
8

EACAN: Reliable and Resource-Efficient CAN
Communications

TAEJU PARK and KANG G. SHIN, University of Michigan, Ann Arbor

Worst-case-based timing verification for the controller area network (CAN) has been the bottleneck to ef-

ficient use of its bandwidth. Especially, this inefficiency comes from the worst-case transmission error rate

(WCTER) when transmission errors are accounted for. To alleviate this inefficiency, we propose a runtime

adaptation scheme, error-adaptive CAN (EACAN). EACAN observes the behavior of transmission errors at

runtime, and reconfigures the message period based on the observation to meet the timing-failure require-

ment. We experimentally evaluate the bandwidth utilization of both EACAN- and WCTER-based verification,

showing that the former improves the bandwidth utilization by 14% over the latter.

CCS Concepts: • Computer systems organization → Embedded systems; • Networks → Network

reliability;

Additional Key Words and Phrases: Controller area network, mixed-criticality, in-vehicle network

ACM Reference format:

Taeju Park and Kang G. Shin. 2019. EACAN: Reliable and Resource-Efficient CAN Communications. ACM

Trans. Embed. Comput. Syst. 18, 1, Article 8 (February 2019), 23 pages.

https://doi.org/10.1145/3301309

1 INTRODUCTION

More and more functions, such as advanced driving assistance system (ADAS), are being intro-
duced to improve the driver’s safety and comfort, and to reduce maintenance cost. The intro-
duction of these new functions rapidly increases the bandwidth demand for in-vehicle commu-
nications [30], especially in the controller area network (CAN), which is the de facto standard of
in-vehicle networks. To meet this increasing bandwidth demand, both the CAN data rate and the
number of CAN buses within a vehicle have been increased [25], thus raising in-vehicle commu-
nication costs. So, achieving high efficiency of CAN bandwidth utilization has become important
for cost-effective in-vehicle communications.

Timing verification for CAN is key in ensuring safety during the early design phases of a vehicle
[22]. The timing verification used in COTS tools [31, 35] relies on the schedulability analysis based
on the worst-case response time (WCRT) [9]. In particular, a probabilistic schedulability analysis
based on the worst-case transmission error rate (WCTER) [2, 5, 6] is employed when a temporal
requirement has to be verified while accounting for transmission errors. However, the worst-case-
based timing verification for CAN results in severe under-utilization of bandwidth, because the

The work was supported in part by the US Office of Naval Research under Grants N00014-15-1-2163 and N00014-18-1-2141.

Authors’ addresses: T. Park and K. G. Shin, Department of Electrical Engineering and Computer Science, University of

Michigan, Ann Arbor, MI 48109-2121, USA; email: {taeju, kgshin}@umich.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1539-9087/2019/02-ART8 $15.00

https://doi.org/10.1145/3301309

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

https://doi.org/10.1145/3301309
mailto:permissions@acm.org
https://doi.org/10.1145/3301309

8:2 T. Park and K. G. Shin

worst case requires too conservative a safety margin [27]. Besides, the under-utilization of CAN
bandwidth will exacerbate even more as WCTER is expected to increase in future. For example,
the rate of bit errors induced by electromagnetic interference (EMI), a major cause of bit errors in
CAN [29], has been continuously increasing due to the changes in the external environment (5G
networks using millimeter wave [15]) and internal vehicle systems (hybrid electrical vehicles and
electrical vehicles [12], on-line electrical vehicles [8]).

To alleviate this problem, we propose a runtime adaptation, called error-adaptive CAN (EACAN).
Instead of using WCTER, EACAN observes the behavior of transmission errors at runtime. Based
on the observed behavior of recent past transmission errors, EACAN reconfigures the periods of
low-criticality messages to guarantee the reliability (timing-failure) requirement to be met. As a
result, we can remove the assumption used in the existing probabilistic schedulability analyses that
the system is always exposed to the WCTER. There are two challenges in designing EACAN: de-
termination of (1) when to adjust the message period to meet the given reliability requirement and
to maximize the bandwidth usage and (2) how to make a quick adjustment of the message period.

To address the first challenge, EACAN measures the runtime transmission error rate (TER) based
on the observed behavior of recent past transmission errors. Because the probability of deadline
misses depends on the TER, EACAN determines system criticality level using the runtime TER.
The thus-determined system criticality level adaptively controls the periods of given messages. To
address the second challenge, we employ pre-defined thresholds in EACAN to make a quick deci-
sion on the system criticality level at runtime. The pre-defined thresholds are directly compared
against the runtime TER instead of computing the probability of a deadline miss, which is compu-
tationally expensive. We formulate an optimization problem to find the thresholds that maximize
the utilization of CAN bandwidth. We also provide a fast heuristic algorithm that yields a near-
optimal solution. According to our evaluation result, EACAN improves bandwidth utilization by
14% over WCTER-based analyses without violating the reliability requirement.

The rest of this article is organized as follows. Section 2 discusses the existing timing analysis
of CAN and an example of CAN messages with mixed-criticality. Section 3 states our target
system, error, and mixed-criticality CAN message models, followed by the problem statement in
Section 4. Section 5 details EACAN by describing how to measure the runtime TER, determine the
system criticality level, and compute pre-defined thresholds and the overhead of changing system
criticality level. We evaluate EACAN in comparison with the WCTER-based schedulability test in
Section 6. Finally, we conclude the article in Section 7.

2 BACKGROUND

2.1 Message Transmission on CAN Bus

When an ECU transmits a CAN message on a CAN bus, the message is broadcast to all the ECUs
connected to the CAN bus. Since multiple ECUs can try to transmit messages on the CAN bus at
the same time, a decentralized message ordering mechanism is used in the CAN protocol according
to the value of identifier (ID) field of CAN message. When multiple ECUs transmit CAN messages
at the same time, the message with the lowest ID value is selected to be transmitted under the
CAN protocol. For the transmitted message on the bus, each ECU decides to accept the message
by comparing the value of ID of the message with the IDs registered in its receive filter.

2.2 Timing Analysis of CAN

Many applications that use CAN are time-critical, and hence it is important to determine, at design
time, whether or not a CAN message can be delivered before its deadline. To meet this requirement,
researchers have analyzed the worst-case response time (WCRT) of each CAN message.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:3

The first timing analysis of a CAN message was done by Tindell et al. [33, 34]. They analyzed
the WCRT, Ri , of a CAN message, mi , by decomposing the response time into three components.
The first component is release jitter (Ji), the maximum time necessary to queue the message in a
transmission buffer (TxObject) of the CAN controller. The second component is queuing delay (wi),
which is the waiting time of the message in the TxObject before its transmission. The third com-
ponent is the transmission time (Ci) on the CAN bus. Since the release jitter and the transmission
time are both determined a priori by the message’s priority, data length, the size of transmission
buffer, and the CAN speed, Tindell et al. focused on analysis of the message’s queuing delay. To
derive the worst-case queuing delay of a message, they analyzed the message’s critical instant.
They recursively derived the worst-case queuing delay of a message as

wn+1
i = Bi +

∑

∀k ∈hp (i)

⌈
wn

i + Jk + τ

Tk

⌉
Ck , (1)

Ri = Ji +wi +Ci , (2)

whereTi is the period of the message, Bi is the blocking time by a lower-priority message, hp(i) is
a set of the messages whose priority is higher than the message (mi), and τ is a bit time.

However, this analysis has severe flaw, and hence Davis et al. [9] used a fine-grained approach
to correct the nontrivial error in Equation (2). They computed the response time of every instance
of the message and chose the maximum response time as the message’s WCRT. The queuing delay
of the qth instance of the message (wi (q)) is defined as (q starts from 0)

wn+1
i (q) = Bi + qCi +

∑

∀k ∈hp (i)

⌈
wn

i (q) + Jk + τ

Tk

⌉
Ck , (3)

and WCRT of the message is defined as

Ri (q) = Ji +wi (q) − qTi +Ci , (4)

Ri = max
q

Ri (q). (5)

Since the qth instance of the message is released at qTi , qTi is subtracted from the completion time
of the qth instance to calculate the response time as shown in Equation (4).

