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Abstract—Controller Area Network with Flexible Data-rate
(CAN-FD) has been drawing considerable attention as the most
promising substitute of Controller Area Network (CAN) thanks
to its higher bandwidth, larger payload size, and physical-layer
compatibility with CAN. In particular, the physical-layer compat-
ibility allows legacy CAN-based Electronic Control Units (ECUs)
to share the same communication bus with CAN-FD-based ECUs.
However, CAN-based ECUs always treat a CAN-FD frame as an
erroneous frame due to the difference in frame format. This, in
turn, makes CAN-FD-based ECUs unable to communicate with
each other via CAN-FD frames. A straightforward solution to this
problem is to utilize the silent mode of the current CAN controller,
in which a CAN node does not transmit any frame including
error frames, but can receive CAN frames. However, a non-
negligible time overhead is required for each mode transition,
and hence degrades the schedulability of mixed CAN and CAN-
FD frame sets significantly. We propose a new algorithm, called
Priority Assignment with Mode Transition (PAMT), that minimizes
the required number of mode transitions by clustering frame
instances based on their frame type. Our evaluation results show
that PAMT can schedule 17–18% more mixed CAN and CAN-FD
frame sets than existing optimal priority assignment algorithms
for CAN.

I. INTRODUCTION

Controller Area Network (CAN) [28] is the de facto stan-
dard of current in-vehicle networks because of its robustness,
wide deployment, low resource requirement, and real-time
support. However, the advent of new functions to improve
the driver’s safety and comfort will make CAN unlikely to
meet in-vehicle communication requirements in the near future
[33]. To overcome the shortcomings of CAN, a new protocol,
Controller Area Network with Flexible Data-rate (CAN-FD),
has recently been proposed [29]. CAN-FD not only overcomes
the drawbacks of CAN but also allows use of existing/legacy
CAN infrastructures — e.g., Electronic Control Units (ECUs)
developed with CAN controllers and transceivers, CAN wires,
etc. — thanks to its physical-layer compatibility with CAN.
As a result, CAN-FD has been attracting significant attention
as the most promising substitute of CAN [34].

Even though CAN-FD-based ECUs can share the same
communication bus with CAN-based ECUs, legacy CAN
controllers, which do not support CAN-FD frame format,
cause a significant problem [21]. Whenever CAN controllers
receive a CAN-FD frame, they generate an error frame because
the CAN-FD frame is recognized as an erroneous frame due to
the difference between CAN and CAN-FD frame formats [29].
As a result, CAN-FD-based ECUs discard the CAN-FD frame
upon receiving an error frame in accordance with the CAN
protocol [28]. So, CAN-FD-based ECUs cannot communicate
with each other via CAN-FD frames, making it impossible

to realize the advantages of CAN-FD, such as relatively high
bandwidth and large payload size.

Recently, hardware [3, 19] and software [21] solutions have
been proposed to solve this problem. The hardware solutions
[3, 19] use an additional hardware component (e.g, NXP FD
Shield) which filters out CAN-FD frames before reaching
the CAN controllers. However, they are more expensive and
more difficult to deploy, than the software solutions. The
software solution [21] is cheaper than the hardware solutions,
but relies on the silent mode of CAN controller to prevent
the CAN controller from generating error frames. Thus, all
CAN controllers must switch their mode from normal mode to
silent mode at run-time before transmitting CAN-FD frames.
Also, the CAN controllers have to return to normal mode
after transmitting the CAN-FD frames to resume reception
of CAN frames. These mode transitions incur non-negligible
time overheads and hence negatively impact the schedulability
of mixed CAN and CAN-FD frame sets significantly. Thus,
the existing optimal priority-assignment algorithms for CAN
[5, 36] cannot find a schedulable priority order for the mixed
frame sets even when a schedulable priority assignment exists
for the mixed frame sets.

To remedy the above problem, we propose a new priority-
assignment algorithm, called Priority Assignment with Mode
Transition (PAMT), which minimizes the negative impact of
the silent mode-based solution on the schedulability of a given
set of mixed CAN and CAN-FD frames. PAMT reduces the
required number of mode transitions for the given set of mixed
frames via type-based clustering which groups frame instances
based on their type. We prove that PAMT is an optimal
priority assignment algorithm for mixed frame sets. We also
conduct extensive simulations to evaluate the effectiveness
of PAMT for mixed frame sets by comparing it with the
existing optimal priority-assignment algorithms for CAN. Our
simulation results show that PAMT effectively reduces the
required number of mode transitions, and thus PAMT can
schedule 17–18% more mixed CAN and CAN-FD frame sets
than existing optimal priority assignment algorithms for CAN.
This paper makes the following main contributions:
• Identify and analyze the negative impact of the software

(silent mode-based) solution on the schedulability of
mixed CAN and CAN-FD frame sets;

• Propose a new priority assignment algorithm, PAMT, to
minimize the negative impact of using silent mode on the
schedulability of mixed frame sets;

• Prove that PAMT is optimal priority assignment for mixed
frame sets; and



• Demonstrate via extensive simulations that PAMT effec-
tively reduces the required number of mode transitions
and outperforms the existing optimal priority-assignment
algorithms for mixed frame sets.

The rest of paper is organized as follows. Sections 2
and 3 present the background and the target system model,
respectively. Sections 4 and 5 describe the problem encoun-
tered in mixed CAN and CAN-FD systems and the existing
solutions, respectively. We present a new priority-assignment
algorithm, PAMT in Section 6 and discuss practical issues in
implementing PAMT in Section 7. Section 8 evaluates PAMT
in comparison with the existing optimal priority-assignment
algorithms. We discuss the related work in Section 9 and
conclude the paper in Section 10.

II. CAN PRIMER

A. CAN Arbitration

Multiple ECUs communicate on a shared CAN bus. If two
or more ECUs transmit CAN frames at the same time, the
transmission order of the CAN frames is determined in a
decentralized way by bit-wise arbitration using identifier (ID)
bits in CAN frames. When an ECU transmits a CAN frame,
one bit at a time, on the CAN bus, it monitors the value on
the CAN bus after transmitting each bit. Especially, during the
transmission of ID bits of a CAN frame, if the transmitted bit
value is recessive (1) and the monitored bit value is dominant
(0), the ECU loses the arbitration and stops its transmission,
and will try to transmit the CAN frame again when the bus
becomes idle.

