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Spatio-temporal Adaptive Pricing for Balancing
Mobility-on-Demand Networks

SUINING HE and KANG G. SHIN, The University of Michigan, Ann Arbor, USA

Pricing in mobility-on-demand (MOD) networks, such as Uber, Lyft, and connected taxicabs, is done adap-

tively by leveraging the price responsiveness of drivers (supplies) and passengers (demands) to achieve such

goals as maximizing drivers’ incomes, improving riders’ experience, and sustaining platform operation. Ex-

isting pricing policies only respond to short-term demand fluctuations without accurate trip forecast and

spatial demand-supply balancing, thus mismatching drivers to riders and resulting in loss of profit.

We propose CAPrice, a novel adaptive pricing scheme for urban MOD networks. It uses a new spatio-

temporal deep capsule network (STCapsNet) that accurately predicts ride demands and driver supplies with

vectorized neuron capsules while accounting for comprehensive spatio-temporal and external factors. Given

accurate perception of zone-to-zone traffic flows in a city, CAPrice formulates a joint optimization prob-

lem by considering spatial equilibrium to balance the platform, providing drivers and riders/passengers with

proactive pricing “signals.” We have conducted an extensive experimental evaluation upon over 4.0 × 108
MOD trips (Uber, Didi Chuxing, and connected taxicabs) in New York City, Beijing, and Chengdu, validating

the accuracy, effectiveness, and profitability (often 20% ride prediction accuracy and 30% profit improvements

over the state-of-the-arts) of CAPrice in managing urban MOD networks.
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1 INTRODUCTION

With the rapid urbanization and emergence of smart cities [19, 57, 60, 67], theMobility-on-Demand
(MOD) economy [27, 52], pioneered by Uber, Lyft, Didi, and connected taxicabs, has witnessed
significant growth in recent years, meeting passengers’ demands with immediate access to, and
convenient provisioning of urban transportation services. According to Reference [8], the global
MODmarket is expected to exceed $228 billion by 2022. Given its socio-economic significance, how
to design business and management strategies for MOD platforms is an important and challenging
problem.
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Demands (riders/passengers/customers/requesters) and supplies (drivers/cabs/vehicles) inMOD
markets dynamically change over time. Unless properly managed, mismatches between demands
and supplies (such as a sudden increase of ride-requests in a city zone with fewer drivers/cabs
available nearby) can cause significant loss of revenue to MOD businesses and discourage both
customers and drivers. Since the drivers of many MOD (e.g., ride-sharing) platforms are often
freelancers rather than full-time workers, it is difficult in practice to enforce their spatio-temporal
availability directly.
ForMOD service to be adaptive to dynamically changing supplies and demands, a platformmust

monitor the market status and publish appropriate “signals”—pricing policies. Specifically, plat-
forms such as Uber and Lyft post the real-time “heatmap” (discretized city zones) of ride-requests
to the drivers based on historical and recent data. In case of a sharp demand burst (say, Super Bowl
night) exceeding supplies somewhere, the platform increases the fare rate in those “hot” zones by
applying a certain multiplier to the standard rate (accompanied by dynamic subsidies to drivers).
Such “surge pricing” [6, 38] (or “prime time,” as Lyft calls its version of Uber’s “surge pricing”) has
been adopted by many popular ride-sharing platforms.
The surge pricing is to narrow the gap between supply and demand [6, 14]. First, more drivers

are enticed with potentially higher earnings, and hence move to hot zones and serve requests
there. Second, customers who under-value the service will likely give up and seek alternative
transportation means, thus increasing the chance of matching drivers with the remaining cus-
tomers. This profit-driven market’s self-adaptation [9] appears promising, but has not yet been
fully realized for the following reasons: Most existing demand/ride forecasts focus on a scalar-
based time-series analysis, often modeling trips that connect zones locally/independently of each
other. Due to their simplicity and lack of realism, the demands displayed in drivers’ UIs have been
reported neither credible nor accurate [14]. Many of the drivers chasing surges have found little to
low demand when they arrive at the surge zones, earning less and thus getting discouraged. Some
MOD communities suggest inexperienced drivers ignore delayed surges,1 as the actual earnings of
blind/greedy surge chasing (so-called “bunch-up” or “wild-goose chase”) do not meet expectations
in practice.2

The absence of proactive “signals” also exacerbates the supply-demand mismatch and incurs
long waits for the passengers. Rather than affording surged or even uncapped prices (say, by Uber)
again and again, passengers in need of timely rides prefer proactive distribution of vehicles w.r.t.
location and time [7], particularly during rush hours. However, without joint balancing of vehicles
among zones, reliance on only price surge cannot steer earning/profit-driven supplies towards de-
mands in a timely and effective way. Due to the supply-demand imbalance, the surveys conducted
in China [25] in 2017 show that 81.7% of respondents complained about more hailing difficulties
and up to 129.2% longer waiting time than in 2016. Starving demand, as intended by surge pricing,
is not a sustainable option.
As an inaccurate and delayed market signal, the conventional price surging cannot proactively

match the incoming ride requests, while driver supplies are not incentivized w.r.t. location and
time. After the initial MOD hype [8, 9], long-term service sustainability is thus often compromised
by such temporary profit-greedy control of conventional surges. Pricing signals are merely the
levers, not the sole and ultimate market goals.
To improve service sustainability and platform utilization, we propose CAPrice, a novel adaptive

pricing scheme for urban MOD networks. This adaptive pricing for mobility-on-demand depends
on accurate perception of the dynamic market status and consequent fine-grained management.

1https://www.sfgate.com/business/article/Report-says-Uber-surge-pricing-has-a-twist-some-6597012.php.
2https://maximumridesharingprofits.com/advice-new-uber-drivers-dont-chase-surge/.
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Fig. 1. Illustration of adaptive pricing and balancing for MOD networks.

As shown in Figure 1, it uses the historical MOD service requests and rides to forecast the demand-
supply patterns in the near future (say, a few minutes later). Then, it jointly optimizes the pricing
policies based on profit, market control, and sustainable service (zone balancing), bridging the
signal (price, subsidy) and market (demand, supply) spaces via more responsive connections. By
adaptively matching the spatio-temporal pricing signals with the market divisions, the supplies
meet demands spatially and proactively.
Specifically, we first design a spatio-temporal ride prediction scheme based on deep capsule neu-

ral network, called STCapsNet, which accurately forecasts future demands/supplies via structural
and vectorized capsules—structured groups of neurons [51]. The neurons in each capsule produce
a vector, taking into account essential spatial hierarchies between simple and complex objects in
an input image. Considering input pick-up/drop-off distributions as images, STCapsNet captures
the inherent correlations between pixels (city zones) by a novel vectorization structure, acquiring
far more knowledge than conventional scalar-based approaches, including convolutional neural
network (CNN) [51].
Based on more accurate demand/supply predictions, CAPrice formulates a joint optimization

framework, anticipating prices and subsidies towards incoming ride-requests and thus incentiviz-
ing drivers more responsively to customers than previous greedy surge-chasing. In particular, with
the formulation of spatial equilibrium in the vehicle (re)distribution and long-term ride-request
patterns, CAPrice follows the spirit of dynamic pricing [9] but jointly optimizes the distributions
of incentive-compatible prices and subsidies for the coming rides. Therefore, CAPrice proactively
handles demand-supply imbalances via more responsive driver flows between zones.
The main contributions of this article are:

• Accurate Prediction of Ride Requests via a Spatio-Temporal Capsule Network (Section 4):
CAPrice leverages STCapsNet to comprehensively capture the inherent pick-up/drop-off
relationship among city zones by the novel vectorized neuron structures. Integrated with
spatio-temporal ride distributions and external ride factors, STCapsNet achieves highly ac-
curate prediction of rides in complex urban networks.

• Adaptive Pricing for Mobility-on-Demand (MOD) Platforms (Section 5): CAPrice augments
the MOD platforms with enhanced responsiveness to spatio-temporal demand-supply fluc-
tuations and adaptive pricing for profit and utilization maximization. Specifically, it takes
the forecasts of dynamic demand-supply patterns as input and incentivizes the proactive
distribution of drivers adaptively towards customer demands, thus achieving profitable and
sustainable platform operation.

• Large-scale Data-driven MOD Network Studies (Section 6): We have conducted extensive
data-driven studies to validate the accuracy, effectiveness, and profitability of CAPrice. Our
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experimental evaluation based on large-scale MOD data (more than 4.0 × 108 trip records
in total) from New York City, NY, as well as Beijing and Chengdu, China, has shown that
CAPrice can accurately predict ride (demand/supply) patterns (often reducing error bymore
than 25% over state-of-the-art [39, 66]) and provide a more profitable pricing guideline for
MOD networks (often 30% more revenues, faster market clearance, and shorter wait time
than conventional pricing policies of exiting platforms [14, 35, 37]).