These WCRT analyses have been extended to address various practical issues, such as the limited
size of TxObject [18], FIFO queuing in the device driver [10], non-abortable TxObject [20], and
non-negligible time for copying a message into TxObject [19]. In particular, several studies [2, 6]
focused on the impact of transmission errors on the response time. They derived an equation to
compute the worst-case queuing delay of a message with Z transmission errors:

wn+1
i |Z (q) = Bi + qCi + Ei |Z

+
∑

∀k ∈hp (i)

⎡⎢⎢⎢⎢⎢
wn

i |Z (q) + Jk + τ

Tk

⎤⎥⎥⎥⎥⎥ Ck ,
(6)

where Ei |Z is the error recovery time (time for transmitting an error frame and time for retrans-
mitting the message) for Z errors. Similar to Equations (4) and (5), WCRT with Z transmission
errors is defined as

Ri |Z (q) = Ji +wi |Z (q) − qTi +Ci , (7)

Ri |Z = max
q

Ri |Z (q). (8)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:4 T. Park and K. G. Shin

Since there is no way to predict the exact number of transmission errors that will occur in future,
every CAN message is intrinsically unschedulable. Any schedulability test cannot guarantee the
timing requirements to be met deterministically. Thus, previous studies [2, 6] have focused on
probabilistic schedulability analyses, which compute the probability of deadline misses for a given
set of CAN messages. To compute the probability of CAN message deadline misses, they first
compute the probability of WCRT of the message that experiences Z transmission errors (p (Ri |Z))
as

p (Ri |Z) = p (Z ,Ri |Z) −
Z−1∑

j=0

p (Ri |j)p (Z − j,Ri |Z − Ri |j), (9)

by assuming that the distribution of transmission errors follows a Poisson distribution with given
TER (λ):

p (Z ,Ri |Z) =
e−λRi |Z (λRi |Z)Z

Z !
. (10)

They then compute the probability of a message deadline miss by adding all the probabilities
p (Ri |Z) such that Ri |Z ≤ Di (Di is the relative deadline of message i):

pi (DM) = 1 −
∑

∀Z |Ri |Z ≤Di

p (Ri |Z), (11)

where DM stands for “deadline miss.”
If the probability of missing the deadline of a given message is less than a pre-specified value,

then the probabilistic schedulability test regards the message as schedulable.

2.3 Mixed-Criticality In-Vehicle Communications

To meet non-functional design goals, such as cost and weight, different criticality functions are
forced to share a common hardware resource. In-vehicle communication follows the same practice.
In a vehicle, multiple electronic control units (ECUs) share the same physical link (e.g., CAN bus or
Ethernet link) to communicate with each other. The messages transmitted by the ECUs can be used
by high- or low-criticality functions. Thus, the system designer can classify in-vehicle messages
into multiple criticality levels according to their corresponding functions.1

Due to this resource sharing, low-criticality messages have to sacrifice their performance for
high-criticality messages in an abnormal situation (e.g., TER exceeds the permitted error rate at
runtime) to achieve a fail-safe operation.

3 SYSTEM MODEL AND ASSUMPTIONS

3.1 Overall Architecture

We consider a system composed of a single CAN bus and multiple devices/ECUs that share the
CAN bus as shown in Figure 1. Applications running on each ECU initiate CAN messages peri-
odically. The initiated messages are then copied into a TxObject. A message in the TxObject is
broadcast over the CAN bus if the value in the ID value of the message is lower (higher priority)
than that of any other queued messages.

We propose an error-adaptive CAN (EACAN), which is composed of master and slave compo-
nents. The master component (mEACAN) is deployed on a monitoring ECU that has more com-
puting power (higher performance CPU, larger memory size), like a vehicle domain controller
[14]. The slave component (sEACAN) is deployed in all ECUs, except for the monitoring ECUs,

1The criticality level of a function can be determined according to the standard ISO26262.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:5

Fig. 1. Overall system architecture.

as shown in Figure 1. Whenever a transmission error occurs, mEACAN computes the runtime
TER and determines the system criticality level (γsys), which starts from the lowest level, based on
the runtime TER. If transmission errors occur more frequently than usual, then mEACAN raises
the criticality level and broadcasts a special message to notify the raised criticality level to the
sEACAN. Otherwise, the system criticality level stays at the low level.

3.2 Error Model

The electrical signal on the CAN bus can be temporarily distorted by EMI [29]. This distortion will,
in turn, induce bit errors during the transmission of a CAN message. To cope with these transient
errors, the CAN protocol comprises robust error detection mechanisms such as transmitter-based-
monitoring, bit stuffing, cyclic redundancy check (CRC), and message format check [3]. The CAN
protocol can detect the following transmission errors:

• Bit error: the value on the bus is not the same as that the transmitter sent (except during an
arbitration phase);

• Stuff error: 6 same consecutive bits on the bus;
• Form error: invalid value shown in value-fixed bits (e.g., CRC delimiter, ACK delimiter, etc.);
• ACK error: no dominant value found in the ACK slot;
• CRC error: the received CRC is not the same as the computed value.

Upon detection of a transmission error, (1) an error frame is generated by the device that de-
tected the error, (2) devices discard the erroneous message, and (3) the transmitter of the erroneous
message automatically retransmits the message.

In this article, we only consider the detected transmission errors because the response time is
increased only as a result of their detection. Even though multiple bit errors can occur within a
single message transmission, we err on the side of safety by making a conservative assumption
that every single bit error causes one transmission error for timing assurance. Thus, the bit error
rate (BER) is the same as the transmission error rate. Moreover, we assume that every transmission
error is detected by the underlying robust error detection mechanism. As in previous studies [2,
6], we assume that the distribution of bit errors follows a Poisson process and the WCTER, λmax ,
is given, e.g., λmax is determined and then specified during the design phase of a vehicle based on
the knowledge of the worst environment/condition in which the vehicle must operate [26].

3.3 Mixed-Criticality CAN Message Model

According to ISO26262 [17], vehicular functions can be classified into multiple criticality levels,
e.g., Automotive Safety Integrity Level (ASIL), and each function has a different reliability require-
ment according to its criticality level. For example, ISO26262 [17] specifies the requirement of
failure rate caused by random hardware faults as shown in Table 1. Transmission errors can be
regarded as random hardware faults, and also message deadline misses as timing failures. The
timing failure of a CAN message, in turn, causes the execution failure of the associated functions

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:6 T. Park and K. G. Shin

Table 1. Failure-rate Requirements Due

to Random Hardware Faults in ISO26262

ASIL Level Reliability Requirement
D 10−8/h
C 10−7/h
B 10−7/h
A 10−6/h

because the correct execution of the functions relies on the correct and timely delivery of input
data. Thus, to meet the reliability requirement of a function, we must consider timely delivery of
the corresponding CAN messages.

We propose a new mixed-criticality CAN message model based on the model in Reference [7]. In
the model proposed in Reference [7], CAN messages have their own criticality levels and (multiple)
periods, and the message period is altered when the system is in an abnormal state to ensure the
timely delivery of high-criticality messages.

Our model contains an additional parameter—the probabilistic requirement of deadline misses.
This requirement for a CAN message is derived from the reliability requirement of its associated
function. In our model, low-criticality messages are transmitted less frequently at a higher system
criticality level than at a lower system criticality level. As a result, the system criticality level has a
direct impact on the CAN bandwidth utilization. Thus, the higher the system criticality level, the
lower the bandwidth utilization of CAN.

We assume that the message parameters, such as periods, deadline, data length, and criticality,
are defined a priori by the application programmers or vehicle system designers. Also, we assume
that the given parameters satisfy the functional requirement (e.g., control system stability) of the

corresponding functions. A mixed-criticality CAN message is defined asmi = {χi , �Ti , Ji ,Li , �Di , �ϵi }
where

• χi ∈ {1, . . . ,L}: criticality; Criticality is mapped to an ASIL, e.g. for a 2-level system, criti-
cality 1(2) is mapped to ASIL A(D);

• �Ti : periods (function of the system criticality level), Ti (1) = · · · = Ti (χi) ≤ · · · ≤ Ti (L);
• Ji : release jitter;
• Li : data length. Transmission time (Ci) of the message is proportional to the data length;

• �Di : relative deadline (function of the system criticality level). Assume Di (l) ≤ Ti (l);
• �ϵi : requirement of probability of deadline miss (function of the system criticality level).

In practice, tasks running on ECUs, or CAN messages can be time- or event-triggered, e.g., a user
input or a specific vehicle condition [21]. However, it is difficult to predict the initiation of event-
triggered messages at runtime, the event-triggered messages are regarded as sporadic messages
with the minimum inter-arrival time in the timing verification process. The minimum inter-arrival
time is treated as the period in our message model.

In addition, in our model, the period (or the minimum inter-arrival time) of CAN messages are
altered according to the system criticality level. However, because the performance of applica-
tions (usually control tasks) running on ECUs is affected greatly by their periods [32], the periods
adaptation according to the system criticality level could degrade the app functionality. Thus, the
system designer should carefully determine the allowable (elastic) range of period and adapt the
period within the allowable range.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:7

3.3.1 Deriving the Requirement of Probability of Deadline Misses. We derive the requirement
of probability of deadline miss of each message from the given reliability requirement in Table 1.
Suppose reliability requirement of a message (corresponding function) is RR (χi), and its period is
Ti (l) at the system criticality level l . Also, suppose the probability of deadline miss of the message
is pi (DM |γsys = l) at the system criticality level l .

