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ABSTRACT
As modern embedded systems like cars need high-power integrated

CPUs–GPU SoCs for various real-time applications such as lane or

pedestrian detection, they face greater thermal problems than be-

fore, which may, in turn, incur higher failure rate and cooling cost.

We demonstrate, via experimentation on a representative CPUs–

GPU platform, the importance of accounting for two distinct ther-

mal characteristics — the platform’s temperature imbalance and dif-
ferent power dissipations of different tasks — in real-time scheduling

to avoid any burst of power dissipations while guaranteeing all tim-

ing constraints. To achieve this goal, we propose a new Real-Time
Thermal-Aware Scheduling (RT-TAS) framework. We first capture

different CPU cores’ temperatures caused by different GPU power

dissipations (i.e., CPUs–GPU thermal coupling) with core-specific

thermal coupling coefficients. We then develop thermally-balanced
task-to-core assignment and CPUs–GPU co-scheduling. The former

addresses the platform’s temperature imbalance by efficiently dis-

tributing the thermal load across cores while preserving scheduling

feasibility. Building on the thermally-balanced task assignment,

the latter cooperatively schedules CPU and GPU computations to

avoid simultaneous peak power dissipations on both CPUs and

GPU, thus mitigating excessive temperature rises while meeting

task deadlines. We have implemented and evaluated RT-TAS on

an automotive embedded platform to demonstrate its effectiveness

in reducing the maximum temperature by 6 − 12.2°C over existing

approaches without violating any task deadline.

1 INTRODUCTION
As modern embedded systems like cars increasingly use integrated

CPUs–GPU system-on-chips (SoCs) with growing power dissipa-

tions, thermal challenges therein have become critical. Hardware

cooling solutions like fans have been used to lower chip temper-

ature, but the cooling cost has been increasing rapidly, which is

estimated to be $3 per watt of heat dissipation [23]. Chip over-

heating not only incurs higher cooling cost but also degrades its

reliability [24], which may, in turn, risk physical safety. Thus, re-

ducing on-chip temperature while meeting the application timing

constraints has become a key system design objective.

There are two key thermal characteristics to consider for inte-

grated CPUs–GPU platforms: (1) the platform’s temperature imbal-

ance and (2) different CPU and GPU power dissipations by different

tasks. Our experimentation on a representative CPUs–GPU SoC has

shown the GPU’s power dissipation to raise CPUs’ temperatures

(i.e., CPUs–GPU thermal coupling) at different rates, creating a large
temperature imbalance among CPU cores (up to a 10°C difference);
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some (hot) CPU cores show higher temperatures than others, due to

the heat conduction from GPU. Besides this platform’s temperature

imbalance, our experimentation with automotive vision tasks has

demonstrated an up to 1.35× difference of CPU’s power dissipa-

tions and an up to 2.68× difference of GPU power dissipations by

different tasks; some (hot) tasks dissipate more power than others

when executed on a CPU/GPU.

These distinct thermal features for integrated CPUs–GPU sys-

tems pose significant challenges in partitioned fixed-priority sched-

uling of real-time tasks. Our CPU–GPU stress test demonstrates that

the concurrent execution of hot tasks on both CPU and GPU gen-

erates a 24°C higher CPU temperature than CPU execution alone.

Moreover, assigning a hot task to a hot core raises temperature

5.6°C higher than assigning it to a cold core, significantly increas-

ing cooling costs and/or severely degrading app performance by

drastic hardware throttling (to be detailed in §3, §7). This calls

for thermal-aware task assignment and scheduling tailored to in-

tegrated CPUs–GPU platforms; a task-to-core assignment must

distribute workloads to cores in a thermally-balanced manner by

taking into account both the platform’s temperature imbalance and

different power dissipations of tasks, and a scheduling decision on

CPUs and GPU must be made cooperatively to avoid any burst of

power dissipations on a CPUs–GPU platform while guaranteeing

all app timing constraints.

Numerous thermal-aware scheduling schemes have been pro-

posed for real-time uni-processor systems [12, 14] and multipro-

cessor systems [3, 7, 13]. They usually employ idle-time schedul-

ing [12], DVFS scheduling [13], or thermal-isolation server [3] to

regulate the chip temperature at runtime. Although these prior

studies have made many contributions to thermal-aware real-time

scheduling, they are not directly applicable to integrated CPUs–

GPU platforms because they didn’t consider the thermal effect of

GPU workloads on CPUs, i.e., CPUs–GPU thermal coupling. GPU

thermal management has also been studied for non-real-time sys-

tems [10, 18, 21, 22]. Prior studies recognized thermally-efficient

cores [21] and demonstrated the platform’s thermal imbalance

through infrared imaging [10]. However, they are not suitable for

safety/time-critical systems like in-vehicle vision systems. To the

best of our knowledge, there is no prior work on thermal-aware

task assignment and scheduling of real-time tasks on CPUs–GPU

platforms while accounting for the platform’s temperature imbal-

ance.

In this paper, we propose a new Real-Time Thermal-Aware
Scheduling (RT-TAS) framework that accounts for not only the plat-

form’s temperature imbalance but also diverse power dissipations

of app tasks running on integrated CPUs–GPU platforms. RT-TAS
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generates a thermally-balanced task-to-core assignment and co-

schedule CPUs and GPU to reduce the maximum chip temperature

while meeting task/job deadlines.

We first capture the different CPUs’ temperatures caused by

GPU’s power dissipation with core-specific GPU thermal coupling

coefficients. We analyze the effect of executing individual tasks

on CPUs and GPU temperatures by taking the thermal coupling

into account and validate such a thermal coupling effect on a repre-

sentative CPUs–GPU platform with automotive vision workloads.

Second, we introduce the notion of thermally-balanced task-to-

core assignment to gauge the heat distribution across cores on a

CPUs–GPU platform and derive a sufficient condition for an as-

signment to be thermally-balanced while considering CPUs–GPU

thermal coupling. We then develop a thermally-balanced task-to-

core assignment, called T-WFD, that equilibrates the platform’s

thermal imbalance by considering different power dissipations of

tasks while preserving schedule feasibility. Third, building on a

thermally-balanced assignment, we develop an online scheduling

policy, called CPU–GPU co-scheduling, for CPUs and GPU. It deter-

mines which tasks to schedule on CPUs by considering the task

running on its counterpart (GPU), and vice versa, so as to avoid

simultaneous executions of hot tasks on both CPUs and GPU, thus

mitigating excessive temperature increase without missing any

task deadline. Finally, we have implemented RT-TAS on a represen-

tative CPUs–GPU platform [2] and evaluated it with automotive

vision workloads [19], demonstrating its effectiveness in reducing

the maximum temperature by 6 − 12.2°C compared to existing ap-

proaches without violating timing constraints, thus providing a

reliable response time under a given chip temperature limit. This

6°C reduction translates to a 1.52× improvement of chip lifetime

reliability [24] or savings of cooling cost by $15.6 per chip [15, 23].

This paper makes the following contributions:

• Demonstration of the importance of co-scheduling CPUs

and GPU while accounting for their thermal coupling (§3);

• Empirically capturing CPUs–GPU thermal coupling effect

and temperature differences among CPUs (§5);

• Development of thermally-balanced task-to-core assignment

and CPUs–GPU co-scheduling (§6);

• Implementation and evaluation of RT-TAS on a popular

CPUs–GPU platform with automotive vision workloads (§7).

