short-

term partition caters for the majority of bike trips, say, 90% in the

cumulative distribution of travel time for each bike-sharing system

(Citi: 0.46 h; Divvy: 0.43 h; Metro: 0.70 h).

Designs: In this work, we propose using multiple levels of tem-

poral closeness to accommodate above. In our prototype studies, we

hence incorporate the short-,mid- and long-term levels of temporal

correlations (with the numbers of historical intervals or the window

sizes respectively denoted aswA,wB andwC ) in GBikes. In other

words, we set J = 3 in Fig. 3 (Sec. 3.3).

Specifically, based on the above time-domain studies (each in-

terval is 15 min here), we set the number of intervals (wA,wB ,wC )

as (3, 16, 24) for Citi, (3, 12, 16) for Divvy and (5, 12, 20) for Metro.

For each interval (k + 1) to predict and eachw ∈ {wA,wB ,wC }, we

find the historical records

h(w ) ≜

{( w∑
t=1

I
(k−t+1)
i ,

w∑
t=1

O
(k−t+1)
i

)
,∀i

}
, (5)

which is formed to be an N×2 matrix as input.

Regarding selection of interval/slot size, 15 min discretization is

chosen for fine-grained and practical prediction of real-world bike-

sharing systems, and is the minimum time-granularity of weather

data available to us (NOAA open data). However, our scheme can

be applied with shorter intervals (say, 5 min) if and when such data

is available. Furthermore, existing studies select even larger time

intervals (say, 1 hour in [43]), while randomness and complexity in

a shorter slot poses more challenges upon bike-flow prediction. We

show later in Sec. 6 the better experimental performance of GBikes
than other schemes under different interval sizes.

4.3 POIs & Other External Factors
Points-of-Interest (POIs) Data: The bike-sharing riders usually
have frequent travel patterns (habits) between certain city func-

tional regions [25] due to their specific commute purposes and ride

preferences, particularly during morning/evening rush hours.

We use the points-of-interest (POI) in each bike station’s neigh-

borhood to accommodate these patterns. A total of 19,867 POIs in

NYC are collected via NYC Open Data Portal, 4,329 POIs in Chicago,

and 5,948 POIs in LA based on OSM. Taking NYC as a typical ex-

ample, we show in Fig. 8 the matrix of mean correlations (sliding

window of 6 hours) among different types of the POI neighborhoods.

We classify the POIs into five major groups: commercial, residential,
recreational, cultural, and governmental (indexed by 1 to 5 in Fig. 8).

Then, we summarize and find the majority types of POIs near each

station (within a circle of radius 0.4 km centered at the station). We

can see clearly lower correlations between stations in residential

areas and others, due to reverse directions of inter-station bike

flows during daily commute.

Meteorological & Event Data: We also take into account the

meteorological (obtained from NOAA database [29]) and event

factors, including the categorical (7 types of weather conditions)

and non-categorical ones (temperature, sky visibility, wind speed,

wind direction, humidity, air pressure, day of a week, hour of a

day and public holiday or not). Taking NYC as an example, we

have shown in Fig. 9 the proportions of weather conditions in the

four different seasons (2015Q3–2016Q2). Such temporally diverse

patterns are considered within GBikes formulation to enhance the

prediction accuracy.

Designs:We process each type of the categorical data (say, sunny

or not) by one-hot encoding (say, 1 if sunny and 0 otherwise), and

other non-categorical ones into [0,1] by max-min normalization.

We combine meteorological, time/event and POIs (5 types in a non-

categorical form; number of each typewithin a certain distance from

the station) into a vector of external factors (further embedding

is discussed in Sec. 5.3). Table 1 further summarizes E with their

dimensions and detailed descriptions in GBikes.