If the message is transmitted 1
pi (DM |γsys=l) times, then there will be one timing failure in average.

Because the message is transmitted 1h
Ti (l) times in 1h, 1h

Ti (l) × pi (DM |γsys = l) timing failures occur

on average in 1h. To meet the reliability requirement, 1h
Ti (l) × pi (DM |γsys = l) ≤ RR (χi). Then, we

can derive

1h

Ti (l)
× pi (DM |γsys = l) ≤ RR (χi) × 1h⇒ 1

Ti (l)
× pi (DM |γsys = l) ≤ RR (χi).

Thus, we can define the requirement of probability of message deadline misses at system criticality
level l as

ϵi (l) = RR (χi) ×Ti (l).

Definition 3.1 (Mixed-Criticality CAN Message Set Probabilistic Schedulability). For a given
mixed-criticality CAN message set, if∀l pi (DM |γsys = l) ≤ ϵi (l) holds where χi ≥ l , then the given
mixed-criticality message set is schedulable.

4 PROBLEM STATEMENT

Timing verification for CAN communications is key in ensuring vehicle safety during the early
design phases of a vehicle. However, the WCRT-based pessimistic timing verification for CAN has
been the bottleneck to its bandwidth usage efficiency. The bandwidth under-utilization due to the
WCTER-based probabilistic schedulability analysis is expected to become even worse in future
because EMI-induced bit errors are continuously increasing. To alleviate this problem, we propose
EACAN with the following goals:

G1: Ensurepi (DM |γsys = l) ≤ ϵi (l) where χi ≥ l if l � L where L is the highest system criticality
level;

G2: Maximize the bandwidth usage for a given mixed-criticality message set.

Even though EACAN achieves G1, ensuring Pi (DM |γsys = L) ≤ ϵi (L) for the highest critical-
ity messages is still needed offline. Thus, we propose a probabilistic schedulability test that fully
exploits the characteristics of EACAN.

5 ERROR-ADAPTIVE CAN (EACAN)

5.1 Overview

5.1.1 Basic Idea. Our basic idea is to adapt the periods of low-criticality messages to the behav-
ior of recent past transmission errors. To achieve that, mEACAN observes the behavior of recent
past transmission errors, and measure runtime TER. If the runtime TER exceeds the pre-defined
threshold that is embedded in EACAN, then EACAN changes the system criticality level and thus
adaptively controls the periods to guarantee the satisfaction of the requirement of probability of
message deadline misses. The challenges in realizing this idea are to determine when to reconfig-
ure the system (when to change the system criticality level) and how to make such a decision and
reconfigure the system quickly.

5.1.2 Workflow of EACAN. The workflow of EACAN is illustrated in Figure 2. Whenever a
transmission error occurs, an interrupt is generated to handle it. The interrupt-handling routine

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:8 T. Park and K. G. Shin

Fig. 2. Flow chart of (Left) mEACAN (Right) sEACAN.

calls the functions of mEACAN. First, mEACAN computes the runtime TER based on the behavior
of recent past transmission errors. It then determines the system criticality level (γsys) for use in the
immediate future. If the determined system criticality level is higher than the current system criti-
cality, then mEACAN broadcasts a special CAN message to notify the change of system criticality
level to other ECUs (sEACANs). Upon receiving this special CAN message, sEACANs reconfigure
their message set according to the system criticality level. To guarantee all or no node to receive
the special CAN message, every ECU connected to the CAN bus should accept the special message
by registering the ID of the special CAN message.2

Also, when the CAN bus becomes idle, mEACAN re-initializes the runtime TER to 0 and the
system criticality level to the lowest level (see Section 5.2.3).

5.2 Runtime TER

To measure the runtime TER, mEACAN needs to know, at runtime, when the transmission errors
occurred. Fortunately, mEACAN can easily obtain this information because the commercial CAN
controller [24] generates an interrupt to handle each transmission error.

5.2.1 Requirement of Runtime TER. As can be seen from Equation (9), computing the probability
of deadline misses requires the transmission error rate. We will use runtime TER instead of WCTER
to compute the probability of deadline misses. To achieve G1 (Requirement), the runtime TER must
be larger than the TER that a message actually experiences.

5.2.2 Definition of Runtime TER. Let us consider the CAN bandwidth usage during [ts , te).
Suppose a transmission error occurs at time tc such that ts ≤ tc < te . Then, mEACAN computes
the runtime TER (λrun) and determines the system criticality level at time tc as described in the
workflow.

At time tc , we want to know whether or not the probability of missing a message’s deadline
will be lower than its requirement during [tc , te). However, the behavior of transmission errors in
[tc , te) is unpredictable at time tc . That is, it is impossible to know the TER that a message actually
experiences, and is thus difficult to determine the value of TER at runtime to meet the runtime TER
requirement.

2The value, 0x1, is used as the ID of the special message in our experiments.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:9

Fig. 3. (Top) Time interval of interest [ts , te) is unnecessarily long. (Bottom) Time interval of interest is [ts , te)
is too short.

To overcome this difficulty, we assume that inter-arrival times of transmission errors in the
near future [tc , te) are greater than the minimum inter-arrival time (ξ[ts ,tc]) of transmission errors
occurred in the recent past [ts , tc]. Under this assumption, we can use the inverse of the minimum
inter-arrival time as the value of runtime TER because the TER that a message actually experiences
must be lower than the inverse.

λrun =
1

ξ[ts ,tc]
, (12)

ξ[ts ,tc] = min
i

(ei − ei−1), (13)

where ei is the arrival time of the ith transmission error in [ts , te), e0 = ts and i ∈ N+.
However, the above assumption may not hold at runtime. For example, at a certain time (tf such

that tc < tf < te), a new transmission error can yield a smaller inter-arrival time than the inverse
of the runtime TER, computed at time tc . At that time (tf), the probability of missing message dead-
lines computed with the runtime TER becomes useless. Thus, the probability of missing message
deadlines must be re-computed with the inverse of the new minimum inter-arrival time to meet
our first goal (G1). So, whenever a new transmission error occurs, EACAN updates the runtime
TER, accounting for the effect of the new transmission error.

Our upper bound—the inverse of the minimum inter-arrival times—could be larger than the true
upper bound (λmax) due to short-time burst errors. We increase the system criticality level to the
highest level L to cope with this urgent case.

5.2.3 Deciding on the Time Interval of Interest. When computing the runtime TER, we must
carefully determine the time interval of interest [ts , te). If the interval [ts , te) is too long, then
a transmission error may negatively and unnecessarily affect the probability of deadline misses.
For example, as shown in Figure 3 (Top), the transmission error occurring at time e1 affects the
probability for the messagesA2 and B2 unnecessarily even though the transmission error does not
influence the response time of the messages. This is because the increased runtime TER at time e1

does not decrease until the end of time interval of interest te .
However, if [ts , te) is too short, EACAN may fail to achieve G1. For example, as shown in Figure 3

(Bottom), the runtime TER is re-initialized to 0 at te because it reaches the end of time interval of
interest. However, the transmission error occurred at time e1 increases the response time of the
message B1. It means that EACAN ignores the impact of the transmission error, and thus EACAN
cannot ensure the probability of deadline miss of B1 to be smaller than its requirement.

To configure [ts , te) properly, we define ts as the starting point of a busy period and te as the
closest bus idle instant after ez , where ez is the arrival time of the latest transmission error after ts .
For example, as shown in Figure 3 (Top), the time t∗ becomes te because t∗ is the closest bus idle

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:10 T. Park and K. G. Shin

instant after e1, which is the arrival time of the latest transmission error after ts . In other words,
a time interval of interest [ts , te) is the same as a busy period. By design, there will not be any
message whose response time is lengthened by the latest transmission error after te , and thus the
defined time interval of interest [ts , te) is not too short. Also, [ts , te) is not too long because the
closest bus idle instant after ez is the minimum possible value for te . If te is smaller than the closest
bus idle time after ez , then a message may be delayed by the latest transmission error after te . Thus,
[ts , te) becomes too short. At time te , the runtime TER and the system criticality level are reset to
their initial values.

The pseudocode for computing runtime TER is provided in Algorithm 1. mEACAN executes
Algorithm 1 whenever a transmission error occurs. As stated in Line 1, we can compute the min-
imum inter-arrival time of transmission errors in [ts , tc] by comparing the previous minimum
inter-arrival time of transmission errors and inter-arrival time of two most recent transmission
errors. Thus, we can measure the runtime TER with a small computation time overhead. We
omit the description of how to reset the system criticality level and the runtime TER, since it is
trivial.

5.3 Deciding on System Criticality Level

The periods of CAN messages depend on the system criticality level, and thus changing the system
criticality level significantly affects the bandwidth utilization of CAN. Optimizing the instant of
changing the system criticality level is, therefore, important to achieve G2.