Besides the latest comprehensive validation of the application of capsule-networks [51], we es-
tablish critical profit-maximizing insights as deployment references for the MOD platforms, such
as pricing the over-demanded zones more spatio-temporally, while subsidizing their unattractive
but demanded peers more, especially those unbalanced ones due to their highly attractive neigh-
bors. The importance of ride prediction accuracy to market pricing is also demonstrated. With
CAPrice’s joint formulation of market forecasting and pricing, we expect that the MOD plat-
forms would benefit both by accounting for predictable demand-supply patterns (say, morning
rush hours) while smoothing out short-term fluctuations (say, due to weather conditions).
Despite the current prototype studies on urban ride-sharing [5, 21] and connected taxi [25], the

general framework of CAPrice can be easily extended to other emerging autonomous or connected
MOD services, such as self-driving rental cars [43, 47].

The rest of this article is organized as follows: After discussing the related work (Section 2), we
first overview the concepts, problems, and framework (Section 3). Then, we present capsule net-
work design for ride prediction (Section 4) and joint optimization formulation of adaptive pricing
(Section 5). Our prototype is evaluated with MOD datasets (Section 6), followed by deployment
discussions (Section 7) and concluding remarks (Section 8).

2 RELATEDWORK

We briefly review the related work and discuss its differences from CAPrice.
Traffic Prediction: With the growing need of handling more complex city systems [67], there

have been numerous efforts in urban traffic analytics, enabled by the advent of mobile/big data
science [58, 64, 66] and IoT [20, 41, 60]. Beyond the previous studies applying “shallow” model
structures [34, 53, 65], deep learning, powered by growing datasets and advancing parallelism, has
emerged as more versatile and promising traffic analytics [54]. Recurrent neural networks (RNNs),
enhanced by long-short-term memory (LSTM) techniques [24], learn the scalar-based traffic se-
quence. Based on the success in understanding photos [30], CNN is explored for traffic moni-
toring [39], modeling neighborhood regions into scalars and locally capturing (pooling) spatial
dependencies of zones.
Though advances have been achieved, existence of close/distant points-of-interests (PoIs) and

complex zone-to-zone ride correlations have been overlooked by the scalar and region-based
learning of RNNs and CNNs. The integration of both still could not fully capture the macro picture
of metropolitan traffic [62] due to their scalar nature. Unlike these previous studies, CAPrice
adopts the capsule networks [51] in a novel spatio-temporal manner. A capsule neural network
is a further developed and structured version of parse tree for joint image segmentation and
recognition [22], deriving semantic and interpretable representations from input images. Beyond
conventional CNNs, the neurons inside a capsule are activated for various physical properties of
the input images for better instantiation of the objects of interest [23]. We take advantage of this
strength in CAPrice and model the shared rides into heatmap frames, instantiating the correlated/
co-occurring ride demands and supplies across zones. A dynamic routing mechanism [51] is
applied further to reduce errors and the size of training sets for capsule network. Compared to

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 4, Article 39. Publication date: July 2019.



Spatio-temporal Adaptive Pricing for Balancing Mobility-on-Demand Networks 39:5

scalar-based conventional CNNs, STCapsNet captures far more spatial knowledge between loca-
tions due to its comprehensive vector-based neuron structures, hence achieving better accuracy.
MOD Pricing & Balancing: To support MOD development, many analytical designs re-

lated to drivers-riders matching, dispatching, and pricing have been proposed in recent years.
Orthogonal to our work, Oda et al. [46] and Xu et al. [59] explored the online learning for vehicle
fleet management and matching without accounting for incentivization with pricing. Fang et al.
[15] analyzed the price, profit, and social welfare maximization for the macro MOD ride-sharing
economy. Banerjee et al. [10] studied a queueing-theoretic price setting. However, their work did
not consider the spatio-temporal effects of pricing upon dynamic flows, which is essential for prac-
tical system management. Bimpikis et al. [11] also explored the impact of price discrimination on
ride-sharing but simplified demand patterns andMODnetwork structures in their balance analysis.
Despite their pioneering studies, few of these analytical designs have considered the interplays

of ride flows, equilibrium, and pricing for profitable MOD management. They did not take into
account proactive data-driven ride monitoring either, which is critical for platform profitability
and sustainability. Via comprehensive data analytics and experimental evaluation, CAPrice fills
these gaps and provides important insights in developing a more profitable and sustainable MOD
platform.

3 PRELIMINARIES & SYSTEM ARCHITECTURE

We first overview the preliminary concepts and definitions used in CAPrice (Section 3.1) and then
discuss its problem framework and system architecture (Section 3.2).

3.1 Preliminary Concepts

Introduced below are the essential concepts and definitions used in CAPrice.

Definition 1. City Zones & Time Intervals: To facilitate the search and visualization across a
spacious city area, we discretize the entire map (space) into a total of G non-overlapping zones
(cells), each of which is denoted as Zi (1 ≤ i ≤ G) and Z = {Z1, . . . ,ZG }. For our prototype, we
divide the entire map longitudinally and latitudinally intoW × H rectangular grids of the same size
(G =W × H ), and their shape and size (subject to map) can be easily customized according to each
specific task, balancing between estimation granularity and computational efficiency. Similarly,
we discretize time domain with a certain interval (say, every 30m). For simplicity, “the period k”
or index k refers to the kth time interval. Rides within each k are aggregated for analysis.

Definition 2. Fulfilled Rides: Each MOD ride (trip) comes with a departure and an arrival. Then,
the number of fulfilled departures (demands or requests) aggregated from Zi in the kth time inter-
val, denoted as Dk

i , refers to the number of cars that pick up the passengers from there. It captures
the ride demands in a certain zone.3

Similarly, let Ak
i be the number of fulfilled arrivals (actual drop-offs) in Zi at period k . Given a

discretized citymap and ride records, at periodk the fulfilled demand distributions of all zones form
Dk = [Dk

1 , . . . ,D
k
i , . . . ,D

k
G
]. Likewise, the arrivals are modeled as Ak = [Ak

1 , . . . ,A
k
i , . . . ,A

k
G
]. The

set of fulfilled rides is defined asT k = {Dk ,Ak }, i ∈ {1, . . . ,G}.
Definition 3. Mobility-on-Demand (MOD) Network: Given the discretized zones Z and rides T k

connecting them, we express the city map as networks of zones connected by spatio-temporal

3A “weaker” consideration of “ride demand” may refer to the initiated requests via mobile apps, which are often difficult

to monitor. Limited by resource and the unavailability of ride-request data from service providers (due to privacy or con-

fidential concerns [14]), as in many state-of-the-art approaches [14, 66], we focus on fulfilled demands (actual departures)

when referring to “demands.”
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MOD transportation. During a certain period, two zones i and j are connected by flows of
(mi j ,mji ) MOD cars, where mi j represents the volume of car flows from i to j, and vice versa
(i, j ∈ {1, . . . ,G}).
For MOD network’s profitability and sustainability, we need to consider the following two criti-

cal questions: (1)when andwhere rides will happen and (2) how to determine their prices and subsidies

proactively. To answer the first question, we structure the spatio-temporal ride distributions across
zones into frames of heatmaps.

Definition 4. Ride Heatmap Frames: Each frame of fulfilled ridesT k at the kth time interval can
be represented by a 3D matrix Fk , i.e., in the form ofW × H × 2, where the first two dimensions
correspond to the city map discretization (Definition 1) and the third represents two flows of Dk ’s
and Ak ’s (Definition 2). In a heatmap, the warmer colors represent more departures/arrivals.

This way, with each Zi as a “pixel,” we can design a ride prediction algorithm inspired by image
processing, leveraging cross spatial and temporal relations within a sequence of historical frames:

Definition 5. Spatio-Temporal Ride Prediction Algorithm: An estimation function P (·) takes, as
input, the geographic zones’ information, external factors Ψk at target period k , and the w lat-

est consecutive frames {Fk−w , . . . , Fk−1} to predict or recover an image frame F̂ k via their cross
spatial/temporal relations.

For the second question, given anticipation of rides in the market space (Figure 1), price and
subsidy responses in signal space are formed:

Definition 6. Price & Subsidy of a MOD platform: Price p refers to the payments from passengers
as their trip fares, while s refers to the subsidies for drivers in (re)locating to a zone for a match
(passenger pick-up). The platform strategically determines the tuples of {p, s} to steer demand and
supply subject to the related regulations and laws. In a spatio-temporal setting as in Section 1, the
market is divided and thus has {pi , si }Gi=1.

As a driver’s earnings from each trip are also proportional to the service time and distance (stan-
dard rate) of that trip, we retrieve and focus on only the dynamically/lawfully manipulated part
by the MOD platform [6]. A common practice (say, adopted by Uber/Lyft) is a dynamic multiplier

applied upon the standard rate. To illustrate this, we also crawled via Uber API and showed in
Figure 2 the 12-hour real-world price multipliers (from Wall Street Journal headquarters to Gold-
man Sachs) with surge effects [6] in UberX, NYC, reflecting the hidden dynamics of demand and
supply. As the headquarters is located in the central business district of NYC, far more evening
departures (hence, higher surges) happen than in the morning.
We also observe that subsidizing is a common incentivization practice for manyMOD platforms

[15], especially when they are expanding business in new service area, enticing new drivers’ en-
tries. Furthermore, compensations may also apply if they relocate to less popular zones due to
resultant gasoline/labor expense. Both largely constitute the cost of the MOD platform. Differ-
ent from subsidies or compensations, price adaptation is considered to cater for demand-supply
interaction in a more mature market and their popular zones. The price multipliers, along with
subsidies and steered vehicle flows, are to be determined (detailed in Section 5).
Following the common goals of commercial MOD platforms [15], the vanilla pricing problem

summarizing above can be considered as a joint multi-objective optimization framework, i.e.,

Definition 7. Vanilla Problem for Spatio-Temporal Adaptive Pricing: Given states of drivers and
passengers—i.e., interaction of supply and demand—as well as historical records until the (k − 1)th
period, the platform estimates rides in all zones {F̂ k

i }Gi=1 and proactively determines {pi , si }Gi=1 at
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Fig. 2. Illustration of pricing

multipliers.