B. CAN Controller Modes

Even though the CAN protocol [28] does not specify the
operation modes of CAN controller, the commercial CAN
controllers have similar operation modes. Below we briefly
introduce the two common operation modes.

Normal Mode is the basic operation mode. In this mode,
there is no limitation for an ECU to play a role as transmitter
or receiver. Thus, an ECU can transmit any type of frame (i.e.,
any of data, remote, error, and overload frame) and can also
generate an acknowledgement (ACK) signal. In this mode,
the error (transmit, receive) counters in a CAN controller are
activated.

Silent Mode is often called listen-only mode. In this mode,
an ECU cannot transmit any CAN frame including an error
frame and ACK signal on the CAN bus. However, the ECU
can receive any message on the CAN bus. Thus, this mode is
usually used by an application which requires bus monitoring.
In this mode, the error counters are deactivated.

III. MIXED CAN AND CAN-FD SYSTEM MODEL

A. Network Model

We consider a system consisting of multiple ECUs con-
nected via one shared CAN bus as illustrated in Fig. 1.
Some of the ECUs are equipped with CAN-FD controllers
and transceivers, while the others are equipped with CAN
controllers and transceivers. For convenience, we will use the

Fig. 1. Network Model

term ‘CAN-FD node’ (‘CAN node’) to represent an ECU
equipped with a CAN-FD (CAN) controller and a CAN-FD
(CAN) transceiver.

We say the system is in ’CAN mode’ when the CAN
controllers are in normal mode because only CAN frames
are transmitted on the bus in this mode. Likewise, we say
the system is in ’FD mode’ when the CAN controllers are in
silent mode. To avoid transmitting CAN-FD frames in CAN
mode, CAN-FD node does not enqueue the CAN-FD frames
in CAN mode. Because our approach send a special message
to trigger mode transition of CAN controllers, CAN-FD nodes
easily know the system state. System mode

Some may expect this mixed CAN and CAN-FD network
architecture to be short-lived and used only during the transi-
tion from CAN to CAN-FD, but this architecture would last for
a long time, because (1) a vehicle platform, once developed,
is utilized for a long time1; (2) the implementation cost of a
CAN node is cheaper than that of a CAN-FD node and the au-
tomotive industry seldom uses anything more than absolutely
needed to save cost; and (3) automotive manufacturers tend to
use already-verified modules/systems to meet the mandatory
requirements, such as safety.

B. Mixed Frame Model

We adopt the widely-used CAN frame model in [9, 18]
with an additional parameter indicating whether a frame is
CAN or CAN-FD frame. Thus, a frame is defined as Fi =

{Ti,Di, Ji, FDi,Ci} where Ti is the period of Fi , Di the relative
deadline of Fi; Ji the release jitter of Fi; FDi the type of Fi ,
FDi ∈ {0, 1} – if FDi = 0 then Fi is a CAN frame else Fi

is a CAN-FD frame; Ci is the transmission time of Fi and
depends on the data length of Fi and FDi .

C. Mixed Frame-Instance Model

F j
i is an instance of frame Fi , and hence inherits the

properties of Fi such as frame type and transmission time.
Thus, F j

i is defined as F j
i = {A

j
i ,D

j
i , Ji, FDi,Ci} where Aj

i

is the release time of F j
i and D j

i is its deadline such that
D j
i = Aj

i + Di .
We will assign priorities to frame instances in an mixed

frame instance set I:

I = {F j
i |∀i, j Aj

i < HP}

1According to a report by the Center for Automotive
Research, a developed platform lasts over 5 years on average
(http://www.cargroup.org/automotive-product-development-cycles-and-
the-need-for-balance-with-the-regulatory-environment/)



where HP = LCM{T1, . . . ,Tn} is the planning cycle (the least
common multiple of periods) of a given mixed frame set.

We use fi to represent a frame instance of priority i; fi has
a higher priority than fj if i < j, i.e., the lower the number,
the higher the priority.

IV. SCHEDULING MIXED CAN AND CAN-FD

A. Why Problem?

According to the CAN-FD specification [29], the format of
CAN-FD data frame is partially different from that of CAN
data frame to support higher bandwidth and larger payload
size as shown in Fig. 2. Due to this frame format difference,
CAN nodes always recognize CAN-FD frames as erroneous
frames (CRC error) and generates an error frame whenever
they receive a CAN-FD frame. Because of this incorrect error
detection, an ‘innocent’ CAN-FD frame will be retransmitted
by the sender and the retransmitted CAN-FD frame will again
be detected as an erroneous frame as illustrated in Fig. 3 (Left).
This makes the communication between CAN-FD nodes via
CAN-FD frames impossible, thus losing all the advantages of
CAN-FD. Both hardware [3, 19] and software (silent mode-
based) [21] solutions to this problem have been proposed
recently.

B. Hardware Solution

The hardware solutions [3, 19] require an additional hard-
ware component which filters out the CAN-FD frames by
inspecting FDF (FD Format) bit of all incoming frames in
front of the CAN controller as shown in Fig. 3 (Right).
Thus, CAN-FD nodes can communicate with each other using
CAN-FD frames without any software change. However, the
specialized hardware has to be attached to all the CAN nodes,
increasing implementation and deployment costs. A single
hardware component might be inexpensive, but the cost for
its mass production could be significant. Note that more than
100 million new vehicles are built and sold each year [1].

C. Software Solution

The software solution [21] relies on the silent mode of
the legacy CAN controllers. Before transmitting a CAN-FD
frame, an ECU has to transmit a special CAN frame (trigger
frame) that triggers a mode transition. All CAN nodes must

Fig. 2. Format of CAN data frame (Top) and format of CAN-FD data frame
(Bottom)

Fig. 3. (Left) Problem in scheduling mixed CAN and CAN-FD frames;
software (Mid) and hardware (Right) solutions

transit from normal mode to silent mode upon receiving a
trigger frame. A CAN-FD node then begins the transmission of
CAN-FD frames as shown in Fig. 3 (Mid). Since all the CAN
nodes are in silent mode, CAN-FD nodes can communicate
with each other using CAN-FD frames. A CAN-FD node
must thereafter send another trigger frame to wake up the
CAN nodes from silent mode to normal mode as shown
in Fig. 3 (Mid). Although the software solution can resolve
the problem without any additional hardware, it incurs non-
negligible delays for mode transitions.