5 SPATIO-TEMPORAL GRAPH ATTENTION
CONVOLUTION

A spatial and temporal design is essential to accommodate afore-

mentioned factors. Since we model the bike stations as the network

graph, a graph neural network model is proposed to capture the
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Table 1: External factors E studied in GBikes.
Factors Data

Weather Conditions

(7-D)

cloudy/sunny/foggy/hazy/misty/rainy

/snowy or not

Meteorological Metrics

(6-D)

temperature, sky visibility, wind speed,

wind direction, humidity, pressure

Event/Time (3-D) day of a week, hour of a day, holiday or not

Neighborhood POIs (5-D)

commercial, residential, recreational,

cultural, governmental

station-to-station correlations, which are further differentiated by

our graph attention mechanism.

We first present the design of spatial and temporal closeness in

Sec. 5.1, and then show the core graph attention convolution in

Sec. 5.2, followed by the core network architecture in Sec. 5.3.

5.1 Design of Spatial & Temporal Closeness
In a bike station network, closer stations likely have stronger links

and mutual effects than those more distant stations, which are

characterized within the adjacency matrix A of our graph model.

Definition 4. (Spatial closeness): To differentiate the close and
distant neighbors (Sec. 4.1), we define spatial closeness between sta-
tions i and j in terms of mutual distance as

A(dist)(i, j) ≜

{
(1 + d(i, j))−1 , if d(i, j) ≤ γ ;

(1 + d(i, j))−2 , otherwise.
(6)

where d(i, j) (unit: km) is derived based on the shortest path distance
on the OSM map, and γ is the decision boundary derived in Sec. 4.1
between close and distant neighbors.

In other words, A(dist)(i, j) decreases given larger d(i, j) between
stations i and j, and close and distant neighbors in Sec. 4.1 are

differentiated in GBikes formulation by Eq. (6).

Besides the closeness in mutual distance, the adjacency matrix

also takes into account the temporal correlations between stations.

Specifically, let F (t )(i, j) (i , j) be the total number of trips happen-

ing between stations i and j in interval t , i.e.,

F (t )(i, j) = τ (t )(i, j) + τ (t )(j, i). (7)

Definition 5. (Temporal closeness): Based on the cosine sim-
ilarity, we define the temporal closeness of flows A(temp)

w (i, j) for
∀i, j ∈ {1, . . . ,N }, in the recentw windows as

A
(temp)
w (i, j) ≜

∑N
n=1 (Fw (i,n) · Fw (j,n))√∑N

n=1 (Fw (i,n))2 ·
√∑N

n=1 (Fw (j,n))2
, (8)

where the aggregated flow Fw (i,n) from stations i to n in a sliding
window ofw by the current interval k is given by

Fw (i,n) =
k∑

t=k−w+1

F (t )(i,n). (9)

In otherwords, two stations are considered to bemore temporally

correlated if they havemore similar traffic “pulses” within a window

ofw , as characterized by Eq. (8).

For different levels of temporal closeness w’s (Sec. 4), we find

the corresponding A(temp)
w . Finally, the closeness between stations

representing strengths of their mutual connectivities, formed as

the weight (adjacency) matrix Aw , is given by

Aw ≜ A(dist) + A(temp)
w , w ∈ {wA,wB ,wC }, (10)

where each element Aw (i, j) is then normalized w.r.t. each station i
before being fed to GBikes’s core.

5.2 Graph Attention Convolution in GBikes
We introduce graph convolution and present core layer of graph

attention convolutional neural network (GACNN).

Basic Graph Convolution: Based on the spectral graph the-

ory [2], the operation of spectral convolutions on graphs [18] is

defined as the multiplication of an input signal x ∈ RN with a

graph filter дθ in the Fourier domain, i.e.,

дθ ⋆ x =
P∑
p=1

θpUΛpUT x =
P∑
p=1

θpLpx, (11)

where U is the matrix consisting of eigenvectors from the graph

Laplacian L, i.e., L = IN − D− 1

2 AD− 1

2 = UΛUT
. Here, D is the

degree matrix, A is the adjacency matrix, Λ is a diagonal matrix of

L’s eigenvalues, Lp represents its p-th power, and UT x is the graph

Fourier transform.

The work in [18] further simplified the graph convolution oper-

ation by the first-order polynomial approximation, i.e.,

дθ ⋆ x ≈ D− 1

2 AD− 1

2 xθ , (12)

which then serves as the graph convolution operation.