Fig. 3. CAPrice’s architecture.

k , such that the aggregate profit (net income) is maximized. The vanilla problem thus takes the
following preliminary form:

argmax
{pi ,si }

∑
i=1

Fki · (pi − si ), (1)

s.t. F̂
k
= P (Ψk , {Fk−w , . . . , Fk−1}), pi ∈ [pmin,pmax], si ∈ [smin, smax], ∀i ∈ {1, . . . ,G},

flows Fk adapted from F̂
k
due to pi ’s and si ’s.

Our framework automatically determines the popularity of zones and their consequent {pi , si }’s.
Since demand and pricing have mutual effect in practice, we can adjust the resultant Fk from F̂ k

to account for the pricing effect. We will further extend the settings of this vanilla form in the
following sections (including the final core formulation in Section 5). CAPrice is general enough
for other more sophisticated objectives customized by the platforms.

3.2 System Architecture

Figure 3 shows the architecture of CAPrice, which consists of two major modules. At the first
module on the left, ride prediction by STCapsNet (Section 4), historical MOD trips at each time
interval, in the form of heatmap frames, are fed to our proposed neural networks. Specifically, the
heatmaps in a sliding window are fed to a capsule network where spatio-temporal ride distribution
is examined and captured. Meanwhile, relations between rides and external factors like weather
are learned by a fully connected neural network. Outputs from both networks are fused via a tanh
function [16], and the ride estimation is returned for training validation or testing.
At the second module on the right, given the predicted rides, CAPrice formulates a joint opti-

mization problem (Section 5) that maximizes the platform profits and steers drivers towards the
corresponding demands with adaptive pricing signals (Section 5.2) for spatial equilibrium or bal-
ance (Section 5.3). Optimized pricing signal w.r.t. each zone is returned to the MOD platform.

4 SPATIO-TEMPORAL RIDE PREDICTION VIA STCAPSNET

We present a model for predicting spatio-temporal MOD ride requests by (i) analyzing the real-
world datasets (Section 4.1) for ride analysis (Section 4.2), and (ii) presenting the capsule network
(Section 4.3) and the framework with the prediction model (Section 4.4).

4.1 Data Overview

We use the following MOD datasets to evaluate CAPrice:
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Table 1. External Factors for the Four Datasets in Our Experimental Evaluation

Datasets
External Factors

Weather Holiday Traffic Condition

NYC Uber 7 types of conditions, temperature, sky visibility,
wind speed, wind direction, humidity, pressure,

sunrise/sunset time (by NOAA)

Federal and bank

holidays

Average vehicle speed,

average travel timeNYC Taxi

Chengdu Didi \ \

Beijing Taxi 16 types of conditions, temperature, wind speed National holidays \

• Ubers in New York City [5]: The ride-sharing data (GPS coordinates of pick-up locations and
timestamps) of Uber in New York City (NYC) between 2014-Q2Q3 and 2015-Q1Q2 contain
18,804,806 trips, covering a bounding box of [40.65◦N , 40.85◦N , −74.05◦W , −73.77◦W ].

• Yellow Taxis in NYC [4]: The ride data (with pick-up/drop-off locations and timestamps) of
Yellow Taxis in 2014, 2015, and 2016-Q1Q2 contain 362,101,984 trips. As both datasets of
Uber and Yellow Taxi share the same pick-up/drop-off region identifiers [4], we discretize
the NYC map likewise. Taxis are shown to share similar mobility behaviors and patterns
with ride-sharing platforms [49, 56], leading to transferable knowledge in our experimental
studies.

• Taxis in Beijing, China: The connected taxicab data (pick-up/drop-off zones and timestamps)
are processed from their real-time GPS trajectories in Beijing between 2013 and 2016, con-
taining 24,193,552 rides [63, 66].

• Didi Chuxing in Chengdu, China: Didi Chuxing, Inc., is a major Chinese ride-sharing service
provider, handling 20M rides on a daily basis in 2016. The ride-sharing data (with pick-
up/drop-off locations and timestamps) provided by Didi [1] contain a total of 6,744,508 trips
from the city of Chengdu, Sichuan Province, China, in November 2016. The rides cover a
bounding box of [30.653◦N , 30.728◦N , 104.043◦E, 104.130◦E].

For each of these cities, CAPrice also considers weather, holidays, and traffic conditions as ex-
ternal factors related to the ride distribution, subject to the data availability (detailed in Table 1).
Next, we briefly go through some MOD trip patterns pertinent to our model.

4.2 MOD Ride Pattern Analysis

We have conducted an extensive pattern analysis with the above datasets to design P (·) in Equa-
tion (1). Due to space limit and its representative patterns, we will focus on NYC Taxis as an
illustration.
A. Spatial Trip Patterns ({F i }Gi=1): The metropolitan MOD feature of a potential passenger

depends highly on her/his working and living places, personal preferences, and many other social/
demographic factors [9, 13] that lead to spatial diversity in ride distributions. Figure 4 shows the
departure heatmap of NYC onMay 31 (00:00–12:00), 2016.We can observe heavy trip demands from
midtownManhattan.We can also see that notable demands from the JFK International Airport and
nearby PoIs or recreational areas (say, casinos and resorts), reflecting the spatial complexity of ride
distributions.
B. Temporal Demand Patterns ({Fk−w , . . . , Fk−1}): The demand will likely vary with day of

week and/or time of day. Figure 5 shows the temporal dynamics of MOD trips within two weeks
(with Monday and Saturday flows highlighted), showing different repetitive patterns of weekdays
and weekends.
C. External Factors (Ψk ): Fine-grained external factors may also be subject to various meteo-

rological conditions, demographics, cultures, and social trends, such as:
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Fig. 4. Spatial distribution (log10 (·)) of
MOD departures (May 31, 2016, NYC).

Fig. 5. Temporal dynamics of MOD

traffic (two weeks in May 2016, NYC).

Fig. 6. Proportions of NYC meteoro-

logical conditions in three quarters.

Fig. 7. Illustration of mean travel

time (sec) & speed (mph) in NYC.

(1) Meteorology4: A passenger’s preference on MOD service is affected by the weather condi-
tions. To model the correlation, our comprehensive meteorological data for NYC Uber/Taxis
and Chengdu Didi include temperature, humidity, air pressure, wind speed/direction, sky
visibility, and sunrise/sunset time of that day. Figure 6 illustrates such seasonal diversity in
meteorological conditions. Besides, due to the difference of sources, for rides in NYC and
Chengdu, we utilize 7 types of binary weather conditions (e.g., sunny or not), while for
Beijing we use 16.

(2) Metropolitan Traffic Condition (TC): TC characterizes the overall congestion levels of city
roads [62], which also influence the fulfilled departures/arrivals for a MOD network. Our
model considers the average vehicle speed (unit: mph) and average travel time (unit: sec) of
the road segments.5 Note that TC data from the city monitor are measured independently
from the MOD platform. In practice, real-time metropolitan TC can be easily monitored via
road-side cameras, magnet-coil sensors at the intersections, and toll-office records, serving
as external hints for MOD ride prediction. Figure 7 further illustrates the weekly travel time
and speed variations in NYC. We can see the travel time peaks and travel speed valleys in
Figure 7, which are correlated with the weekday morning/evening rush hours in Figure 5
(the same weeks).

(3) Event: As in Figures 5 and 7, the peaks in weekday/weekend/holiday traffic may differ due
to different rush hours, neighboring events, and travel purposes. Our event dataset also
includes weekday/weekend parsing and public holidays. In particular, for NYC, CAPrice

4National Centers for Environmental Information, National Oceanic and Atmospheric Association (NOAA). https://www.

ncdc.noaa.gov/cdo-web/datatools/lcd.
5New York City (NYC) Real-Time Traffic Speed Data Feed (Archived) Five Minute Intervals, 2015–2018. http://data.beta.

nyc/dataset/nyc-real-time-traffic-speed-data-feed-archived.
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Fig. 8. Structure and phases of capsule network in STCapsNet: (a) input convolutional block, (b) primary

capsules, (c) output capsules, and (d) output convolutional block.

uses federal and stock-market/bank holidays, while for Beijing and Chengdu it takes into
account national holidays, if any (no public holidays during November in China).