Analysis of Mode-Transition Delay: The time overhead of
the software solution for a mode transition consists of two
parts; transmission time of a trigger frame and processing time
of a mode transition.

The transmission time of a trigger frame depends on the
CAN bus speed as well as its payload size. We must thus
define and use the format of a trigger frame to compute its
transmission time. So, a trigger frame is differentiated from
a normal data frame by assigning it a unique ID (of 11 bits)
and its payload size is set to 0. With this setting, if the CAN
bus speed is 500Kbps then the transmission time of the trigger
frame is 112µs.

The processing time of a mode transition depends on the
computing power of a CAN node. However, since a mode
transition is very simple (writing a value to a register in the
CAN controller and reading the changed value in the register),
there will be only a small processing time variation. We have
measured the processing time on our experimental platform
as shown in Fig. 4. We use Arduino [4] and MCP2515 CAN
controller [20] to build a CAN node. The processing time was
about 84µs on average, and hence a mode transition takes
about 200µs in total (500Kbps CAN bus speed).

Negative Impact of Time Overhead: Fig. 5 illustrates the
negative impact of the time overhead of a mode transition;

Fig. 4. Experimental platform



Fig. 5. Due to the time overhead, the delivery/completion time of a given
frame increases and a frame misses its deadline

Fig. 6. The coverage of existing optimal priority assignment with or without
the mode-transition overhead for given mixed frame sets.

the delivery/completion times of F1
2 , F

1
3 , and F1

4 increase,
missing the deadline of F1

4 . That is, the time overhead degrades
the schedulability of a given mixed frame set. According
to our simulation results (in Section 7), more than 20% of
given mixed frame sets become unschedulable due to the
overhead with the existing frame-level optimal priority as-
signment (AOPA [5]) and frame-instance-level optimal priority
assignment (NP-EDF [15]) as shown in Fig. 6.

V. PROBLEM STATEMENT

Placing CAN and CAN-FD nodes on the same network to
utilize the established CAN infrastructure is problematic as we
discussed earlier, and thus hardware and software solutions
have been proposed to solve the problem. The software
solution is more attractive than the hardware solution for a
cost reason, but it degrades the schedulability of mixed CAN
and CAN-FD frame sets due to its reliance on the mode
transitions of the existing CAN controllers. As a result, the
schedulability or coverage of the existing optimal priority
assignment degrades significantly, i.e., the software solution
with the existing optimal priority assignment fails to schedule
many mixed frame sets while meeting all of their frame
deadlines.

In order to enable the software solution to schedule more
mixed frame sets, we propose a new priority-assignment
algorithm, called Priority Assignment with Mode Transition
(PAMT), that minimizes the schedulability degradation by
minimizing the mode-transition overhead.

Frame Ti Di Ji FDi Ci

F1 5ms 0.75ms 0ms 0 272µs
F2 5ms 1ms 0ms 1 320µs
F3 5ms 1.5ms 0ms 0 272µs
F4 5ms 1.75ms 0ms 1 400µs

TABLE I
AN EXAMPLE FRAME SET

VI. PRIORITY ASSIGNMENT WITH MODE TRANSITIONS

We now present PAMT for a given mixed frame instance set,
which minimizes the coverage loss of the software solution.
We first introduce the basic idea of PAMT and then provide
its details.

A. Basic Idea of PAMT

Non-Preemptive Earliest Deadline First (NP-EDF) based
priority assignment and type-based clustering are the key of
PAMT.

PAMT assigns priorities to the frame instances in a given
mixed frame set based on NP-EDF, because NP-EDF is known
to be optimal for work-conserving system like CAN [15] if
there were no mode transition overhead. However, the software
solution may incur a high mode-transition overhead, and hence
PAMT performs type-based clustering of frame instances to
reduce the mode-transition overhead. For example, suppose
that priorities are assigned to the frame instances of a given
mixed frame in Table I. PAMT first assigns priorities to the
frame instances based on NP-EDF, but this incurs 3 mode
transitions, causing F1

4 to miss its deadline as shown in Fig. 7
(Top). To reduce mode transitions and to make the given
mixed frame set schedulable, PAMT performs type-based
clustering. As illustrated in Fig. 7 (Bottom), after the type-
based clustering, the same-type frame instances are clustered
and the number of mode transitions is reduced to 1. As a
result, there are no deadline misses with the clustered priority
ordering, making the given mixed frame set schedulable.

B. PAMT Algorithm

Even though the type-based clustering is a natural way
to reduce mode-transition overheads, it is challenging to
group frame instances so as to minimize the degradation of
schedulability, because the type-based clustering can increase

Fig. 7. (Top) Assign priorities to frame instances based on NP-EDF; (Bottom)
reducing mode-transition overheads via type-based clustering



Fig. 8. Flowchart of PAMT

the delivery/completion times of frame instances (e.g., F1
2 in

Fig. 7 (Bottom)), which can cause unexpected deadline misses.
Next, we will first give an overview of PAMT algorithm that

meets the above challenge, and then give a detailed account
of each part of the algorithm.

Algorithm Overview: Fig. 8 shows how PAMT operates on
a given mixed frame instance set I. PAMT selects a frame
instance according to NP-EDF and assigns priority i to the
frame instance as the first step. After selecting the frame
instance ( fi), PAMT checks several conditions to cluster fi
and fi−k , where fi−k is the nearest frame instance whose
type is the same as the type of fi . If all conditions are met,
PAMT performs the type-based clustering. Otherwise, PAMT
does not perform the type-based clustering but just checks
whether fi meets its deadline or not. If fi meets its deadline,
PAMT selects another frame instance to assign priority i + 1
according to NP-EDF. Otherwise, PAMT declares the given
mixed frame instance set I unschedulable and terminates the
process. This process will be repeated until all the frame
instances in I are assigned priorities. The pseudo-codes of
PAMT implementation are stated in Algorithm 1 and 2 in
Appendix section. Next, we will detail how to implement each
procedure.

