
Spatio-Temporal Capsule-based Reinforcement Learning for
Mobility-on-Demand Network Coordination

Suining He
The University of Michigan–Ann Arbor

suiningh@umich.edu

Kang G. Shin
The University of Michigan–Ann Arbor

kgshin@umich.edu

Abstract
As an alternative means of convenient and smart transportation,
mobility-on-demand (MOD), typified by online ride-sharing and
connected taxicabs, has been rapidly growing and spreading world-
wide. The large volume of complex traffic and the uncertainty of
market supplies/demands have made it essential for manyMOD ser-
vice providers to proactively dispatch vehicles towards ride-seekers.

To meet this need effectively, we propose STRide, an MOD
coordination-learningmechanism reinforced spatio-temporallywith
capsules. We formalize the adaptive coordination of vehicles into a
reinforcement learning framework. STRide incorporates spatial and
temporal distributions of supplies (vehicles) and demands (ride re-
quests), customers’ preferences and other external factors. A novel
spatio-temporal capsule neural network is designed to predict the
provider’s rewards based onMOD network states, vehicles and their
dispatch actions. This way, the MOD platform adapts itself to the
supply-demand dynamics with the best potential rewards. We have
conducted extensive data analytics and experimental evaluation
with three large-scale datasets (∼21 million rides from Uber, Yellow
Taxis and Didi). STRide is shown to outperform state-of-the-arts,
substantially reducing request-rejection rate and passenger wait-
ing time, and also increasing the service provider’s profits, often
making 30% improvement over state-of-the-arts.
CCS Concepts
• Information systems→ Spatial-temporal systems;Datamin-
ing;
Keywords
Mobility-on-demand, ride-sharing platform, smart transportation
coordination, reinforcement learning, capsule network, smart city.
ACM Reference Format:
Suining He and Kang G. Shin. 2019. Spatio-Temporal Capsule-based Re-
inforcement Learning for Mobility-on-Demand Network Coordination .
In Proceedings of the 2019 World Wide Web Conference (WWW ’19), May
13–17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3308558.3313401

1 Introduction
By integrating online information of rides demands and supplies,
transit network operation and communication, cooperativemobility-
on-demand (MOD) systems, such as Uber, Lyft, Didi and connected
taxicabs, have provided unprecedented transportation alternatives.
This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313401

Given its significant economic and social values, we should
coordinate the MOD operations, i.e., dispatching (matching) sup-
plies (i.e., available vehicles/drivers) towards demands (i.e., pas-
sengers/requesters/riders). A coordination policy/strategy usually
uses current observations to determine where and when to relo-
cate vehicles for maximization of MOD service providers’ profit
and satisfaction of riders’ desire/requirement. During each phase
of coordination, the idle/vacant MOD vehicles are dispatched to-
wards different service zones (a discretized city map), and matched
with their nearest requesters. The resultant rides also “connect” the
zones, forming an MOD network.

However, increasingly complex urban traffic networks and mis-
coordination of demand-supply dynamics often under/over-serve
many service zones, thus degrading the providers’ profitability, ser-
vice quality, passenger satisfaction and drivers’ enthusiasm. The
problem is particularly severe during rush hours when people travel
in similar directions between home and work. Despite numerous ef-
forts and enormous historical ride data available, designing anMOD
coordination mechanism remains to be difficult for the following
reasons.

First, due to urbanization and MOD market expansion, the static
coordination based upon old data in some zones cannot be applied
and scaled throughout the dynamically-changing MOD network,
thus calling for an adaptive mechanism. Second, coordination of
complex MOD supplies and demands makes sequential and long-
term effects. A single vehicle dispatching action may introduce
profound consequences to the environment and other vehicles,
that cannot be easily foreseen by a heuristic coordination mecha-
nism. Third, there usually existsmulti-level periodicity within traffic
routines, commute patterns, annual festival events, and ride pref-
erences. Weather can also affect the ride requests, which will, for
example, surge during rainy hours. Without comprehensive model-
ing of these factors, the conventional coordination methods cannot
easily and accurately capture the repeating patterns.

We meet these challenges by proposing STRide, deep reinforce-
ment learning (RL) based on spatio-temporal capsules for coordi-
nating the MOD network. Specifically, we design an RL framework
with a data-driven emulator, adjusting the coordination policy with
an online self-adapting mechanism. A state in this RL represents
the spatial MOD demand, supply and external temporal factors, and
each action there represents the zones that vehicle can be relocated
to. The multi-objective reward function characterizes the platform
profitability, cost and service coverage, whose long-term values are
maximized by STRide. The framework also takes into account the
contextual scopes of vehicles and travel time estimation to emulate
a fine-grained learning environment.

Since it is difficult to specify the long-term coordination effects
on future demands and supplies, we design a novel capsule-based

https://doi.org/10.1145/3308558.3313401
https://doi.org/10.1145/3308558.3313401

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Suining He and Kang G. Shin

neural network to comprehensively learn the relationship between
observed states, coordination actions and potential rewards. This
way, STRide foresees an upcoming demand–supply imbalance and
proactively provides optimal decisions, achieving fine-grained coor-
dination. STRide incorporates the spatial demand-supply dynamics,
temporal external influence factors and ride preferences to capture
the complex periodicity in MOD ride demands. The optimized coor-
dination policy is stored in the capsule network for efficient online
use by service providers.

