
Incrementally-deployable Indoor Navigation with
Automatic Trace Generation

Yuanchao Shu1,⋆, Zhuqi Li2,⋆, Börje Karlsson1, Yiyong Lin1, Thomas Moscibroda1, Kang Shin3

1Microsoft Research, 2Princeton University, and 3University of Michigan
⋆: Co-primary authors

Abstract—Despite years of research attention, localization-
based indoor navigation has not found wide-spread practical
use, largely due to the high burden on deployment and
bootstrapping. Lightweight peer-to-peer navigation systems
that use a leader-follower model have recently been proposed
to alleviate these burdens. However, typical peer-to-peer
navigation suffers from poor scalability and flexibility as
navigation is only possible over pre-collected leader paths.
In this paper, we present FollowUs, an easily-deployable
(bootstrap-free) and scalable indoor navigation system. In
addition to robust navigation through real-time trace-following,
FollowUs integrates cloud services to process and combine
traces at large scale. Optionally, it can also leverage floor
plans to further enhance navigation efficiency. We design
and implement FollowUs, including mobile app and cloud
services. Experimental results from a company-internal beta
release show that 91% of FollowUs’ spatial errors on reaching
destinations to be 3m or less, and 95% of navigation
instructions are shown to users within a 4-step error margin
during navigation.

I. Introduction

There has been substantial investment in indoor
navigation solutions both in industry and academia. The
traditional way of enabling indoor navigation is through
localization and maps, and there have been numerous
attempts to build and deploy such indoor localization
services. One reason why such services are nevertheless
not widely available in practice is that they rely on
specialized infrastructure (e.g., beacons, LEDs) or incur
high bootstrap costs [1–6]. For example, fingerprinting-
based techniques e.g., Wi-Fi) require an onerous sample
collection and map calibration process. Lack of accurate
indoor maps often poses additional challenges to path
planning and exacerbates navigation performance issues.
For these reasons, navigation services based on localization
and maps have proven difficult to deploy at scale.

To circumvent these difficulties, several peer-to-peer
(P2P) navigation systems have recently been proposed [7–
11]. These systems fundamentally differ from the above in
that they do not require localization. Instead, they follow
a leader-follower paradigm. P2P navigation compares
favorably to its localization-based counterparts for two
main reasons. First, it avoids the substantial setup effort
and precision requirements of localization. Instead of
building a full-fledged localization system, it offers a
simple plug-and-play mechanism — a “leader” captures
a path trace (i.e., a series of sensor data), and then any
“follower” can navigate on that same path. Second, it
does not require indoor maps for navigation. Irrespective
of incomplete map information, followers are able to go

to any point of interest (PoI) as long as a prior user has
visited it before.

A C

BD

E

Figure 1. A peer-to-peer navigation example.

However, the flip-side of such incrementally deployable
P2P navigation systems is clear: they come at the cost of
low scalability, since they only enable navigation between
the start and destination points of previously recorded
paths. Consider a simple example in Figure1. Bob recorded
a trace from A to B (blue), Alice recorded a trace from
C to D (red), and Charlie recorded a trace from B to
E (purple). In current peer-to-peer navigation systems, if
another user Dan wants to navigate from A to E, he must
first follow the blue trace to B, and then follow the purple
trace to E. Moreover, there is no way for a subsequent
user to move from D to E using typical P2P navigation
techniques. In a nutshell, for an indoor environment with
n PoIs, one needs to collect at least n(n− 1)/2 traces to
cover all navigation cases, thus incurring a heavy O(n2)
bootstrap cost.

Existing peer-to-peer navigation systems can also suffer
from low flexibility. They do not take additional data
sources as input to improve performance and navigation
results. For instance, while indoor maps (a.k.a. floor plan)
may be available in some cases, no systematic way to
leverage such additional resources is known. Clearly, a
flexible P2P navigation system must lower the entry
barrier for users as much as possible, should provide
substantial value even to early-adopters, and should
incorporate existing additional data sources such as maps,
if available.

In this paper, we propose FollowUs, a new end-to-end
indoor navigation system that combines the advantages of
both localization-based and peer-to-peer navigation with
increased flexibility and scalability. FollowUs can scale
both horizontally — reaching as many users as possible
without requiring much effort of them — as well as
vertically by efficiently computing new paths from traces
shared by users. As in typical peer-to-peer navigation,

users can walk along a path, share it with others and
follow paths shared by others via a mobile client. The
cloud-service components of FollowUs are responsible for
storing traces, and notably also for parsing and combining
(“stitching together”) traces at scale. Based on the analysis
of motion events and sensor signals, FollowUs is able to
split, concatenate, and generate new traces from different
contributors. Therefore, the navigation is not restricted on
the pre-recorded routes. Taking Figure 1 as an example,
FollowUs is able to identify the overlapping segment from
the blue and red traces, and the ones from the blue and
purple traces, thereby providing navigation directly from
D to E by following red and purple segments.

This way, FollowUs incrementally provides large-scale
indoor navigation without prior knowledge of floor
plans, nor the need for any infrastructure. As the data
available in the system organically grows, FollowUs can
automatically generate more possible paths. Moreover, it
is also able to leverage any available floor plan to speed
up the process and build trace/segment graphs, which
further enhance navigation efficiency. In summary, this
paper makes the following three contributions:
• We propose a new peer-to-peer navigation service

to address the scalability and flexibility problems of
existing previous indoor navigation systems.

• We design efficient and accurate matching, indexing,
and segment mapping algorithms to enable indoor
graph construction and automatic trace generation.

• We implement FollowUs as an Android app and a set
of cloud services. The system has been released as a
company-internal beta, and has been in use by 150+
beta users over a period of 3 months. Experimental
results show that 91% of FollowUs’ spatial errors
are found to be 3m or less, and 95% of navigation
instructions are shown to users within a 4-step error
from the ideal timing during navigation.