Select fi according to NP-EDF: We need an off-line
assignment of priorities to the frame instances in a mixed
frame set I even though NP-EDF is an on-line scheduling
algorithm. So, we simulate a planning cycle or hyper-period
(HP) of I to assign priorities to the frame instances in I.
Usually, the periods of in-vehicle CAN frames are harmonic
[24], and thus an HP is not too long to simulate. According
to our measurements through on-board diagnostic (OBD) port,

Fig. 9. Assign priority to a frame instance based on NP-EDF

HP is 6s for 2015 Chevrolet Trax LT AWD.
To simulate an HP, we manage a virtual time tv and 3

data structures: mixed-frame instance set (I), competing set,
priority-assigned set. This simulation requires I to be sorted
in ascending order of frame instances’ arrival times and the
virtual time to be initialized with 0. Described below is how
the HP is simulated.

At time tv , if the arrival times of frame instances in I
are earlier than, or equal to tv , then the frame instances are
migrated from I to the competing set as shown in Fig. 9. After
the migration, PAMT sorts the competing set in ascending
order by the deadline, and then selects the frame instance with
the earliest deadline from the competing set to assign priority i.
If two or more frame instances have the same earliest deadline,
PAMT selects one of them that has the same type as fi−1 to
avoid a mode transition between fi−1 and fi . The chosen frame
instance is then moved to the tail of the priority-assigned set
as shown in Fig. 9. Note that the index of a priority-assigned
set indicates the priority of a frame instance.

Cluster fi and fi−k: Suppose PAMT selects the frame
instance (Fq

p ) to assign priority i and fi−1 has a different type
from Fq

p . Let fi−k be the nearest frame instance which has
the same type as Fq

p ( fi), and both fi−k and Fq
p belong to

the same busy period as shown in Fig. 10. Clearly, promoting
the priority of Fq

p to i − k + 1 reduces the number of mode
transitions since it eliminates the mode transition between
Fq
p and fi−1. However, this priority promotion is not always

possible. All of the following conditions must be met for the
priority promotion:

C1: fi−1.type , fi .type
C2: After promoting the priority of fi to i − k + 1, dp ≥

ep, ∀p ∈ {i − k + 1, . . . , i}
C3: ai ≤ ai−k+1 or ai ≤ ei−k

where ai is the arrival time of fi , di is the deadline of fi , and
ei is the completion time of fi .

C1 is obvious, and hence its discussion is omitted. If we
promote the priority of fi to i − k + 1, then it will delay the
completion of frame instances between fi and fi−k . If any of
these delayed frame instances violates its deadline, then the
priority promotion is not allowed. That is, the delayed frame
instances must finish before their deadlines and C2 must hold.

The last condition C3 comes from the unique characteristic
of CAN scheduling, non-preemptive work-conserving schedul-



Fig. 10. Type-based clustering. Promoting the priority of fi to i − k + 1 to
reduce the mode-transition overhead

Fig. 11. Violation of C3. (ai > ai−k+1 and ai > ei−k )

ing. Suppose ai > ai−k+1 and ai > ei−k as shown in Fig. 11.
We expect Fq

p to be scheduled right after the transmission
of fi−k by promoting the priority of Fq

p to i − k + 1 (dotted
line). However, fi−k+2 is scheduled before transmission of
Fq
p ( fi−k+1) (solid line), since there is no ready frame instance

at ei−k and fi−k+2 arrives before Fq
p arrives. So, clustering

fi and fi−k is impossible even though the priority of Fq
p is

promoted to i − k + 1. The priority promotion in this case
could rather increase the number of mode-transitions as shown
in Fig. 11.

After executing the above procedures, the virtual time is
updated to the completion time of the lowest-priority frame
instance. If there is no frame instance to be moved from
the mixed frame instance set to the competing set and if the
competing set is empty, then the arrival time of the frame
instance at the head of the instance set is assigned as the
next virtual time. For example, if the arrival time of the frame
instance at the head of the instance set is Aq

p , then the virtual
time becomes Aq

p .

C. Optimality of PAMT

We now prove that PAMT is the optimal priority assignment
for a given mixed frame instance set. That is, if PAMT cannot
schedule a given mixed frame instance set, then no other
priority assignment algorithm can find a schedulable priority
order for the mixed frame instance set.

Lemma 1. Let IA be the set of frame instances in a busy
period A. PAMT minimizes the number of mode transitions
for IA if no deadline miss is allowed.

Proof: Let Sk (Sk ⊂ IA) be the set of chosen frame instances
whose cardinality is k. We will show that PAMT minimizes
the number of mode transitions for Sk regardless of k if no
deadline miss is allowed. This way, we can prove Lemma 1
because Sk is the same as IA if k = |IA |.

1. (Initial, k = 1). Since there is only one frame instance,
there is no mode transition.

2. (Suppose this holds for k = i − 1). Assume that PAMT
minimizes the number of mode transitions for Si−1 without
any deadline miss.