Given above, by formulating the station flows h as input signal x
in Eq. (12) (each pair of pick-up/drop-off values as a feature vector

of a station), we further leverage the graph convolution, as a graph
filter [18] for prediction. The convolved signal matrix z(l ) ∈ RN×D′

from the l-th graph convolution layer is then given by

z(l ) = D− 1

2 AwD− 1

2 h(l )W(l ), (13)

where W(l ) ∈ RD×D′

is the weight matrix of the neurons at the

layer l , and D (D ′
) is the filter’s input (output) feature dimension. In

each graph convolution layer, the input signals are first fed to the

graph filter in order to aggregate the neighborhood information of

each node. Similar to 2-D image convolution, connections between

a station node and its neighbors are captured within the graph

convolution [37].

Graph Attention & Core GACNN Layer: In order to better

learn the complexity of station bike flows, we further design graph
attention mechanisms [32] upon z(l ) to differentiate the more closely
correlated stations. Let Ω ∈ RD

′×D
be the weight matrix applied

upon each station node. We define the attention coefficient, as a

weighting function with ELU (exponential linear unit) activation

(denoted as σ (·)), between a station i and one of its neighbors j’s
(j ∈ Ni ) as

e(i, j) ≜ σ
(
®aT

[
Ωhi | |Ωhj

] )
, hi , hj ∈ RD , (14)

where Ωhi ,Ωhj ∈ RD
′

, and ®a ∈ R2D
′

is the attention weight vector

of a single-layer feed forward neural network, and | | is the con-

catenation operation of two input vectors. Here the ELU activation

function is formally given by

σ (x) ≜

{
λ(exp(x) − 1), if x < 0;

x , otherwise.
(15)
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Figure 10: Illustration of attention mechanism structure between
stations 1 & 2. Their weighted inputs by Ω are concatenated and fed
via a single layer with weight vector ®a.
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Figure 11: Illustration of attention propagation in station 1’s neigh-
bors. Information fromneighbors and the station itself is combined
to form the new features for station 1.

We set λ = 1.0 by default in our model.

Then, the attention coefficient e(i, j) is passed through a softmax
function with normalization, and we get

α(i, j) ≜ softmax(e(i, j)) =
exp(e(i, j))∑

n∈Ni exp(e(i,n))
, (16)

which ensures that the neighborhood attention coefficients of a

station i sum up to one. We further illustrate the attention structure

between neighboring stations 1 and 2 in Fig. 10.

For each link from a neighboring station j ∈ Ni to i , we con-
siderM attention heads or mechanisms, each of which is weighted

by an attention coefficient α (m)(i, j). At the processing layer of

GBikes, the features from the M attention heads (with weight

Ω(m) ∈ RD
′×D

for each head) are concatenated to obtain the output

to layer (l + 1), denoted as h(l+1), i.e.,

h(l+1) ≜

M��������
m=1

σ
©­«
∑
j ∈Ni

α (m)(i, j)z(l )Ω(m)ª®¬ , (17)

where we also apply the ELU activation as σ (·).
Unlike the input layer, at the prediction layer of GBikes, the

outputs from all attention mechanisms of all neighboring stations

in the previous layer l are averaged (and fed to ELU activation) into

h(l+1) ≜ σ
©­« 1

M

M∑
m=1

∑
j ∈Ni

α (m)(i, j)z(l )Ω(m)ª®¬ , (18)

which is more sensitive to signals between layers than concatena-

tion in Eq. (17) [32]. Fig. 11 illustrates the attention heads among

four stations (nodes) with input features h1 to h4. For station 1,

attentions from itself and its neighbors are concatenated (Eq. (17))

or averaged (Eq. (18)), and new features h′
1
are returned for the next

layer’s processing.