II. Overview

FollowUs allows users to both record and follow paths
using its mobile client app. Users of the app play two roles:

Recording (as “leader”). During recording, the FollowUs
client queries sensors and detects user motion events
including steps, turns, and level changes i.e., staircases,
elevators, or escalators). When the leader arrives at the
destination, sensor measurements and detection results are
packed to build a reference trace. Leader is able to label a
trace with text descriptions (e.g., from East Entrance to
Room 1357). However, these highly diversified labels are
not used as location identifiers. Finally, leader sends the
trace to the cloud to be shared publicly or with specific
groups of users.

Navigation (as “follower”). Users can follow traces over
any pre-recorded path. Traces can either be pushed to
the client app Inbox or pulled via Search functionality
(e.g., by trace ID or labels). When following a trace,
real-time navigation instructions including turns and
floor/level changes are displayed in the app based on online

synchronization between the reference trace and current
ambient sensing information.

It is noted that leader’s input on trace information (e.g.,
starting point and destination) is required for navigation.
FollowUs assumes a certain degree of leader’s initiative
to create reasonable quality traces to help subsequent
followers (e.g., finding a conference room or a restaurant
in shopping mall). We argue that in the context of
P2P navigation, such requirements can be met in most
cases. The current client also allows users to report a
public trace due to either bad quality or inappropriate
content. Nevertheless, the mechanisms to prevent abuse
of FollowUs are out of the scope of the paper.

Figure 2. System diagram of FollowUs.
Figure 2 shows FollowUs’ architecture and data pipeline.

Data flows from client (as a leader) to cloud, and then
from cloud to client (as a follower). The cloud component
not only provides storage, communication interfaces,
telemetry, and account management, but also features an
intelligent trace processing pipeline that makes FollowUs
flexible and scalable. In “naïve” navigation, where one
can only follow the exact same paths from others,
each path recording produces and uploads a trace. To
allow “cross-trace” navigation, FollowUs employs a novel
trace segmentation and indexing technique. Segments
are then efficiently matched, indexed, and persisted to
allow the construction of segment graphs. A segment
graph is incrementally built from trace segments and can
eventually provide users with an exponentially increasing
number of paths. Additionally, floor plans can naturally
be leveraged to improve both performance and efficiency
of the graph generation process.

It is important to highlight that FollowUs is completely
plug-and-play, meaning it imposes no infra-structure
requirements on buildings, no boot-strapping effort such
as building Wi-Fi fingerprint databases, and it requires
minimal effort from users. This allows the system to scale
out to reach as many potential users and to work in as
many locations as possible. As such, FollowUs does not
rely on collecting Wi-Fi- (or other wireless technology-)
related data. FollowUs traces require only readings from

smartphones’ magnetometer, accelerometer, gyroscope,
and barometer sensors. Nonetheless, other signals can
easily be integrated into the system.

III. Segment
In this section, we first introduce the concept of a

segment that serves as basis for the identification of
intersections between traces and is key to scalability.
Specifically, we look to answer two questions: (1) how
does segmentation help FollowUs scale? and (2) what are
the associated challenges and our solutions?
A. Trace segmentation

In FollowUs, users share traces for the purpose of
navigation. In naïve navigation, users can merely follow a
trace that was previously created by a leader. However,
due to a huge number of paths connecting all PoIs in
indoor environments, it is highly unlikely there to be a
trace that exactly meets user requirements. A possible
approach to address this problem is to divide all traces
into segments, and concatenate these segments to generate
new traces based on user needs. However, there are several
challenges in doing so. Chief among them is how to design
effective matching to identify shared segments between
different traces. For example, in Figure 1, we can see that
the key to build trace DE is to identify matching segments
between trace AB and trace BE. Also, the matching
method should be scalable to the number of pairs of
segments that grows quadratically with the number of
traces.

FollowUs leverages the previously-stored navigation
events in each trace and divides a trace into segments
based on the different user motion events (e.g., turns,
staircases, or elevators). Although traces could be split at
any arbitrary point, event-based segmentation captures
the formation of indoor pathways and makes a good
tradeoff between segment matching performance and
efficiency. We represent a given trace U by a sequence
of directed segments SU = {sUi }ni=1 and a sequence
of connectors CU = {cUi }

n−1
i=1 . Each segment also

contains location-specific sensing data (e.g., magnetic field
magnitude, RF signal strength) and motion detection
information during the corresponding period. Considering
different events, any connector has an event type and a
corresponding attribute value. For example, for a turn
event, the value can be measured by the turn angle.
B. Segment matching

Segment matching aims to identify pairs of trace
segments, which are recorded along the same pathway.
During matching, we exploit the similarity between the
location-specific sensor data of two segments to tell
whether they are a match. Although different types
of location-specific data can be utilized in segment
matching, FollowUs uses indoor geomagnetic magnitude to
demonstrate the methodology (and reach its design goals
from Figure II). Due to space limitation, we refer to [9, 12]
for detailed analysis (e.g., robustness) and process on
geomagnetic signals.

In FollowUs, different walking speeds and different
smartphone sensor sampling rates during recording will
make the recorded signals have widely different magnetic
magnitude sequences. To cope with this problem, we take
a two-step approach to identify whether two sequences
match: we first use dynamic time warping algorithm
(DTW) [9, 13] to synchronize two sequences, and then
use a general model pre-trained by SVM to classify the
synchronization result. To achieve a better accuracy, we
carefully selected four features to train the SVM classifier
– the length of the first segment, length of the second
segment, DTW distance between the two segments, and
area between the optimal DTW path and the linear
mapping path in the warping cost matrix.