We first seek a condition to decide on the system criticality level (γsys) and then derive a TER
threshold from the condition. The TER threshold is directly compared against the runtime TER to
determine the system criticality level quickly at runtime.

5.3.1 Decision Based on the Probability of Deadline Misses. During the mission, the system crit-
icality level must satisfy the following condition to achieve G1:

χi ≥ l ∧ pi (DM |γsys = l , λ = λrun) > ϵi (l) ⇒ γ [tc ,te)
sys > l ,

where γ [tc ,te)
sys is the system criticality level in the future time interval [tc , te).

If the probability of deadline miss of message (mi) at the system criticality level l is greater
than its requirement, then the system criticality level should be greater than l in the future time
interval [tc , te). Otherwise, the requirement will not be met in the future time interval. However,

ALGORITHM 1: Computing runtime TER

Input: ξ[ts ,tc]: previous minimum inter-arrival time of errors

epr ev : arrival time of the previous error

ecur : arrival time of current error

Output: λrun : the updated runtime TER

1 if ξ[ts ,tc] = 0 OR ξ[ts ,tc] > ecur − epr ev then

2 ξ[ts ,tc] = ecur − epr ev ;

3 λrun = 1
ξ[ts ,tc]

;

4 end

5 if λrun > λmax then

6 λrun = λmax ;

7 end

8 return λrun ;

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:11

computing the probability of deadline misses for all the messages and all the system criticality
levels incurs a significant computation overhead, thus making it impractical.

5.3.2 Decision Based on the Runtime TER. Instead of computing the probability of deadline
miss at runtime, we define a proxy task: we compare the runtime TER against the pre-defined
thresholds. Since the probability of deadline miss relies on the TER as stated in Equations (9), (10),
and (11), the system criticality level has to be higher than l in the future time interval if the runtime
TER exceeds the embedded threshold (θ l

i) such that pi (DM |γsys = l , λ = θ
l
i) = ϵi (l). Thus, we can

derive the following condition that the system criticality level must satisfy:

∃i, χi ≥ l ∧ θ l
i < λrun ⇒ γ [tc ,te)

sys > l .

To find this threshold, we formulate the optimization problem as

θ l
i = argmax

θ

pi (DM |γsys = l ;θ),

subject to pi (DM |γsys = l ;θ) ≤ ϵi (l).
(14)

Since the objective of optimization is the largest possible argmax, the system criticality level can
stay at the lower level as long as possible. As a result, EACAN maximizes the bandwidth utilization
of CAN.

5.4 Solving the Optimization Problem

Described below is how to solve the proposed optimization problem. We first address how to
compute the optimization objective function and then present an efficient heuristic algorithm that
yields a near-optimal solution.

5.4.1 Computing the Objective Function. We compute the objective function, pi (DM |γsys = l),
using the following three steps.

Step 1: Compute Rl
i |Z , the upper bound of response time of message mi with Z transmission

errors at the system criticality level l . We can easily derive the worst-case queuing delay for mes-
sage mi with Z transmission errors at system criticality level l using Equation (6), because only
the period and the deadline depend on the system criticality level:

wn+1
i |Z (q, l) = Bi + qCi + Ei |Z

+
∑

∀k ∈hp (i)

⎡⎢⎢⎢⎢⎢
wn

i |Z (q, l) + Jk + τ

Tk (l)

⎤⎥⎥⎥⎥⎥ Ck

+Ochд ,

(15)

where Ochд is the time overhead of changing the system criticality level, which will be detailed

later. Rl
i |Z can then be defined as

Rl
i |Z (q) = Ji +wi |Z (q, l) − qTi (l) +Ci , (16)

Rl
i |Z = max

q
Rl

i |Z (q). (17)

Step 2: Compute pi (Rl
i |Z), the probability of Rl

i |Z . We derive pi (Rl
i |Z) from Equation (9) by re-

placing Ri |Z with Rl
i |Z :

p
(
Rl

i |Z
)
= p
(
Z ,Rl

i |Z
)
−

Z−1∑

j=0

p
(
Rl

i |j
)
p
(
Z − j,Rl

i |Z − R
l
i |j
)
. (18)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:12 T. Park and K. G. Shin

Fig. 4. The probability of missing a message’s deadline depends on the remaining execution/transmission

time after changing the system criticality level.

Step 3: Compute pi (DM |γsys = l). Suppose the system criticality level is raised from a lower
level to l at time ti,c , where ti,c is the time between the release ofmi and the current time tc . Also,
suppose message mi is released before the system criticality level is raised. Then, the remaining
(execution) time of the message is Di (l) − ti,c after increasing the system criticality level. We
want to show that pi (DM |γsys = l) depends on the remaining time. For example, if the remaining

time satisfies the inequality Rl
i |1 ≤ Di (l) − ti,c ≤ Rl

i |2, as illustrated in Figure 4 (according to

Reference [6], the response time with two errors is always larger than that with 1 error), then two
or more errors are not allowed after ti,c to meet its deadline. Thus, the probability of missing the

message deadline at system criticality level l is 1 − p (Rl
i |0) − p (Rl

i |1). Likewise, if the remaining

time satisfies the inequality Rl
i |2 ≤ Di (l) − ti,c ≤ Rl

i |3, then the probability of missing the message

deadline at criticality level l is 1 − p (Rl
i |0) − p (Rl

i |1) − p (Rl
i |2). Hence, we can define the probability

of missing the message deadline at system criticality level l as

pi (DM |γsys = l) = 1 −
Zm∑

Z=0

p
(
Rl

i |Z
)
, (19)

where Zm is an integer such that Rl
i |Zm

≤ Di (l) − ti,c ≤ Rl
i |Zm+1

. If a message is released after

raising the system criticality level to l , then ti,c is 0.

5.4.2 Finding a Near-Optimal Solution. Since the objective function of the optimization problem
is computed recursively, it is difficult to solve the problem directly. So, we find an alternative, near-
optimal solution by using a binary search. Since the objective function is an increasing function of

λ, the optimal solution (θo) exists between a lower bound (θ l,LB
i) and an upper bound (θ l,LB

i) such
that

pi

(
DM |γsys = l , λ = θ

l,LB
i

)
≤ ϵi (l),

pi

(
DM |γsys = l , λ = θ

l,U B
i

)
> ϵi (l).

Also, we can easily find lower and upper bound candidates, e.g., selecting 0/ms and a large num-
ber (e.g., 1000/ms), respectively. We can thus gradually approach the optimal solution from these
bounds using a binary search. Even though we cannot guarantee the finding of the optimal solu-
tion, we can find a near-optimal solution (θno) such that θo − θno < δ where δ is a suitably small
number.

As mentioned before, because pi (DM |γsys = l) depends on the remaining execution time at

γsys = l , the thresholds θ l
i also depend on the remaining time. Thus, we need to find all θ l

i |k thresh-

olds for message i , criticality l and the remaining time Di (l) − ti,c such that Rl
i |k ≤ Di (l) − ti,c ≤

Rl
i |k+1

. The pre-defined thresholds θ l
i |k are computed offline and saved in a three-dimensional array

(Θ), which is then embedded in mEACAN. So, there is no need to consider the runtime overhead
for solving the optimization problem. Note that space complexity of Θ is O (N ∗ L ∗ Kmax) (see
Section 5.6 for detailed information of N , L, and Kmax).

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:13

ALGORITHM 2: Determining System Criticality Level

Input: N : the number of messages

L: the number of criticality levels

Kmax : the maximum number of errors within a lifetime of a message

Θ: an array contains thresholds of TER

R: an array contains the upper bound of response times

λrun : the runtime TER over [ts , te]

γsys : current system criticality level

tc : current time

Output: χ
[tc ,te]
sys : determined system criticality level

1 χ
[tc ,te]
sys ← γsys ;

2 MsgFlag []← false;

3 for i ← 1 to N do

4 if χi < γsys then

5 Continue;

6 end

7 if Ti (γsys) < (tc − base
γsys

i) then

8 ti,c ← 0;

9 end

10 else

11 ti,c ← (tc − base
γsys

i) mod Ti (γsys);

12 end

13 for l ← χ
[tc ,te]
sys to L do

14 for k ← 1 to Kmax do

15 if MsgFlag [i] = false then

16 if Rl
i |k ≤ Di (l) − ti,c ≤ Rl

i |k+1
then

17 if θ l
i |k > λrun and θ l+1

i |k ≤ λrun then

18 χ
[tc ,te]
sys ← l + 1;

19 MsgFlag [i]← true;

20 end

21 end

22 end

23 end

24 end

25 end

26 if γsys < χ
[tc ,te]
sys then

27 for i ← 1 to N do

28 base
χ

[tc ,te]
sys

i ← tc + (Ti (χ
[tc ,te]
sys) − ti,c)

29 end

30 end

31 return χ
[tc ,te]
sys

5.5 Runtime Decision on System Criticality Level

Algorithm 2 describes how to determine the system criticality level at runtime for the future time
interval. In line 1, the system criticality level for the future time interval is initialized with the
current system criticality level to maximize CAN bandwidth utilization. Algorithm 2 then tries

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:14 T. Park and K. G. Shin

to find the lowest possible system criticality level by comparing the runtime TER with the pre-
defined thresholds. As stated in lines 17 and 18, if the runtime TER is larger than θ l

i |k and smaller

than θ l+1
i |k , the system criticality level for the future time interval will be switched to l + 1.