2 RELATEDWORK
Prior research in the field of real-time systems focused on thermal-

aware task and DVFS scheduling while meeting timing constraints

for uni-processor [12, 14], multiprocessor platforms [3, 7, 13]. Ku-

mar et al. [12] proposed a thermal shaper to regulate the runtime

chip temperature by inserting idle periods. Lampka et al. [13] pro-
posed a history-aware dynamic voltage/frequency scaling (DVFS)

scheme that raises core frequency only in case of potential timing

violations. A thermal-isolation server [3] was proposed to avoid

the thermal interference between tasks in temporal and spatial do-

mains with thermal composability. However, these solutions did not

consider the thermal effect of GPU workloads on CPUs, i.e., CPUs–

GPU thermal coupling, and thus they are not directly applicable to

integrated CPUs–GPU platforms.

There exist studies on GPU thermal management for non-real-

time systems [10, 18, 21, 22]. Singla et al. provide a thermal mod-

eling methodology via system identification on a CPU and GPU

mobile platform and present a proactive DTM policy to prevent

thermal violations [22]. Prakash et al. proposed CPU–GPU cooper-

ative frequency scaling for a mobile gaming app [18]. The notion

of thermally-efficient core was proposed in [21], where the CPU

core less impacted by GPU heat dissipation was identified in of-

fline and tasks were assigned in the order of thermally-efficient

cores. The infrared imaging characterized the CPUs–GPU thermal

coupling, introducing scheduling challenges [10]. Although all of

these studies made valuable contributions, they did not deal with

the timing constraint when applying DVFS or scheduling tasks,

rendering them infeasible for time-critical embedded systems.

To the best of our knowledge, there is no prior work that ad-

dresses the challenges of thermal-aware assignments and schedul-

ing of real-time tasks on CPUs–GPU platforms while accounting

for the platform’s temperature imbalance. Unlike state-of-the-art,

RT-TAS captures both CPUs–GPU thermal coupling and power-

dissipation variations of tasks to lower the maximum temperature

of thermally-unbalanced CPUs–GPU platforms while meeting the

app timing constraint. We have implemented and evaluated RT-

TAS, demonstrating its effectiveness on a representative CPUs–GPU

platform with automotive vision workloads.

3 MOTIVATION
We first present a case study to demonstrate the distinct thermal

characteristics of integrated CPUs–GPU systems and describe the

challenges faced therein.

3.1 Target system
We consider an automotive vision system— a prototypical real-time

CPUs–GPU system — composed of multiple CPU cores and one

GPU core running various real-time vision tasks. Typical vision

apps include feature detector, object tracker, and motion estimator

[19]. The feature detector captures features to detect various objects,

such as cars, road signs, pedestrians, etc. The object tracker maps

and tracks moving/standing objects in consecutive input frames.

The motion estimator determines the motion/movement between

consecutive frames to predict objects’ motions. Real-time process-

ing of these tasks relies on a GPU that supplements the computing

capabilities of the primary CPUs. Each vision task consists of CPU

and GPU sections of computation. To use GPU, a CPU transfers

data to GPU memory and calls GPU functions. GPU then performs

the required computation and returns the result back to the CPU.

See [11] for GPU operation details for real-time apps.

3.2 Thermal characteristics of CPUs–GPU
platforms

To understand the thermal characteristics of CPUs–GPU platforms,

we conducted experiments on Nvidia Tegra X1 [2] equipped with

4 CPUs and a GPU with representative vision workloads [19]. We

highlight two key findings from this experimentation. First, GPU

power dissipation raises CPUs’ temperatures significantly at differ-

ent rates, creating a large temperature imbalance on the platform

cores. Second, different tasks dissipate different amounts of power
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Figure 1: CPUs surrounded by the GPU cluster on a system-
on-chip where GPU’s power dissipation affects CPUs’ tem-
peratures, creating temperature imbalance across CPUs.

on CPU and GPU cores, i.e., some tasks are GPU-intensive and

others are CPU-intensive.

Temperature imbalance. In typical embedded vision platforms,

unlike in desktops/servers, CPU and GPU cores are integrated on a

single SoC (Fig. 1a) for cost/power/communication efficiency [24].

CPU cores are usually surrounded by the GPU cluster [10], and

hence the GPU’s power dissipation greatly affects CPU cores’ tem-

perature because of heat transfer. To understand the GPU’s thermal

impact on CPU cores, we measured the temperatures of CPU and

GPU cores with and without GPU workload.
1
Fig. 1b corroborates

CPUs–GPU thermal coupling where the GPU workload raises CPU

cores’ temperatures from 50°C to 77°C on average without any CPU

workload. More importantly, we observed a significant tempera-

ture difference across CPU cores up to 10 °C (CPU2 vs. CPU3) in

the presence of GPU workload. This imbalance is due to CPU3’s

close proximity to the GPU cluster, and thus significant impact

of GPU power dissipation (Fig. 1a). We refer to CPU cores with

higher (lower) temperature than the average in the presence of

GPU workload as hot (cold) cores. For example, in this example,

CPU1/CPU3 are hot and CPU2/CPU4 are cold.
2

Power dissipation of app tasks. Besides the underlying plat-

form’s temperature imbalance, different tasks incur significantly

different amounts of power dissipation on CPUs and GPU. Fig. 2

plots the average power dissipations on (a) CPU and (b) GPU of

sample vision workloads. We refer to tasks with power dissipation

higher (lower) than the average as hot (cold) tasks. On CPU, the

image stabilizer is the hottest, dissipating 1.35× more power than

the coldest, the object tracker. On GPU, the motion estimator is the

hottest, dissipating 2.68× more power than the coldest, the object

tracker.

3.3 Why thermal-aware task scheduling?
We now demonstrate how the above-mentioned features can ad-

versely affect system performance and reliability if they are not

figured in task scheduling on integrated CPUs–GPU platforms. For

a motivational purpose, we ran high-power CPU and GPU work-

loads
3
on our testbed for 10 minutes and measured the maximum

CPU temperature for the following three cases: i) simultaneous

1
Note that in this motivational experiment, we used the GPU thermal benchmark [9],

i.e., CPU remains idle, to minimize the impact of each CPU’s own power dissipation.

2
We conducted similar experiments with other mobile/embedded platforms (Exynos

5422, Snapdragon 810 and Tegra K1) and made similar observations.

3
We chose the CPU and GPU workloads from the thermal benchmark [9, 20] de-

signed for CPU/GPU stress tests with high power dissipations of 4.67W and 9.89W,

respectively.
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Figure 2: Average power dissipations of (a) CPU and (b) GPU
vary greatly by application tasks.

execution of both CPU and GPU workloads; ii) execution of CPU

workload alone; and iii) no execution (idling). For cases i), ii), and

iii), the maximum temperature was recored at 79.6°C , 55.6°C , and
50.3°C , respectively. Simultaneous CPU and GPU executions make

the CPU temperature 24°C higher than the case of CPU execution

alone. Moreover, assigning the CPU workload to a hot core re-

sults in 85.2°C , a CPU temperature increase by 5.6°C over the case

of assigning it to a cold core. Such an excessive temperature in-

crease/imbalance may result in i) high cooling cost, ii) poor reliabil-

ity, and/or iii) performance degradation due to thermal throttling,
4

making it likely to extend the response time of tasks beyond their

deadlines.