C. Segment indexing
The key to make FollowUs scalable is to identify

matched segments in different traces and be able to
“create” new traces. However, the overhead of directly
comparing each pair of trace segments grows quadratically
with the number of new traces, which is unacceptable for
large-scale deployments. To efficiently select matching can-
didates, we designed a segment indexing mechanism, used
in the matching, search, and comparison infrastructure.

In FollowUs, we design a hash structure for efficient
segment indexing and query based on Distance-Based
Hashing (DBH). This structure contains four basic
operations: structure building, structure update, query,
and re-hash.

1) Distance-based hashing: DBH is a family of hash
functions that can map data under an arbitrary distance
into real numbers. It is based on the FastMap tech-
nique [14]. The formal definition can be given as: given any
distance space D, choose two reference members s1, s2 ∈ D.
For any query point s in D, the hash function is:

Hashs1,s2 (s) =
d(s, s1)2 + d(s1, s2)2 − d(s, s2)2

2d(s1, s2)
.

If D is a Euclidean distance space, this hash function
will project the query point onto the line determined by
s1 and s2. If D is a non-Euclidean distance space, this
hashing function can still approximately preserve distance
relationship. After obtaining the hash value, we can
binarize the value based on whether or not Hashs1,s2(s)
lies in a certain range [t1, t2].

Hasht1,t2
s1,s2

(s) =

{
1 t1 ≤ Hashs1,s2 (s) ≤ t2.
0 otherwise.

Optimally, the range [t1, t2] should be chosen to make a
random object in D have a 50% possibility to be mapped
within the range and a 50% possibility to be mapped
outside the range. The set of ranges can be defined as
T = {[t1, t2]|PrD(Hasht1,t2

s1,s2(s) = 1) = 0.5}. The set of
optimal hash functions OptHashs1,s2 can be defined as
OptHashs1,s2(s) = {Hasht1,t2

s1,s2(s)|[t1, t2] ∈ T}.
2) Hash structure building: Algorithm 1 demonstrates

how FollowUs builds the structure from scratch. For every
segment si in segment set S, FollowUs maintains a hash
sequence hi with the length of ⌈log2 |S|⌉ bits. To generate
⌈log2 |S|⌉ bits for every hash sequence, Algorithm 1 takes

⌈log2 |S|⌉ iterations. For each iteration, it first randomly
chooses two reference segments si1, si2, and computes
Hashsi1,si2(sj) for every segment sj under DTW distance.
Then, it assigns a value to the hash bits according to
whether Hashsi1,si2(sj) is larger or smaller than the
median. In total, O(n log n) comparisons between trace
segments are conducted. Since the hash sequence has a
length of ⌈log2 |S|⌉, there are a total of O(n) possible
types of hash sequence. Due to the algorithm’s balancing
mechanism, the average number of segments that are
hashed to a specific hash sequence is O(1).

ALGORITHM 1: Index building.
Input : The set of segments S
Output: The set of hash value H
for i← 1 to ⌈log2 |S|⌉ do

random choose two reference segments si1, si2 from S;
for j ← 1 to |S| do

Hashsi1,si2(sj)←
dtw(sj ,s11)

2+dtw(si1,si2)
2−dtw(sj ,si2)

2

2dtw(si1,si2)
;

Queuei.append(Hashsi1,si2(sj));
end
mid = mean(Queuei);
for j ← 1 to |S| do

if Hashsi1,si2(sj) < mid then
hi.append(0);

end
else

hi.append(1);
end

end
end

For example, given a set of segment S = {s1, s2, s3, s4},
Algorithm 1 could choose s1 and s2 as the reference
segments and compute the first hash bit for all the hash
sequence. Let’s say the result is {1, 0, 1, 0}. Then, it repeats
the operation on different reference segments and gets the
second hash bit, for example, {10, 00, 11, 01}.

3) Structure update: The hash structure is updated
incrementally. Every time a new segment comes in, it will
be compared with reference segments and get its own hash
sequence. This step takes O(log n) comparisons. When the
number of segments redoubles, the system chooses a new
pair of reference segments and adds one more bit to every
hash sequence. This step takes O(n) comparisons. For the
example shown above, if one more segment s5 is added into
the system, it should be compared with all the reference
traces to get its hash sequence. If additional four segments
{s5, s6, s7, s8} are added, it will choose two more reference
traces and extend all the hash sequence by one bit.

4) Query: The query operation is performed to find
matching segments in the hash structure for an input
segment. The new segment will first be compared with
all reference segments to get its own hash sequence (in
O(log n) comparisons). Then, it will be compared with
all the segments whose hash sequence has at most one
bit difference with itself to find a match case. Since
there are a total of O(log n) hash sequences satisfying
this requirement, and every sequence has an average of
O(1) corresponding segments, this step takes, on average,

O(log n) comparisons. Therefore, a query operation also
takes a total of O(log n) comparisons. For the example
shown above, if a query to find a match segment for
s′1 comes in, FollowUs will compare s′1 with all reference
segments and get its hash sequence, say {10} in this case.
Then it finds s1 and s′1 matches to each other.

5) Re-hash: Although we have a balancing mechanism
to map half of the bits to 0 and the other half to 1,
the segments that come into the system later may break
the previous mapping balance, making a disproportional
distribution of hash values. To address this problem,
we need a re-hash operation to re-balance. The re-hash
operation is straightforward: for any hash digit, if the
number of hash bits set to one is much more/less than that
to zero, a re-hash operation will be triggered to reassign
the hash bit value based on the median of Hashsi1,si2(sj).
The total complexity of the re-hash operation for any digit
is O(n). For the example shown above, if the first hash
bit for all subsequent four segments {s5, s6, s7, s8} is 1,
the re-hash mechanism will be triggered and reassign the
first hash bit to achieve a more balanced distribution.