GACNN
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z(l)
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Ω
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1
2
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(m)

(m)

W (l)

Figure 12: Illustration of the GACNN layer, where the inputs are
propagated through both graph filter and attention mechanism.
Concatenation or averaging operation is applied at the final output.
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Figure 13: Station-level flow prediction architecture in GBikes.
Via the above attention mechanism structure, GBikes is enabled

with better focus upon the station neighbors which are more closely

related, thus deriving more important correlations to enhance pre-

diction accuracy.

Finally, we summarize the structure of GACNN layer in Fig. 12.

Inputs are respectively fed to graph convolution filter and attention

mechanism, whose results are later merged.

5.3 Network Architecture of Station-level
Traffic Forecast

We present in Fig. 13 the network architecture and information

flows for traffic forecast. Specifically, GBikes consists of two pro-
cessing components, i.e., the spatio-temporal and external learners.
Via bike station network studies, we first derive the bike flows,

h(wA)
, h(wB )

and h(wC )
, in three levels of temporal closeness, as

well as external factors E.
Spatio-temporal learner by GACNN Blocks: Three blocks of GAC-

NNs respectively learn each level of in/out flows. Each block con-

sists of:

• GACNN : As illustrated in Fig. 12, both GACNN layers have

graph filter (Eq. (13)) accompanied by the graph attention mecha-

nisms (Eqs. (17) or (18)). Each attention coefficient α(i, j) is calcu-
lated via Eqs. (14) and (16), as in Fig. 10. The first GACNN layer

applies the concatenation operation in Eq. (17), while the second

applies averaging as Eq. (18).

• Dropout & softmax: Dropout layers are placed between input

and GACNN (concat), and between the two GACNN layers, to
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coarsen the graphs into high-level sub-structures [37]. This way,

more compact representation of the station network can be derived.

The softmax layer connects the block output for predictions.

The layer-to-layer information propagation is as follows: (1) In

each block, the input first goes through the dropout layer, followed

by GACNN (concat). In GACNN (concat), the flow input h after

dropout is fed to the graph filter as in Fig. 12, and the output,

a convolved signal matrix z, is fed to Eq. (17) with M attention

heads’ coefficients concatenated into a vector. (2) The result after

another dropout layer is then fed to GACNN (average), where the
convolved signal z from graph filter is averaged by all attention

mechanisms of all neighboring stations as in Eq. (18). The output is

finally fed to the softmax layer and a set of predictions is returned

w.r.t. each GACNN block.

Then, we obtain three sets of predictions in total regarding dif-

ferent levels of temporal closeness.

External learner by Fully-connected Neural Network: External fac-
tors E are fed to a fully-connected neural network, with two dense

layers interleaved with two ReLU layers. The first layer serves as

an embedding one to extract features from the external factors [33].

The network also returns the set of prediction upon the in/out

flows. Note that the external learner is general to accommodate

other factors if available.

Four sets of in/out flows (each is an N×2 matrix) are returned

(three (̂hA, ĥB , ĥC ) from spatio-temporal and one ĥE from external)

and merged into final predictions by averaging.

6 EXPERIMENTAL EVALUATION
Given above, we first present the experimental settings in Sec. 6.1,

followed by the evaluation results in Sec. 6.2.

6.1 Experimental Settings
Based on the datasets in Sec. 3.2, we compare GBikes with the

following baseline methods and state-of-the-arts:

• HA and SHA: Historical Average [7] and Seasonal Historical

Average, which leverage the averages of the historical records be-

longing to the same periods of all or the same seasons. For example,

we average all numbers of the rides during 8:00 – 8:15 of all recorded

Mondays to predict that of 8:00 – 8:15 on a targeted Monday.

• ARIMA: predicts the trip series based on Auto Regressive In-

tegrated Moving Average. We empirically set the size of sliding

window to 12.

• ANN : leverages the Artificial Neural Network for trip series

regression (trained upon a window of 12) and prediction.

• RNN [30]: leverages the Recurrent Neural Network for trip

time-series prediction.

• LSTM : learns (upon a window of 12) and predicts the trip series

with the Long Short-Term Memory neural network.

• STCNN : discretizes the map into grids, learns the bike trip

heatmap distributions with Spatio-Temporal Convolutional Neural

Network [27], and outputs each station’s flows by the average of

all stations within a grid.