To avoid this, we need a new thermal-aware task assignment

and scheduling framework that captures not only the platform’s

thermal imbalance but also task power-dissipation variations to

mitigate excessive temperature rises. So, assigning hot tasks to hot
cores without capturing the underlying temperature gap can raise

the maximum temperature significantly. Traditional load-balancing

schemes that evenly distribute workloads to CPU cores can be

thermally-unbalanced as they do not consider distinct thermal char-

acteristics of individual cores. We must, therefore, accurately cap-

ture the platform’s temperature imbalance and distribute tasks in a

thermally-balanced manner to lower the maximum temperature.

Besides the platform’s temperature imbalance, tasks’ different

CPU/GPU power-dissipation variations make the scheduling of

app tasks on CPUs and GPU important. Scheduling CPUs and GPU

independently may adversely affect the peak temperature if both

CPUs and GPU simultaneously run hot tasks, both dissipating a

large amount of heat. So, we need to cooperatively schedule CPU

and GPU computations to avoid the burst of power dissipations on

the CPUs–GPU platform, while meeting all timing constraints.

4 PROBLEM STATEMENT AND OVERVIEW
We want to solve the following thermal-aware scheduling problem

for real-time CPUs–GPU systems. Let π = {π1, . . . ,πm ,πд} be the
set ofm CPU cores and a shared GPU, and let their temperatures

at time t be Tπx (t), πx ∈ π .

Definition 4.1. Given a task set τ running on a CPUs–GPU plat-

form π , determine (i) task-to-core assignment, (ii) schedule of jobs

to be executed on CPU and GPU cores such that

G1. the maximum chip temperature, maxπx ∈π Tπx (t), is mini-

mized; and

4
Thermal throttling is a hardware technique that can lower the processor’s frequency

on-the-fly to reduce the amount of heat generated by the chip.

3



Conference’17, July 2017, Washington, DC, USA Youngmoon Lee, Kang G. Shin, and Hoon Sung Chwa

G2. all the jobs of τi ∈ τ meet their deadlines for all possible

legitimate job arrival sequences (timing constraints).

For a schedule, we need to determine not only the core state (active

or idle) but also the order of executing jobs in the active state.

We develop a Real-Time Thermal-Aware Scheduling (RT-TAS)

framework that accounts for the platform’s temperature imbalance

and diverse power dissipations of tasks on CPUs and GPU. The

main challenges are: (C1) how to capture the platform’s temperature

imbalance and power dissipation variations of tasks; (C2) efficiently

map tasks to CPU cores; and (C3) schedule task/job executions

on CPU and GPU cores to reduce the maximum chip temperature

while meeting timing constraints.

To address C1, we develop a CPUs–GPU thermal coupling model

that can capture different rates of temperature increase of CPUs

due to the power dissipation on GPU by using core-level thermal

coefficients. Based on this thermal coupling model, we analyze

different thermal effects of different tasks with distinct power dis-

sipations on CPUs and GPU. We empirically identify the thermal

parameters and validate the CPUs–GPU thermal coupling model

on a representative embedded platform for automotive vision apps.

To address C2, we propose the concept of thermally-balanced
assignment to gauge the heat distribution across cores on the CPUs–
GPU platform. We then develop a new thermal-aware task-to-core

assignment, called T-WFD, by considering the platform’s tempera-

ture imbalance and different power dissipations of tasks. We prove

that T-WFD always yields a thermally-balanced assignment that

efficiently reduces the temperature difference across cores.

To address C3, building on the thermally-balanced task-to-core

assignment derived by addressing C2, we develop an online CPU–

GPU co-scheduling algorithm. Since the maximum chip tempera-

ture is increased by both CPU and GPU power dissipations, sched-

uling hot tasks on both CPU and GPU at the same time causes the

maximum chip temperature to rise. To avoid this, we need to sched-

ule a cold task or idle-time on CPU when a hot task is running on

GPU, and vice versa. We thus develop a thermal-aware CPU–GPU

co-scheduling algorithm that finds candidate tasks whose execu-

tions do not violate timing constraints at each scheduling instant of

a CPU and then determines which task to schedule by considering

the currently running task on its counterpart (GPU), and vice versa,

to achieve the desired thermal behavior.

5 CPUs–GPU SYSTEM MODEL
This section presents task execution and power models, analyzes

how power dissipations of tasks are converted to chip temperatures

by taking the thermal coupling into account, and validates the

model on a CPUs–GPU platform running various vision workloads.

5.1 Task execution model
Each task τi ∈ τ can be represented as (pi ,di ,ηi , e

C
i, j , e

G
i, j ), where

pi is the task period, di is its relative deadline equal to pi , ηi is the
number of GPU sections of computation that are enclosed by ηi + 1

CPU sections of computation, and eCi, j and e
G
i,k are the worst-case

execution times (WCETs) of the j-th CPU section and the k-th GPU

section, respectively. Let eCi =
∑ηi+1

j=1
eCi, j be the total WCET of all

the CPU sections, and eGi =
∑ηi
k=1

eGi,k be the total WCET of all

the GPU sections. For tasks without GPU section, ηi = eGi = 0.

We also define the CPU and GPU utilizations of τi as u
C
i =

eCi
pi

and uGi =
eGi
pi , respectively, and define the total utilization of τi as

ui = u
C
i + u

G
i .

We consider partitioned fixed-priority preemptive scheduling,
which is widely adopted in various real-time systems. Each task

τi is statically assigned to a CPU with a unique priority and let

p(πc ) be the set of tasks assigned to πc ∈ {π1, . . . ,πm }. Let hp(τi )
(lp(τi )) be the set of all tasks with a priority higher (lower) than τi .
Likewise, Let hpp(τi ) (lpp(τi )) be the set of higher (lower)-priority
tasks assigned to the same CPU as τi . GPU is the only shared re-

source among tasks, and it is modeled as a critical section protected

by a suspension-based mutually-exclusive lock (mutex) because

most contemporary GPUs perform their assigned computation non-

preemptively. The GPU access is then made with the MPCP proto-

col [16], well-known locking-based GPU access scheme. Under this

protocol, a task requesting access to a lock held by a different task

is suspended and inserted into a priority queue. During that time,

other ready tasks may use the CPU. When the lock is released, a

task in the priority queue is woken up and granted access to GPU.

At a time instant, a task is either i) executing its CPU section, ii)

executing its GPU section, or iii) idle.