The lines between 7 and 12 state how to compute ti,c and the lines between 26 and 30 states

how to compute basel
i , which is needed to compute ti,c . basel

i is the first release time of mi after

changing the system criticality level to l . Thus, the value of basel
i is assigned only when the system

criticality level is raised to l as stated in line 24.
If the determined system criticality level is larger than the current system criticality level, then

mEACAN broadcasts a special CAN message to change the system criticality level. Then, sEACANs
reconfigure their message set according to the determined system criticality level.

5.6 EACAN Schedulability Analysis

The inequality pi (DM |γsys = l) ≤ ϵi (l) holds where l < L (the highest level), because EACAN au-
tomatically raises the system criticality level if it doesn’t hold. But, we still need timing verification
for the system criticality level L. To analyze the schedulability at the highest level L, we need to
analyze the worst-case response time of the highest-criticality messages when the messages are
delivered at the highest level L.

When the delivery of a highest criticality message is completed at the highest level L, in terms
of response time, the worst case occurs when the system criticality level is changed directly from
1 to L, and the message stays at the lowest level (γsys = 1) as long as possible. This is because
messages’ periods are the smallest at the lowest level, and thus the interference by higher-priority
messages is the greatest at the lowest level.

We first analyze the worst-case busy period of a highest-criticality message when its transmis-
sion is completed at the highest level L. We assume that the system criticality level is changed from
1 to L at time tchд . Because the periods of higher priority messages are changed after tchд , the last
term (the interference by higher-priority messages) in Equation (6) should be separated out, and
also the overhead of changing the criticality level should be accounted for as

wn+1
i |Z ,[1.L] (q) = Bi + qCi + Ei |Z +Ochд + IBC (tchд) + IAC

(
wn

i |Z ,[1.L] (q) − tchд

)
, (20)

where wn+1
i |Z ,[1.L]

(q) is the busy period of the qth instance of message i with Z transmission errors

when the system criticality level is changed directly from 1 to L at tchд and the message transmis-
sion is completed at the highest level L. IBC is the interference by higher-priority messages before
changing the system criticality level, and IAC is the interference by higher-priority messages after
changing the system criticality level. We can easily compute IBC and IAC as

IBC (tchд) =
∑

∀k ∈hp (i)

⌈
tchд + Jk + τ

Tk (1)

⌉
Ck , (21)

IAC

(
wn

i |Z ,[1.L] (q) − tchд

)
=
∑

∀k ∈hp (i)

�	
⎡⎢⎢⎢⎢⎢
wn

i |Z ,[1.L]
(q) − tchд + Jk + τ

Tk (L)

⎤⎥⎥⎥⎥⎥ − 1
�Ck . (22)

In the equation of IAC , there is “−1” term, because due to the ceiling function, one frame instance
can be counted twice in both IBC and IAC . For example, suppose that the period of a higher-priority
frame is 3 at the system criticality level 1 and 6 at the system criticality level L. Also, suppose that
tchд = 10 and transmission of the frame instance starts at time 20. Then, the higher-priority frame
is counted 4 times by the ceiling function in Equation (21), and also counted 2 times in Equa-
tion (22). However, the higher-priority frame is released only 5 times within 20 time units (0, 3, 6,
9, 15). Thus, this double counting should be figured out. Note that when the remainder of division

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:15

in the ceiling function is 0, we do not apply the “−1” term, because there is no double count-
ing. For example, suppose that the period of a higher priority frame is 2 at the system criticality
level 1, and 5 at the system criticality level L. Then, the frame is counted 5 times by the ceiling
function in Equation (21), and also counted 2 times in Equation (22). In this case, the frame is re-
leased 7 times (0, 2, 4, 6, 8, 13, 18), which is the same as the number we counted (5 from IBC , 2 from
IAC).

Because when to change the system criticality level to L is unknown beforehand, it is challenging
to bound the maximum possible duration (the value of tchд) at the lowest level 1. To deal with this
difficulty, we utilize the property of EACAN: the system criticality level changes to the highest
level L if λrun ≥ λmax .

Lemma 5.1. λrun ≥ Z
wi |Z (q,1) , wherewi |Z (q, 1) is the busy period of message i with Z transmission

errors when the system only stays at the lowest level 1.

Proof. Suppose n transmission errors occur during time duration t . λrun is then minimized
when all the intervals between any two consecutive errors are the same. So, λrun =

n
t

.wi |Z (q, 1) is
the busy period for theqth instance of message i , andwi |Z (q, 1) inherently includesZ transmission

errors. In such a case, the minimum possible value of λrun is Z
wi |Z (q,1) . Thus, λrun ≥ Z

wi |Z (q,1) . �

By Lemma 5.1 and the property of EACAN, we can derive the following proposition:

Z

wi |Z (q, 1)
≥ λmax ⇒ γ

[wi |Z (q,1),te)
sys = L.

From this proposition, we know that the system criticality level changes to L beforewi |Z (q, 1) such

that Z
wi |Z (q,1) ≥ λmax . To find such Z , we need to solve the following optimization problem:

Zc = argmin
Z

[
Z

wi |Z (q, 1)
≥ λmax

]
. (23)

Since Equation (15) can be used to compute wi |Z (q, 1), the optimization problem can be solved
easily, and wi |Zc

(q, 1) can be used as tchд for the computation of Equation (20). With the result of
Equation (20), we can compute the worst-case response time of the highest-criticality messages
when its transmission is completed at the highest level L as

Ri |Z ,[1,L] (q) = Ji +wi |Z ,[1,L] (q) − qTi (L) +Ci , (24)

Ri |Z ,[1,L] = max
q

Ri |Z ,[1,L] (q). (25)

Since the periods of highest-criticality messages are the same for all system criticality levels, we
can use qTi (L) as the release time of the qth instance.

Also, the probability of missing message deadlines can be computed and the probabilistic
schedulability can be tested for the system criticality level L as

p
(
Ri |Z ,[1,L]

)
= p
(
Z ,Ri |Z ,[1,L]

)
−

Z−1∑

j=0

p
(
Ri |j,[1,L]

)
p
(
Z − j,Ri |Z ,[1,L] − Ri |j,[1,L]

)
, (26)

pi (DM) = 1 −
∑

∀Z |Ri |Z ,[1,L]≤Di

p
(
Ri |Z ,[1,L]

)
. (27)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:16 T. Park and K. G. Shin

Fig. 5. (Top) Ideal change of system criticality level. (Bottom) Changing system criticality level with overhead

considered.

5.7 Analysis of Overhead of Changing γsys

Suppose a transmission error occurs at time tc and the system criticality level is raised due to
the transmission error. Ideally, we expect that the raise of system criticality level is synchronized
with the arrival of the transmission error as shown in Figure 5 (Top). However, this ideal synchro-
nization is infeasible, because a reconfiguration based on the determined system criticality level
requires time (Ochanдe). The system criticality level is raised from a lower level to a higher level
after consuming that amount of time as shown in Figure 5 (Bottom). Thus, the period change is
also delayed by that amount of time. This is the reason for considering the time overhead in the
analysis of the worst-case queuing delay in Equation (16).

The time overhead of changing the system criticality level consists of two parts: the time for
determining the system criticality level (computation time) and the time for notifying the new
system criticality level to sEACAN (communication time). The period adjustment on sEACAN
also requires a small amount of time, and it is simple to change the period, and hence its analysis
is omitted.

Computation Time Analysis. We analyze the time complexity of Algorithms 1 and 2 (in the
Appendix) as they represent the core functions of determining the system criticality level. Algo-
rithm 2 contains only several comparisons and statements, and its time complexity is O (1). In
Algorithm 1, Lines 6–13 are repeated at most N ∗ L ∗ Kmax times, and hence its time complexity
is O (N ∗ L ∗ Kmax).

The number (N) of messages is typically less than 100 on a single CAN bus in contemporary
vehicles and the criticality is typically divided into four or five levels. Also, Ferreira et al. [13]
reported that less than 1,000 bit errors per hour take place in a CAN bus 2m away from a welding
machine. Thus, there might be a few transmission errors within a few seconds (a typical maximum
lifetime of a message). Formally, we can obtain

Kmax = argmax
n

∃i pi (n,Di (L) |λ = λmax) ≤ RR (mi).