This paper makes the following three major contributions:
• Comprehensive Learning Framework for Proactive & Efficient MOD
Coordination: We have formalized the dynamic vehicle dispatch-
ing and rides matching into a spatio-temporal RL framework.
STRide accounts for spatial and temporal distributions of sup-
plies and demands, ride preferences and other external factors.
Using double deep Q-network (DQN) learning and contextual
scope processing, STRide learns how to dispatch each partici-
pating vehicle effectively and efficiently.
• Spatio-Temporal Capsule-based Policy Learning: Within the RL
framework, we integrate a novel spatio-temporal capsule neural
network, accurately and efficiently mapping the observed MOD
network states, vehicles and dispatch actions to the provider’s
rewards. This way, STRide finds the spatio-temporally adaptive
coordination policy with the best platform profitability, service
quality, passenger satisfaction and driver incentivization.
• Extensive Data-driven Analytics & Evaluation: Based on above,
we have conducted large-scale (a total of 21,150,163 rides) data
analytics and comprehensive experimental evaluation of STRide.
Our results based on data of Uber/Yellow Taxi, New York City
and Didi, Chengdu, China show STRide to outperform other
state-of-the-arts, lowering request reject rate, and passenger
waiting time, and also enhancing the platform’s profits (often
making more than 30% improvement over the state-of-the-arts).

2 Problem Formulation & System Overview
2.1 Preliminary
Zones, Rides & MOD Network: A large-area city map is dis-
cretized into R zones, Z = {z1, . . . , zR }, while balancing between
coordination granularity and computation efficiency. The shape
and size of a zone can be subject to the performance goal and plat-
form customization. In our prototype, the entire map is discretized
into Llon ×Llat rectangular “zones”, the shape of each of which may
be altered to reflect the existence of buildings, rivers, roads, etc.

Let T(i, j) be the set of directed MOD rides from zi to zj , and
T = {T(i, j); i, j = 1, . . . , zR }. The MOD network is then a directed
graph G(Z,T) and formed by the end-to-end (e2e) MOD rides T
across R different zones. The thus-formed G(Z,T) serves as the
environment of our coordination learning.

Discretization ofTimeDomain: The data structure for STRide’s
training is prepared by following the practice in RL framework [29]
and slicing ride records T (sorted by their pick-up timestamps) into
Nepi identical non-overlapping chunks. Each chunk, or episode, is a
time period within a day, during which the MOD platform maxi-
mizes the financial returns. Similarly to the map discretization, the
time domain of each trip chunk is discretized into Nstep equal inter-
vals (30min each in our prototype). Each interval k (k ∈ {1, . . . ,K})

corresponds to a learning step. Then, for each zi in a step k , we let
D
(k)
i be the number of aggregated pick-ups (requests).
Vehicles: Considering the connectivity of theMODnetwork, the

service provider monitors the status ofM(k) participating vehicles
in step k . Each of these vehicles, denoted asvm (m ∈

{
1, . . . ,M(k)

}
),

contains its unique identifier, the current location (longitude and
latitude loc; zone zi), availability (vacant or not), and destination
of ride/dispatch, if any. Each vehicle is in one of the following 4
states: dispatching (relocating to another zone for potential pick-
ups), matching (heading to the pick-up location after accept), oc-
cupied (between pick-up and drop-off), and vacant (staying in the
same zone after “dispatching” or “occupied” is over). Besides, each
vm is associated with estimated time of arrival, ETAm .

2.2 Problem Formulation
Coordination Problem: Given the spatio-temporal distributions
of MOD ride pick-ups and drop-offs, we would like to proactively
decide on where and when each available vehicle should be coordi-
nated to serve ride requests so as to maximize the service provider’s
profitability and passenger-perceived service quality.

This problem is characterized with the following five major
components: {S,U,τ ,π ,Q}.

a) State S: We consider that an MOD network or environment
is coordinated by a web-based/online coordination center, or an
agent, connecting a large group of spatially-distributed vehicles and
passengers with mobile apps. The state space S(k) that the agent
observed at the learning step k consists of:
• MOD vehicles V: the 2-D (an Llon × Llat matrix) distribution
of all vehicles vm ’s. From V, we derive the 2-D distribution of
vacant/available vehicles, denoted as A. Both V and A capture
the participating vehicles.
• Departures/demands/pick-ups D: the 2-D distribution (Llon ×Llat)
of requests or departures of passengers.
• External factors E: Since the different events (e.g., holidays or not),
meteorological metrics (e.g., wind speed) and weather conditions
(e.g., rainy or snowy) affect the demand/supply [38] as well as
the resultant coordination performance, we form them into an
Lext-D vector as the additional hints for model training.

We model distributions ofD,A and V into frames of heatmaps (each
is an Llon × Llat matrix; warmer colors indicate more passenger
requests or vehicles) such that they can be processed by our spatio-
temporal learning algorithm as input features. At each step k , we
find the comprehensive state or observation S(k) as the important
spatial features characterizing the MOD environment, i.e.,

S(k) =
{
D(k),A(k),V(k),E(k)

}
. (1)

b) Action U: An action is a coordination solution. The action
spaceUm for each vehiclevm is defined as a set of discrete transits
to any of its neighboring rectangle zones, plus staying where it is.
Let L (≤ R) be the number of neighboring zones that a vehicle can
relocate to. For eachvm , we considerUm of size (L+ 1) is centered
at her/his current zone, and dml represents a destination zone l
relative to the current center. Then, the dispatch action space for
vm isUm = {dm0,dm1, . . . ,dml , . . . ,dmL}, where dm0 represents
the action of staying where it resides.

c) Reward τ : Given the settings of states S and actions U,
each of M(k) available vehicles dispatched by the agent, arrives

Spatio-Temporal Capsule-based Reinforcement Learning
for Mobility-on-Demand Network Coordination WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Online Coordination Offline Learning

Spatio-Temporal
Capsule
Network

External
(Weather,

Event, etc)