Note that CAPrice does not directly predict the weather and traffic conditions at the target
period k . Based on the general spatio-temporal continuity in weather and traffic, we can adopt
those at the latest period (say, from (k − 1)). Estimating weather/traffic conditions from other state-
of-the-arts [66] can be also applied for refinement here.
In what follows, we detail the design of STCapsNet, which comprehensively accommodates the

above factors for accurate ride prediction.

4.3 Capsule Network in STCapsNet

A capsule, consisting of a structured group of neurons, instantiates fully or partially the in-
put heatmap matrix representing the zone-to-zone MOD ride distributions (including ride co-
occurrence of close and distant zones). The major technical insights for a capsule network lie
in (i) its layer-to-layer vector information flow and (ii) replacement of max-pooling [16, 51] with
capsule routing. We first overview the structures of the capsule network in our STCapsNet and
then discuss its learning mechanism, followed by detailed formulation of capsules.
A. Structure Overview: Figure 8 overviews the phases (1)–(6) with the core blocks (a)–(d) for

our capsule-based ride prediction:

(1) Input Heatmap: We first pre-process the aggregated ride patterns into high-dimensional
heatmap frames as in Definition 4.

(2) Initial Activation: Each sliding window of heatmap frames is first fed to a traditional

2D convolutional block (Conv2D_1 in (a)) [16] of N
f
1 filters (with 3 × 3 kernels) for initial

feature detection. This block helps transform the raw pixel intensities into activities of the
local feature detector, leading to detection of the local trip patterns.

(3) Capsule Activation: After Conv2D_1 perceives scalar-based local features of close zones,
a group of Primary Capsules (PC in (b)) with N c

2 N d
2 -dimensional capsules takes in its

predecessor’s convolutionalized outputs and constructs vectorized feature expressions [51]
among all zones. Specifically, a capsule layer is reshaped from a Conv2Dmodule consisting
of N c

2 × N d
2 filters (with 9 × 9 kernels) [51]. Thus, each capsule (a cuboid in (b)) is an

individual group of N d
2 convolutional units (neurons). The output from PC consists of N c

2
vectors, each of which is from a capsule activated by certain correlated zones. This way,
correlations, including ride likelihood and direction, between close and distant zones are
further extracted by this vectorization structure.
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(4) Capsule Agreement: A set of N c
3 N d

3 -dimensional capsules, Output Capsules (OC in (c)),
then concatenates, compresses, and refines the outputs from primary capsules. A linkage
(route) between capsules i in PC and j in OC is assigned with a conventional weight Ωi j

as well as a coupling probability fi j for agreement computation (detailed later). N d
3 tends

to be set high in practice [51]. OC is designed to bridge the output side and PC, updating
capsule weights according to training loss via “routing by agreement” [51] of the vectors.

(5)–(6) Flow Reconstruction & Output Heatmap: The final 2D convolutional block (Conv2D_2 in (d))
reconstructs and matches OC outputs (vectors) back towards the Output Heatmap Frames

(scalar-based).

Note that two convolutional blocks, (2) and (5), simply serve as input/output heatmap transfor-
mation, while the rest of the structures render capsule network vastly different from CNN. As a
general framework for ride prediction, the number/size/dimension of the blocks can be customized
(detailed in Section 6.1). Next, by comparing it with CNNs, we discuss how the capsule network
learns the rides.
B. Learning by Vectorization & Routing: As in Figure 9, conventional CNNs [23] subdivide

the image intomany local representations (say, local regions of size 2 × 2, as illustrated in Figure 9),
which are then passed throughmax/min-pooling (downsample the local maximumorminimum) to
retrieve features. Two linked neurons in consecutive CNN layers are communicating with scalars
representing the local knowledge. Despite the success, one major drawback of such a process
within CNNs lies in their deficiency to perceive important spatial hierarchical structures between
different parts of a complex image [23], especially for our ride heatmap with many distant/close
zones correlated with each other. Max/Min-pooling that requires fine-grained tuning might also
lead to information loss and render the model less tractable [51].
Beyond scalar-based CNNs, capsules capture far more comprehensive spatial knowledge via

the vector-based representation (due to multiple neuron groups or capsules). Consider a capsule
in preceding PC (closer to raw inputs) is activated by a large ride volume in certain zones (say,
Manhattan in NYC). Its output vector is then propagated to other capsules in succeeding OC (closer
to evaluation criteria or physical meaning), forming some activated routes (linkages). Similar cases
may happen to other capsules in PC due to other ride patterns discovered.

Training a STCapsNet can then be regarded as extracting and refining the active routes from a
preceding capsule layer to a succeeding one. Specifically, an active route means a MOD pattern is
“memorized,” while a deactivated one represents that the unimportant connections can be “for-
gotten.” As in Figure 9, instead of a single scalar in CNN, a high-dimensional output vector (with
values and orientations) of the capsule represents not only the occurrence probability but also
the graphical feature (say, geographic direction and co-occurrence of rides) of an instance, like a
strong north-east zone-to-zone MOD flow in Manhattan in Figure 4.
To learn these high-dimensional vectors, a highly efficient scheme called routing-by-agreement

is applied between blocks of PC and OC in Figure 8. Its basic idea is to keep extracting correla-
tions between strongly connected traffic zones via vector squashing, while deemphasizing weak
or noisy ones. By the dynamic “routing-by-agreement” and knowledge extraction, we can remove
max/min-pooling, which is considered less capable of preserving useful information for accurate
identification [51].

In what follows, we detail the capsule design and the formulation of the dynamic routing.
C. Capsule Design & Formulation: In terms of layer-wise propagation for STCapsNet, let βi j

be the logarithm prior probability of a zone-to-zone ride trend captured by a capsule i in PC (i ∈
{1, . . . ,N c

2 }) and a succeeding peer j in OC (j ∈ {1, . . . ,N c
3 }). Given the activated links between

capsule i and all others in the succeeding OC, a softmax function first normalizes each coupling
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Fig. 9. Comparison of capsules and conventional

CNNs.
Fig. 10. Illustration of capsule learning.

coefficient fi j between capsules i and j:

fi j =
exp(βi j )∑
l exp(βil )

. (2)

The probabilities βi j ’s (initialized uniformly before training) are used to preserve the precise loca-
tion of useful heatmap patterns within a city, capturing the hierarchical structures of the demand
correlation between the close and distant zones. The resultant fi j represents the strength that
capsule i should be linked with j, which is to be determined during capsule training.

Like the traditional neural network structure [16], we have the weight matrix across capsules
i and j, denoted as Ωi j , which is learned through conventional back-propagation algorithm [16].
For each succeeding capsule j, let qi be the ride prediction vector returned from a preceding peer
i in PC. We then find the product of weights and the prediction vectors as

qj |i = Ωi jqi , (3)

which is further coupled with the coefficients derived in Equation (2), and adjusted into a weighted
average form, i.e.,

ej =
∑
i

fi jqj |i . (4)

Then, ej serves as the vector input for the succeeding capsule j in OC.
To determine the fi j during model training, in routing-by-agreement (dynamic routing) between

capsules i and j, a squashing function squash(·) is applied to discriminately adjust and shrink
values of vectors ej of different lengths. Specifically, short vectors that show less agreement get
penalized and shrunk towards 0, while the long ones are converted to values slightly smaller than 1.
Formally, the squash function is given as

oj = squash(ej ) =
‖ej ‖2

1 + ‖ej ‖2 ·
ej

‖ej ‖ , (5)

such that a slight increase in vector length of demand/supply patterns ej quickly saturates the
output towards 1 and easily gets captured by the entire capsule network. The vector product of
qj |i and oj (resulted from qj |i ’s) represents their mutual agreement, i.e., it is maximized only when
their lengths/orientations match. Finally, the logarithm prior probabilities βi j ’s are updated in a
coupled manner, with this product of prediction vector qj |i and its adjustment oj :

β ′i j = βi j + qj |i · oj , (6)

which is then returned to Equation (2) for fi j if another iteration of dynamic routing is needed.
So, a vector agreement, instead of pooling’s down-sample, gets more features for better learning.
Figure 10 further illustrates and summarizes the above procedures (illustrated with two preceding
capsules; solid lines: propagation; dashed lines: routing).
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Via iterative routings between PC and OC, routes of important high-dimensional vectors rep-
resenting zone connections get refined and emphasized, and accurate heatmap predictions are
reconstructed.

4.4 STCapsNet’s Ride Prediction & Model Training

Finally, we present the entire ride prediction model of STCapsNet and describe how to train it.
Spatio-Temporal Frame Structures: Each high-dimensional frame (with its each grid min-

max normalized [16]) describes the ride distributions in a certain period. To further capture se-
quential trip dynamics across time, we combine several consecutive frames (Figure 3) in a sliding
window of sizew (subject to the design of prediction accuracy and computational efficiency). The
batched set of all w latest frames ({Fk−w , . . . , Fk−1}) is then fed to the capsule network in Sec-

tion 4.3 for model training, and the predict frame F̂C is returned.

External Factors: Taking in lower-dimensional external data Ψk in Section 4.2, a fully con-
nected (dense) neural network [16], as shown in Figure 3, learns the patterns of external factors
correlated with training frames. Specifically, input values from different extracted features [16] are
concatenated as a vector and fed to the neural network stacking two fully connected layers [16],
returning ride prediction F E . The patterns with neuron activation are detected by the first layer,
whose outputs are then reshaped back to frames by the second one.