6) Collision and branching: Collision and branching are
two common problems for all hash structures. In FollowUs,
collision happens when different segments (non-match) are
hashed to the same hash sequence. While branching refers
to the problem where matching segments are hashed to
different hash sequences.

For the hash collision problem, we can run the pairwise
matching algorithm for all segments with the same hash
sequence. Since the average number of segments that are
hashed to a specific hash sequence is O(1), this operation
only takes O(1) comparisons for every hash sequence.

The hash branching problem can make the system miss
several pairs of matched segments. This problem is more
severe when a bad set of reference traces is chosen. To
improve overall system robustness, FollowUs introduces a
redundancy mechanism: given a duplication factor K, it
builds K hash structures to index traces under different
sets of reference segments. All the operations are applied to
different copies of hash structures. Intuitively, even though
a pair of matched trace segments can hash to diverse hash
sequences in one hash structure, they tend to be hashed to
the same sequence in other hash structures. This method
significantly reduces the branching ratio in segment
indexing with no increase in computational complexity
(since K is a constant). In Section V, we demonstrate
the performance of hash structure duplication in terms of
both accuracy and efficiency.

IV. Graph
Identifying segment matches from different traces is the

first step to generate new traces. Finding a satisfactory
trace between any two PoIs requires global knowledge of
segment matching from all traces and how each segment
connects to each other. It would be time-consuming
to check all pairs of matched segments for each trace
request. To bridge the gap, FollowUs uses segment graphs
as an intermediary representation to aggregate segment

matching results and connections. This section shows how
to construct such segment graph, both with and without
available indoor maps.

A. Graph and map models
We first define the graph model before introducing

its construction process. A segment graph G is a
representation of overall segment connectivity, while a
map M is a real indoor floor plan. In FollowUs, such
a graph G is modeled using segments and connectors, i.e.,
we define G as a set of segments SG = {sGi }ni=1 and a
set of connectors CG = {cGj }mj=1. For an indoor map M ,
we define it as a set of pathways SM = {sMi }ni=1 and a
set of connectors CM = {cMj }mj=1. Extracting pathways
and connectors from floor plans can be achieved based on
computer graphics or computational geometry, which is
outside the scope of this paper. A map pathway and a
graph segment differ only in that the segment includes a
representation of sensor data. Each connector has a type,
a corresponding attribute value, and the ID list of the
adjacent segments/pathways.

By default, a trace graph is constructed with only
segment matching information. If optional indoor maps
are available, FollowUs first casts traces into the map –
as constraints on the trace shape – and then applies a
hidden Markov model to get a graph representation.

B. Graph construction – without map
We first present how to construct the graph without

any map information. Algorithm 2 shows the graph
construction flow. Given a set of traces T and a set
of buckets B, where each bucket is a set of segments
that match each other as input, the algorithm uses
trace level connectivity information to connect different
buckets with distinctive connector values (lines 1-7).
The bucket function returns the corresponding bucket
for each segment, and the value function returns the
attribute value for each connector. Each bucket keeps
a list of connector values representing individual links
from itself to other buckets. The algorithm then finds
the most probable next segment for every connector value
for each bucket using majority vote (lines 8-13). After
obtaining the connectivity between different segments, the
segment graph can be obtained from the buckets and the
intermediate connectors between them (lines 14-16).

After obtaining the indoor segment graph, FollowUs
associates PoIs (i.e., starting point, destination, and trace
connectors) with the corresponding places in the graph.
When a user requests navigation service, she selects the
start and destination points from the PoI database, and
FollowUs automatically generates a new reference trace by
searching the graph and selecting appropriate segments.

C. Graph construction – with map
FollowUs is designed to leverage indoor floor plans as

additional information if available. Such map information
can facilitate the segment graph construction process.
Specifically, it helps FollowUs: i) get a clear representation

ALGORITHM 2: Graph construction without maps.
Input : The trace set T and bucket set B
Output: The trace graph G
for i← 1 to |T | do

for j ← 1 to |Sti |-1 do
btij = bucket(stij); btij+1 = bucket(stij+1);
cvalue = value(ctij);
btij .cvalue.append(btij+1); btij+1.cvalue.append(btij);

end
end
for i← 1 to |B| do

for each connector value cvj do
bk = findMost(bi.cvj);
bi.cvj .next = bk;

end
end
G.S = B for all pairs of buckets bi, bj do

G.C.append(cbi,bj);
end

for segment graphs, ii) provide ground truth for all events
and trace segments, and iii) reduce the dimension of the
segment indexing structure. To fully take advantages of a
map, we need to design methods that cast each trace into
the map, while in the meantime dealing with potential
mapping conflicts from new coming traces.

It takes three steps to construct a segment graph with
map information: (1) cast each trace into the map using a
novel map mapping algorithm; (2) generate representative
signals (sensor data) for every segment mapped in the
map; (3) utilize the map geometry to represent how to
connect segments.

1) Trace projection into map: The first step is to cast
every trace into the map. Finding the best-match pathway
for an abstract trace in the floor plan can be modeled as
a search problem. However, it faces two challenges: metric
selection and computational overhead.

Metric selection: Lengths of recorded traces and path-
ways in the map are not measured by a uniform metric
(steps and meters respectively). It is non-trivial to convert
steps into meters as users’ step length vary.