Rides

Feature
Processing

MOD Environment

Spatio-Temporal
Capsule
Network

{D, A, V, E}

S

U
3) STRide Model

1) Feature Extraction
& Processing

Double
DQN

2) Learning
Emulator

Vehicle
Contextual

Scope

Ride
Preference

ETA
Model

Dispatch, Match

Q-Network

MOD Vehicle
Coordination

Fig. 1: The system framework of STRide.
at the next state, and is returned with an immediate reward, i.e.,
S ×U × S → τ . Specifically, each vehicle (driver)m at learning
step k is associated with an instant reward function τ (k)m . τ (k)m takes
into account the platform revenues and coordination cost (often
subsidized by MOD service providers [11]), such that maximizing
individual rewards can also maximize the platform profitability
(Sec. 3.2). Driver incentivization and passenger satisfaction are also
figured in the fine-grained multi-objective formulation.

d) Policy π & Long-termValueQ: Intuitively, theMOD coordi-
nation actions have long-term effects upon the vehicle distributions.
STRide aims at maximizing the expected reward in each episode,
and mitigating the demand-supply imbalance. From the platform’s
perspectives, this coordination policy, as a joint mapping function,
not only predicts gaps between future demands and supplies based
on current market status, but also yields the highest reward by
relocating idle vehicles. Specifically, at each step k , we find the
subsequent cumulative returns based on a certain policy of coor-
dination S ×U → π , with a weight parameter γ ∈ (0, 1) that
differentiates rewards in terms of temporal proximity. For each vm ,
at step k STRide expects the long-term values in the remaining
steps of the episode as

Q
(k)
m = τ

(k)
m + γτ

(k+1)
m + · · · + γK−kτ

(K)
m . (2)

Then, the optimal value function Q∗m (·) is the maximum expected
long-term reward of all candidate dispatch decisions, i.e.,

Q∗m

(
S(k),U(k)

)
, max

π
E
[
Q
(k)
m

���S(k),U(k),π] , (3)
which fulfills the Bellman equation [29] for iterative learning as
Q∗m

(
S(k),U(k)

)
= ES′

[
τ
(k)
m + γmax

U′
Qm

(
S′,U ′

) ���S(k),U(k)] , (4)
whereS′ andU ′ represent the given state and action of subsequent
step (k + 1). Note that vehicles with the same spatio-temporal
states are considered homogeneous. In other words, vehicles in the
same zone and step (time interval) share the same coordination
policy and value function. Due to the difficulty of specifying the
sophisticated long-term value Q, we design a spatio-temporal deep
capsule network as the Q-network (Sec. 4) to store policy π .

2.3 System Framework & Flow
Fig. 1 overviews the STRide’s system design with two phases, of-
fline learning and online coordination. The entire system consists of
following 3 major components:

1) Feature Extraction & Processing: Given the MOD data of
rides from mobile apps and other external factors from the MOD
(online) environment (Sec. 3.1), STRide first extracts features, struc-
turing the batched data into states S as Eq. (1) for ease of the fol-
lowing offline emulation and model learning. The historical (offline
learning) and real-time (online coordination) external knowledge
can be obtained via weather station records or Internet [38].

2) Learning Emulator: In our RL design, the emulator [29, 31]
provides the offline and emulated environment derived from real-
world ride data and the city map for model training. Its design
(Sec. 3.2) accounts for the ride preferences, the contextual scope
for each individual vehicle. Meanwhile, STRide finds the estimated
time of arrival (ETA) for each matching or dispatching transit. Note
that the emulator can be cold-started by several episodes of rides
without STRide’s coordination. Historical ride data can also be used
for offline learning to train an initial model of STRide, .

3) STRide Model: The environment states, the agent’s coordi-
nation actions and resultant rewards at each step are used to train
our deep capsule network model for policy learning, minimizing
the Q estimation loss. During model training, the emulator is re-
set given each episode of ride data, while the model is updated
w.r.t. each learning step k . After taking multiple steps, the double
DQN mechanism learns the coordination policy, and the STRide
model is returned for next episode. The offline learning ends when
all episodes of data are examined. The learned capsule network
returns the optimal policy (subject to ϵ-greedy mechanism) and
actions for online coordination, e.g., routing vacant vehicles to
destinations via mobile apps [19].
3 Data-Driven Learning Emulator
3.1 Data Sets for Analytics & Evaluation
Our emulator is built for data analytics and performance evaluation
based on the following three large-scale MOD datasets:
• Uber, NYC [5]: The ride sharing data of Uber in New York City
(NYC), June 2015, contains a total of 2,816,895 rides.
• Yellow Taxis, NYC [4]: The ride data of Yellow Taxis in May 2016
contains 11,588,760 rides, their pick-up/drop-off locations and
timestamps. Taxis share many similar characteristics with ride-
sharing/hailing vehicles (e.g., driving distance and time), making
this experimental study feasible [27].
• Didi, Chengdu [6]: The ride-sharing data provided by Didi Chux-
ing [6], contains a total of 6,744,508 rides (with pick-up/drop-off
locations and timestamps) from the city of Chengdu, Sichuan
Province, China in November 2016.
For each of these datasets, we also include local weather [2],

weekday/weekend and festivals/events as the external factors (E) in
the model, as summarized in Fig. 3. We also obtain the road network
from OpenStreetMap (OSM) [3].
3.2 Design of Comprehensive Learning Emulator
We design and implement a data-driven learning platform that emu-
lates a real-world MOD platform with the following considerations.

a) Contextual setting: A driver usually focuses on her/his
neighborhood observations or contexts for (re)location. The reloca-
tion policy for each vehicle is made fine-grained by cropping and
padding (zeros) [13] in the heatmap frames in S such that the local
scope Sm of each vm (i.e., the observed contexts in its neighbor-
hood) is centered around its current zone. This way, STRide can
learn the coordination policy based on each vehicle’s neighborhood
observations. This also reflects the drivers’ tendency in (re)locating
to nearby zones for less time/fuel consumption. STRidewill also pay
less computation overhead. At step k , we find the contextual scopes
ofM(k) available vehicles from the global state S(k). The state of
each vehiclem to be dispatched is S(k)m =

{
D(k)m ,A

(k)
m ,V

(k)
m ,E

(k)
m

}
.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Suining He and Kang G. Shin

Each ofD(k)m ,A(k)m and V(k)m is cropped fromS(k) into a sub-frame of
smaller size L′lon ×L

′
lat (L

′
lon < Llon and L′lat < Llat), and centered at

m’s current zone likeUm . E(k)m is an (Lext + 2)-D vector consisting
of Lext external factors and vm ’s current 2-D location.