• GC: predicts the trips with the conventional Graph Convolu-

tional neural network [23], which only considers the link correla-

tions between stations.

Table 2: Prediction RMSEs of all schemes in different systems.
Schemes Citi Divvy Metro

HA 7.69±2.61 7.41±1.48 5.58±0.64

SHA 5.22±1.92 4.87±1.62 3.23±0.61

ARIMA 3.85±2.38 3.70±1.35 3.28±0.65

ANN 4.76±2.46 5.13±1.84 3.06±0.75

LSTM 3.76±0.53 3.67±1.83 3.20±0.63

RNN 3.37±0.98 4.05±2.23 2.92±1.42

STCNN 3.25±1.07 2.38±0.58 2.21±0.40

GC 2.45±0.95 2.12±0.46 2.03±0.41

MGN 2.43±1.57 2.13±0.44 1.97±0.45

GBikes 1.74±0.94 1.69±0.45 1.47±0.39

Table 3: Prediction RMSEs of all schemes during rush hours.
Rush Hours Schemes Citi Divvy Metro

Morning

STCNN 2.72±1.13 2.44±0.82 2.32±0.83

GC 2.73±1.03 2.30±0.61 2.18±0.83

MGN 2.53±1.43 2.23±0.86 2.16±0.88

GBikes 1.78±1.01 1.85±0.62 1.49±0.85

Evening

STCNN 3.07±1.44 3.10±0.66 3.09±0.60

GC 2.99±0.94 2.90±0.60 2.17±0.66

MGN 2.88±0.98 2.96±0.62 2.22±0.58

GBikes 2.30±0.70 2.33±0.61 1.53±0.79

• MGN : predicts the trips with Multi-Graph Neural network [4],

which considers some correlations between stations without com-

prehensive data-driven designs and graph attention.

We have implemented GBikes and other schemes in Python

and Tensorflow, and the models are trained and evaluated upon a

desktop server with Intel i7-8700K 3.70 GHz, 16GB RAM, Nvidia

GTX 1080Ti andWindows 10. Computationally, the time complexity

of a single graph filter takes O(|E |DD ′) [18], and that of a single

attention head in GBikes takes O(NDD ′+ |E |D ′) [32]. The number

of edges |E | in our studies is overall linear in N , the number of

stations, due to the sparsity of the bike station network (Fig. 6).

Training time of GBikes in our studies is around: 4.1 hours for NYC,
4.9 hours for Chicago, and 1.1 hours for LA, based on the above

machine we used.

Unless otherwise stated, we use the following default experi-

mental and parameter settings. In Eq. (6), γ is 0.4, 0.5 and 0.23 for

Citi, Divvy and Metro, respectively. Number of heads M is set to

8 for Citi, 9 for Divvy, and 7 for Metro. We have 96 intervals per

day for all three datasets. For each dataset, we use the first 60 days’

trips for model training, the following 30 days for model validation

and sensitivity analysis, and the rest for model testing. The number

of epochs is 200 and that of the graph filter for each GACNN is 3.

Dropout rate is set to 0.5. For the graph filters of the two GACNN

layers, i.e., concat and average, input dimension D is 2 and 8;

output dimension D ′
is 8 and 2. Output dimensions for Dense (1)

and (2) in Fig. 13 are 10 and 2N , respectively. We adopt the Adam
optimizer for model training (learning rate as 0.01).

Regarding the POI features, for each station we find a POI feature

vector, each element of which represents the number of POIs of a

certain type within the radius. As the radius increases, the numbers

increase, and we observe when radius reaches 0.4km, the average

percentage of non-zero elements of all vectors rises right above

75% and the increase begins to slow down. Thus, we choose 0.4km,

which suffices to provide informative POI vectors. We evaluate the

95



Table 4: Prediction RMSE of GBikes under design variations.
Variations Citi Divvy Metro
No POI 1.94±0.46 1.65±0.86 1.54±0.56

No weather 1.81±0.51 1.64±0.53 1.56±0.79

No E 2.14±0.34 1.78±0.76 1.74±0.45

No A(temp)
w 2.05±0.69 1.98±0.82 1.96±0.58

No attention 2.18±0.61 2.12±0.62 2.06±0.52

Complete 1.66±0.62 1.44±0.61 1.10±0.38

accuracies of all schemes based on RMSE (root-mean-square error),

i.e., RMSE =

√
1

W
∑
i (hi − ĥi ), where hi and ĥi are ground-truth

and prediction, andW is the total number of all predicted values.