Communication Time Analysis. If mEACAN decides to raise the system criticality level, then
it broadcasts a special CAN message to notify the change of criticality level to other ECUs (sEA-
CANs). We use a unique identifier for the special CAN message and assign it the lowest ID value
(e.g., 0x1) or the highest priority. Therefore, the special CAN message can only be blocked by one
lower-priority message already being transmitted on the bus. Also, the special CAN message only
contains the information of criticality level. Since there are typically four or five criticality levels,
we can assume that the special CAN message embeds at most 1-byte data. As a result, the worst-
case communication time of this message is the transmission time of a CAN message with 8-byte
data (a lower-priority message) plus the transmission time of a CAN message with 1-byte data (the
special CAN message).

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:17

Fig. 6. Experimental platform.

6 EVALUATION

We have evaluated EACAN in comparison with existing WCTER-based approaches [2, 6]. Our eval-
uation focuses on measuring the utilization of CAN bandwidth. To show the realism of EACAN,
we have conducted simple experiments on our testing platform. To show the utility of EACAN for
a wide range of scenarios, we have also conducted simulations while varying mutable parameters,
such as λmax , maximum criticality (L), and utilization of a given message set.

6.1 Experimentation

6.1.1 Experimental Platform. We have built an experimental platform to evaluate EACAN as
shown in Figure 6. The experimental platform consists of one imx6 sabrelite3 and six Arduino [1]
boards with MCP2515 CAN controller [24]. The boards are all connected through a CAN bus. We
use the imx6 sabrelite board as a domain controller, and thus mEACAN is deployed on the imx6
sabrelite board and sEACAN is deployed on the Arduino boards.

By winding the CAN wire as shown in Figure 6, we can control the strength of EMI. Thus, we
can control the transmission error rate by increasing and decreasing the number of coil turns.

6.1.2 Benchmark and Configuration. We slightly modified the SAE benchmark [16] as shown
in Table 2, and then used it as the set of CAN messages in our experiments. We modified the SAE
benchmark to include two criticality levels. To introduce the criticality characteristics, we assign
criticality-level 2 to the messages whose period is 5ms, and assign criticality-level 1 to the others.
This is because safety-critical (e.g., control) messages usually have short periods. At criticality-
level 2, the modified SAE benchmark is identical to the original SAE benchmark.

The CAN bus speed was set to 250Kbps, a widely-used speed of current in-vehicle network
communications, such as body and powertrain control networks. For the binary search, we set
δ = 10−15. We control the number of coil turns to set λmax = 10−3/ms, since the TER measured in
an aggressive environment (near a welding machine) is about 10−4/ms [13]. The TER for 1h exper-
iments was observed to be about. 8.0 × 10−4/ms ± 1.0 × 10−4/ms. We also performed experiments
with λmax = 10−2/ms.

In practice, it is difficult to know whether the CAN bus is in idle or active state without sensing
voltage of CAN bus. Thus, we identified the idle state of CAN bus when the monitoring ECU does
not receive any message for 700μs, since the transmission time for an 8-byte message is 544μs over
a 250Kbps CAN.

3Imx6 sabrelite board has 1GHz CPU and 1GB Memory size. On the board, LinuxRK [28] is used as the operating system

for the board.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:18 T. Park and K. G. Shin

Table 2. Modified SAE Benchmark

ID χi Li Ji Ti (1) Ti (2) Di (1) Di (2)

1 1 (ASIL A) 1 0.1 25 50 2.5 5
2 2 (ASIL D) 2 0.1 5 5 5 5
3 2 (ASIL D) 1 0.1 5 5 5 5
4 2 (ASIL D) 2 0.1 5 5 5 5
5 2 (ASIL D) 1 0.1 5 5 5 5
6 2 (ASIL D) 2 0.1 5 5 5 5
7 1 (ASIL A) 6 0.2 5 10 5 10
8 1 (ASIL A) 1 0.2 5 10 5 10
9 1 (ASIL A) 2 0.2 5 10 5 10
10 1 (ASIL A) 3 0.2 5 10 5 10
11 1 (ASIL A) 1 0.2 25 50 10 20
12 1 (ASIL A) 4 0.3 50 100 50 100
13 1 (ASIL A) 1 0.3 50 100 50 100
14 1 (ASIL A) 1 0.2 50 100 50 100
15 1 (ASIL A) 3 0.4 500 1,000 500 1,000
16 1 (ASIL A) 1 0.3 500 1,000 500 1,000
17 1 (ASIL A) 1 0.3 500 1,000 500 1,000

Table 3. Experimental Results (λmax = 10−3/ms)

Method Schedulability Test Utilization L1 Time L2 Time Deadline Miss

EACAN Pass 57.94% 3,599,822,751μs 177,249μs 0

WCTER-Based
(γsys = 2)

Pass 44.01% 0μs 360,000,000μs 0

WCTER-Based
(γsys = 1)

Fail 57.95% 360,000,000μs 0μs 0

6.1.3 Experimental Results. First, we measured time needed to execute Algorithms 1 and 2. On
the imx6 sabrelite board, at the maximum 34μs was required to execute both Algorithms 1 and
2 for the given modified SAE benchmark.4 We also measured the size of the arrays R and θ in
Algorithm 1. For the given modified SAE benchmark, the amount of memory required to embed
the arrays R and θ was 1,288 bytes.

By applying the measured overhead to Equation (20), we performed the EACAN schedula-
bility test for the given modified SAE benchmark. The results are shown in Tables 3 and 4.
The modified SAE benchmark passes the EACAN schedulability test where λmax = 10−3/ms and
λmax = 10−2/ms. Thus, the given mixed-criticality CAN message set can operate without violat-
ing its requirement using EACAN. Also, we performed the WCTER-based schedulability test. The
modified SAE benchmark at system criticality-level 2 passes the WCTER-based schedulability tests
[2, 6] where λmax = 10−3/ms and λmax = 10−2/ms. However, the modified SAE benchmark at sys-
tem criticality-level 1 failed the WCTER-based schedulability tests where λmax = 10−3/ms and
λmax = 10−3/ms. That is, the system can only operate acceptably at criticality-level 2.

We measured the utilization of CAN bandwidth by transmitting messages in the modified SAE
benchmark for 1h. The utilization of CAN bandwidth is calculated by active (transmission) time

4When we measured the overheads on the Arduino board, it was 780μ .

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:19

Table 4. Experimental Results (λmax = 10−2/ms)

Method Schedulability Test Utilization L1 Time L2 Time Deadline Miss

EACAN Pass 57.89% 3,582,859,215μs 17,140,785μs 0

WCTER-Based
(γsys = 2)

Pass 44.01% 0μs 360,000,000μs 0

WCTER-Based
(γsys = 1)

Fail 57.95% 360,000,000μs 0μs 0

during which the CAN messages are transmitted. To assess the actual utilization (akin to goodput),
we subtracted the error frame transmission time and the time for transmitting corrupted messages
from the entire active time. We only count the successfully transmitted messages. Due to the clock
drift in Arduino boards, the number of initiated CAN messages is very slightly different from the
theoretic number. Thus, the measured utilization was also different from the theoretically com-
puted utilization.

In our experiments, with EACAN, the system operates at both criticality levels 1 and 2, but
only operates at system criticality level 2 without EACAN, because the given message set fails
WCTER-based schedulability tests at level 1.

Tables 3 and 4 summarize our experimental results. Inthe case of λmax = 10−3/ms, the band-
width utilization is 57.94% with EACAN, which is very close to the maximum achievable utilization
(57.95%) (the system operates only at the system criticality-level 1). However, with the WCTER-
based analysis, the system can achieve only 44.01% bandwidth utilization, because the system is
limited to operate at system criticality-level 1. For the case of λmax = 10−2/ms, the bandwidth uti-
lization is 57.89% with EACAN. The presence of more errors changes the system criticality level
to 2 more times than the case of λmax = 10−3.

In addition, we measured the number of deadline misses during the experimentation. In every
case considered, we did not see any deadline miss, because significant burst transmission errors
are required to cause a deadline miss, but the probability of occurrence of significant burst errors
is very low. Despite the low probability of deadline misses, we could not utilize the bandwidth
efficiently with the existing WCTER-based schedulability test, but we could with EACAN. In sum-
mary, EACAN made a 14% improvement of bandwidth utilization over the existing schemes using
a modified SAE benchmark.