In a sequential-learning setting [29], we consider all idle vehicles
sequentially determine where to relocate to. Each vehicle considers
all other peers’ present status, while its dispatch decision is inde-
pendent of the peers’ next moves/actions [37]. In state S(k)m , vm ’s
relocation to a neighboring zone d(k)ml at step k leads to a subsequent
S(k+1)m observation and an instant reward τ (k)m . Then, a transition
sample H(k) of consecutive states at k and (k + 1) is given by

H(k) =
{
S(k)m ,d

(k)
ml ,S

(k+1)
m ,τ

(k)
m

}
, (5)

which is stored in the experience replay O and resampled for further
training of STRide model in Sec. 4.

b) Multi-objective ride reward function: For each vehicle,
STRide accounts for the platform profitability (in proportion to the
vehicle’s earning), service coverage and configuration cost in char-
acterizing the agent’s reward function. Intuitively, more rewards
are expected if more ride fares are earned and less time of dispatch-
ing/idle driving is consumed. To accommodate this, we consider for
eachvm in the k-th step two critical perspectives: earning score P (k)m
in terms of fulfilled rides and revenues, and the relocation cost F (k)m
related to dispatching and idle driving time (and fuel consumption).
Then, vm ’s reward at step k is defined as the sum of earning scores
minus the relocation costs in a window ofw steps, i.e.,

τ
(k)
m ,

∑k

k̃=k−w

(
αP
(k̃)
m − F

(k̃)
m

)
, (6)

where α > 0 is an adjustable parameter. In our prototype, we em-
pirically setw = 15. In other words, the more pick-up revenues and
the less relocation time and fuel consumption, the higher reward
a vehicle could achieve. The earning score P (k)m is defined as the
weighted sum of serviced ride fares among the zones based on the
historical ride preferences ω(i, j)’s, i.e.,

P
(k)
m ,

∑R

i=1

∑R

j=1

���T(k)m (i, j)
��� · ei j , (7)

where
��T(k)m (i, j)

�� represents the number of actual rides from zones i
to j provided byvm , and ei j is the resultant earning. In our emulator
prototype, the driver revenue or ride fare is set as

ei j = a · δi j + b, a > 0, b > 0, (8)
where a is the unit price w.r.t. distance δi j and b is the base price
(our prototype uses the local ride rates [5, 6]).

c)Ride preference& zone-to-zone connectivity: The drivers
and passengers usually have frequent travel patterns among zones
due to their commute routes and ride preferences. Considering the
MOD network G connecting the zones Z with rides T, inspired by
the first-order proximity in network embedding [30], we design a
ride preference metric ω(i, j) for rides T(i, j) between zi and zj as

ω(i, j) ,
(
1 + exp

(
−®ci j · ®c ji

))−1 (9)
where the relative proportion of rides ®ci j is defined as a vector of

®ci j ,

[
|T(i, j)|∑R

k=1,k,i |T(i,k)|
, 1 − |T(i, j)|∑R

k=1,k,i |T(i,k)|

]
. (10)

That is, the more rides recorded between zi and zj , the higherω(i, j),
indicating a stronger connectivity between the two zones.

We incorporate the above ride tendency of zones into STRide’s
formulation, not relying only upon individually-aggregated demand
values. Our prototype discretizes each day into four 6-hour periods,
and aggregates rides of the same period for different sets of ω(i, j)’s.
Then, to calculate F (k)m , we consider in Eq. (6) the relocation travel
time Γ (i, j), and the recent weight ω(i, j) between zi and zj belong-
ing to the same historical periods (say, 06:00 – 12:00 of the same
weekday in its preceding week), and find the weighted sum of

F
(k)
m ,

∑R

i=1

∑R

j=1
βΓ (i, j)

ω(i, j)
, (11)

where β > 0 is the unit cost related to the relocation time or
petrol prices [1] (say, a subsidy rate by the MOD platform for
dispatching [10]). Rides starting and ending within the same zone,
i.e., when i = j, are also considered within Eq. (9).

d) Estimated time of arrivals: For fine-grained evaluation, the
learning emulator also calculates the estimated travel time between
two locations for characterizing: (1) the time of travel from current
location to destination when passengers are served; (2) the time
of passenger wait if vehicles and certain passengers are matched;
and (3) the time of idle driving if vehicles are dispatched to another
location for potential requests. Specifically, we implement a random
forest regression [14] (other more advanced models [18, 33, 34] may
apply) to estimate the travel time ETAm between one location to
another given the input vector of start/end coordinates, length of
the shortest path between them, day of a week and hour/minute
of a day belonging to the start time. The length of interim road
segments during the vehicle’s travel are derived from OSM [3].