6.2 Evaluation Results
We first present the overall performance of GBikes and other com-

parison schemes, and then provide the sensitivity studies under

different settings, followed by a comprehensive case study with

dynamic flow predictions.

Overall performance: Table 2 shows the RMSEs of all different

schemes at the three systems. Without considering the correlations

between stations, conventional methods for time series analysis

result in higher rates of error. STCNN takes into account regions

and hence achieves better accuracy than ANN, RNN and LSTM,

but its convolution cannot provide fine-grained bike flows for each

station. GC and MGN consider the graph of stations and their con-

nectivity, but fail to comprehensively capture their spatio-temporal

correlations and relative importance.

Compared to the above schemes, GBikes achieves better overall

performance thanks to its comprehensive data studies and spatio-

temporal attention designs. As Citi Bike in NYC has more stations

and trips than the other two systems, higher prediction errors are

expected than in the other two cities. Stations of Metro Bike in LA

(Fig. 6) are distributed over different towns/districts with simpler

traffic network structures, and thus better prediction accuracies

can be observed.

We also show in Table 3 the prediction results of GBikes, MGN,

GC and STCNN w.r.t. the morning and evening rush hours, i.e.,
7:00 – 10:00 AM and 5:00 – 8:00 PM (local time). Due to larger

bike volumes during rush hours, all schemes are shown to have

higher errors than in Table 2. Nonetheless, thanks to its attention

mechanisms, multi-level temporal closeness and correlation studies,

GBikes achieves better prediction accuracy than other schemes.

We can also infer the reliability of GBikes upon different station

usages from the data during rush hours in the analysis. Since the

bike-flow patterns (including correlations of station usages) dur-

ing rush hours are likely to be different from the overall patterns

shown in Table 2, the overall robust performance of GBikes shown
in Table 3 implies the robustness/applicability to scenarios with

different flow patterns.

Sensitivity analysis: Table 4 shows the performance variations of

GBikes by removing some architecture components, i.e., the RMSE

variations of different settings. Removal of any component causes

notable accuracy degradation, demonstrating the importance of

each part.

We further show in Fig. 14 the RMSEs vs. numbers of graph

attention heads (M in Eqs. (17) & (18)) for the three bike-sharing

systems. For each bike-sharing system in Fig. 14, we increase M

Citi,NYC Divvy,Chicago Metro,LA
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Figure 14: RMSEs vs. the number of attention heads (5 to 12).
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Figure 15: RMSEs vs. the sizes of each time interval (Citi, NYC).
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Figure 16: Visualization of the layer activation after GACNN
(concat). The color denotes the logarithm of station usage.
from 5 to 12 and evaluate the influence. We can see that too few

or too many attention heads may not achieve high accuracies. Too

few heads make it difficult for GBikes to capture complex station-

to-station correlations, while too many of them introduce noise in

the model learning. As the station network of Metro tends to have

smaller distance between stations with high correlation (Fig. 5),

fewer attention heads are needed than Citi and Divvy. More inter-

estingly, due to a much sparser bike station network (Fig. 6), Divvy

does not require notably more attention heads than Citi and Metro.

We also show in Fig. 15 the RMSEs vs. the size of each time

interval. We compare GBikes with GC, MGN and STCNN based on

the validation/sensitivity dataset of Citi, NYC to illustrate the effect

of the time interval. We vary the size of time interval from 15 min

to 75 min. As we can see from the results, the accuracy generally

increases with larger time intervals, mainly because a smaller time

interval may experience more complicated users’ pick-up/drop-

off behaviors than a larger one, making it more challenging for

real-time flow prediction. Considering the importance of timeliness

and proactiveness for other subsequent applications (say, station

re-balancing or anomaly detection), we focus on the small time

interval, i.e., 15 min, in our experimental evaluation.