Final Estimation Fusion: The outputs of both components, i.e., F̂C and F̂ E , are fused (merged)
by a hyperbolic tangent function tanh(·) [16, 66] that matches inputs towards values between −1
and 1:

F̂ k = tanh(F̂C + F̂ E ). (7)

Then, predicted values in F̂ k undergo transformation back to physical space, i.e.,

D̂k =
1

2
(D̂k − (−1)) · (Dmax − Dmin) + Dmin, (8)

where Dmax (Dmin) is the maximum (minimum) demand value of the data. Âk is scaled back simi-
larly.
Model Training: STCapsNet’s training process is to determine the model hyperparameters Φ

(including fi j ’s and neuron weights Ωi j ’s) that minimize the mean squared error between F̂ k and

Fk , i.e.,

L (Φ) = ‖F̂k − Fk ‖22 . (9)

The iterative training process for STCapsNet involves the stochastic optimizer such as Adam
(adaptive moment estimation) [29] and back-propagation mechanism [50], which are all avail-
able within existing deep-learning libraries [16]. Like its many deep-learning peers for big data
analytics [66], STCapsNet may incur considerable training overhead (say, ∼5 hours for NYC
with our GPU), and its deployment, including model updates (depending on platforms and
daily/weekly/monthly data variability), can be facilitated via GPU clusters [66] and online model
learning [16], which are beyond our current scope.

5 SPATIO-TEMPORAL ADAPTIVE PRICING FOR MOD NETWORK BALANCING

5.1 Overview of Spatio-Temporal Adaptive Pricing

Given accurate spatio-temporal prediction of demands, we first overview the pricing optimization
of CAPrice. Figure 11 overviews the adaptive pricing in balancing the market. A MOD platform
consists of two spaces: signal (price and subsidy) andmarket (demand and supply). To cater for the
two sides, before each target interval (say, of a few minutes), CAPrice takes the following steps
for pricing optimization:

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 4, Article 39. Publication date: July 2019.



39:14 S. He and K. G. Shin

Fig. 11. Market and signal spaces: Basic flow of joint optimization and adaptive pricing.

(1) Formalizing signal & market spaces: Customers and drivers are the participants and bases
of a MOD platform. Based on accurate STCapsNet and networked MOD participants,
CAPrice interprets, characterizes, and forecasts their responsiveness to pricing signals
and their market behaviors, including ride tendency, traffic flows, and distributions in
each zone in Figure 11. These serve as inputs for the following steps (2) and (3).

(2) Equilibrium setup: Beyond conventional profit-hungry surge chasing, forming an equi-
librium in a spatio-temporal manner helps smoothen and balance the supply-demand dy-
namics (such as unpopular, normal, and popular zones in Figure 11) of the MOD market.

(3) Joint optimization & balancing: Given inputs in step (1) and setup in step (2) (as the
constraints in Equation (1)), CAPrice formulates a joint optimization framework and re-
turns optimized and incentive-compatible pricing signals, which steer or incentivize zone
flows to prevent over- or under-supply. With this further step beyond conventional prac-
tices [14, 35, 37, 38], the platform can make profit without compromising its sustainability.
Outputs can be stored for computation in the next interval/period.

In what follows, we detail both of these spaces (Sections 5.2 and 5.3) and form an equilibrium
state for the joint optimization (Section 5.4) and finally discuss its complexity analysis (Section 5.5).

5.2 Signal Space: Price & Subsidy

We first formalize the manageable price multiplier (Definition 6) upon the unchangeable standard
rates. Specifically, we let δi j be the distance between zones Zi and Z j (δi j = δ ji ) [6], π be the fare
per distance unit (i.e., fare rate), and ri (1 ≤ ri ≤ rmax) be the multiplier related to the pick-up zone
Zi [6]. Meanwhile, the MOD platform may incur a minimum fare poi (usually no less than the local
subsidy si ). Then, the price pi j of each trip from Zi to Z j is given by

pi j = (poi + πδi j )ri , 1 ≤ ri ≤ rmax, (10)

which serves as one steering basis for a profit-driven driver on picking up a passenger or incentive
of (re)locating to somewhere.
However, each driver is considered to be rational [13] and have an outside option λ [11, 15],

i.e., an amount of expected earning away from the market (say, a basic salary for other lower-
skilled jobs or an enforced minimum wage). Intuitively, a driver enters the MOD market if her/his
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worst earning is at least λ and exits if the expected earning is even lower than λ, matching
her/his incentive-compatible expectations. To maintain the drivers’ incentives (especially when
unmatched) in serving less popular zones, the platform further provides spatially varied subsi-
dies si . This way, both exits and entries of the drivers are steered by the difference of platform
subsidies (representing the “worst-case earning”), expected earning (detailed in Section 5.3), and
outside option λ. Both price multipliers and subsidies are the optimization variables to be deter-
mined by CAPrice.

5.3 Market Space & Spatial Equilibrium

We formalize the market space in the following two perspectives:

(a) Ride Matching & Earnings: Given uncertainty of being matched with a passenger, each
driver cares howmuch s/he expects to earn. Let Pi (0 ≤ Pi ≤ 1) be the probability that one
of a total ofmi cars in Zi will pick up a passenger. The matched rides D∗i from Zi and the
probability Pi are, respectively:

D∗i = min{mi ,Di }, Pi = min{Di/mi , 1}. (11)

Let ai j be the probability that a matched passenger in Zi is expected to move to Z j , and∑G
j=1 ai j = 1 for each i . This probability can be easily estimated from predicted arrivals Â

(Section 4.4).
Consequent earning considers two cases. If matched, then a driver earns part (denoted

as (1 − ρ) ∈ [0, 1])6 of the fare paid by the rider [6]. Otherwise, the earning of being un-
matched in Zi can be considered as one from the next “best” zone (based on last period’s
V ′i ’s) to migrate to. Based on the above and Section 5.2, the expected earning of a driver
on serving Zi , i.e., her/his incentive measure Vi for (re)locating to i , is:

Vi = Pi (1 − ρ) ��
�
poi +

G∑
j=1

ai jπδi j
��
�
ri + (1 − Pi )U ′i , U ′i = max{V ′1 , . . . ,V ′G }, ∀i ∈ {1, . . . ,G},

(12)
where U ′i is her/his valuation for the next best relocation.

(b) Flows & Distributions: Given signals in Section 5.2 and valuations on match-
ings/earnings, incentivized drivers form the traffic flows and zone distributions to earn
more.
In practice, some drivers become inactive for various non-monetary reasons [32], espe-

cially after a long trip.7 So, our formulation considers that after traveling from Zi to Z j , a
driver may likely exit the platform with a probability 1 − κi j (0 ≤ κi j ≤ 1), which is con-
sidered to enlarge w.r.t. distance δi j between zones. Inclusion of this also fulfills drivers’
general tendency for neighborhood (close zones) migration in practice [13].

Besides matched rides, based on the global supply demand trend, the platform may
steer unmatched drivers to (re)locate to other zones that are short of supply via subsidy
signals. Basically, the redistribution of drivers to Zi consists of three parts: (i) relocated
drivers from other zones Z j ’s, each flow of which is denoted as zji , and (ii) newly enticed
drivers, denoted as ϵi , due to the likely earning. Then, including (iii) the matched flows

6For example, it has been reported in 2017 that Uber and Lyft (Didi) usually take a commission rate of ρ = 25% (20%) of

the fares in the US (China) [2].
7https://www.uber.com/drive/new-york/resources/driving-hour-limits/.
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D∗j (vacant after dispatch), the massmi of available cars in Zi becomes:

mi =

G∑
j=1

κji (ajiD
∗
i + zji ) + ϵi . (13)

After formalizing (a) and (b) above for themarket space, we also consider characterizing
and setting up the target-balanced states of the market for price optimization.

Equilibrium: Recall that drivers may over-react (bunched-up) or under-react (discouraged) to
the greedily surged signals, as the former pricing did not foresee and optimize the consequent
driver flows/distributions. Therefore, we take into account the equilibrium [31, 33] of vehicle
distribution across the MOD networks, i.e., supply-demand matching of each zone, and find the
incentive-compatible prices and subsidies such that drivers are better motivated to (re)locate them-
selves. In other words, the driver flows resulted from the pricing signals are steered to a zone-to-
zone equilibrium, i.e.,

Definition 8. Spatial Equilibrium (SE): An SE for a MOD platform given {pi , si }Gi=1 is defined as
a time-invariant distribution of drivers/vehicles and passengers at each of the G zones in that
interval. Setting up an SE fulfills the following three criteria:

(1) Maximizing expected earnings: The platform provides each driver with incentive-compatible

offers [20, 60]. If the highest expected earning, as s/he chases a best chance, and the subsidy
in a zone matches at least a driver’s outside option:

Ui = max{Vi }Gi=1 = λ ≤ si , ∀i ∈ {1, . . . ,G}, (14)

then all the drivers are expected to enter or (re)locate to maximize their expected earn-
ings [18, 33]. Otherwise, drivers cannot get enticed ormay even exit themarket (Section 5.2).