4 Capsule-based Coordination Learning
Characterizing Q, the relationship between states, actions and long-
term values, is essential for STRide to decide on the best coordina-
tion policy π while adapting to the environment.We propose the use
of capsule-based Q-network for more comprehensive MOD coordi-
nation learning, dynamically capturing and learning Qm (Sm ,Um).
A capsule is a structured group of neurons [28], and many capsules
can be grouped together in one layer. A link between two capsules
in consecutive layers becomes a vector. Such vectorized (instead of
scalar) representation of data is propagated between layers. Hence,
more comprehensive ride patterns, including spatial co-existence
of multiple demand surges during rush hours or rainy days, are
captured with the vector representation as instantiated entities [16].

Fig. 2 illustrates the processing structures of the main and exter-
nal state features, as detailed below.

a) Main spatial features {D,A,V}: Given the input heatmap
frames,

{
D(k)m ,A

(k)
m ,V

(k)
m

}
, the core deep neural network in STRide

captures the spatial relationship between states, actions and re-
wards. In particular, a fine-grained capsule network takes in the
vehicle’s 2-D state representation, and returns the estimated Q-
values, denoted as Qmain, w.r.t. the 2-D action spaceUm .

We further illustrate the basic structures and learning process of
capsule network in STRide. Specifically, given the input heatmap
Xinput =

{
D(k)m ,A

(k)
m ,V

(k)
m

}
processed from state S(k)m , the capsule

network consists of four sequential major components, i.e.,
X1 = Conv

(
Xinput), X2 = PC (X1) ,

X3 = OC (X2) , Qmain = Conv (X3) ,
(12)

Spatio-Temporal Capsule-based Reinforcement Learning
for Mobility-on-Demand Network Coordination WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Dense ReLUDense ReLU

Vehicle
location

Event/Time

Weather

Σ

D, A, V

E

Distribution of Qmain

Distribution of Qext

Distribution of Q

Convolutional
Layer

PC OC

Convolutional
Layer

Input Heatmap
Frames Initial Activation

Capsule Activation Capsule Agreement

Q Value Ouput

Spatio-Temporal Capsule Networks for Deep Q-Network Learning

Cin

Cin

NPC

CPC-D
Capsule

Cout

Cout

COC-D
Capsule

NOC

Ψ

θ

ij

ij

Routing by Agreement

Target Vehicle

Fig. 2: Core module of spatio-temporal capsule-based Q-network.

Event
(3-D)

Weather
(13-D)

Weekday (Mon to Sun):
{1, 2, , 7}

Holiday or not {0, 1} *

Temperature (celcius)

Windspeed (m/s)
Wind direction (deg)

{0, 10, , 350}
Relative Humidity (%)

Hours of a day
{0,1,2, 23}

Weather condition vector
{0, 1} for each dim *

Cloudy or not

Sunny or not

Foggy or not

Hazy or not

Misty or not

Rainy or not

Pressure (atm)

Sunrise/sunset time

Snowy or not

Value processing:
* Categorical ({0, 1}):
binary/one-hot;
Non-categorical:
max-min normalized
into range between 0
and 1.

Fig. 3: External factors E.

where the first and fourth two-dimensional convolutional layers
(Conv) are used for transformation between the physical heatmap
frames (scalar-based) and hidden capsule layers (vector-based), Pri-
mary Capsule (PC) and Output Capsule (OC).

In our implementation, each capsule contains a structured group
of neurons reshaped and regrouped from convolutional layers [28].
Each cuboid in PC/OC of Fig. 2, as a capsule, corresponds to a group
of convolutional units or neurons (each neuron as a dimension is
with a 9×9 kernel and a stride of 2 in our prototype). Specifically, PC
is comprised of N PC CPC-D capsules, while OC is made of N OC COC-D
capsules. The input Conv layer has N in Cin × Cin convolutional
kernel filters, while the output one has N out Cout ×Cout filters.

The learning process is presented as follows. In a nutshell, the
parameters of STRide’s capsules, consisting of traditional neuron
weights and additional capsule probabilities, are propagated and
refined between the layers of PC and OC. Specifically, let θi j be the
logarithm prior probability captured by a preceding capsule i in
PC and its succeeding peer j in OC. A softmax function [13] is then
applied upon the θi j ’s, returning the coupling coefficient fi j as

fi j = exp(θi j) ·
(∑

l
exp(θil)

)−1
. (13)

θi j ’s capture the strengths of vehicle distributions in the map.
Similarly to the traditional neuron structure, the capsule network

also has theweight coefficient across capsules i and j , denoted asΨi j ,
learned through the conventional back-propagation algorithm [13].
All coefficients thus form an N PC × N OC weight matrixΨ . For each
succeeding capsule j, let qi be the ride prediction vector returned
from a preceding peer i in PC. The propagated vector from capsules
i to j, denoted as qj |i , is given by the product of neural network
weightsΨi j and prediction vectors qi , i.e., qj |i =Ψi jqi , is then fed
to capsule j as a weighted average by fi j ’s, i.e.,

ej =
∑

i
fi jqj |i . (14)

A routing-by-agreement between capsules [28] is used to differ-
entiate the vectors by their strengths of mutual agreement. Capsule
training can then be regarded as extracting and refining the active
routes from a preceding capsule layer (PC) to a succeeding one (OC).
An active route across layers means a specific coordination strategy
with certain zones, as an entity, is “memorized”, while a deactivated
one represents that the unimportant connections can be “forgot-
ten”. Specifically, a squash function oj (·) is applied first upon ej to
characterize its length [28], which is given by

oj (ej) ,
∥ej ∥2

1 + ∥ej ∥2
·

ej
∥ej ∥
. (15)

In other words, an increase in the vector length of the spatial ride
distribution saturates the output towards one, which is identified
and captured by the capsule network. The logarithm prior prob-
abilities θi j are updated with the product of prediction qj |i and
adjustment oj (ej), i.e.,

