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Abstract—To realize an efficient and flexible urban crowd-
flow identification, we propose a new scheme called CFid by
fusing fine-grained spatio-temporal smartphone signal features.
Considering the abundance of ambient WiFi and geomagnetism,
we design and validate several of their fine-grained features
and similarity metrics to determine if two individuals belong
to the same crowd-flow. We formalize a graph stream clustering
problem, where co-flow user pairs are opportunistically identified
and fed as a dynamic sequence of edges connecting each other.
Given such a flexible form, a fast and accurate algorithm
processes the edges and identifies the crowd-flows for further
upper-level applications, including urban-flow monitoring and
shopping-advertisement/recommendation. Using extensive data-
driven analytics and 8-month experimental studies upon 50 users
(over 2,500 walking traces at 7 different urban sites), we have
validated the accuracy (usually >95%), efficiency (only <5%
extra energy-footprint on average than normal usage on mobiles)
and flexibility of CFid in identifying large-scale crowd-flows.

I. INTRODUCTION

The advent of smart cities accompanied by increasing perva-
siveness of IoTs (Internet of Things), provides unprecedented
capabilities and opportunities to monitor, model and compre-
hend the mobility of urban crowds, benefiting both smart-city
planners and residents. The resulting crowd analytics market
is estimated to grow at a Compound Annual Growth Rate
(CAGR) of 24.3%, from USD $385.1M in 2016 to $1,142.5M
by 2021 [1]. Among the various mobility patterns explored for
urban and social sensing, finding the individuals in a certain
site of interest moving together on similar paths — called
crowd-flows — is key to many emerging applications [2]–[6],
including event surveillance, urban planning, social analysis,
recommendation and consequent commercial promotions.

Conventional crowd-flow studies usually require location
estimation and subsequent trajectory mining. Despite their
success in vehicle networking or macro migration tracking (de-
mography or zoology), few of them are applicable in crowded
urban or indoor environments, where dedicated infrastructures
(say, GPS, CCTV/camera or wireless probing transceivers) for
localizing devices are likely non-existent or provide poor ac-
curacy (due to crowds or other reasons). Beyond their coarse-
grained estimates, a fine-grained or last-mile augmentation
is needed for more pervasive deployment. Mutual proximity
between users can be obtained from device pairing (say,
Bluetooth), but may cause privacy risks, especially when they
are discoverable by other parties.

Furthermore, urban crowd-flows are highly dynamic due
to many opportunistically-encountered users. While different
signal modalities and their combination have been considered

in mobility analytics, few of them considered fine-grained and
hybrid signal feature designs for crowd-flows, and provided
spatio-temporally adaptive models for their fast identification.
In particular, a scalable and efficient mechanism is required for
urban or spacious indoor settings like large malls or airports.

Motivated by ambiance of urban/indoor WLAN infrastruc-
tures and geomagnetic anomalies, we propose CFid, a Crowd-
Flow identification system via fine-grained spatio-temporal
signal fusion, with the following design considerations:
? By leveraging the spatial diversity (particularly along a

certain walking path), we associate the WiFi and magnetic
features measured from individuals’ smartphones with their
sequential/temporal co-presences, or co-flow, without ex-
plicitly calibrating, pairing devices or tracing the locations.

? Closeness or spatio-temporal similarities between people
(device carriers/users) can be efficiently identified by online
comparison of fine-grained signal sequences between users,
hence enabling fast detection without extensive localization
of devices.

? On the signal patterns derived and fine-grained similarity
measures, we consider crowd-flows as the graph stream,
where individuals as vertices in a graph are dynamically
connected via correlations of their signals. The stream of
the resultant edges can then be fed and processed efficiently.

? As these signals can be inertially measured from phones
(sanitized and crowdsourced to a central hub or server),
we can mitigate individuals’ privacy concerns by regulating
pairing or communication with unknown peer devices.

This paper makes the following main contributions:
• Extraction and Application of Spatio-Temporal Signal Fea-

tures for Co-flow Detection: Via comprehensive data an-
alytics, we take into account the spatio-temporal signal
features, and extract several critical patterns (prototyped
with smartphone-based magnetic and WiFi measurements,
but integrable with many others) as the basis for detection
of co-flow users. To quantify the closeness between users,
we have designed hybrid signal metrics fusing these hetero-
geneous features, which enhance accuracy and robustness
under environmental interferences.

• Efficient Crowd-Flow Identification: After evaluating the
derived features, we have designed automatic learning of
decision parameters and fast co-flow detection to quickly
determine co-presence of each two users and their mutual
edges. Then, by formalizing graph stream clustering, CFid
accurately and efficiently identifies the flow, or dense sub-
graph, that each individual belongs to. This way, CFid can
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Fig. 1: System framework and information flow of CFid.

achieve flexible and efficient deployment for urban crowd-
flow monitoring.