(2) Balanced driver distribution and passenger flow: The car distribution remains overall bal-
anced across zones, or the outgoing number matches the incoming one, i.e.,

∑
j�imi j =∑

i�jmji ≥ 0. Considering the three different driver flows and the potential exits in Equa-
tion (13), we formulate the balanced outgoing/incoming flows at each Zi as

G∑
j�i

mi j =

G∑
i�j

κjimji + ϵi . (15)

Equations (11), (13), and (15) are fused into the general flow balance:

D∗i +
G∑
j=1

zi j =
G∑
j=1

κji (ajiD
∗
j + zji ) + ϵi . (16)

(3) Total number constraints: In practice, the number of drivers and passengers involved should
not exceed their respective total numbers in the city (or subject to the city regulation8), i.e.,

G∑
i=1

mi ≤ M,
G∑
i=1

Di ≤ D. (17)

Existence of SE results from finiteness of both search scopes and potential re-
sponses/actions [40]. Given the MOD market settings (finite numbers of zones, drivers, and
passengers, plus their incentive-compatible responses), the SE exists and is unique [31] (formal
proofs are omitted due to space limit).

8https://money.cnn.com/2018/08/08/technology/uber-lyft-new-york-legislation/index.html.
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In summary, the three criteria in SE, along with the market space formulation in (a) and (b),
serve as constraints of the optimization framework. (Re)location flows of ϵi ’s and zi j ’s, formulated
as the optimization variables, are also returned for the platform’s management reference.
Projected Departures Due to New Price Multipliers: Recall that in Equation (1) the updated

pricing may make the actually fulfilled demands different from the predicted [11]. Thus, following

the industrial practices (of Uber and Lyft) [35, 45], we need to adjust/project the resultant D̂i ’s in
our optimization based on the difference of the historical and newly estimated multipliers, which
are denoted as r ′i ’s and r̂i ’s, respectively.
Specifically, let θi be the latent demands (often inaccessible) independent of the up-

dated/estimated price multiplier r̂i . Let F (ri ) be the empirical cumulative distribution of passen-
gers’ unwillingness to afford a multiplier ri [11, 17, 18]. Then, 1 − F (ri ) represents the likelihood
of accepting ri . F (ri ) increases as ri grows, meaning that fewer ride requesters would accept the
multiplier [11, 17]. The projected demand from θi at Zi due to r̂i is then formulated as a generic
form:

Di = (1 − F (̂ri ))θi , 0 ≤ F (̂ri ) ≤ 1, (18)

where F (ri ) can be parameterized [17] and obtained via surveys [13] (detailed in Section 6.1).
Based on the temporal continuity in the high-frequency MOD flows as considered in traffic

monitoring, the predicted fulfilled demand D̂i at period k is considered correlated with and thus is
estimated from the historical record’s pricing multiplier. Specifically, CAPrice inherits θi , r

′
i and

1 − F (r ′i ) from the last period k − 1, approximates θi = D̂i/(1 − F (r ′i )), and returns the adjusted

demand Di at k . Based on Equation (18), the projection function Γ(·) from D̂i due to multiplier r̂i
at the target period k is then given by

Di = Γ(̂ri , r
′
i , D̂i ) = (1 − F (̂ri ))θi = 1 − F (̂ri )

1 − F (r ′i )
D̂i . (19)

In other words, the projection Di and prediction D̂i match if the price multiplier remains un-

changed (̂ri = r
′
i ), and do not match otherwise (Di < D̂i if r̂i > r ′i ). Note that more sophisticated

projection functions and pricing [10, 11, 28] other than Equations (18) and (19) can also be applied
in our generic framework. For example, Jorge et al. [28] considered the linear increase of demand
with the decrease of price [36].

5.4 Joint Optimization Formulation

We design the following objective function and optimization formulation for CAPrice:
Revenue & Subsidy: The total revenues of a platform are proportional to drivers’ earnings

due to predominantly used fixed commission rate (ρ in Equation (12)) in industry [2]. Then, the
revenue objective Obj1 of a platform (with a positive commission rate ρ) is given by the aggregated
fees upon the fulfilled demands, i.e.,

Obj1 : ρ
G∑
i=1

G∑
j=1

ai jpi jD
∗
i . (20)

However, si mainly caters for incentive-compatibility in Criterion (1) of Definition 8, especially
the drivers’ relocation zji ’s and entry ϵi ’s (Section 5.3). Let Tji ≥ 0 be the estimated travel time
(normalized for ease of formulation) when relocating from zone j to i , meaning compensation
should be adjusted proportionally. Since (re)location consumes time and gasoline while incurring
extra waiting time to the ride-requesters, we introduceTji as a weight upon the redistribution flow
zji such that long-term but unprofitable driving can be jointly mitigated. Then, the total platform
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cost (subsidies) Obj2 is given by

Obj2 :
G∑
i=1

si
��
�
ϵi +

G∑
j=1

Tjizji
��
�
. (21)

In this work, we estimate the travel time between zones based on a random forest tree trained
upon the historical data of rides (other models may also apply [55, 61]). Despite its prototyping
with Equations (20) and (21), CAPrice is general enough to be extended to other customized ob-
jectives [11, 42] by the MOD platforms.

Final Formulation: Given predicted MOD rides, i.e., departures D̂’s and arrivals Â’s,
CAPrice jointly determines the price multipliers and subsidies ({̂ri , ŝi }’s) spatio-temporally and
(re)distributions of drivers ({ϵ̂i , {ẑi j }Gj=1}Gi=1) with both maximum platform profit and spatial equi-

librium. Specifically, we augment and formalize Equation (1) into

argmax
{r̂i , ŝi , ϵ̂i , {ẑi j } }Gi=1

ρ
G∑
i=1

G∑
j=1

ai jpi jD
∗
i −

G∑
i=1

ŝi
��
�
ϵ̂i +

G∑
j=1

Tji ẑji
��
�
, (Platform profitability) (22)

subject to pi j = (poi + πδi j )r̂i , 1 ≤ r̂i ≤ rmax, Di = Γ(̂ri , r
′
i , D̂i ), (Prices & departures)

Ui = λ ≤ ŝi , ϵ̂i , ẑi j , ŝi ≥ 0, ϵ̂i ≤ ϵmax, ẑi j ≤ zmax, ŝi ≤ smax, (Incentive-compatibility)

D∗i = min{mi ,Di }, D∗i +
G∑
j=1

ẑi j =
G∑
j=1

κji (ajiD
∗
j + ẑji ) + ϵ̂i , ∀i, (Balanced flows)

G∑
i=1

mi ≤ M,
G∑
i=1

Di ≤ D. (Total constraint)

Note that the incentive-compatible setting in SE extrinsically maintains the willingness of dri-
vers’ (re)distribution in terms of price/subsidy signals [60]. Considering their exit and continuation
(Section 5.3) as well as their fuel/labor cost, drivers tend to (re)locate to nearby zones, hence com-
pleting the transition in a reasonably short time [11].

When deploying the above framework, one may further discretize the fare multipliers into Q
predefined values (say, ranging from 1.0 to rmax = 3.75 evenly spaced with 0.25) for ease of UI
display and calculation. Thus, in Equation (22), the continuous variable space is discretized (Sec-
tion 6.1). The multiplier cap rmax can be customized by the service providers.9 Similarly, the MOD
platform can also customize other continuous variables (including car flows) based on practical
settings and market survey [13, 14]. In our prototype, after the optimizing period k , the estimated
signals ({̂ri , ŝi }’s) and the predicted market states, plus the fulfilled rides, are stored for use in the
next period (k + 1), which is similar to a Markov structure [40, 59] and common industrial prac-
tices [35]. The resultant demand flows at period k can be stored for STCapsNet’s training in the
next step. One may periodically initiate or reset spatial prices (say, uniform or proportional to
regional price analysis [13]).

5.5 Complexity

Given G zones, their trips, and Q discretized multipliers, there are a total of O (GQ +G +G2)
variables for the optimization formulation. The problem in Equation (22) can be solved us-
ing efficient optimization solvers (such as GLPK and JOptimizer) [12], taking asymptotically
O ((GQ +G2)2) [12]. We also observe that at each heatmap frame, only prices/subsidies belonging
to the highly demanded subset of the grids [14, 42] need to be adjusted (often ≤15%), making O (G )

9http://fortune.com/2015/01/26/uber-caps-surge-pricing-during-blizzard-but-people-still-complain/.
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generally small. Thus, its deployment price updates can be made efficiently and in real time (say,
average 5.13s per frame in the NYC test with our PC configuration in Section 6.1).
STCapsNet’s online ride-estimation time is almost negligible (say, 0.12s on average for each

frame in NYC). The price-update frequency can be in the order of minutes (every 5 to 10mins for
platforms like Uber [14]) or on an hourly basis, up to the platform’s customization and the local
market’s nature. Further computation reduction in pricing can be done by region partitioning [42]
and parallel programming, which is omitted due to space limit.

6 EXPERIMENTAL EVALUATION

We first describe the experimental evaluation setup in Section 6.1 and then present the evaluation
results in Section 6.2.