θi j ← θi j + qj |i · oj (ej). (16)
The resultant θi j is returned to Eq. (13) for another routing iteration.
Via routing-by-agreement, STRide finds the vectors with higher
agreement, preserving the ride correlations across zones.

b) External temporal features E: E is processed as in Fig. 3.
Due to E’s lower dimension than vehicle and passenger distribu-
tions, we form it into a vector of the external features, and design a
fully-connected neural network (Dense) to learn the coordination.
Specifically, the sequential model with two layers of dense/fully-
connected networks (with respective output dimensions CDen

1 and
CDen
2) and subsequent ReLU activation functions [13] is given by

E1 = Dense
(
Einput

)
, E2 = ReLU (E1) ,

E3 = Dense (E2) , Qext = Reshape (ReLU(E3)) .
(17)

where the final output Qext is reshaped from a vector back to 2-D
matrix w.r.t. the vehicle’s action spaceUm .

Finally, the estimated Q-value function w.r.t. each state and ac-
tion is given by merging Qmain and Qext, i.e.,

Q̂ = Qmain +Qext. (18)
Then, in coordination STRide finds the zone with the maximum
Q-value in Q̂ for dispatching (subject to ϵ-greedy). The set of param-
eters to be trained, denoted as Ω, is hence made of those contribut-
ing to Qmain (includingΨi j ’s and θi j ’s) and those neuron weights
for Qext. We implement a double deep Q-network (DQN) learning
mechanism [31] within STRide to train the core deep Q-network.

5 Experimental Evaluation
Experimental settings: We compare STRide with the following
typical algorithms: (1) CRL: an online learning framework [12]
leveraging the conventional convolutional neural network (CNN)
for coordination policy learning [25, 36]. (2) CONT : a conventional
model-based approach, formulating a traffic control problem [7, 25]
to find the dispatching and matching strategy based on the demand-
supply balancing model. (3) GD: a heuristic vehicle dispatching
without optimizing or learning the ride dynamics. MOD vehicles are
greedily dispatched towards zones with the highest demand-supply
imbalances [7, 27]. All evaluated schemes (the detailed parameter
settings can be found in the corresponding references) use the same
ride data, ETA module and learning emulator settings.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Suining He and Kang G. Shin

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
ro

fit

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cumulative Probability

w/ both
w/o pre
w/o ext

Fig. 4: Components (Uber).
Taxi Didi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
ea

n
Pr

of
its

STRide
CRL
CONT
GD

0.7665

0.5847

0.3554
0.2917

0.6799

0.4199
0.3909
0.2718

Fig. 5: Mean profit (Taxi&Didi).

0 5 25 3010 15 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

STRide
CRL
GD
CONT

Coordination Time (s)

Fig. 6: Online overhead (Taxi).

0 0.1 0.2 0.3 0.4 0.5
Idle Driving Time (Hour)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

STRide
CRL
CONT
GD

Fig. 7: Idle time (Taxi).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
ej

ec
tio

n
R

at
e

STRide CRL CONT GD

0.0863

0.2262
0.2616 0.2689

±0.043 ±0.028 ±0.056 ±0.047

Fig. 8: Reject rates (Didi).

0 0.1 0.2 0.3 0.4 0.5

Waiting Time (Hour)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

STRide
CRL
CONT
GD

Fig. 9: Waiting time (Didi).

We comparatively evaluate the performance based on the fol-
lowing metrics: profits (platform; rides revenues minus relocation
subsidies on fuel costs), idle driving time (the time when a vehicle
is not occupied but still incurs the driving cost), reject rate (due
to unavailability of vehicles nearby), (passenger’s) waiting time,
and coordination time (overhead of each online decision for MOD
request matching and vehicle dispatching).

Unless stated otherwise, we use the following default parameters.
In the learning emulator, we empirically set the total number of
vehiclesM = 8, 000, α = 1.0, β = 0.3, and ϵ = 0.1. The total number
of episodes is set to 12, while each of them 30 hours long. Each
step lasts for 30 min. A rejection happens if the distance between a
request and the nearest vacant vehicle is greater than 5.0 km. For
Uber/Taxi, a = 5 and b = 3; for Didi, a = 5 and b = 1. The platform
revenues are 20% of the ride fares, and the subsidies are 20% of the
relocation costs based on studies in [10, 17, 27]. The city map is
partitioned into Llon × Llat = 219 × 219 zones, while each vehicle
is considered to move in its neighborhood of 15 × 15 zones (Um).
Each vehicle’s scope is set L′lon × L

′
lat = 23 × 23.

In the core Q-network, we set each layer of the spatio-temporal
capsule network as follows:

(
N PC,CPC) = (8, 8), (N OC,COC) =

(8, 50),
(
N in,Cin) = (64, 9), (N out,Cout) = (64, 6) (each Conv has

a stride of 1 and ReLU activation) for main feature components in
Fig. 2;

(
CDen
1 ,C

Den
2

)
= (10, 152) for the rest components handling

the 18 external features (Lext = 16 and 2-D location in E as in Fig. 3).
With the above settings, we obtained the following experimental
results.

ExperimentalResults: Profits & Efficiency: Fig. 4 shows STRide’s
normalized profits without either ride preference (pre) or external
factors (ext), and the complete model with both components. In-
troducing ride preferences helps STRide relocate vehicles across
popular zones with strong connectivities, leading to more pick-
ups and hence more profits. Inclusion of auxiliary factors related
to MOD rides help STRide capture more intrinsic routines in the
spatio-temporal ride distribution, hence achieving more profits.
Fig. 5 shows the mean profit (normalized w.r.t. each dataset) of all
schemes. STRide is shown to achieve much higher profits than
other schemes. Taking the large-scale NYC taxi dataset as an ex-
ample, we show the CDFs of computation time in Fig. 6. Due to
fast weight propagation across the layers, STRide achieves much

better computational efficiency, which is essential for real-time
coordination.