3. (Show this holds for k = i). Let g be the ith frame
instance chosen by PAMT. To avoid any additional mode
transition, we need to schedule g right after the transmission
of a frame instance whose type is the same as that of g. Since
PAMT selects frame instances according to NP-EDF, we only
consider placing g right after fi−k which is the latest same-
type frame instance in Si−1. Let’s analyze the following three
cases.
Case 1. Suppose the arrival time of g is earlier than, or equal
to ei−k and placing g right after fi−k does not cause any
deadline miss. Then, we need to show that PAMT moves g to
right after fi−k . We know that C3 (ai ≤ ei−k) and C2 holds by
supposition. If C1 is not met, then fi−k = fi−1. So, g is already
placed at right after fi−k . Otherwise, all three conditions are
met and PAMT moves g to right after fi−k by performing type-
based clustering. Thus, g doesn’t incur any additional mode
transition, and hence PAMT minimizes the number of mode
transitions.
Case 2. Suppose the arrival time of g is larger than ei−k . For
this case, we need to show that additional mode transitions
incurred by g are unavoidable and only one additional mode
transition is incurred by g under PAMT. Since all the frame
instances scheduled after fi−k have different types from g,
the type of the frame instance scheduled right before g is
different from that of g. Thus, the additional mode transition
before transmitting g is unavoidable. In this case, PAMT does
not perform type-based clustering due to the violation of C3.
Instead, PAMT schedules g last, i.e., there is no frame instance
after g and the number of mode transitions incurred by g is
1. So, PAMT minimizes the number of mode transitions.
Case 3. Suppose the arrival time of g is earlier than, or equal
to ei−k and placing g right after fi−k causes at least one
deadline miss. In this case, we need to show that the additional
mode transitions incurred by g are unavoidable and only one
additional mode transition is incurred by g under PAMT. Since
placing g right after fi−k causes at least one deadline miss, g
must be scheduled after fi−k+1 to avoid any deadline miss.
However, the frames instances (from fi−k+1 to fi−1) have
different types from g. Thus, the additional mode transition
before transmitting g is unavoidable. In this case, PAMT does
not perform type-based clustering due to the violation of C2.
Instead, PAMT schedules g last, i.e., there is no frame instance
after g and the number of mode transitions incurred by g is 1.
Thus, PAMT minimizes the number of mode transitions. �

Theorem 1. PAMT is the optimal priority-assignment algo-
rithm for a mixed frame instance set I.

Proof: We prove this theorem by induction. Let K be the
number of priority-assigned frame instances and let gi be the
ith frame instance chosen by PAMT.



Fig. 12. Separation of CAN ID into priority and filter sections

1. (Initial, K = 1). Since there is only one frame instance,
every priority-assignment algorithm is optimal.

2. (Suppose this holds for K = i − 1). Assume that PAMT
is the optimal for Ii−1 = {g1, . . . , gi−1}.

3. (Show this holds for k = i). We will show that PAMT
is optimal for the mixed frame instance set Ii = {g1, . . . , gi}
by proving that there is no schedulable priority order for Ii if
PAMT declares Ii unschedulable. Let’s consider the following
two cases.
Case 1. The type of gi is the same as that of fi−1. In this
case, PAMT schedules gi last (after fi−1) because C1 is not
met. If gi meets its deadline, PAMT makes Ii schedulable.
However, if gi misses its deadline, we need to show that there
is no schedulable priority order for Ii . Suppose gi misses its
deadline. There are two ways to make gi schedulable: (1)
reduce the number of mode transitions during a busy period in
which gi resides; (2) schedule gi earlier than last. By Lemma
1, PAMT minimizes the number of mode transitions in a busy
period, so there is no way to reduce the number of mode
transitions. Thus, we only need to consider (2). Since PAMT
selects a frame instance according to NP-EDF, the frame
instances, which are transmitted after the arrival of gi , have
earlier deadlines than gi . This means that scheduling gi at any
possible instant causes at least one deadline miss. Thus, there
is no schedulable priority order for Ii , and hence PAMT is
optimal.
Case 2. The type of gi is different from that of fi−1, satisfying
C1. Thus, if both C2 and C3 are met, PAMT schedules gi right
after fi−k which is the nearest same-type frame instance in Ii−1
and every frame instance in Ii meets its deadline (C2), making
PAMT optimal. If either C2 or C3 is not met, PAMT schedules
gi last. If gi meets its deadline last, every frame instance
meets its deadline, thus making PAMT optimal. If gi misses
its deadline, we need to show that there is no schedulable
priority order for Ii . As in Case 1, there are two ways to
make gi schedulable and we only need to consider the second
case by Lemma 1. Also, like Case 1, scheduling gi at any
possible instant causes at least one deadline miss because the
frame instances transmitted after the arrival of gi have earlier
deadline than gi . Thus, there is no schedulable priority order
for Ii , hence making PAMT optimal. �

VII. PRACTICAL ISSUES

A. Assigning ID to frame instances

A CAN controller does not, in practice, accept all incoming
CAN frames to reduce the processing load of the host ECU
[25]. The CAN controller filters the incoming CAN frames
by comparing the IDs of incoming frames with the registered

Fig. 13. Insert a special CAN frame

values in its receive filter. However, the number of receive
filters is limited in a commercial CAN controller (e.g., only 6
filters in MCP2515 [20]). The limited number of receive filters
makes difficult to implement PAMT because PAMT assigns
priorities to frames instances, not frames. For example, when
a frame F1 is instantiated three times in a planning cycle, these
three different instances have different priorities/IDs. Then, to
receive all the instances F1, an ECU has to register all of the
three IDs in its receive filters.

To resolve this problem, we separate a CAN ID into priority
and filter sections, as shown in Fig. 12. The priority section
is only used to distinguish the priority of CAN frames. Thus,
the bits in the priority section are set as ‘don’t care bits‘ in
the mask registers2. Since the priority section is forwarded to
the filter section, it can be used in the ID arbitration process.
That is, the lower the number in the priority section, the higher
the priority in CAN frame scheduling. We can set the priority
determined by PAMT in the priority section directly. The filter
section is only used for filtering the incoming CAN frames.
We give a unique value to each frame (not frame instance)
and put the value in the filter section. For example, we give
a value of 1 to F1 and put the value of 1 to the filter section
of the instances of F1. As a result, an ECU can receive all
the instances of F1 by using only one (not multiple) receive
filter(s).

Let n be the number of bits in the priority section with which
all possible priorities must be covered. PAMT assigns a unique
priority to each frame instance in a given mixed-frame set I.
We also reserve whole odd numbers for a special CAN frame
to trigger a mode transition. A frame instance can only have
an even-numbered priority. For example, the priority of fi−1
is 0x10 and that of fi is 0x12. 0x11 is reserved for the trigger
frame (see Section 7.2). Hence, 2n−1 has to be larger than the
number of frame instances in I and we select the minimum n
that satisfies this requirement. Also, 211−n or 229−n has to be
larger than the number of frames in a given mixed-frame set
because we need to assign a unique value to each frame.