6.2 Simulation

6.2.1 Benchmark and Configuration. We generated 1,800 mixed frame sets by using NETCAR-
BENCH (powertrain configuration5) [4] to evaluate the usefulness of EACAN for various cases.
Since the latest version of NETCARBENCH does not support mixed criticality, we slightly modi-
fied the benchmark program to support it. We also slightly modified the powertrain configuration
to generate 5ms-period messages to consider the recent ADAS6-related messages, which require
very short latency. Since critical messages usually have relatively short periods, we assign criti-
cality to each CAN message based on its period as shown in Table 5.

The change of period according to the system criticality level is described in Table 6. As stated
before, the period of messages gradually increases according to the system criticality level ifγsys >
χi . For example, in this simulation, the period of ASIL A messages at system criticality level 2 is
1.5x higher than that at the system criticality level 1. Likewise, the period of ASIL A messages

5In the configuration, the distribution of payload size, message period, jitter, and so on, are defined.
6Advanced Driver-Assistance System—adaptive cruise control, collision detection, and so on.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:20 T. Park and K. G. Shin

Table 5. Criticality Assignment Based on the Message Period

Period 2-Level System 3-Level System 4-Level System

5ms
70%-(ASIL) D

30%-A

50%-D, 30%-C

20%-A

70%-D, 10%-C

10%-B, 10%-A10ms
20ms 10%-D, 70%-C

10%-B, 10%-A50ms
25%-D, 50%-C

25%-A
100ms

30%-D, 70%-A

10%-D, 10%-C

70%-B, 10%-A200ms
1s 20%-D, 30%-C

50%-A

10%-D, 10%-C

10%-B, 70%-A2s

Table 6. Period and Deadline Changes According to the System Criticality Level

Criticality 2-Level System 3-Level System 4-Level System

ASIL A 3Ti (1) = Ti (2)
1.5Ti (1) = Ti (2)
3Ti (1) = Ti (3)

1.5Ti (1) = Ti (2)
2Ti (1) = Ti (3)
3Ti (1) = Ti (4)

ASIL B — —
Ti (1) = Ti (2)

1.5Ti (2) = Ti (3)
2Ti (2) = Ti (4)

ASIL C —
Ti (1) = Ti (2)
2Ti (2) = Ti (3)

Ti (1) = Ti (2)
Ti (2) = Ti (3)

1.5Ti (3) = Ti (4)

ASIL D Ti (1) = Ti (2)
Ti (1) = Ti (2)
Ti (2) = Ti (3)

Ti (1) = Ti (2)
Ti (2) = Ti (3)
Ti (3) = Ti (4)

at the system criticality level 3 is 2x higher than that at the system criticality level 1, and the
period of ASIL A messages at the system criticality level 4 is 3x higher than that at the system
criticality level 1. Consequently, Ti (1) <= Ti (2) <= Ti (3) <= Ti (4) as we modeled in Section 3.3.
We arbitrarily determine the amount of period stretch in this simulation.

We applied the Robust Priority Assignment [11], which is proven to maximize the number of
tolerable transmission errors, to the generated frame set to assign priority to each message.

6.2.2 Simulation Results. We measured the (coverage) rate of passing the EACAN schedulabil-
ity test and that of passing the WCTER-based test for the generated message sets. The results are
summarized in Table 7. If a given message set passes the EACAN schedulabilty test, then we count
the given message set verifiable with EACAN. Also, if a given message set passes the WCTER-
based test at the system criticality level 1, we count the given message set verifiable with WCTER.

Regardless of the utilization7 of given message sets and the applied λmax , the coverage of EA-
CAN schedulability test is shown to be higher than that of WCTER-based test. This is because the
EACAN schedulability test considers the system criticality-level transition and the level change
provides more chances to pass the test. The average improvement of coverage for a total of 1,800
generated sets is 7%, and the maximum improvement is 17% where λmax = 10−3/ms and the uti-
lization of the given message set is in the range of 70–80%.

7Note that the utilization is measured using the periods at the system criticality level 1.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

EACAN: Reliable and Resource-Efficient CAN Communications 8:21

Table 7. Coverage of EACAN Schedulability Test and WCTER-based Schedulability Test

λmax = 10−3/ms λmax = 10−2/ms

Total 50%–60% 60%–70% 70%–80% Total 50%–60% 60%–70% 70%–80%

EACAN

Pass 703 288 246 169 374 211 116 47

Fail 197 12 54 131 526 89 184 253

Coverage 78.1% 96.0% 82.0% 56.3% 41.5% 70.3% 38.6% 15.6%

WCTER

Based

Pass 638 287 235 118 313 198 95 20

Fail 262 13 65 182 587 102 205 280

Coverage 70.8% 95.6% 78.3% 39.3% 34.7% 66.0% 31.6% 6.6%

Coverage Difference 7.2% 0.3% 3.6% 17% 6.7% 4.3% 7% 9%

Fig. 7. (Left) Bandwidth utilization gap between EACAN operation and L1-Only operation. (Right) System

criticality-level distribution for a 1h CAN operation.

We also measured the bandwidth utilization of EACAN by simulating a 1-hour CAN opera-
tion for the generated message sets. We generated transmission errors using a Poisson process.
For example, if λmax = 10−3/ms, then we generate 3,600 transmission errors, following a Poisson
distribution for the 1h operation. Figure 7 (Right) shows the system criticality-level distribution
over the 1h operation. The system is shown to stay at the system criticality-level 1 for over 97%
of its operation. This is because the length of a busy period is usually not large, and thus system
criticality-level returns quickly to the base level (γsys = 1). The figure also shows that the propor-
tion of γsys = 1 increases if the λmax decreases. The large portion of staying at the lowest level
makes the bandwidth utilization gap between EACAN operation and L1-only operation (the best
achievable utilization) very small as shown in Figure 7 (Left). This result is very similar to our
experimental result.

In our simulation, deadline miss occurs in only two test cases of 70%–80% utilization and λmax =

10−2/ms when the system only operates at the system criticality level 1 (WCTER-Based). With
EACAN, there is no deadline miss for every test cases. This is because we generate the errors
using Poisson distribution in the simulations, and thus burst error arrival, which could lead to
deadline miss, rarely showed up in the simulations like the experimental result.

From the evaluation and simulation results, we see that network utilization and schedulability
can be improved by using EACAN. That is, more CAN messages can be transmitted on a single

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

8:22 T. Park and K. G. Shin

CAN bus, and thus system designers can reduce the number of CAN buses required to implement
the target system. From the automotive perspective, the implementation cost, space, and weight
for CAN bus wire can be saved.

7 CONCLUSION

In this article, we have developed EACAN, which adaptively controls the period of messages ac-
cording to the recent past transmission errors to achieve reliable and resource-efficient CAN com-
munications. Also, we have analyzed probabilistic schedulability for a given CAN frame set with
EACAN operation. Our experimental results show that EACAN makes a 14% improvement of band-
width utilization for the modified SAE benchmark. Besides, our simulation results show that 7%
more CAN message sets can be verified for their schedulability with EACAN schedulability test,
on average.

Even though of use CAN may decline in future, our methodology can be easily applied to Con-
troller Area Network with Flexible Data-rate (CAN-FD), which is an emerging substitute of CAN,
by just replacing CAN timing analysis with the state-of-art CAN-FD timing analysis [23].

REFERENCES

[1] Arduino. [n.d.]. Retrieved from https://www.arduino.cc/.

[2] P. Axer, M. Sebastian, and R. Ernst. 2012. Probabilistic response time bound for CAN messages with arbitrary

deadlines. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE’12). 1114–1117.

DOI:https://doi.org/10.1109/DATE.2012.6176662

[3] H. Aysan, A. Thekkilakattil, R. Dobrin, and S. Punnekkat. 2010. Efficient fault tolerant scheduling on controller area

network (CAN). In Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation (ETFA’10).

1–8. DOI:https://doi.org/10.1109/ETFA.2010.5641318

[4] Christelle Braun, Lionel Havet, and Nicolas Navet. 2007. NETCARBENCH: A benchmark for techniques and tools

used in the design of automotive communication systems. In Proceedings of the 7th IFAC International Conference

on Fieldbuses & Networks in Industrial & Embedded Systems (FeT’07). Toulouse, France, 321–328. Retrieved from

https://hal.inria.fr/inria-00188629.

[5] I. Broster, A. Burns, and G. Rodriguez-Navas. 2002. Probabilistic analysis of CAN with faults. In Proceedings of the

Real-Time Systems Symposium. 269–278. DOI:https://doi.org/10.1109/REAL.2002.1181581

[6] I. Broster, A. Burns, and G. Rodriguez-Navas. 2004. Comparing real-time communication under electromagnetic in-

terference. In Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04). 45–52. DOI:https://

doi.org/10.1109/EMRTS.2004.1310997

[7] A. Burns and R. I. Davis. 2013. Mixed criticality on controller area network. In Proceedings of the 25th Euromicro

Conference on Real-Time Systems. 125–134. DOI:https://doi.org/10.1109/ECRTS.2013.23

[8] Y. Chun, S. Park, J. Kim, H. Kim, K. Hwang, J. Kim, and S. Ahn. 2012. System and electromagnetic compatibility of

resonance coupling wireless power transfer in on-line electric vehicle. In Proceedings of the International Symposium

on Antennas and Propagation (ISAP’12). 158–161.