Idle driving time: Figs. 7 shows that shorter idle driving time for
NYC Taxis. It is due mainly to the highly accurate Q-value approx-
imation within STRide, capturing the spatio-temporal relations
among states, actions and consequent rewards. Less idle driving
may also lead to lower subsidies and costs from the MOD platform,
thus enhancing its overall profitability.

Rejection rate: Fig. 8 shows the lower mean rejection rates of
the schemes (with standard deviation) in the Didi dataset. Thanks
to STRide’s proactive relocation of MOD vehicles, ride requests
are rejected less. On the other hand, STRide accurately learns the
locations of potentially high demands, and determines proactive
dispatch regions within the rejection distance threshold.

Waiting time: Fig. 9 shows the shorter passenger waiting time
of STRide than other related algorithms. With more proactive dis-
patching, the supplies match demands in time and hence overall
shorter waits are needed. This way, theMOD platforms can enhance
service quality and passengers’ satisfaction.
6 Related Work
Numerous optimization-based schemes have been proposed for
transportation management [7, 15, 32, 40], including control-based
methodology [24], combinatorial optimization [37], and queueing
theory [8]. Powered by exploding big data [23] and facilitating
parallelism [9, 39], we have witnessed unprecedented advances in
learning-based transportation management [20, 22, 26, 35]. Wen et
al. [36] conducted preliminary studies upon learning-basedMOD re-
balancing. Lin et al. [21] studied an RL-based mechanism managing
the fleet with a scalar-based neural network. Similarly, Xu et al. [37]
explored the order dispatching, focusing on the sequential dispatch
optimization problem. Oda et al. [25] proposed a fleet management
system based on convolutional neural networks (CNNs), finding
the optimal policy for relocating connected taxicabs.
7 Conclusion & Acknowledgment
We have proposed STRide, a spatio-temporal reinforcement learn-
ing framework forMOD coordination. GivenMOD ride data, STRide
builds a learning emulator for coordination policy training.We have
designed a spatio-temporal capsule network in STRide to map the
states and dispatch actions towards the expected future rewards.
Spatial distributions of demands and supplies, and temporal external
factors like events and weather conditions, are considered together
to learn the coordination policy. We have conducted extensive data
analytics and experimental evaluation on three large-scale datasets.
STRide is shown to outperform state-of-the-arts, with lower re-
quest rejection rates, shorter waiting times, and higher platform
profitability, often by more than 30% improvement.

We would like to thank DiDi Chuxing GAIA Open Dataset Ini-
tiative for the shared ride data.

Spatio-Temporal Capsule-based Reinforcement Learning
for Mobility-on-Demand Network Coordination WWW ’19, May 13–17, 2019, San Francisco, CA, USA

References
[1] 2018. Global Petrol Prices. https://www.globalpetrolprices.com/gasoline_prices/.
[2] 2018. National Centers for Environmental Information, National Oceanic and

Atmospheric Association (NOAA) – Data Tools: Local Climatological Data (LCD).
https://www.ncdc.noaa.gov/cdo-web/datatools/lcd.

[3] 2018. Open Street Map. https://www.openstreetmap.org/.
[4] 2018. TLC Trip Record Data. http://www.nyc.gov/html/tlc/html/about/trip_

record_data.shtml.
[5] 2018. Uber pickups in New York City. https://www.kaggle.com/fivethirtyeight/

uber-pickups-in-new-york-city/data.
[6] 2019. Didi Chuxing Technology Co. www.didiglobal.com.
[7] Niels Agatz, Alan Erera, Martin Savelsbergh, and Xing Wang. 2012. Optimization

for dynamic ride-sharing: A review. European Journal of Operational Research
223, 2 (2012), 295 – 303.

[8] Siddhartha Banerjee, Ramesh Johari, and Carlos Riquelme. 2015. Pricing in Ride-
Sharing Platforms: A Queueing-Theoretic Approach. In Proc. ACM EC. 639–639.

[9] Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. 2018.
Reinforcement Mechanism Design for e-Commerce. In Proc. WWW. 1339–1348.

[10] Rachel Dovey. 2017. 5 Florida Cities Team Up to Subsidize Uber Rides.
https://nextcity.org/daily/entry/five-florida-cities-subsidize-uber-rides.

[11] Zhixuan Fang, Longbo Huang, and Adam Wierman. 2017. Prices and Subsidies
in the Sharing Economy. In Proc. WWW. 53–62.

[12] Yong Gao, Dan Jiang, and Yan Xu. 2018. Optimize taxi driving strategies based
on reinforcement learning. IJGIS 32, 8 (2018), 1677–1696.

[13] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
Learning. Vol. 1. MIT Press Cambridge.

[14] Jiawei Han, Jian Pei, and Micheline Kamber. 2011. Data mining: Concepts and
techniques. Elsevier.

[15] Suining He and Kang G. Shin. 2018. (Re)Configuring Bike Station Network via
Crowdsourced Information Fusion and Joint Optimization. In Proc. ACMMobiHoc.
1–10.

[16] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. 2018. Matrix capsules with
EM routing. In Proc. ICLR.

[17] Josh Horwitz. 2017. One year after the Uber-Didi merger, it’s only get-
ting harder to hail a ride in China. Respondent: https://qz.com/1045268/
one-year-after-the-uber-didi-merger-its-only-getting-harder-to-hail-a-ride-in-china/
and waiting time: http://news.sina.com.cn/c/2017-07-26/doc-ifyinryq6222913.
shtml.

[18] Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.
Multi-task Representation Learning for Travel Time Estimation. In Proc. ACM
KDD. 1695–1704.