B. Triggering a Mode Transition

Triggering a mode transition precisely at the specified time
is important because a late/early mode transition can cause
severe problems. For example, a CAN node will generate an
error frame when the node receives a CAN-FD frame due

2When the CAN controller performs bitwise comparisons, it ignores
several bits which are set to the ‘don’t-care bits’ in a mask register.



to a late transition (from normal to silent). Also, a CAN
frame instance, which is sent by a CAN-FD node, may not
be delivered to a CAN node due to the late transition (from
silent to normal). To transmit a trigger frame at a precise time,
we mark frame instances after which a trigger frame must be
transmitted. For example, if fi−1 is a CAN frame and fi is
a CAN-FD frame, then we mark fi−1. Since frame instances
in the priority-assigned set are sorted in their transmission
order, we can easily determine which frame instances should
be marked.

At runtime, if an ECU queues a marked frame instance
in its transmission buffer (TxObject), it also queues a trigger
frame in TxObject. To transmit the trigger frame right after
the marked frame instance, the value in the priority section of
the trigger frame is larger by 1 than that of the marked frame
instance. For example, as shown in Fig. 13, the value in the
priority section of a marked frame instance ( fi−1) is 0x10 and
that of the corresponding trigger frame is 0x11. This way, the
ID of a trigger frame can be larger than that of any other frame
instances queued in TxObject. Thus, the trigger frame can be
transmitted right after the transmission of the corresponding
marked frame instance by winning the CAN bus arbitration.

C. Transient Error

Rare transient errors (bit error) can occur on CAN bus due to
electromagnetic interference (EMI). Since each transient error
is handled by generating error frames and retransmitting the
unsuccessful CAN frame, the error causes additional delays to
the delivery/response time of CAN frames. That is, the frame
instances scheduled under PAMT may miss their deadlines
due to the transient errors. To account the transient errors,
we compute the maximum possible delay to fi caused by the
transient error (αtc

i ) and reflect the delay into the deadline.

αtc
i = η(λ, R, di) × E

where λ is the maximum transient error rate determined during
the design phase of a vehicle according to the knowledge of
the worst environment in which the vehicle operates [23], R
is the reliability requirement of a vehicle system, η(λ, R, di) is
the maximum number of transient errors possible within di ,
and E is the error recovery time [8]. Here, we compute N =
η(λ, R, di) under the assumption that the process of transient
errors is Poisson, as commonly used for CAN transient errors
[8, 6]:

N = argmin
Zm

1 −
Zm∑
Z=0

p(Z, di)

subject to 1 −
Zm∑
Z=0

p(Z, di) ≤ R.

(1)

where p(Z, di) is the probability of Z errors within di .

p(Z, t) =
e−λt (λt)Z

Z!
. (2)

D. Unsynchronized Clock

Since there is no global clock on CAN, CAN frames are
triggered according to the local time clock of each ECU.
However, the local clocks are not synchronized with each
other, and thus there is a clock drift/skew between ECUs.
Unfortunately, this clock drift may alter the scheduling order
of messages at runtime. For example, if the maximum drift on
an ECU is δ and fi and fj (i < j) are sent by different ECUs
and ai + δ > aj − δ, fj could be transmitted before fi .

Because the runtime change in scheduling order can incur an
additional delay to the delivery/response time of CAN frames,
the frame instances scheduled under PAMT may miss their
deadlines. Thus, as in the previous subsection, we compute the
maximum possible delay to fi caused by the unsynchronized
clocks (αuc

i ) and account for the delay in the deadline:
Here we assume that a synchronization protocol [30] for

CAN is applied, and thus the maximum drift (δ) is limited and
the arrival time range of fi is also limited; ai ∈

[
ai−δ, ai+δ

]
.

According to [30], the maximum drift can be limited by 20
µs, which is much smaller than the transmission time of a
CAN frame. So, we assume that δ < min Ci

i∈F
and δ < E .

1) Finding ζi: Suppose Ii,rev = { fj |i < j & ai+δ ≥ aj−δ}.
Then, the frame instances in Ii,rev can be transmitted before
transmitting fi due to the clock drift at runtime unlike the
deterministic scheduling order by PAMT.

Ii,rev,di f f is the set of frame instances whose type is
different from the type of fi in Ii,rev , and Ii,rev,same is the
set of frame instances whose type is the same as that of fi in
Ii,rev .

Lemma 2. fi is always transmitted before fj if fj ∈ Ii,rev,di f f .

proof: Suppose the type of fi is different from that of fj .
Then, there is at least one marked frame instance fk (i ≤ k <
j) to trigger a mode transition. If ak + δ > aj − δ, fj can be
queued before queuing fk . However, the mode is not changed
yet at the arrival of fj . Thus, fj cannot be transmitted before fk
because a FD frame cannot be queued in the CAN mode and a
CAN frame cannot be transmitted in the FD mode. If fi arrives
earlier than fk , fi is transmitted before fj . If fk arrives earlier
than fi (in the case of fi + δ > fk − δ), fk can be transmitted
before fi . Since δ < min Ci

i∈F
, fi is guaranteed to arrive during

the transmission of fk . Thus, fi is transmitted right after the
transmission of fk . Hence, fi is transmitted before fj .

Lemma 3. The maximum delay to fi caused by the reversed
order between fi and fj ∈ Ii,rev,same is max cj

fj ∈Ii,rev,same

+ δ where

cj is the transmission time of fj .

proof: Suppose the type of fi is the same as that of fj , and fj
is transmitted before fi at runtime due to the unsynchronized
clocks. Because fi is guaranteed to arrive during the transmis-
sion of fj , fi is always transmitted right after the transmission
of fj . The worst-case scenario which contributes the maximum
delay to fi is that fj arrives at ai +δ− ε and fi arrives at ai +δ
where ε is a very small. In the worst case, the delay to fi is



cj + δ. Thus, the maximum delay to fi caused by the reversed
order between fi and fj ∈ Ii,rev,same is max cj

fj ∈Ii,rev,same

+ δ.