6.1 Evaluation Setup

Data Pre-processing: We evaluate CAPrice and related schemes with the datasets presented in
Section 4.1. All experimental evaluations are done using a PC with Intel i7-8700K, 32GB RAM, an
Nvidia/EVGA GeForce GTX 1080Ti and Windows 10. Each frame (empiricallyW = H = 32, and
G = 1,024) aggregates the rides within 0.5h due to data availability. The form of zone and time
discretization follows the conventional practice and state-of-the-arts for ease of prototyping and
comparison [66], while further evaluation on their variation is omitted due to space limit and left
as future work. Our test of ride prediction algorithms is done upon the frames of the last four
weeks (total 1,344 test frames from 28 days) for each dataset (or last two-week frames of our one-
month Didi data). The rest of the datasets are used for model training. All frames are min-max
normalized [16] to a range of [−1, 1] as in Section 4.4 to fit in the tanh function. External factors
in Section 4.2 are parsed and aggregated in the same frequency to rides. We similarly scale the
non-categorical meteorological data (say, temperature/wind speed) and traffic conditions (travel
speed and time) into [0, 1] for each dimension. For other categorical data (say, date/event, holiday,
weather conditions, and sky visibility), we apply the one-hot coding upon them to form binary
vectors. For example, given candidate weather conditions of [snow, rain, sunny], a time period
with only rain recorded is tagged with vector [0, 1, 0].

Pricing evaluation is done upon the same test frames given their ride predictions of each dataset.
To characterize the MOD flows, we find the set of probabilities {ai j } in Equation (16) based on the
overall predicted incoming (arrival) flows Aj ’s and generalize it for all passengers within all Di ’s
from all zones. As the Uber ride data [5] in our hands only provide pick-up locations, from the local
taxi and traffic flow data [4] ({ai j }’s) at the same time, we extract the approximate arrivals for the
evaluation of demands and supplies [49, 56]. To estimate the time of relocationTji in Equation (22)
(related to passengers’ waiting time), we train a random forest regression model (20 trees as the
ensemble estimators; 5 × 10−5 as the minimum fraction of samples required to split an internal
node) upon the one-month rides before the test data. The mean time estimation error is 2.7mins
upon 50,000 validation rides.
Comparison Schemes: In ride prediction, we compare CAPrice with the following

traditional/advanced algorithms:

• HA& S-HA: predicts the rides based on the average of historical records of the same periods.
For example, we average all data during 8:00–8:30 of all recorded Mondays to predict that
of 8:00–8:30 of a specific Monday. (Seasonal) S-HA takes the same periods but of the same
seasons [26].

• ARIMA: predicts rides based on the traditional Auto Regressive Integrated Moving Average
(ARIMA) model [26]. In our setting, ARIMA empirically predicts the rides based on a sliding
window of recent five days (240 ride frames).
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• LSTM: predicts rides with long-short-term-memory-based (LSTM-based) [24] neural net-
work regression learned from k most recent ride frames [26]. We empirically set k = 72.

• ST-CNN: predicts rides based on CNN [30, 39] and residual networks (ResNet) [66] in a
spatio-temporal LSTM structure [24]. Note that we have also provided the external fac-
tors presented in Section 4.2 with ST-CNN to compare its core with that of STCapsNet. An
optimal window of the latest 21 frames is applied for ST-CNN.

For pricing performance, we compare CAPrice with the following schemes (all given
STCapsNet’s predictions; implementation details can be referred to their works):

• Spatio-temporal Surge Pricing (ST-SP): is a traditional dynamic pricing scheme adopted by
existing ride-sharing service providers (detailed in References [14, 35, 37, 38]), greedily ad-
justing the zone prices spatio-temporally to entice drivers. Despite the price variation due
to spatial and temporal demand changes, it does not take into account price optimization
based on zone-to-zone equilibrium and flow balance.

• Temporal Surge Pricing (T-SP): only surges temporally [4, 10, 48] based on overall demand-
supply patterns without considering the spatial diversities and equilibrium effects.

• Static/Fixed Pricing (FP): is a basic and uniform pricing/subsidizing scheme [3] without con-
sidering the spatio-temporal effect of the MOD market.

Parameter Setups: Unless otherwise stated, the following default parameters are used for

CAPrice: In Figure 8, (N
f
1 ,N

d
2 ,N

c
2 ,N

d
3 ,N

c
3 )=(128, 8, 8, 64, 16). Each filter in Conv2D_1 and Conv2D_2

has 3 × 3 kernels [51]; while for PC, we use the 9 × 9 kernel. The size of sliding window (w) is set
to 12. The batch size is 64, learning rate is 2 × 10−3, and the max number of epochs is 200 (with
early-stop rounds [16] at 20). The number of routing iterations in STCapsNet is 3 (Section 4.3).

For all pricing schemes, based on empirical studies and user surveys [11, 14, 31, 32], we set ri
in the range of [1.0, 3.75] (evenly discretized with 0.25). As in many state-of-the-art incentive and
analytical pricing designs [11, 17, 18, 38] in characterizing driver responses, F (̂ri ) = αr̂i (α > 0) is
considered in our prototype evaluation (Equation (18)), andwe empirically setα = 0.2.We consider
κi j = βδi j in Equation (13), where the continuation rate β can be determined via the driver surveys
and statistics [31, 32], andwe set β = 0.8. smax is set to 20% of the average ride fare based on the ride-
sharing policy [6] from the Uber platforms. Initial {pi , si }’s, rate π per distance unit,10 commission
rate ρ (Equation (20) [2]), outside option λ, and car/passenger availability are also set based on the
local MOD markets [4, 6].
Comparison Metrics: The following evaluation metrics are used:

• Root mean square error (RMSE) &Mean average percentage error (MAPE): which are respec-
tively given by

RMSE =

√√√
1

M
M∑
i=1

(
F i − F̂ i

)2
, MAPE =

1

M
M∑
i=1

|F i − F̂ i |
F i

, (23)

where M, F i and F̂ i are the total number of zones (consisting of Di and Ai ) in all test
frames, ground-truth and estimation, respectively. For the accuracies of ride predictions,
RMSE shows the absolute errors while MAPE focuses on relative proportion w.r.t. scale of
traffic flows.

• Operation revenue & Profit: We compare the profitability of different pricing schemes with
respect to the average revenues and profits of all temporal frames. For a clearer comparison,

10https://www.numbeo.com/taxi-fare/in/Beijing.
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Table 2. Ride Prediction Accuracy with Four Different Datasets

Dataset Uber, NYC Taxi, NYC Taxi, Beijing Didi, Chengdu
Method RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
HA 15.96 0.245 38.63 0.323 59.48 0.504 37.83 0.539
SHA 12.06 0.192 37.46 0.315 53.79 0.446 37.61 0.536

ARIMA 10.11 0.124 28.15 0.209 46.40 0.384 16.14 0.363
LSTM 9.73 0.093 18.42 0.127 28.55 0.230 11.97 0.252
ST-CNN 9.04 0.079 14.57 0.101 17.71 0.158 11.36 0.237
Proposed 4.57 0.036 9.60 0.065 14.69 0.118 5.93 0.177

the revenue refers to the income from trips in all zones with estimated faremultipliers ri > 1
(“surge”) or subsidies si > 0 by all pricing schemes, and the profitmeans the net income after
subtracting costs due to applied subsidies from the zones. Others without adapted prices or
subsidies are not included due to the same earnings there. This way, we can focus on the
effect of adaptive pricing.

• Market clearance ratio (MCR) & Estimated wait time (EWT): We compare the sustainability
of the pricing policies based on how theMODmarket gets cleared, i.e., passengers’ demands
get matched (responded) by the driver supplies.We find themeanMCR of all test frames.We
also find the riders’ average estimated wait time caused by mismatches and the subsequent
vehicle redistributions from neighboring regions. Note that if an event of relocation is esti-
mated to take too long (say, longer than an interval in our setting), for practical evaluation,
we consider the ride is canceled and this demand cannot get cleared either.

6.2 Evaluation Results

A. Ride Prediction: We first overview the performance upon the four datasets, followed by a
sensitivity analysis.

(1) Prediction Accuracy: Table 2 shows the accuracies of different algorithms upon the four
datasets. HA and SHA only consider the temporal trend without the spatial trip depen-
dency of the zones, thus experiencing much higher errors in the complex MOD networks.
ARIMA and LSTM regress/model the spatio-temporal trends more vigorously. However,
their lack of comprehensive learning structure degrades accuracy in handling complex city
networks. ST-CNN formalizes the ride distributions via convolutional neurons, but its CNN
structure focuses on local features, not global zone-to-zone trends (as in Figure 9). So, it
cannot comprehensively capture connections between different distant zones.
In terms of RMSE and MAPE, CAPrice is shown in Table 2 to outperform other state-of-

the-art ride prediction schemes often by 20% or more. Unlike the above schemes, STCapsNet
perceives the rides via structured vector-based capsules. Different capsules capture ride
connections of close/distant zones, thus gaining more accurate information than others.
Given the spacious urban map (1,024 grids) and large MOD traffic volumes (Figure 5), its
accuracy will likely make a significant improvement of the urban MOD economy. Figure 12
further visualizes a heatmap of demand prediction (Taxi, NYC; 00:00–12:00, 2016-05-31),
which, subject to some noise, closely resembles the ground-truth in Figure 4.
We also observe that all schemes in NYC Uber and Taxi evaluations achieve better accu-

racy than in the Beijing Taxi, because the rides in NYC have overall more regular and de-
terministic trip directions (say, around Manhattan and JFK airport) than in Beijing. Beijing
has more complex ring road structures and hence more complicated taxi drivers’ routes (as
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Fig. 12. Visualization of NYC ride

demand prediction.