Computational overhead: Pathway search in the map
has exponential complexity due to the large amount of
possible match candidates.1

Since a fixed average step length cannot adapt to various
walking patterns, FollowUs uses a relative value of average
step length as a metric to find best-match pathways in the
map. Intuitively, longer segments from the trace should
be cast into longer pathways on the map, vice versa for
shorter ones. That means, different segments from the
same trace should have roughly the same average step
length. Therefore, we use the variance of the average step
length for different segments as a metric to measure match
quality. Formally, the problem is defined as follows:

Given a recorded trace U and a map M , pathway
P is a possible matching candidate for trace U in M .
SU = {sUi }ni=1 and SP = {sPi }ni=1 is the sequence of

1Proof is omitted due to space limitation.

segments of trace U and pathway P , respectively. The
function length(·) is used to obtain the length of a
segment. If the segment comes from a recorded trace,
the function returns the number of steps in the segment,
otherwise it returns the length in meters. We use L(U,P) =

{l(U,P)
i =

length(sPi)

length(sUi)
} to denote the average step length set

for the matching between U and P . CU = {cUi }ni=1 and
CP = {cPi }ni=1 is the sequence of connectors of trace U and
pathway P , respectively. Every connector cUi or cPi can
also be represented by two adjacent segments < sUi , s

U
i+1 >

or < sPi , s
P
i+1 >. We use cUi ∼ cPi to denote two connectors

that have the same event type and matched event value
(defined in Section III-A).

To differentiate the effect of segments with different
lengths, we consider a weighted variance of L(U,P) as
the matching metric. To sum up, the goal of finding
the best match pathway in the map can be expressed
as min

P
var(L(U,P)), subject to P ∈ M ; ∀i, cUi ∼ cPi .

From the analysis of the computational challenge we
know that the number of potential pathways that fit a
given trace event pattern is exponential. In view of this
large search space, FollowUs improves the search algorithm
along two dimensions: i) reducing the computation within
each step and ii) reducing the number of search steps.

For the first goal, FollowUs incorporates an incremental
method to update the weighted variance. This method
fully utilizes the previous result to compute the result of
the next step, and only takes O(1) time for each step state
update.

For the second goal, FollowUs adopts a novel pruning
method. As can be proved,

var(L
(U,P)
1:k+1) = var(L

(U,P)
1:k) +

k∑
i=1

len(sUi)(l
(U,P)
1:k+1 − l

(U,P)
1:k)2

+ len(sUk+1)(l
(U,P)
k+1 − l

(U,P)
1:k+1)

2

(1)

This characteristic gives us a good way to prune the
search: if the weighted variance of the average step length
for the first several segments in Pathway A is already
larger than that for all the segments in Pathway B, the
search for Pathway A can be pruned due to the monotonic
non-decreasing characteristic of the weighted variance of
average step length.

The performance of pruning also relies on search order:
the earlier the best-match pathway is found, the more
unnecessary searches can be avoided. Based on this
observation, FollowUs tries to expand the most promising
search pathways in every iteration. To identify how
promising a pathway is, we use the normalized step
length variance norm(L(U,P)) = var(L(U,P))∑

length(sUi)
as metric.

Thus the algorithm chooses the pathway with minimal
norm(L(U,P)).

Algorithm 3 illustrates in detail the search algorithm.
The algorithm takes as input a trace U , a map M , and the
starting point csp in the map. During search, it maintains
the search state in a priority queue pqueue. The search
state contains several domains: key, index, var, next, seg,
which refer to the average weighted step variance, index

ALGORITHM 3: Heuristic pathway search.
Input : trace U = {SU , CU}, map M = {SM , CM}, csp.
Output: best-match pathway P in M that can minimize

var(L(U,P)) subject to cUi ∼ cPi
pqueue.push(makestate(∅, csp));
while pqueue ̸= ∅ do

headstate = pqueue.pop();
index = headstate.index;
if headstate.var > varmin then

continue; // pruning
end
if index == |SU | then

P = traceback(headstate);
varmin = headstate.var;
continue; // search possible better result

end
for each seg ∈ headstate.next do

c =< headstate.seg, seg >;
if c ∼ cUindex then

pqueue.push(makestate(headstate, seg));
end

end
end

of current matching segment, weighted step variance, the
next search segments, and the last matched segment,
respectively. The priority queue compares states by key
and returns the minimum-key state. The makestate
function is used to update the search state information
incrementally based on the previous search state. The
key part of this function is to upgrade the weighted
variance of step length according to Equation 1. In lines
5-7, the algorithm performs pruning with the information
of weighted variance of step length to reduce the search
space. Once the algorithm finds a feasible solution, it
traces back the search route to get its pathway (lines 8-
12). Lines 13-18 check whether a trace event qualifies and
pushes one more search state to the queue. The algorithm
stops when the priority queue becomes empty.

2) Graph generation: After casting traces into a map,
we can extract the most probable bucket for every
segment in the map and connect them with corresponding
navigation event connectors. Upon receiving querys of the
starting point and destination, FollowUs matches them
in PoI database, finds the shortest path and concatenates
signal sequences of its segments to build a reference trace.

V. Implementation and Evaluation
We implemented FollowUs as an Android app[15] and

a set of backend cloud services on Azure. The entire
system consists of ≈ 56k lines of code (loc), broken
into: Mobile Core 8.9kloc; FollowUs App 29kloc; Trace
Processing Pipeline 13.6kloc; Path Builder 1.7kloc, and
FollowUs Service API 2.5kloc.

FollowUs has been released in a company-internal
beta and thus far has more than 150 users (including
developers, testers, and interns) on 52 different Android
device models across tens of buildings in two continents.
All participants recorded at least one trace and followed
several other traces after watching a simple tutorial.

To fully test FollowUs in unfamiliar environments, all
recorders are told to randomly choose a floor and
intentionally create circuitous routes to ensure that
followers are not following the path based on prior
knowledge or building signage.