Collorary 1. αuc
i is max cj

fj ∈Ii,rev,same

+ δ

proof: By Lemma 2, if fj ∈ Ii,rev,di f f , fi is always trans-
mitted before fj . In such a case, the maximum delay of fi due
to the unsynchronized clocks is δ. Since δ ≤ max cj

fj ∈Ii,rev,same

+ δ

(by Lemma 3), αuc
i is max cj

fj ∈Ii,rev,same

+ δ.

E. Sporadic Frames

As described in Section III.C, frames arrive periodically.
However, in practice, some frames can be triggered by asyn-
chronous events or vehicle conditions, and arrivals of such
messages can be represented with a sporadic frame model
(with minimum inter-arrival times). Since our approach is
designed with a periodic model, sporadic frames should be
converted to periodic frames by using their minimum inter-
arrival time as the period. Suppose, for example, transmitting
a message which includes brake pedal pressure is triggered by
an event that a vehicle driver is pressing the brake pedal. This
message should be converted to a periodic message. Thus,
a null message (when the driver does not push the brake
pedal) or a message that contains the brake pedal pressure
(when the driver presses the brake pedal) should be transmitted
periodically.

VIII. EVALUATION

We have conducted extensive simulations to evaluate PAMT
in comparison with NP-EDF, optimal frame-instance level
priority assignment, and Audsley’s Optimal Priority Assign-
ment (AOPA), the well-known optimal frame-level priority
assignment. We focus on the schedulability degradation of
each priority assignment algorithm by measuring its coverage.
We also measure the coverage of the optimal priority assign-
ments when we use the hardware-based solution by ignoring
the mode-transition overhead (labeled with AOPA* and NP-
EDF*). The coverage of the hardware-based solution is the
best achievable because AOPA and NP-EDF are proven to
be optimal for CAN scheduling. We also evaluate PAMT-
R, which accounts for transient errors (Section VII.C) and
unsynchronized clocks (Section VII.D) by using a virtual
deadline di,r = di − αtc

i − α
uc
i instead of di . To compute di,r ,

we set λ = 0.01/s, R = 2.6 ∗ 10−9/s (SIL in IEC-61508 [2])
and δ = 20µs.

A. Simulation Setup

The Benchmark for Simulations: We use NETCARBENCH
[7] (powertrain configuration), which is a widely-used CAN
benchmark. Since its latest version does not yet support the
CAN-FD frame, we slightly modified NETCARBENCH to
support CAN-FD. If the payload of a generated frame is larger
than 8, then the type of the frame is CAN-FD. Otherwise, we
assign the frame type randomly. For our simulation, we gen-
erated 10,000 mixed frame sets from NETCARBENCH. We

Fig. 14. Coverage of each priority assignment algorithm for the generated
frame sets.

assume that the jitter of each frame is 0 and the transmission
of all the frames begins at time 0.

Simulation Configuration: 500Kbps is used as the bit-rate
for the arbitration phase and 2Mbps for the data phase, because
500Kbps is commonly used for the powertrain network [13]
and up to 2Mbps is supported by the current commercial CAN-
FD transceiver which satisfies the automotive OEM’s EMC
requirement [14]. Also, we use 200µs as the mode-transition
overhead according to our experimental measurement.

In addition, we use 11-bit IDs to simulate AOPA and
AOPA* because there are typically about 100 different frames3

for a single in-vehicle CAN bus [24]. and 11-bit ID suf-
fices for that number. However, we use 29-bit IDs to simu-
late PAMT, PAMT-R, NP-EDF, and NP-EDF* because these
frame-instance-level priority assignment algorithms require
multiple IDs for a frame and 11 bits are not enough.

B. Results and Analysis

Coverage: is defined as the percentage of given frame sets
whose schedulable priority order is found by each priority
assignment algorithm. We evaluate the coverage of each
priority assignment algorithm for the generated mixed frame
sets. Fig. 14 plots the simulation results. As expected, PAMT
outperforms the existing optimal priority assignments when
the software solution is used. PAMT can find a schedula-
ble priority order for 17–18% more mixed frame sets than
the existing optimal priority assignments when we use the
software solution. This is because PAMT effectively reduces
the negative impact of mode transitions on schedulability by
performing type-based clustering. Thus, for 17–18% addi-
tional mixed frame sets, we can use the economic software
solution with PAMT. PAMT-R has 0.8% less coverage than
PAMT because each frame has the reduced deadline. Also,
the software solution is shown to have lower coverage than
the hardware solution because the latter is not affected by
the negative impact of mode transitions on schedulability.
The coverage difference between PAMT and AOPA* (the
maximum achievable coverage using 11-bit ID) is about 8%.
Also, the coverage difference between PAMT and NP-EDF*

3We observed 96 different messages in 2015 Chevorlet Trax LT AWD
through the On Board Diagnostic (OBD) port.



Fig. 15. Coverage of each priority assignment algorithm while varying
utilization.

(the maximum achievable coverage using 29-bit ID) is about
2%. Because 29-bit ID is common in trucks [32], PAMT is
now more useful for trucks, although this may change in
future. Interestingly, the coverage of NP-EDF is lower than
the coverage of AOPA due to its use of 29-bit ID.

Varying utilization: Fig. 15 shows the coverage of each
priority assignment algorithm while varying the utilization
by the generated frame set. PAMT outperforms the existing
priority assignment algorithms regardless of the utilization by
the mixed frame set when we use the software solution. In
particular, Fig. 15 shows that PAMT can cover about over
97% of mixed frame sets if the utilization by the mixed frame
sets is in the range of 30–40%. The number is 52% higher than
NP-EDF and 46% higher than AOPA. The number of mode
transitions incurred by each priority assignment algorithm is
shown in Fig. 16. The number of mode transitions incurred by
PAMT is much less than those incurred by AOPA and NP-EDF
and the gap in the number of mode transitions between PAMT
and the others becomes larger as the utilization of mixed frame
sets increases. For example, the number of mode transitions
incurred by AOPA is 1.6x larger than that by PAMT in the
range of 10–20% and the gap becomes 2.5x in the range of 60–
70%. Thus, the coverage improvement of PAMT over existing
optimal priority assignments comes from the reduced number
of mode transitions.