Response time analysis. Under partitioned fixed-priority sched-

uling with the MPCP protocol, the worst-case response time

(WCRT), wi , of τi can be calculated iteratively in the following

expression:

wa+1

i = eCi + e
G
i + B

a
i + I

a
i , (1)

where Bai is the blocking time for τi to acquire the GPU lock and Iai
is τi ’s preemption delay caused by higher-priority tasks [16]. Note

that the initial value w0

i is set to eCi + e
G
i , and the iteration halts

whenwa+1

i > di (unschedulable) orw
a+1

i = wa
i (the response time

no larger thanwa
i ). See Appendix A [1] for the analyses of Bai and

Iai . Using the job-driven response time analysis and blocking time

analysis in [16], we can check the schedulability of a task set as

presented in the following lemma:

Lemma 5.1. [16] A task set τ is schedulable if

∀τi ∈ τ , wi ≤ di . (2)

5.2 CPU and GPU power-dissipation model
As shown in Fig. 2, CPU and GPU power dissipations are found to

vary significantly with the executing task. Since individual tasks

realize distinct vision algorithms with different CPU and GPU sec-

tions that incur different CPU and GPU power dissipations. Thus,

we model different power dissipations during CPU execution (PCi )

and GPU execution (PGi ) of τi . Since every τi generates a sequence

of CPU jobs, each with execution time eCi , at the interval of pi time

units, the average CPU power dissipation by τi is P
C
i ·u

C
i . Likewise,

the average GPU power dissipation of τi is P
G
i · u

G
i . Given a task

set τ and a task-to-core assignment Λ, the average CPU and GPU

power dissipations can be calculated as:

Pπc (Λ) =
∑

τi ∈p(πc )

PCi · u
C
i , Pπд (Λ) =

∑
τi ∈τ

PGi · u
G
i , (3)

where πc denote a CPU core among the set of CPUs (i.e., πc ∈
{π1, . . . ,πm }).
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Figure 3: (a) CPU temperatures resulting from varied GPU
power dissipations and (b) maximum CPU temperature re-
sulting from varied CPU and GPU power dissipations

5.3 Platform’s thermal model
To translate power dissipations of tasks to chip temperature to-

gether with the consideration of CPUs–GPU thermal coupling, we

adopt a core-level thermal circuit model
5
[22]:

Tπ (t ) = TA + R · Pπ (t ) + R ·C ·
dTπ (t )
dt

(4)

where Tπ (t) = [Tπ1
(t), . . . ,Tπm (t),Tπд (t)] is an m + 1 element

vector of CPUs and GPU temperatures at time t , TA is also

an (m + 1)-element vector of ambient temperature, Pπ (t) =
[Pπ1
(t), . . . , Pπm (t), Pπд (t)] is an (m + 1)-element vector of power

dissipated by each CPU or GPU at time t , R represents an (m +
1) × (m + 1) matrix of thermal resistances between each compo-

nent describing the heating impact of each component on each

other component, and C is diagonal matrix with the thermal ca-

pacitance of each component. At the steady-state (i.e.,
dTπ (t )
dt = 0),

the temperature vectorTπ of CPUs and GPU be expressed as linear

equations of power vector Pπ of CPU and GPU:

Tπ = TA + R · Pπ (5)

The steady temperature of πx for a given task-to-core assignment

Λ (denoted by Tπx (Λ)) can be computed as:

Tπx (Λ) = TA + Rx · Pπx (Λ) +
∑

πy ∈π \πx

Rx,y · Pπy (Λ) (6)

where Rx represents the heating impact of πx by itself, Rx,y repre-

sents the heating impact of other CPU and GPU cores πy on πx due

to the thermal couplings. Note that thermal coupling coefficients

Rx,д , 1 ≤ x ≤ m, capture the different impact of GPU heat dissipa-

tion on other cores depending on the thermal properties and chip

layout, e.g., how cores are geometrically positioned w.r.t. GPU.

To confirm that the CPUs–GPU thermal coupling model cor-

rectly represents the platform’s thermal behavior, we measured

the maximum temperature of CPUs and GPU, and compared it

with the model’s estimation under various settings. We validated

our model by varying (i) GPU power settings and (ii) both CPU

and GPU power dissipations with vision workloads as shown in

Fig. 3. Fig. 3a plots the measured CPU temperatures resulting from

the varied GPU’s power dissipation. CPU temperatures linearly

increase with GPU’s power dissipation at different rates that is

captured by core-level thermal coupling coefficients. As GPU’s

power dissipation increases from 2.2W to 8.2W, the temperature

of CPU3 increases at most by 14.3 °C while that of CPU2 increases

by 9.4 °C. Fig. 3b plots the maximum chip temperature while vary-

ing CPU and GPU power dissipations. The result shows that the

5
Note that this thermal model has been shown to be reasonably accurate [14, 22].

Table 1: Thermal coupling coefficients for Tegra X1 (°C/W)

R =


R1 R1,2 R1,3 R1,4 R1,д
R2,1 R2 R2,3 R2,4 R2,д
R3,1 R3,2 R3 R3,4 R3,д
R4,1 R4,2 R4,3 R4 R4,д
Rд,1 Rд,2 Rд,3 Rд,4 Rд


=


2.54 1.66 1.68 1.68 2.20

1.66 2.37 1.71 1.73 1.43

1.68 1.71 2.93 1.72 2.27

1.68 1.73 1.72 2.62 1.76

1.50 1.71 1.60 1.71 1.87


maximum chip temperature linearly increases with both CPU and

GPU power dissipations as in Eq. (6). From these results, we iden-

tify the thermal coupling coefficients by Rx,y = ∆Tπx /Pπy as in

Table 1. Note that the thermal coupling coefficients between CPU

cores ({Rc1,c2 |1 ≤ c1, c2 ≤ m}) range 1.66 − −1.71°C/W varying

only up to 4%, whereas coefficients of CPUs–GPU thermal coupling

({Rc,д |1 ≤ c ≤ m}) range 1.43 − −2.27°C/W varying up to 58%,

which creates a large temperature-imbalance.

6 THERMAL-AWARE SCHEDULING
To achieve both G1 and G2 in integrated CPUs–GPU platforms,

we propose RT-TAS which takes both the platform’s temperature

imbalance and different power dissipations of tasks into account

for the assignment and scheduling of real-time tasks. To this end,

we first introduce a sufficient condition for a task-to-core assign-

ment to be thermally-balanced in the presence of the underlying

platform’s thermal imbalance among CPU cores and present a

thermally-balanced assignment, called T-WFD, that equilibrates

the platform’s thermal imbalance by considering different power

dissipations of tasks while preserving feasibility (§6.1). Building

upon the thermally-balanced assignment, we then present an online

CPU–GPU co-scheduling policy that cooperatively schedules jobs

to avoid simultaneous executions of hot tasks on both CPU and

GPU and thus effectively reduces the maximum chip temperature

while meeting task deadlines (§6.2).

6.1 Thermally-balanced assignment
We now formally state the task-to-core assignment problem.

Definition 6.1 (Task-to-core assignment). Given a task set τ and

a CPUs–GPU platform π , find a mapping from the tasks of τ to

the CPU cores in π (i.e., task-to-core assignment Λ) such that the

maximum temperature of the cores is minimized while all tasks

mapped onto each core meet their deadlines under fixed-priority

scheduling with MPCP.

The task-to-core assignment problem is NP-hard, since finding

a feasible mapping is equivalent to the bin-packing problem which

is known to be NP-hard in the strong sense [4]. Thus, we need to

look for heuristics. Focusing on feasibility, a typical task-to-core

assignment is to apply variants of well-known bin-packing algo-

rithms, including First-Fit Decreasing (FFD), Best-Fit Decreasing

(BFD), and Worst-Fit Decreasing (WFD) [8]. These algorithms pro-

cess tasks one-by-one in the order of non-increasing utilization,

assigning each task to a core according to the heuristic function that

determines how to break ties if there are multiple cores that can

accommodate the new task. Whether a core can accommodate each

task or not is determined by the schedulability test in Lemma 5.1.