To evaluate FollowUs we utilize 373 indoor traces, with
ground truth paths, covering an area of 6,000m2. All
traces were recorded with smartphone holding horizontal
in front of the body. In what follows, we present
the evaluation of the key components of FollowUs
segment matching/indexing, graph construction/mapping,
and finally end-to-end navigation (paths) with comparison
to FollowMe [9].

A. Segment-level and Graph-level evaluation
FollowUs partitions traces into segments based on

detected user motion events (e.g., turns, level changes).
FollowUs successfully detects 97.7% of all events in
the utilized dataset. Wrongly partitioned segments are
then filtered out during segment matching as low-quality
segments. Due to space limitations, we omit detailed
segmentation results.

0 200 400 600 800 1000 1200 1400
Train Segments

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fa
ls

e
 P

o
si

ti
v
e

1
5

10
20

50
100

(a) False positive rate

0 200 400 600 800 1000 1200 1400
Train Segments

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ls

e
 N

e
g
a
ti

v
e

1
5

10
20

50
100

(b) False negative rate

Figure 3. Segment matching results.

1) Segment matching: Segment matching is the basis
for trace indexing and graph construction. We evaluate
the performance of segment matching in terms of accuracy
and efficiency.

Accuracy: FollowUs uses SVM to classify DTW synchro-
nization results between segments to determine whether
segments are matched with each other. To better under-
stand the effectiveness and limitations of this method,
we evaluate the performance of the algorithm with
different sizes of segment sets. Figure 3(a) and Figure 3(b)
show both the false positive and false negative rates of
FollowUs for different sizes of training data with different
compression factors α, where α = n means we do down-
sampling by averaging every n samples. A low compression
factor (small α) results in a low false positive rate but a
high false negative rate. This is because it preserves more
distinct features of matched traces, thereby reducing false
positives but at the same time including more noise. The
accuracy is also found to be stable with more than 1000
training segments, indicating that the SVM model does
not require a large amount of data to get trained well.
Figure 3(a) and Figure 3(b) provide a guideline for the
choice of α. Based on these results, we set α = 20 in our
implementation to optimize the trade-off between false
positive and false negative rates.

Efficiency: The efficiency of segment matching is
evaluated in terms of running time for different com-
pression factors. To better measure the workload, we
ran microbenchmarks locally on a server with an Intel
core i7 3770 Processor (8M cache, up to 3.90 GHz)
and a 16GB RAM. Results show that matching signals
without compression takes more than 1s for segments
with 2000 samples. Increasing α can substantially reduce
computation time. For example, matching 2000-sample
segments requires less than 10ms when α = 20.

2) Segment indexing: We now evaluate the accuracy
and efficiency of segment indexing. To demonstration the
performance gain that we can obtain from the indexing
mechanism in Section III-C, we compare the processing
time with pair-wise comparison (the method that used
by Travi-Navi to identify the matching relationship
between segments). In addition, to understand the effect
of duplication factor, K, we compare segment indexing
performances under different K.

We first consider the time cost of segment indexing.
Figure 4(a) shows the time of building the indexing
structure with different methods for different size data
sets. The pair-wise comparison that used by Travi-Navi
increases quadratically, whereas FollowUs shows a nearly
linear increase. The gap of processing time between the
larger and larger as the number of traces increases.
Therefore, the indexing technique used by FollowUs is
advantageous over the pair-wise comparison used by Travi-
Navi when the data volume becomes large, ensuring
FollowUs’ scalability.

In FollowUs, segment indexing uses a hash structure to
determine segment matching, instead of exhaustively com-
paring every pair of segments. However, this may cause
a lot of branching. Figure 4(b) shows the branching ratio
of the system. In line with our design in Section III-C6,
increasing the duplication factor K turns out to be highly
effective at reducing the branching ratio. Considering both
efficiency and accuracy, we set K = 3 in FollowUs.

50 100 150 200 250 300 350 400
Segments

0

20

40

60

80

100

120

Ti
m

e(
s)

Travi-Navi
K=1
K=2
K=3
K=4
K=5

(a) Time

50 100 150 200 250 300 350 400
Segments

0.0

0.1

0.2

0.3

0.4

0.5

Br
an

ch
in

g
ra

tio

K=1
K=2

K=3
K=4

K=5

(b) Branch ratio

Figure 4. Segment indexing results.
For the collision cases, we can run pairwise matching to

identify un-matched pairs of segments. This will not cause
any loss in accuracy but will incur time cost. During the
overall experiments, comparisons to identify collision cases
only takes up less than 5% of the overall segment indexing
time, thus making it a small overhead to the entire system.

3) Trace mapping: Casting traces into a map helps
FollowUs utilize an optional floor plan to improve the
performance of trace graph construction. In Section IV, we
use a heuristic search algorithm to find the corresponding

pathways on the map. To illustrate the advantage of this
algorithm, we use traditional Depth-First Search (DFS)
and Breadth-First Search (BFS) as comparisons and
evaluate both accuracy and efficiency. In the evaluation,
accuracy is measured by the percentage of trace segments
that are correctly mapped.

For the real floor-plans in our testing environments, all
three algorithms work well (equivalent accuracy within
100ms processing time on a local server). Hence, to
demonstrate the advantage of our design, we run the three
algorithms on large-scale simulated traces and maps. To
this end, we first create a virtual map with n × n grids.
Then, we remove some segments from the map based on a
Bernoulli distribution Bern(1, 0.1). To construct a virtual
trace, we randomly select two points in the map as the
starting point A and destination B, and search a path
between A and B. At last, for every trace segment we
synthesize its “step length” by sampling the number of
steps from a normal distribution N(lµ, lσ2), where l is
the length for the trace segment, µ = 0.78, σ = 0.133 are
the average and standard error of step length for all traces
in the experiment.