IX. RELATED WORK

Priority assignment impacts greatly the schedulability of
a given CAN frame set [11]. Representative frame level
fixed priority assignment algorithms are Deadline minus Jitter
Monotonic Priority Order (DJMPO) [36] and AOPA [5].
AOPA is proven to be optimal [26] if there is no priority
inversion which could occur for various practical reasons
[9, 17, 16]. Since frame-level fixed priority is less efficient
than frame-instance-level fixed priority in utilization, use of the
frame-instance-level fixed priority has been proposed [22, 35].
The representative frame-instance-level fixed priority assign-
ment algorithm is NP-EDF, which is proven to be optimal
among work-conserving scheduling algorithms for periodic
tasks [15].

As in a typical electronic system, signals on CAN are
interfered with by EMI [27], which may induce bit errors

Fig. 16. The number of mode transitions required by each priority-assignment
algorithm in a planning cycle (X-axis: utilization)

by distorting the signals. Since error recovery delays the
delivery of CAN data frames, it impacts the schedulability
of a given CAN frame set. Thus, Davis et al. [10] proposed
a robust priority assignment algorithm which not only is
optimal but also maximizes the number of successive tolerable
transmission errors.

Since assigned IDs of the existing frame sets usually do
not change even though new frames are introduced for new
functions (e.g., updating an ECU), researchers focused on the
backward compatibility of priority assignment. Schmidt [31]
proposed a robust priority-assignment algorithm for a frame
set when some frame IDs are fixed. Davis et al. [11] showed
the existence of flaws in [31] when there is not an enough
gap between fixed IDs and proposed a correction of robust
priority assignment. Davis et al. [12] also consider optimal
priority assignment under mixed use of FIFO queues and
priority queues.

Previous studies of priority assignment for CAN focused
on the single-type frame set, and thus they are agnostic of
mode-transition overhead which must only be accounted for
mixed frame sets. Therefore, the priority order determined by
existing priority-assignment algorithms may incur many mode
transitions. On the other hand, PAMT is aware of the mode-
transition overhead, and clusters frame instances based on their
type to minimize the mode-transition overhead.

X. CONCLUSION

Utilizing the silent mode of the existing CAN controller
is a simple solution to solve the CAN and CAN-FD coex-
istence problem. However, it is non-trivial to minimize the
negative impact of mode-transition overhead of the silent
mode. To minimize the negative impact, we have proposed a
new priority-assignment algorithm, called PAMT. PAMT min-
imizes the negative impact of mode transitions by clustering
the frame instances based on their type, and is shown to be
the optimal priority assignment for a mixed frame set. Also,
our extensive simulation results show that PAMT outperforms
existing priority-assignment algorithms in minimizing the neg-
ative impact of mode-transition overhead.
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XI. APPENDIX

A. Pseudocodes of PAMT Implementation

Algorithm 1: PAMT
Input : I: Mixed frame instance set

omode: Mode transition overhead
Output: Ipas: Priority-assigned frame instance set

1 tv ← 0; // Virtual time
2 Ics ← {}; // Competing set
3 Ipas ← {}; // Priority assigned set
4 N ← |I |;
5 while N , |Ipas | do
6 isMigrated ← f alse;
7 sort(I); // By arrival time — ascending order
8 for k ← 0 to |I | − 1 do
9 if I[k].arrival_time ≤ tv then

10 Ics[|Ics |] ← I[k];
11 I[k] ← null;
12 isMigrated ← true;
13 end
14 end
15 if isMigrated = f alse and |Ics | = 0 then
16 tv ← I[0].arrival_time;
17 continue;
18 end
19 sort(Ics); // By deadline — ascending order
20 fsel ← Ics[0]; // fsel : selected frame instance by NP-EDF
21 idxsel ← 0;
22 for k ← 1 to |Ics | − 1 do
23 if Ics[k].deadline = fsel .deadline and

Ipas[|Ipas | − 1].type = Ics[k].type then
24 fsel ← Ics[k];
25 idxsel ← k;
26 end
27 end
28 Ipas[|Ipas |] ← fsel;
29 Ics[idxsel] ← null;
30 if Cluster(Ipas) = true then
31 tv ← tv + fsel .transmission_time;
32 end
33 else
34 tv ← tv + fsel .transmission_time;
35 if Ipas[|Ipas | − 1].type , Ipas[|Ipas | − 2].type

then
36 tv ← tv + omode;
37 end
38 Ipas[|Ipas | − 1].completion_time← tv;
39 if Ipas[|Ipas | − 1].completion_time >

Ipas[|Ipas | − 1].deadline then
40 return null; // Declare unschedulable
41 end
42 end
43 end
44 return Ipas

Algorithm 2: Cluster
Input : Ipas: Priority-assigned frame instance set

1 i ← |Ipas | − 1;
2 // Check C1
3 if Ipas[i].type = Ipas[i − 1].type then
4 return false; // Already clustered
5 end
6 isSameT ypeE xist ← f alse;
7 k ← 0;
8 for j ← 2 to |Ipas | + 1 do
9 if Ipas[i].type = Ipas[i − j].type then

10 isSameT ypeE xist ← true;
11 k ← j;
12 break;
13 end
14 end
15 if isSameTypeExist = false then
16 return false;
17 end
18 // Check C3
19 if Ipas[i].arrival_time > Ipas[i − k + 1].arrival_time

and Ipas[i].arrival_time > Ipas[i − k].completion_time
then

20 return false;
21 end
22 // Check C2
23 for p← k − 1 to 0 do
24 if Ipas[i − p].completion_time +

Ipas[i].transmission_time > Ipas[i − p].deadline
then

25 return false;
26 end
27 end
28 temp← Ipas[i];
29 for p← 0 to k − 1 do
30 Ipas[i − p] ← Ipas[i − p − 1];
31 Ipas[i − p].completion_time← Ipas[i −

p].completion_time + temp.transmission_time;
32 end
33 Ipas[i − k + 1] ← temp;
34 Ipas[i − k + 1].completion_time←

Ipas[i − k].completion_time + temp.transmission_time;
35 return true;
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