Example 6.2. Let us consider a set of four vision tasks shown

in Fig. 2 and a platform consisting of two CPU cores and a single

GPU. The CPU utilizations of individual tasks, i.e., uCi = eCi /pi ,

are uC
1
= 0.2, uC

2
= 0.1, uC

3
= 0.05, and uC

4
= 0.05. The CPU’s

5
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Figure 4: Task-to-core assignment algorithms and their corresponding temperature increases

power dissipations by individual tasks are PC
1
= 1.8W , PC

2
= 1.8W ,

PC
3
= 2.0W , and PC

4
= 2.5W . In this example, we consider CPU1

and CPU2 in Fig. 1b where CPU1 heats up faster than CPU2 due

to the CPUs–GPU thermal coupling. We consider four possible

task-to-core assignment algorithms as shown in Fig. 4: (a) FFD and

BFD, (b) WFD, and (c) a thermally-optimal assignment. In FFD,

each task is assigned to the first CPU on which it fits. In BFD and

WFD, each task is assigned to the minimum remaining capacity

exceeding its own CPU utilization and the maximum remaining

capacity, respectively. After assignment, under FFD and BFD, the

temperatures of CPU1 and CPU2 are increased by 22 °C and 9 °C,
6

respectively, while, under WFD, the temperature increases are 17

°C and 13 °C, respectively. Although WFD shows lower maximum

temperature than FFD/BFD, it is not thermally-optimal. In fact,

there exists a thermally-optimal assignment shown in Fig. 4c.

Note that FFD and BFD try to pack as many tasks as possible

on one core while keeping the other cores empty to accommodate

other unassigned tasks. On the other hand, WFD tends to distribute

the workloads evenly across all cores. In general, FFD and BFD have

shown better feasibility than WFD [5]. However, they may result in

higher temperatures than WFD since the workloads are allocated

(heavily) to one core in many cases. Although WFD may decrease

the maximum temperature by evenly distributing the workloads

across all cores, it does not consider different power dissipations

of tasks and CPUs–GPU thermal coupling, resulting in thermally-
unbalanced assignments as shown in Fig. 4b. As shown in Fig. 4c, a

thermally-optimal assignment in this example turns out to be the

one that assigns slightly more CPU workloads to CPU2 than CPU1.

This is because CPU2 provides a more thermally-efficient operation

than CPU1 due to the CPUs–GPU thermal coupling.

Considering the thermal coupling between GPU and CPU cores,

we present the concept of thermally-balanced assignment to gauge

the heat distribution across cores in a multi-core platform.

Definition 6.3 (Thermally-balanced assignment). A task-to-core

assignment Λ is said to be thermally-unbalanced if the maximum

temperature among cores can be lowered by moving one task from

a core to another without losing feasibility. Otherwise, it is said to

be thermally-balanced.

Clearly, the optimal task-to-core assignment that achieves both

G1 and G2 must be thermally-balanced, since by definition, its

maximum temperature among cores cannot be lowered. We now

derive a sufficient condition for a task-to-core assignment to be

thermally-balanced. Note that, based on the thermal coefficient

values in Table 1, in task-to-core assignment, we assume that the

6
Note that the temperature rise of CPU2 in Fig. 4a is due to the indirect effect of the

execution of workloads on GPU, i.e., CPUs–GPU thermal coupling.

Algorithm 1 T-WFD (τ , π )

1: for πc ∈ {π1, . . . , πm } do
2: Λπc ← ∅
3: end for
4: τ ′ ← Sort(τ by non-increasing PCi · u

C
i )

5: for τi ∈ τ ′ do
6: π ′ ← {πc : feasible-assignment(Λπc ∪ τi )}
7: if π ′ = ∅ then
8: return Failed to assign

9: end if
10: πk ← arg minπc ∈π ′ Tπc (Λπc ∪ τi )
11: Λπk ← Λπk ∪ τi
12: end for
13: return Λ

difference in thermal conduction rate from one CPU to other CPUs

is negligible (Rc1,c2 ≃ Rc2,c1 ≃ Rc1,c3 where ∀1 ≤ c1, c2, c3 ≤ m).
7

Lemma 6.4. A task-to-core assignment Λ is thermally-balanced
if for every pair (πp ,πq ) s.t. πp ,πq ∈ {π1, ...,πm } and every task
τi ∈ p(πp ) satisfy

Tπp (Λ) −Tπq (Λ) ≤ Rp · PCi · u
C
i . (7)

Proof. Suppose that a task-to-core assignmentΛ satisfies Eq. (7).

Without loss of generality, we consider a pair (πp ,πq ) that satisfies

(a) Tπp (Λ) − Tπq (Λ) ≤ Rp · P
C
i · u

C
i (by assumption). Consider a

new assignment Λ′ obtained from Λ by transferring a task τi from
πp to πq . We will prove that the maximum temperature among

cores cannot be lowered by moving τi from πp to πq . There are two
possibilities: i) Tπp (Λ) > Tπq (Λ), and ii) Tπp (Λ) ≤ Tπq (Λ).

Case i): according to Eqs. (3) and (6), Tπp (Λ
′) = Tπp (Λ) − Rp ·

PCi · u
C
i and Tπq (Λ

′) = Tπq (Λ) + Rq · P
C
i · u

C
i . Then, we have

Tπq (Λ
′) −Tπp (Λ

′) =Tπq (Λ) −Tπp (Λ) + Rp · P
C
i · u

C
i + Rq · P

C
i · u

C
i

≥ − Rp · PCi · u
C
i + Rp · P

C
i · u

C
i + Rq · P

C
i · u

C
i (by (a))

=Rq · PCi · u
C
i .

That is, (b) Tπq (Λ
′) − Tπp (Λ

′) ≥ Rq · P
C
i · u

C
i . By (a) and (b), we

have Tπq (Λ
′) − Tπp (Λ

′) ≥ Tπp (Λ) − Tπq (Λ) for any pair (πp ,πq ).

Hence, the new assignment Λ′ is unbalanced because the tempera-

ture difference between πp and πq only increases compared with

the original assignment Λ. Therefore, returning to the original as-

signment Λ (by moving back τi to πp ) always lower the maximum

temperature.

Case ii): that is, we are moving a task τi from a low temperature

core to a high temperature core. The resulting assignment Λ′ can
be easily seen to be unbalanced and just like Case i). Therefore,

we should be able to further lower the maximum temperature by

returning to the original assignment Λ. �

7
Note that we still consider a different thermal coefficient value for other elements in

Table 1, such as Rc , Rд , Rд,c , and Rc,д .

6
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To achieve a thermally-balanced assignment, we propose a new

thermal-aware task-to-core assignment, called T-WFD, as presented

in Algorithm 1. Unlike the previous algorithms presented in Exam-

ple 6.2, tasks are sorted in non-increasing order of their CPU power
dissipations (Line 4). T-WFD then assigns each task to the core with

the lowest temperature on which it fits (Lines 5–12).

Note that T-WFD considers feasibility and thermal issues to-

gether in task-to-core assignment. In particular, tasks are sorted

according to their power dissipation by considering different power

dissipations of tasks and effects on CPU temperature. Cores are

arranged in increasing order of their temperature taking the CPUs–

GPU coupling into account. Then, T-WFD allocates each task to the

core with lowest temperature on which the allocation can preserve

feasibility by the schedulability test in Lemma 5.1. This way, it is

possible to find a thermally-balanced assignment.