[19] Yaguang Li, Han Su, Ugur Demiryurek, Bolong Zheng, Tieke He, and Cyrus
Shahabi. 2017. PaRE: A System for Personalized Route Guidance. In Proc. WWW.
637–646.

[20] Yexin Li, Yu Zheng, and Qiang Yang. 2018. Dynamic Bike Reposition: A Spatio-
Temporal Reinforcement Learning Approach. In Proc. ACM KDD. 1724–1733.

[21] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. 2018. Efficient Large-Scale
Fleet Management via Multi-Agent Deep Reinforcement Learning. In Proc. ACM
KDD. 1774–1783.

[22] Zhidan Liu, Zhenjiang Li, Kaishun Wu, and Mo Li. 2018. Urban Traffic Prediction
from Mobility Data Using Deep Learning. IEEE Network 32, 4 (July 2018), 40–46.

[23] Chenglin Miao, Qi Li, Lu Su, Mengdi Huai, Wenjun Jiang, and Jing Gao. 2018.
Attack Under Disguise: An Intelligent Data Poisoning Attack Mechanism in
Crowdsourcing. In Proc. WWW. 13–22.

[24] Fei Miao, Shuo Han, Shan Lin, John A Stankovic, Desheng Zhang, Sirajum Munir,
Hua Huang, Tian He, and George J Pappas. 2016. Taxi Dispatch With Real-Time
Sensing Data in Metropolitan Areas: A Receding Horizon Control Approach.
IEEE Trans. Automation Science and Engineering 13, 2 (April 2016), 463–478.

[25] Takuma Oda and Carlee Joe-Wong. 2018. MOVI: A Model-Free Approach to
Dynamic Fleet Management. In Proc. IEEE INFOCOM. 2708–2716.

[26] Ling Pan, Qingpeng Cai, Zhixuan Fang, Pingzhong Tang, and Longbo Huang.
2018. A Deep Reinforcement Learning Framework for Rebalancing Dockless
Bike Sharing Systems. In Proc. AAAI.

[27] Lisa Rayle, Danielle Dai, Nelson Chan, Robert Cervero, and Susan Shaheen. 2016.
Just a better Taxi? A survey-based comparison of taxis, transit, and ridesourcing
services in San Francisco. Transport Policy 45 (2016), 168–178.

[28] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing
between capsules. In Proc. NIPS. 3856–3866.

[29] Richard S Sutton and Andrew G Barto. 1998. Introduction to Reinforcement
Learning. Vol. 135. MIT Press Cambridge.

[30] Jian Tang,MengQu,MingzheWang,Ming Zhang, Jun Yan, andQiaozhuMei. 2015.
LINE: Large-scale Information Network Embedding. In Proc. WWW. 1067–1077.

[31] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning.. In Proc. AAAI, Vol. 2. 5.

[32] ErwinWalraven, Matthijs TJ Spaan, and Bram Bakker. 2016. Traffic flow optimiza-
tion: A reinforcement learning approach. Engineering Applications of Artificial
Intelligence 52 (2016), 203–212.

[33] Dong Wang, Wei Cao, Jian Li, and Jieping Ye. 2017. DeepSD: Supply-demand
prediction for online car-hailing services using deep neural networks. In Proc.
IEEE ICDE. 243–254.

[34] Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to Estimate the Travel Time.
In Proc. ACM KDD. 858–866.

[35] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. 2018. Intellilight: A
reinforcement learning approach for intelligent traffic light control. In Proc. ACM
SIGKDD. 2496–2505.

[36] Jian Wen, Jinhua Zhao, and Patrick Jaillet. 2017. Rebalancing shared mobility-
on-demand systems: A reinforcement learning approach. In Proc. IEEE ITSC.
220–225.

[37] Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan,
Chunyang Liu, Wei Bian, and Jieping Ye. 2018. Large-Scale Order Dispatch in
On-Demand Ride-Hailing Platforms: A Learning and Planning Approach. In Proc.
ACM KDD. 905–913.

[38] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction.. In Proc. AAAI. 1655–1661.

[39] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, Xiuwen Yi, and Tianrui Li. 2018.
Predicting citywide crowd flows using deep spatio-temporal residual networks.
Artificial Intelligence 259 (2018), 147 – 166.

[40] Huanyang Zheng and Jie Wu. 2017. Online to Offline Business: Urban Taxi
Dispatching with Passenger-Driver Matching Stability. In Proc. IEEE ICDCS. 816–
825.

https://www.globalpetrolprices.com/gasoline_prices/
https://www.ncdc.noaa.gov/cdo-web/datatools/lcd
https://www.openstreetmap.org/
http://www.nyc.gov/html/tlc/html/about/trip_record_ data.shtml.
http://www.nyc.gov/html/tlc/html/about/trip_record_ data.shtml.
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city/data.
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city/data.
www.didiglobal.com
https://qz.com/1045268/one-year-after-the-uber-didi-merger-its-only-getting-harder-to-hail-a-ride-in-china/
https://qz.com/1045268/one-year-after-the-uber-didi-merger-its-only-getting-harder-to-hail-a-ride-in-china/
http://news.sina.com.cn/c/2017-07-26/doc-ifyinryq6222913.shtml
http://news.sina.com.cn/c/2017-07-26/doc-ifyinryq6222913.shtml

	Abstract
	1 Introduction
	2 Problem Formulation & System Overview
	2.1 Preliminary
	2.2 Problem Formulation
	2.3 System Framework & Flow

	3 Data-Driven Learning Emulator
	3.1 Data Sets for Analytics & Evaluation
	3.2 Design of Comprehensive Learning Emulator

	4 Capsule-based Coordination Learning
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion & Acknowledgment
	References