Figure 5(a) compares the trace-mapping times of
different algorithms. The x-axis is map size. For example, if
a map contains 3 horizontal paths and 2 vertical paths, the
map size is 3+2=5. The figure shows that the time costs
of both DFS and BFS increase exponentially, whereas our
heuristic search grows much slower. To gain further insight
into the performance of the heuristic search in FollowUs
we also evaluate the correlation between computational
time and accuracy (Figure 5(b)). The heuristic search
in FollowUs is shown to have a processing time roughly
linearly increasing with map size, but a high and stable
mapping accuracy (≈ 97.6%).

6 8 10 12 14 16 18 20 22
Map size

10-1

100

101

102

103

104

105

T
im

e
(m

s)

DFS
BFS
FollowUs

(a) Trace mapping time

20 40 60 80 100 120 140 160
Map Size

0

5

10

15

20

T
im

e
(m

s)

Time

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Accuracy

(b) FollowUs performance

Figure 5. Trace mapping results.

B. End-to-end evaluation
Finally, we evaluate the end-to-end navigation perfor-

mance of FollowUs.
Reference trace: For the purpose of comparison, we

choose the most similar indoor navigation system, Fol-
lowMe [9], as the baseline in the experiment. We use
two types of reference traces in our experiments. One is
directly recorded by users with FollowMe and the other
is recorded and reconstructed by FollowUs. In total, 200
type-one traces as well as 200 type-two traces are used in
this evaluation.

Metric: We use a spatial offset between the leader’s
locations (from linear interpolation) and the relative

locations obtained by trace synchronization algorithm as
an indicator of navigation performance. Since the primary
concern of a navigation system lies in whether it can
provide correct and timely navigation instructions to
users, we also adopt a navigation metric called navigation
event error. Specifically, it is defined as the difference
(in number of steps) between the time when a navigation
instruction e.g., turns, staircases, elevators, etc.) should be
provided to user, compared to when it actually appears.

0 1 2 3 4 5
Error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

FollowMe
FollowUs

(a) Spatial error.

6 4 2 0 2 4 6
Navigation event error (# of steps)
0

100

200

300

400

500

CD
F

FollowUs
FollowMe

(b) Event error

Figure 6. End-to-end navigation performance.
We randomly choose 1000 navigation events from

both type-one and type-two traces to calculate error
distribution. In Figure 6(a), we find that spatial errors of
FollowUs are close to FollowMe. For example, navigation
with FollowUs and FollowMe achieves a 91 percentile
accuracy of 3m (91% and 93.5%, respectively). The
small gap between two CDF curves is caused by the
glitch of magnetic signal at connectors between different
segments. Similarly, Figure 6(b) shows that 95.1% and
98.8% of navigation event errors are below 4 steps for
both FollowUs and FollowMe. From the distribution of
navigation event errors, we can also see that both types of
reference traces show comparable navigation performance.
In summary, our end-to-end evaluation demonstrates
adequate navigation performance, validating the design
and confirming the robustness and accuracy of FollowUs.

VI. Related Work
Hardly any problem has been studied as extensively in

the mobile computing community over the past decade as
indoor localization. Many proposed devices [16, 17] and
systems [1–4, 18, 19] using acoustic signals [20], Wi-Fi [1,
21], FM radio [6, 22], geomagnetism [8, 12, 23], GSM [24],
RFID [25, 26], and light [27–30] achieve high localization
accuracy. However, they usually incur large bootstrapping
cost in terms of either hardware or data. Moreover, floor
plans are usually required to enable navigation service
beyond locations.

To ease the burden of such labor-intensive bootstrap-
ping process, many crowdsourcing methods [31–36] have
been proposed to assist localization and floor-plan gen-
eration. Despite the advances made in this direction, the
high bootstrapping cost and dependence on infrastructure
hinders these systems’ wide-scale deployment in practice.
FollowUs borrows from some of the ideas above, but differs
from them in the following aspects.

First, as a location-free indoor navigation system, Fol-
lowUs does not rely on location coordinates and therefore
circumvents obstacles during localization. Second, the

data FollowUs uses to generate segment graphs comes from
its incrementally-deployable navigation service. Hence,
it successfully eliminates the Chicken-and-Egg dilemma
between crowdsourcing data and navigation service (the
navigation service is functional and useful even for the
very first person storing a path), making the system easy
to deploy. Third, in addition to the effectiveness, both
segment matching and indexing, and graph construction
are designed to be efficient, making FollowUs practical
and scalable.

The works closest to FollowUs are Travi-Navi [10] and
FollowMe [9]. FollowUs differs from these two systems
as follows. First, as a navigation system, neither energy-
hungry components such as camera and Wi-Fi, nor
compute-intensive algorithms such as particle filtering
are used in FollowUs. While retaining the merits of
peer-to-peer navigation, FollowUs is also adaptive to
maps and different modalities. These features make
FollowUs easily deployable and practical. Second, in
terms of scalability, FollowMe only allows navigation
along a route created by one specific leader. Though
Travi-Navi is capable of finding shortcuts and planning
trips for users, it incurs O(n2) pairwise comparisons
to find a potential trace match. In contrast, FollowUs
adopts efficient indexing and segment matching algorithms
with O(n log n) computational complexity, which allows
it to scale. Third, FollowUs is the only system that
constructs graphs based on user traces with or without
floor plans. Instead of performing local optimization (to
mitigate detours from overlapped traces) in Travi-Navi,
segment graphs not only provide globally optimal paths
for navigation, but they also play a key role in aggregating
traces during FollowUs’ incremental deployment.