We now prove that T-WFD never produces a thermally-

unbalanced assignment in the following theorem.

Theorem 6.5. The T-WFD scheme always generates a thermally-
balanced task-to-core assignment.

Proof. Consider a set τ of n periodic tasks (indexed according

to non-increasing CPU power dissipations) that are to be assigned

onm CPU cores. We will prove the statement by induction. Clearly,

after assigning the first task τ1 to the core with the lowest tempera-

ture on which it fits, the assignment is balanced. Suppose that the

statement holds after assigning τ1, . . . ,τk (1 ≤ k < n) to the cores

according to T-WFD. Let us define Λ(k) to be the assignment after

allocating the k-th task. Let us also define πc to be the core with

the lowest temperature on which τk fits in Λ(k).
T-WFD chooses πc to allocate τk+1

. Any pair (πp ,πq ) such
that πp , πc and πq , πc cannot be the source of a thermally-

unbalanced assignment, because their workload did not change

and Λ(k) is supposed to be balanced by the inductive hypothesis.

Therefore, we need to focus only on pairs (πc ,πp ) where 1 ≤ p ≤ m,

and p , c . There are two possible cases: after assignment of τk+1
to

πc , i) πc becomes the highest temperature core, and ii) otherwise.

Case i): consider a pair (πc , πp ) such that Tπc (Λ(k + 1)) >
Tπp (Λ(k + 1)), where Tπp (Λ(k + 1)) is the temperature of πp in

Λ(k + 1). Note thatTπc (Λ(k)) ≤ Tπp (Λ(k)) in Λ(k) by T-WFD. Thus,

Tπc (Λ(k )) = Tπc (Λ(k + 1)) − Rc · PCk+1
· uCk+1

≤ Tπp (Λ(k )) ≤ Tπp (Λ(k + 1))

⇔Tπc (Λ(k + 1)) −Tπp (Λ(k + 1)) ≤ Rc · PCk+1
· uCk+1

.

Due to the pre-ordering of tasks according to power dissipations,

PCk+1
· uCk+1

≤ PCx · u
C
x for any task τx allocated to πc (x ≤ k + 1).

Therefore,Tπc (Λ(k + 1)) −Tπp (Λ(k + 1)) ≤ Rc ·P
C
x ·u

C
x for any task

τx allocated to πc (x ≤ k + 1). Then, according to Lemma 6.4, the

pair (πc , πp ) cannot be unbalanced.
Case ii): after assignment of τk+1

to πc , let πq is the highest

temperature core and consider a pair (πc ,πq ). The new assignment

Λ(k + 1) cannot make the pair (πc ,πq ) thermally-unbalanced, be-

cause if it were, then the same pair would be thermally-unbalanced

in Λ(k) as well (∵ Λ(k + 1) only reduced the temperature difference

between πc and πq ). This contradicts the inductive hypothesis. �

Algorithm 2 CPU-GPU co-scheduling

1: QCPU : CPU ready queue

2: Upon job release/completion or no remaining inversion budget:

3: for τi ∈ QCPU do
4: if ∀τh ∈ hpp(τi ) satisfies vh − eCi,cur ≥ 0 then
5: Put τi in the candidate set Γ.
6: end if
7: end for
8: if Γ is not empty then
9: τCPU = minτi ∈Γπc |P̄tot − (P

C
i + P

G
cur ) |

10: Schedule τCPU
11: else
12: Schedule a task with the highest priority in QCPU .

13: end if

6.2 CPU–GPU co-scheduling
So far, we have discussed the task assignment to handle the plat-

form’s temperature imbalance. Building on the thermally-balanced

assignment, we now show how to schedule task/job executions on

CPU and GPU cores to mitigate the chip overheating. Specifically,

we want to address the following schedule-generation problem.

Definition 6.6 (schedule-generation). Given the task-to-CPU as-

signment, determine a schedule of job executions and idle-times

on both CPU and GPU such that the maximum temperature across

CPU and GPU cores is minimized while all the jobs of all tasks

τi ∈ τ meet their deadlines.

According to our proposed task-to-core assignment, tasks are

allocated in a thermally-balanced manner in terms of the steady
temperature while preserving feasibility under fixed-priority sched-

uling with MPCP [16]. However, a job schedule on CPU and GPU

cores may affect a transient temperature, potentially leading to

chip overheating before reaching the steady temperature, due to

the following two key issues: 1) different power dissipations of

tasks on CPU and GPU cores, and 2) CPUs–GPU thermal coupling.

Specifically, due to the different power dissipations by different

tasks (as shown in Fig. 2), the temperatures of CPU and GPU vary

greatly depending on the tasks currently running on their cores. We

observe from Eqs. (4) and (6) that (i) if PCi > Pπc (Λ) (i.e., the power
dissipation during CPU execution of τi is greater than the average

power dissipation on πc ), the temperature of πc increases above

the steady temperature Tπc (Λ), and (ii) if PCi ≤ Pπc (Λ) then the

temperature of πc decreases below Tπc (Λ). The same holds for the

GPU case. A task τi is said to be hot if PCi > Pπc (Λ) (P
G
i > Pπд (Λ)),

or cold otherwise. Depending on PCi and PGi , τi can become hot or

cold on CPU and GPU. In addition, because of heat conduction by

CPUs–GPU thermal coupling, the tasks scheduled on GPU could

affect the temperature of its neighboring CPU cores, and vice versa.

For example, scheduling a hot task on CPU (GPU) in the presence

of hot GPU (CPU) workloads tends to accelerate a rapid rise in the

temperature of CPU and GPU together. One may slow down the

temperature increase by suspending the execution of a hot task

and scheduling a cold task or idle-time on CPU/GPU, but such an

action may also lead to a deadline miss of the hot task. This calls for

cooperative scheduling of CPU and GPU computations, i.e., sched-

uling CPU job while considering GPU schedules, and vice versa,

7
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to effectively mitigate excessive temperature rise without missing

any task deadline.

We develop a thermal-aware CPU–GPU co-scheduling mech-

anism that determines which tasks to run on CPU and GPU in

a cooperative manner. Basically, at each scheduling instant, our

mechanism is based upon partitioned fixed-priority scheduling and

restrictively allows priority inversions – executing cold/idle tasks

with lower-priorities ahead of a hot task with the highest-priority

on CPU when its counterpart (GPU) is running a hot task, and vice

versa – subject to schedulability constraints. Such a mechanism

avoids simultaneous executions of hot tasks on both CPU and GPU

and thus reduces the peak temperature while ensuring that all tasks

still meet their deadlines. Algorithm 2
8
presents our thermal-aware

CPU–GPU co-scheduling which consists of two steps: (i) candidate
selection and (ii) job selection. Whenever a scheduling decision is

to be made on CPU and GPU, the algorithm first constructs a list

of candidate jobs that are allowed to execute without missing any

others’ deadline (lines 3–7) and then selects one job from the list by

taking the current job on its counterpart into consideration so that

the difference between the steady temperature and the transient

temperature caused by the execution of the selected and current

jobs on CPU and GPU is minimized (lines 8–10).