[9] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. 2007. Controller area network (CAN) schedulability analysis: Refuted,

revisited and revised. Real-Time Syst. 35, 3 (Apr. 2007), 239–272. DOI:https://doi.org/10.1007/s11241-007-9012-7

[10] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka. 2011. Controller area network (CAN) Schedulability analysis with

FIFO queues. In Proceedings of the 23rd Euromicro Conference on Real-Time Systems. 45–56. DOI:https://doi.org/10.

1109/ECRTS.2011.13

[11] Robert I. Davis and Alan Burns. 2009. Robust priority assignment for messages on controller area network (CAN).

Real-Time Syst. 41, 2 (Feb. 2009), 152–180. DOI:https://doi.org/10.1007/s11241-008-9065-2

[12] Reinhard Felgenhauser. 2011. Electromagnetic interference (EMI) in E-vehicles. Retrieved from www.

automotive-eetimes.com/content/electromagnetic-interference-emi-e-vehicles.

[13] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca. 2004. An experiment to assess bit error rate in CAN. In Proceedings

of the 3rd International Workshop of Real-Time Networks (RTN’04). 15–18.

[14] Freescale. [n.d.]. Future Advances in Body Electronics. Retrieved from http://www.nxp.com/assets/documents/data/

en/white-papers/BODYDELECTRWP.pdf.

[15] A. R. Guraliuc, M. Zhadobov, R. Sauleau, L. Marnat, and L. Dussopt. 2015. Millimeter-wave electromagnetic field expo-

sure from mobile terminals. In Proceedings of the European Conference on Networks and Communications (EuCNC’15).

82–85. DOI:https://doi.org/10.1109/EuCNC.2015.7194045

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

https://www.arduino.cc/
https://doi.org/10.1109/DATE.2012.6176662
https://doi.org/10.1109/ETFA.2010.5641318
https://hal.inria.fr/inria-00188629
https://doi.org/10.1109/REAL.2002.1181581
https://doi.org/10.1109/EMRTS.2004.1310997
https://doi.org/10.1109/EMRTS.2004.1310997
https://doi.org/10.1109/ECRTS.2013.23
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1109/ECRTS.2011.13
https://doi.org/10.1109/ECRTS.2011.13
https://doi.org/10.1007/s11241-008-9065-2
https://doi.org/www.automotive-eetimes.com/content/electromagnetic-interference-emi-e-vehicles
https://doi.org/www.automotive-eetimes.com/content/electromagnetic-interference-emi-e-vehicles
http://www.nxp.com/assets/documents/data/en/white-papers/BODYDELECTRWP.pdf
http://www.nxp.com/assets/documents/data/en/white-papers/BODYDELECTRWP.pdf
https://doi.org/10.1109/EuCNC.2015.7194045

EACAN: Reliable and Resource-Efficient CAN Communications 8:23

[16] SAE International. 2000. Class C application requirement considerations. SAE Technical Report J2056/1 (Feb. 2000).

[17] ISO/TC22. 2011. ISO26262: Road Vehicles—Functional Safety. Technical Report. International Organization for

Standardization.

[18] U. Keskin. 2013. Evaluating message transmission times in controller area network (CAN) without buffer preemption

revisited. In Proceedings of the IEEE 78th Vehicular Technology Conference (VTC’13). 1–5. DOI:https://doi.org/10.1109/

VTCFall.2013.6692198

[19] D. A. Khan, R. J. Bril, and N. Navet. 2010. Integrating hardware limitations in CAN schedulability analysis. In Pro-

ceedings of the 8th IEEE International Workshop on Factory Communication Systems (WFCS’10). 207–210. DOI:https://

doi.org/10.1109/WFCS.2010.5548604

[20] D. A. Khan, R. I. Davis, and N. Navet. 2011. Schedulability analysis of CAN with non-abortable transmission requests.

In Proceedings of the IEEE 16th Conference on Emerging Technologies Factory Automation (ETFA’11). 1–8. DOI:https://

doi.org/10.1109/ETFA.2011.6058998

[21] J. Kim, K. Lakshmanan, and R. Rajkumar. 2012. Rhythmic tasks: A new task model with continually varying periods

for cyber-physical systems. In Proceedings of the IEEE/ACM Third International Conference on Cyber-Physical Systems.

55–64. DOI:https://doi.org/10.1109/ICCPS.2012.14

[22] Daniel KAd’stner, Marek Jersak, Christian Ferdinand, Peter Gliwa, and Reinhold Heckmann. 2011. An integrated

timing analysis methodology for real-time systems. In SAE Technical Paper. DOI:https://doi.org/10.4271/2011-01-0444

[23] R. Lange, A. C. Bonatto, F. Vasques, and R. S. de Oliveira. 2016. Timing analysis of hybrid FlexRay, CAN-FD and CAN

vehicular networks. In Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON’16).

4725–4730. DOI:https://doi.org/10.1109/IECON.2016.7793791

[24] Microchip 2012. Stand-Alone CAN Controller with SPI Interface. Microchip. Rev. G.

[25] N. Navet and H. Perrault. 2012. CAN in automotive applications: A look forward. In Proceedings of the 13th Interna-

tional CAN Conference.

[26] N. Navet, Y.-Q. Song, and F. Simonot. 2000. Worst-case deadline failure probability in real-time applications distributed

over controller area network. J. Syst. Archit. 46, 7 (Apr. 2000), 607–617. DOI:https://doi.org/10.1016/S1383-7621(99)

00016-8

[27] Nicolas Navet, Schehnaz Louvart, Jose Villanueva, Sergio Campoy-Martinez, and Jorn Migge. 2014. Timing verifi-

cation of automotive communication architectures using quantile estimation. In Proceedings of the Conference on

Embedded Real Time Software and Systems.

[28] Shuichi Oikawa and Ragunathan Rajkumar. 1998. Linux/RK: A portable resource kernel in Linux. In Proceedings of

the 19th IEEE Real-Time Systems Sumposium.

[29] F. Ren, Y. R. Zheng, M. Zawodniok, and J. Sarangapani. 2007. Effects of electromagnetic interference on control area

network performance. In Proceedings of the IEEE Region 5 Technical Conference. 199–204. DOI:https://doi.org/10.1109/

TPSD.2007.4380381

[30] M. Schreiner, H. Mahmoud, M. Huber, S. Koc, and J. Waldmann. 2013. CAN FD from an OEM point of view. In

Proceedings of the 14th International CAN Conference.

[31] Symtavision. [n.d.]. Retrieved from https://www.symtavision.com/.

[32] L. Tan, C. Du, and Y. Dong. 2015. Control-performance-driven period and deadline selection for cyber-physical sys-

tems. In Proceedings of the 10th Asian Control Conference (ASCC’15). 1–6. DOI:https://doi.org/10.1109/ASCC.2015.

7244832

[33] K. W. Tindell and A. Burns. 1994. Guaranteed Message Latencies for Distributed Safety-Critical Hard Real-Time Control

Networks. Technical Report YCS 229. University of York, Department of Computer Science.

[34] K. W. Tindell, H. Hansson, and A. J. Wellings. 1994. Analysing real-time communications: Controller area network

(CAN). In Proceedings of the Real-Time Systems Symposium. 259–263. DOI:https://doi.org/10.1109/REAL.1994.342710

[35] Volcano. [n.d.]. Retrieved from https://www.mentor.com/products/vnd.

Received January 2018; revised September 2018; accepted December 2018

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 8. Publication date: February 2019.

https://doi.org/10.1109/VTCFall.2013.6692198
https://doi.org/10.1109/VTCFall.2013.6692198
https://doi.org/10.1109/WFCS.2010.5548604
https://doi.org/10.1109/WFCS.2010.5548604
https://doi.org/10.1109/ETFA.2011.6058998
https://doi.org/10.1109/ETFA.2011.6058998
https://doi.org/10.1109/ICCPS.2012.14
https://doi.org/10.4271/2011-01-0444
https://doi.org/10.1109/IECON.2016.7793791
https://doi.org/10.1016/S1383-7621(99)00016-8
https://doi.org/10.1016/S1383-7621(99)00016-8
https://doi.org/10.1109/TPSD.2007.4380381
https://doi.org/10.1109/TPSD.2007.4380381
https://www.symtavision.com/
https://doi.org/10.1109/ASCC.2015.7244832
https://doi.org/10.1109/ASCC.2015.7244832
https://doi.org/10.1109/REAL.1994.342710
https://www.mentor.com/products/vnd