VII. Conclusion
We presented FollowUs, an incrementally-deployable

indoor navigation system with high flexibility and scalabil-
ity. The system is powered by cloud services for accurate
and efficient trace matching and indexing, and can also
leverage optional floor plans to build trace graphs to
further enhance navigation performance. We implemented
FollowUs and our experimental results based on the beta
dataset show that 91% of FollowUs’ spatial errors are
found to be 3m or less, and 95% of navigation instructions
are shown to users within a 4-steps error margin for
reconstructed traces.

References
[1] J. Xiong and K. Jamieson, “ArrayTrack: A Fine-Grained Indoor

Location System,” in NSDI, 2013.
[2] J. Wang, H. Jiang, J. Xiong, K. Jamieson, X. Chen, D. Fang,

and B. Xie, “LiFS: Low Human Effort, Device-Free Localization
with Fine-Grained Subcarrier Information,” in MobiSys, 2016.

[3] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi:
Decimeter level localization using wifi,” in SIGCOMM, 2015.

[4] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level
localization with a single WiFi access point,” in NSDI, 2016.

[5] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building
RF-Based User Location and Tracking System,” in INFOCOM,
2000.

[6] S. Yoon, K. Lee, and I. Rhee, “FM-based Indoor Localization
via Automatic Fingerprint DB Construction and Matching,” in
MobiSys, 2013.

[7] I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury,
“Did You See Bob?: Human Localization Using Mobile Phones,”
in MobiCom, 2010.

[8] T. H. Riehle, S. M. Anderson, P. A. Lichter, N. A. Giudice,
S. I. Sheikh, R. J. Knuesel, D. T. Kollmann, and D. S. Hedin,
“Indoor Magnetic Navigation for the Blind,” in EMBC, 2012.

[9] Y. Shu, K. G. Shin, T. He, and J. Chen, “Last-Mile Navigation
Using Smartphones,” in MobiCom, 2015.

[10] Y. Zheng, G. Shen, L. Li, C. Zhao, M. Li, and F. Zhao, “Travi-
navi: Self-deployable Indoor Navigation System,” in MobiCom,
2014.

[11] Z. Yin, C. Wu, Z. Yang, N. Lane, and Y. Liu, “ppNav: Peer-to-
Peer Indoor Navigation for Smartphones,” in ICPADS, 2016.

[12] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and
M. Wiseman, “Indoor location sensing using geo-magnetism,”
in MobiSys, 2011.

[13] M. Müller, “Dynamic time warping,” Information retrieval for
music and motion, 2007.

[14] C. Faloutsos and K.-I. Lin, FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. SIGMOD, 1995.

[15] Microsoft, “Microsoft Path Guide,”
https://aka.ms/mspathguide.

[16] Apple, “iBeacon for Developers - Apple Developer.”
[17] Intel, “Intel Wireless-AC 8x70 Product Brief (802.11mc

featured).”
[18] Microsoft, “Microsoft Indoor Localization Competition – IPSN

2016.”
[19] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A

Reliable and Accurate Indoor Localization Method Using Phone
Inertial Sensors,” in UbiComp, 2012.

[20] K. Liu, X. Liu, and X. Li, “Guoguo: enabling fine-grained indoor
localization via smartphone,” in MobiSys, 2013.

[21] M. Youssef and A. Agrawala, “The Horus WLAN location
determination system,” in MobiSys, 2005.

[22] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, “FM-
based Indoor Localization,” in ACM MobiSys, 2012.

[23] Y. Shu, C. Bo, G. Shen, C. Zhao, L. Li, and F. Zhao,
“Magicol: Indoor Localization Using Pervasive Magnetic Field
and Opportunistic WiFi Sensing,” IEEE JSAC, vol. 33, no. 7,
pp. 1443–1457, July 2015.

[24] V. Otsason, A. Varshavsky, A. LaMarca, and E. de Lara,
“Accurate GSM Indoor Localization,” in UbiComp, 2005.

[25] Y. Ma, X. Hui, and E. C. Kan, “3D Real-time Indoor
Localization via Broadband Nonlinear Backscatter in Passive
Devices with Centimeter Precision,” in MobiCom, 2016.

[26] Y. Ma, N. Selby, and F. Adib, “Minding the Billions: Ultra-
wideband Localization for Deployed RFID Tags,” in MobiCom,
2017.

[27] Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta, “Luxapose:
Indoor Positioning with Mobile Phones and Visible Light,” in
MobiCom, 2014.

[28] C. Zhang and X. Zhang, “Litell: robust indoor localization using
unmodified light fixtures,” in MobiCom, 2016.

[29] S. Zhu and X. Zhang, “Enabling High-Precision Visible Light
Localization in Today’s Buildings,” in MobiSys, 2017.

[30] C. Zhang and X. Zhang, “Pulsar: Towards Ubiquitous Visible
Light Localization,” in MobiCom, 2017.

[31] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen,
“Zee: Zero-effort Crowdsourcing for Indoor Localization,” in
MobiCom, 2012.

[32] S. Chen, M. Li, K. Ren, X. Fu, and C. Qiao, “Rise of the Indoor
Crowd: Reconstruction of Building Interior View via Mobile
Crowdsourcing,” in SenSys, 2015.

[33] Z. Yang, C. Wu, and Y. Liu, “Locating in Fingerprint Space:
Wireless Indoor Localization with Little Human Intervention,”
in MobiCom, 2012.

[34] M. Alzantot and M. Youssef, “CrowdInside: Automatic
Construction of Indoor Floorplans,” in ACM SIGSPATIAL GIS,
2012.

[35] R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang,
and X. Li, “Jigsaw: Indoor Floor Plan Reconstruction via Mobile
Crowdsensing,” in MobiCom, 2014.

[36] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang,
“Walkie-Markie: indoor pathway mapping made easy,” in NSDI,
2013.