Finding candidate jobs. To prevent any deadline miss due to the

priority inversions, we calculate the worst-case maximum inver-
sion budget Vi for each task τi allowed for lower-priority tasks to

execute while τi waits. Vi is calculated using the WCRT analysis

shown in Lemma 5.1 with a similar approach proposed in [25]. Note

that, in the presence of priority inversions, τi can experience more

interference from higher-priority tasks than when no priority inver-

sion is allowed, due to the additional interference by the deferred

executions (also known as back-to-back hit) [25]. To taking into

account such deferred executions when calculating Vi , we derive
a pessimistic upper-bound on the worst-case response timew∗i by

using the WCRT analysis under the assumption that the worst-case

busy interval of τi is equal to di , instead of the iterative increment

of the busy interval of τi until it no longer increases. Using the pes-
simistic upper-bound onw∗i , we define the worst-case maximum

inversion budget Vi as

Vi = di −w∗i . (8)

We then only allow bounded priority inversions using Vi to guar-

antee that deadlines are met. To enforce these budgets at run-time,

our mechanism maintains a remaining inversion budget vi where
0 ≤ vi ≤ Vi . This indicates the time budget left for lower-priority

tasks than τi to execute in a priority inversion mode while τi has
an unfinished job. The budget vi is replenished to Vi when a new

job of τi is released. It is decreased as the CPU/GPU execution of τi
is blocked by a lower-priority job. When the budget becomes 0, no

lower-priority task is allowed to run until τi finishes its current job.
The scheduler is invoked upon (i) release of a new job, (ii) com-

pletion of a job, or (iii) no remaining inversion budget of a job. Upon

each invocation, our scheduling algorithm find candidate jobs that

are allowed to execute on CPU/GPU based on the following lem-

mas. For each task τi in the CPU run queue, let eCi,cur denote the
remaining CPU section execution time at time tcur .

8
Algorithm 2 describes CPU scheduling, and GPU scheduling is also performed simi-

larly. RT-TAS uses GPU lock and priority queue to schedule GPU, and the implementa-

tion is presented in Sec. 7.1.

Lemma 6.7. For a task τi , if ∀τh ∈ hpp(τi ) satisfiesvh −eCi,cur ≥ 0

or τi is the highest-priority task, τi can be a candidate for CPU execu-
tion without missing any deadlines of higher-priority tasks hpp(τi ).

Proof. A busy interval of τh ∈ hpp(τi ) is composed of its

CPU and GPU executions, preemption delay of CPU execution by

hpp(τh ), blocking time to acquire a GPU access, and further delay

of CPU execution due to priority inversions by our co-scheduling

policy. Suppose that at time tcur , our co-scheduling policy decides

to execute τi which is lower priority than τh at time t . Then, the
worst-case busy interval of τh is bounded by

eCh + e
G
h + Ih + Bh + e

C
i,cur ≤ w

∗
h + e

C
i,cur ≤ w

∗
h + vh = dh,

because vh − eCi,cur ≥ 0. The execution of the remaining CPU

section of τi will not miss the deadline of τh ∈ hpp(τi ). So, τi can
be a candidate for CPU execution at time tcur . �

For each task τi in the GPU run queue, let eGi,cur denote the

remaining GPU section execution time at time tcur .

Lemma 6.8. If ∀τh ∈ hp(τi ) satisfies vh − eGi,cur ≥ 0 or τi is the
highest-priority task, τi is a candidate for GPU execution.

Proof. This lemma can be proved similarly to Lemma 6.7. �

Note that we also include an idle CPU task, which is a special

cold task that allows idling CPU during hot task execution on GPU.

Select a job among candidates. For CPU scheduling, we select

one job to execute on πc from the candidate set Γπc by considering

the current job on its counterpart (GPU). Let PGcur denote the power
dissipation by the current running job on GPU. The overall average

power dissipation P̄tot for the entire task set is calculated as

P̄tot =
∑
i
(PCi ·

eCi
pi
+ PGi ·

eGi
pi
). (9)

Then, we pick a task τs in Γπc such that the difference between

the overall average power dissipation P̄tot and the expected power

dissipation (PCs + P
G
cur ) by the selected and currently running jobs

on CPU and GPU is minimized, that is,

min

τs ∈Γπc
|P̄tot − (PCs + P

G
cur ) |. (10)

Such a job selection process can be done similarly for GPU sched-

uling. Let PCcur denote the power dissipation by the current running

job on CPU. We pick a task τs in Γπд such that

min

τs ∈Γπд
|P̄tot − (PCcur + P

G
s ) |. (11)

With our CPU–GPU co-scheduling algorithm, we can reduce the

variation in steady and transient temperatures while guaranteeing

that all deadlines are met.

7 EVALUATION
We have implemented and evaluated RT-TAS on a representative

CPUs–GPU platform with automotive vision workloads, and the

key results are:

• Maximum temperature is reduced by 6°C and 12.2°C w.r.t. the

state-of-the-art [21] and a default OS scheduler, respectively.

• Our thermally-balanced assignment reduces the maximum

temperature by 3.9°C and CPU–GPU co-scheduling reduces

it further by 2.1°C w.r.t. the state-of-the-art.

8



Thermal-Aware Scheduling for Integrated CPUs–GPU Platforms Conference’17, July 2017, Washington, DC, USA

Table 2: Vision tasks used in experiments
Task PCi (W) PGi (W) eCi (ms) eGi (ms) pi (ms)

Feature detector 1.8 3.7 14 25 400

Object tracker 1.8 2.8 34 17 400

Motion estimator 2.0 5.7 63 105 400

Video stabilizer 2.5 3.6 35 65 400

• Maximum temperature is reduced by up to 8.3°C (5.0°C on

average) across various task sets w.r.t. WFD (Fig. 4b).

7.1 Methodology
Our experimental platform is Nvidia Tegra X1 equipped with 4

CPU cores and a shared GPU [2] rated at the maximum power

dissipation of 15W . To avoid chip overheating, each CPU/GPU is

equipped with a thermal sensor. The built-in hardware temperature

management kicks in when one of its cores reaches the temperature

threshold, and lowers CPU frequency to cool down the temperature.

According to the thermal specification [2], chip thermal resistance

is 1.15°C/W . To evaluate the benefit of RT-TAS under a realistic

setup, we have implemented a real-time vision system running

representative vision workloads [19]: (i) feature detector, (ii) ob-

ject tracker, (iii) motion estimator, and (iv) image stabilizer. An

in-vehicle camera video is given to these tasks as input. Specifi-

cally, we have implemented RT-TAS on top of Linux kernel as an

user-level application that executes a set of tasks each running one

of the above vision workloads periodically. The implementation

details are summarized as follows:

• Assigning tasks to CPU cores by using sched_setaffinity
and CPU_SET;
• Priority-based scheduling using sched_setscheduler un-

der the SCHED_FIFO; and
• Implementing a GPU lock using pthread_mutex, and the

highest priority task waiting for the lock will grab the lock.

Throughout the evaluation, we compare following approaches:

• BASE: default OS scheduler (completely fair scheduling) [17];

• TEA: thermally-efficient allocation [21] assigning tasks from

the most thermally-efficient core first
9
;

• RT-TAS: the proposed thermally-balanced assignment (§6.1)

and CPU–GPU co-scheduling (§6.2).

To avoid external influences, the external fan is turned off. Unless

otherwise specified, the CPU and GPU cores are running at the

maximum frequency and the temperature threshold is 65°C . The
CPU/GPU execution time, power dissipation, and period of tasks

are provided in Table 2.