We visualize the layer activation values (high-dimensional data)

after one GACNN (concat) for the three datasets in Fig. 16 through

t-SNE (t-Distributed Stochastic Neighbor Embedding) [28]. Each

dot represents a bike station, and we have 502, 607 and 135 dots,

respectively, in (a), (b) and (c). Each dot’s high-dimension activation
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Figure 17: Greenwich Village
(40.7390◦N, -74.0026◦W).

Figure 18: Union Square Park
(40.7345◦N, -73.9907◦W).

Figure 19: Lafayette Street
(40.7303◦N, -73.9908◦W).

Figure 20: Battery Park City
(40.7153 ◦N, -74.0166◦W).
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Figure 21: Bike flows and predictions for Greenwich (Fig. 17).
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Figure 22: Bike flows and predictions for Union Square (Fig. 18).
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Figure 23: Bike flows and predictions for Lafayette (Fig. 19).
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Figure 24: Bike flows and predictions for Battery Park (Fig. 20).

value is mapped to 2-D space (with normalized 2-D coordinates),

and warmer color indicates more station bike usage (logarithm

of total in/out flows). We set perplexity of t-SNE as 50, and other

parameters by their default in sklearn [28].

We can see that after one GACNN layer GBikes has started to

discriminate stations with and without (lighter and darker colors)

heavy bike usage, correlating each group closely and enabling high

flow prediction accuracy in GACNN (average). Since Metro’s sta-

tions in LA (Fig. 16(c)) are distributed in multiple cities/towns under

LA county, more distinct clusters can be observed there than NYC

Citi and Chicago Divvy.

Case studies: We further conduct the case studies on the dataset

of Citi, NYC, and show in Figs. 17–24 the neighborhood maps and

the ground-truth bike flows (in/out) of four most popular stations

(in terms of total pick-ups/drop-offs) and the predictions by GBikes.
The study is based on one-week trip records (Sunday to Saturday).

Note that each data point corresponds to the aggregated bike pick-

ups or drop-offs of that station in default 15 min interval. With the

resembled trends and accurate predictions, we show in general the

GBikes model captures the dynamics of the bike flows.

In particular, for the station near Greenwich Village within the

lower Manhattan (Figs. 17 & 21), since there are multiple sub-

way/bus stations nearby, we can notice multiple remarkable peaks

which are close to each other in time domain. Regarding the station

near the Union Square Park (Figs. 18 & 22), the crowds near the

points of interests introducemore fluctuations and small peaks/valleys

in the bike flows. From the station near the Lafayette Street of the

lower Manhattan (Figs. 19 & 23), we can observe more bike usage

during the afternoon time due to neighboring commercial, busi-

ness and tourism activities. At the station near the ferry terminal

around the Battery Park City (Figs. 20 & 24), the intermittent peak

patterns in the bike flows are likely due to the frequency of fer-

ries nearby. Thanks to its comprehensive data-driven studies and

spatio-temporal designs, fine-grained accuracy can be achieved and

the predictions can effectively capture the neighborhood patterns.

7 CONCLUSION
We have conducted extensive data-driven and experimental studies

of flow prediction for bike-sharing stations using graph attention

convolutional neural networks. State-of-the-arts often focus on

prediction for a group of stations, without comprehensive data-

driven designs for bike stations and their correlations. In contrast,

we formalize the network of stations into a graph. We provide

comprehensive spatio-temporal designs, taking into account spatial

correlation and temporal closeness of stations and their bike flows.

Graph attention mechanisms are also designed to better capture

the inherent station-to-station correlations. Extensive experimen-

tal studies upon three metropolitan bike-sharing stations in NYC,
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Chicago and LA have corroborated the effectiveness, robustness

and accuracy of GBikes in fine-grained bike-flow prediction.
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