Fig. 13. RMSE vs. frame numbers

and routing numbers.

Fig. 14. Error CDFs with or with-

out different external factors.

discussed in References [63, 68]) than NYC. Thus, more randomness and noise is observed
in the trips in Beijing. Compared to Taxis in two other metropolitan cities, the test case of
Didi in Chengdu is overall easier for all schemes. Nevertheless, due to much smaller training
sets, higher prediction errors are still observed than from Uber at NYC. A further (future)
enhancement may include integration of detailed city road networks [41, 55].

(2) Sensitivity Analysis:We also analyze CAPrice’s sensitivity to important parameters/external
factors with NYC Taxi data as an illustration, where the validation data (10% left out of the
training frames) is different from the above test data.

• Number of consecutive frames & dynamic routings: As shown in Figure 13, the more consecu-
tive frames in a window (Section 4.4) and more iterations of routings (Section 4.3), the more
accurate CAPrice becomes due to more captured ride knowledge. However, as we increase
the frames and routings further, the improvement slows down. Inclusion of many frames
may come with some noisy measurements over time, thus degrading its learning quality.
Further learnable features from too many routing-by-agreements may also vanish.
Meanwhile, increasing the sliding window and the routing time may also create a more

complicated model and cause longer training time. Thus, for the applicability of the model,
we choose knee points [12] (where the curves “turn” in Figure 13) of window size w =
12 (still much smaller than ST-CNN’s 21 frames in Section 6.1) and three routings in our
prototype studies.

• External factors: Figure 14 shows the error (i.e., the absolute difference between estimation
and ground-truth at each Zi ) CDFs of four cases—STCapsNet with complete external fac-
tors, that without only traffic condition, that without both meteorological data and traffic
conditions, and pure capsule network (without any external factors in Section 4.2). We can
see with assistance frommore factors that STCapsNet achieves higher accuracy than others.
In what follows, we study CAPrice with complete external factors.

B. Adaptive Pricing: Given the ride prediction, we further evaluate the performance of
CAPrice’s pricing in terms of platform profitability and sustainability.

(1) Operation Revenue, Profit, Market Clearance Ratio, & Estimated Time of Wait: Given the ride
predictions by STCapsNet, Table 3 shows the overall pricing performance in the four dif-
ferent cases. Specifically, we list the means of revenue, profit (both in their common log-
arithms; from the zones with adapted prices), MCR, and EWT with respect to each ride
heatmap frame.
CAPrice is shown to outperform the other conventional pricing models often by at least

30% more profits and revenues. FP fails to capture the spatio-temporal ride dynamics, thus
resulting in significant profit loss. Despite the consideration of temporal demand-supply
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fluctuations, the absence of spatial differentiation still degrades T-SP. Beyond FP and T-SP,
ST-SP perceives more about spatio-temporal flow dynamics. However, it does not jointly
consider the prices, subsidies, and driver redistributions based on forecasts and equilib-
rium. Thus, misdistribution of drivers often happens and the platform’s profitability is held
down. Meanwhile, the market cannot get cleared in a timely manner, degrading customer
experience and the sustainability of platform service.
In contrast, CAPrice formulates the spatial equilibrium into the joint optimization, bal-

ancing dynamic flows via a spatio-temporal adaptive pricing policy. Vehicles can follow
incentive-compatible distribution guidelines while bunch-ups are mitigated, leading to
more adaptive and smoother ride-flow distributions. Thus, it enhances the profitability and
sustainability of the MOD platforms as well as the predictability of rides. Due mainly to the
size difference in reported vehicle volumes, the revenues/profits by Yellow Taxi are found
to be much larger than NYC Uber peers and Beijing Taxi/Chengdu Didi markets. The differ-
ence between each pair of revenue and profit reflects the total subsidies paid to the drivers.
Thanks to the joint flow-balancing and optimization, CAPrice achieves higher MCRs at
lower EWTs and subsidies.

(2) Further Market Analysis: Figure 15 further shows a snapshot of spatial price multipliers and
subsides at 09:00, May 4, 2016 (NYC Taxi); that most of the surging prices happen in the
popular midtown Manhattan due to large volume of traffic demands there. Meanwhile, we
can see higher subsidies from the Upper East Side, Jackson Heights and peripheral areas
around Manhattan, to compensate driver redistribution.
Figure 16 further illustrates the dynamic flows of vacant cars. We show the directions

of in- (blue sectors) and out-flows (yellow sectors) of vacant cars due to incentivization
of {ri , si }’s. The larger radius the sector, the more incoming or outgoing vehicles there.
Corresponding to Figures 4 and 15, unmatched drivers are steered towards locations such
as midtown Manhattan (due to prices) and Jackson Heights (due to subsidies) to serve the
supply-demand imbalance there. Figures 15 and 16 also show insights for setting higher
price multipliers (subsidies) attractive (unattractive) zones to steer drivers. In particular,
zones of unbalanced supply-demand due to their far more attractive neighbors (such as
Manhattan peripherals around the popularMidtown in Figure 15) should be subsidizedmore
to entice new and redistributed driver flows.
Figure 17 shows (a) temporal profits and (b) temporal MCRs of CAPrice of a day, and

(c) MCR CDFs with all schemes (Uber, NYC). From (a) and (b), we can see that CAPrice
maintains overall high MCRs over time while adapting to high demand during morn-
ing/afternoon (08:00/18:00) rush hours. Thus, high profits and MCRs can be observed then.
Figure 17(c) summarizes the MCR CDFs, showing more than 30% improvement in clearing
the market.

(3) Effect of Ride Prediction over Pricing: Testing CAPrice on Uber data, Figure 18 shows the
importance of ride-prediction accuracy over market profitability/sustainability of adap-
tive pricing. Inaccurate ride prediction in an urban network markedly exacerbates mis-
distribution of drivers towards customers, resulting in revenue decreases, more steering
subsidy costs, and MCR degradation. Note that the CDFs of profits are from their common
logarithms. With more accurate forecasts of STCapsNet, CAPrice gains at least 35% more
profits and revenues and 30% higher MCR than with ST-CNN.

7 DISCUSSION ON DEPLOYMENT

Task assignment for humans & machines: Task assignment and pick-up acceptance are
also critical for MOD platform operation in redistributing drivers. While incentive-compatible
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Fig. 15. Heatmaps of (a) ri and (b) si
(NYC, 09:00).

Fig. 16. Relocation flow of vacant cars

(NYC, 9:00).

Fig. 17. Market dynamics and summary

(Tue. 2015-06-30).

Fig. 18. Prediction effects: Uber prof-

its and MCRs.

monetary subsidies/compensations are often used for this purpose, many social [17, 25], psy-
chological, and human-computer interaction designs, orthogonal to pricing, may increase pick-
up/response rates further in unpopular times and/or city zones. Explicit or implicit rules by the
platform (bonus or penalty) may also regulate the (re)distribution of drivers [13]. Although it is
very challenging to find a complete design, our accurate ride prediction and joint pricing opti-
mization framework is generic enough to be extended to accommodate these factors.
Market of monopoly or duopoly: We focused on a market of monopoly (oligopoly) for ease

of prototyping, but CAPrice can be adapted and extended to a more complex one with multiple
competing MOD platforms (say, Uber, Lyft, and Didi). A MOD driver survey recently conducted
in 2017 [13] still shows that 75% of the drivers indicate they are primarily working for Uber, al-
though a majority of them could be active drivers for other services. Unlike North America, more
than 80% of China’s ride-sharing market (2018) is held by Didi. In the future, we would like to
extend CAPrice to highly competitive market settings [9, 44]. How to properly regulate, instead
of letting an unplanned market up to the “invisible hand” [9], is also worth further exploration by
city planners.

8 CONCLUSION & ACKNOWLEDGMENT

We proposed CAPrice, a novel adaptive pricing system for MOD networks. CAPrice first predicts
MOD trips (departures and arrivals) via a spatio-temporal deep capsule learning network, which
comprehensively constructs vector-based zone-to-zone ride relations for accurate ride prediction.
It then formulates a joint optimization problem that takes into account the spatial equilibrium to
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balance the platform, drivers, and passengers. Our extensive experimental evaluations over the
real data (Uber, Didi, and Taxi) from NYC, Beijing, and Chengdu have validated the accuracy,
effectiveness, and profitability of CAPrice on urban MOD networks. In the future, we would like
to investigate further the effect of space and time discretization upon the pricing performance.
We would like to thank DiDi Chuxing GAIA Open Dataset Initiative for the shared ride data.
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