7.2 Effectiveness in reducing temperature
We first demonstrate RT-TAS’s effective reduction of the maxi-

mum chip temperature, thus achieving reliable performance of a

real-time vision system. Fig. 5 plots the maximum temperature,

CPU frequency, and task response time for different schemes. With

BASE (Fig. 5a), temperature exceeds the threshold at around 200s
and hardware thermal throttling was triggered to reduce the proces-

sor frequency from 1.7GHz to 0.5GHz. As a result, the maximum

response time increases from 309ms to 493ms violating the deadline

9
TEA identifies thermally-efficient cores depending on the CPU power dissipation

offline and then sequentially bind the task with the highest CPU usage to the next

most thermally-efficient core.

(400ms). However, the chip temperature increases further, reaching

up to 73°C . With TEA (Fig. 5b), the maximum temperature increases

less rapidly than with BASE, but temperature exceeds the threshold

at around 800s , and experiences thermal throttling thereafter. With

RT-TAS (Fig. 5c), temperature remains below the threshold main-

taining the maximum CPU frequency and reliable response time.

RT-TAS achieves this by addressing the temperature imbalance on

its underlying platform.

Fig. 6 compares the CPUs’ and GPU’s peak temperatures, demon-

strating how RT-TAS mitigates the temperature imbalance. With

BASE, tasks were assigned without considering the temperature

imbalance, which leads to the max-min temperature difference of

7.5°C . Consequently, the CPU temperatures increased unevenly

causing the highest maximum temperature of 72.9 °C. With TEA,

tasks were assigned to the thermally-efficient core first, distributing

workloads better across CPU cores than BASE. However, tasks are

assigned to hot CPU cores (i.e., CPU1, CPU3), resulting in the maxi-

mum temperature of 66.7°C with a max-min temperature difference

of 5.7°C . RT-TAS assigns tasks to the core in a thermally-balanced

manner by capturing the core-level different GPU heating impact

and power variations of tasks. Therefore, RT-TAS reduces the max-

min difference to 1 °C, and the maximum temperature to 60.7 °C.

Fig. 7 compares the maximum temperature dynamics over time

for different schemes. RT-TAS can reduce the peak temperature

by up to 6°C and 12.2°C compared to TEA and BASE, respectively.

We also analyzed the impact of task assignment and co-scheduling.

See Appendix B [1] for results. Overall, the thermally-balanced

assignment and CPU–GPU co-scheduling reduce the maximum

temperature by 3.9°C and 2.1°C , respectively, resulting in a total

temperature reduction of 6°C over TEA. This 6°C reduced maximum

temperature translates to the 1.52× longer chip lifetime
10

[24] and

cooling cost savings of $15.6 per chip
11

[2, 23].

7.3 Evaluation with different task sets
Next, we evaluate RT-TAS with different task sets by using the

parameters measured via the experiments. The base parameters in

Table 3 are acquired from the above platform and sample vision

tasks. We randomly generate 1,000 task sets, and task execution pa-

rameters (ηi , e
C
i , e

G
i , P

G
i ) are set to be uniformly distributed within

their maximum bounds. Next, the task utilization is determined

according to the UUniFast algorithm [6], and the task period is set

to pi = (e
C
i + e

G
i )/ui . We also used the identified platform thermal

parameters in Table 1 and the thermal model in Eq. (4) to estimate

the chip temperature. We compare RT-TAS against two baseline

algorithms, FFD and WFD in Sec. 6.1.

Fig. 8 plots the maximum temperature dynamics for different

task sets with base parameters. The maximum temperature reduc-

tion by RT-TAS is up to 8.3°C and 5.0°C on average. From the base

10
Chip lifetime is typically estimated by mean-time-to-failure MTT F ∝

mean( kT (t )
exp(−Ea /k ·T (t ))

) where k, Ea are the Boltzmann and activation energy con-

stant [24]. We evaluate MTTF using the above equation and temperature traces.

11
Cooling power and chip temperature is modeled by Pcool inд =

∆Tchip
Rchip

where

Pcool inд is the heat extracted, Rchip is the chip thermal resistance, ∆Tchip is the

temperature reduction. To reduce 6°C for the chip with the thermal resistance of

1.15°C/W , the cooling solution needs to extract
6

1.15
= 5.2W of thermal dissipation.

The cooling cost is estimated by 3$/W [23] and the saving is 5.2 × 3 = 15.6$.

9
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(c) RT-TAS

Figure 5: RT-TAS by reducing maximum temperature avoids thermal throttling, thus achieving reliable response time.
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Figure 6: Core-level peak temperature
under different scheduling policies.
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Table 3: Task-set generation parameters
Number of CPUs (M ) 4

Number of tasks (n) 8

Maximum number of GPU sections (ηi ) 2

Maximum CPU execution time (eCi ) 100ms

Maximum CPU power dissipation (PCi ) 2.5W

Maximum GPU execution time (eGi ) 100ms

Maximum GPU power dissipation (PGi ) 6W

Utilization per CPU (

∑
τi ui /M ) 0.3
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Figure 8: Maximum temperature CDF
for different task sets.
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Figure 9: Schedulability for varied uti-
lization and GPU execution time.

task set parameters, we vary utilization and GPU execution time

for each experiment setting. We highlight two observations. The

maximum temperature reduction by RT-TAS becomes more pro-

nounced for i) lower overall utilization, and ii) higher maximum

GPU execution time. The temperature decrease by RT-TAS dimin-

ishes as the utilization increases, because a task assignment cannot

avoid assigning tasks to hot CPU cores. As the utilization per CPU

increased from 0.3 to 0.6, the maximum temperature reduction by

RT-TAS decreased from 5.0°C to 2.1°C on average. As GPU execu-

tion time increases, the temperature reduction by RT-TAS becomes

more pronounced due to the increasing temperature imbalance

across CPU cores and the overlap between GPU and CPU execu-

tions. When the ratio of GPU execution time to CPU execution

time increased from 0.1 to 1, maximum temperature reduction by

RT-TAS increased from 1.1°C to 4.6°C on average. We finally discuss

RT-TAS’s impact on schedulability. Fig. 9 plots the schedulability

as the percentage of the schedulable task sets out of 1,000 task sets

with varied (a) utilization per CPU, (b) ratio of GPU execution time

to CPU execution time. While FFD generated the largest number of

feasible assignments across different task set configurations, T-WFD

could achieve schedulability comparable to FFD. Across various

configurations, T-WFD yielded only 3.6% less schedulable sets than

FFD on average.

8 CONCLUSION
Embedded real-time systems running on integrated CPUs–GPU

platforms should consider CPUs–GPU thermal coupling and dif-

ferent CPU and GPU power dissipations of tasks in making their

scheduling decisions. To address this problem, we have developed

RT-TAS, a new thermal-aware scheduling framework, by propos-

ing a thermally-balanced task assignment algorithm while con-

sidering platform-level temperature imbalance and a CPU–GPU
co-scheduling policy to prevent CPUs and GPU from generating

lots of heat at the same time while meeting all timing constraints.

Our evaluation on a typical embedded platform with automotive

vision workloads has demonstrated the effectiveness of RT-TAS in

reducing the maximum chip temperature, thus improving reliability

and saving cooling cost.
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