• Extensive Data-Driven User Studies: With the aforemen-
tioned design, we have conducted an extensive study of
three real-world user datasets, including more than 2,500
sampled sequences (walking traces) collected from 50 users
at 7 different urban sites during more than 8 months. Our ex-
perimental results validated CFid’s accuracy, effectiveness
and applicability in identifying crowd-flows (say, often with
≥95% accuracy and ≤1 second overhead), while consuming
a negligible amount of energy (only <5% extra on average
compared to normal usage) upon the mobile devices.
Fig. 1 illustrates the system framework (with information

flow) of CFid, which consists of client and server sides. At
the client side, a target scenario app (say, shopping mall pro-
motion or site monitoring) is considered to run transparently in
the smartphone background to collect WiFi and magnetometer
signals (given user consents). The central monitor (server) then
performs the smartphone signal preprocessing, derives the co-
flow features and assesses the person-to-person similarities
(feature extraction & comparison). During co-flow detection
& edge construction, as the crowd-flows are dynamically
evolving over time, CFid batches, processes and streams the
detected person-to-person closeness as edges in (1). Given
the detected co-flow users (edge stream as (2)), the server
forms the streamed graph like (3), and efficiently identifies the
crowd-flows (dense subgraphs in (4)) they belong to (crowd-
flow graph construction & identification) for the app.

Note that such flow-related signals can be “crowdsourced”
from many individuals [5,7,8], given the social and com-
mercial significance, and practical user incentivization by
certain commercial promotions, coupons, recommendations
and other monetary/psychological benefits relevant to the sites
of interest, and consequently gain the social acceptance. Albeit
prototyped under WiFi and geomagnetism, CFid can be
easily extended to other emerging signal modalities including
channel state information (CSI) and visible light for more
advanced applications [4,9,10].

This paper is organized as follows. After reviewing the
related work in Sec. II, we present the important concepts,
problem and test datasets in Sec. III. Then, we discuss the
fine-grained and data-driven signal feature designs in Sec. IV.
This is followed by our core crowd-flow identification in CFid
in Sec. V. We further validate the prototype of CFid with real-
world data in Sec. VI, and conclude the paper in Sec. VII.

II. RELATED WORK

Crowd status can be obtained from pairing-based [9,11]
and location-based sensing techniques [12]. Trajectory mining
for group/community discovery [13] has also been studied.
By deriving spatio-temporal features from inertially-measured
smartphone signals, CFid is amendable to these studies or
applications, and can serve as a plug-in (Fig. 1) for their more
adaptive and pervasive deployment.

Recently, researchers started associating signal modalities
to infer the mobility, social or demographic patterns of
crowds [3,4]. Kjærgaard et al. [13] considered temporal user
clustering with different sensor readings. GruMon [6] detects
groups mainly based on users’ temporal movement correlation.
While most pilot studies focus on single correlation measure in
terms of group mobility or signal modalities [6,14], we design
several comprehensive metrics jointly on spatio-temporal fea-
tures to detect crowds more effectively. Furthermore, instead
of their computationally-expensive static clustering [15,16]
and supervised learning [6,13] that requires a priori training,
we design a fast graph streaming and clustering framework
without extensive model or parameter calibration.

WiFi and geomagnetism sensing, due to their ubiquity, have
triggered a myriad of mobile apps [10,15], including location-
based service [14,17] and smartphone sensing [12]. However,
few of these studies systematically investigated their fusion
potential for crowd-flow study. To fill this gap, we propose
CFid which is built on several novel signal-processing and
crowd-related feature extraction techniques to unfold their
potential for fast and accurate crowd-flow analytics.

III. CONCEPTS, PROBLEM FORMULATION & DATA SETS

A. Important Concepts & Problem Formulation
We first briefly introduce the important concepts related to

the design of CFid.
Definition 1: Crowd-Flow: In an urban/indoor environment,

a crowd-flow consists of multiple (≥ 2) pedestrians who are
moving along a similar path and direction. �

To quantify and model a crowd-flow (CF), we define a
measure for each pair of users in the same flow (or co-flow):

Definition 2: Person-to-Person Co-Flow Similarity: The co-
flow similarity, Φ(i, j), captures the likelihood that two users,
i and j, belong to the same CF. In other words, the higher
the Φ(i, j), the more likely two users belong to the same CF.
Specifically, we find the co-flow signal features (say, WiFi
and geomagnetism) showing the sequential (spatio-temporal)
potential of the two users in the same moving crowd. �

For ease of its formulation and description, we consider
Φ(i, j) ∈ [0, 1] for CFid. The co-flow pedestrians sharing
the contexts are likely to have strong mutual similarity in
measured signals and thus form a virtual edge, while those in
different CFs possess weak or even no correlation, resulting
in no edges (or edge pruning) between them. Based on this
observation, we can construct:

Definition 3: Crowd-Flow Graph: Each user i is considered
as a vertex ui, while her/his detected co-flow states related to
other users j’s are considered as edges eij’s (if not pruned).



CFid searches the thus-formed graph G = (V,E) where V =
{ui} and E = {eij} to find the CFs F’s underneath.

Let δi be the degree of ui. We assume there is no self-loop
in G, i.e., a user needs no similarity comparison with himself.
In the context of graph clustering [18], vertices (users) ui’s
within a CF F (dense subgraph [18]) tend to be connected
more (of higher degrees) than across different flows. �

Due to user mobility and dynamics, the formed graph in
Def. 3 is dynamically changing and updated over time. Mean-
while, crowdsourced signals are usually streamed in. Thus,
to balance between identification timeliness and robustness
against noisy signals, we further consider the setting of:

Definition 4: Graph Streaming: Graph streaming considers a
stream (or batched) — an order sequence (that can be random)
of identified closenesses or edges — as

S = {e1, . . . , en}, (1)
where et ∈ E (1 ≤ t ≤ n) represents the t-th edge arriving
at the central monitor of CFid. Let Aij (Aij ≥ 0) be an
element of an augmented adjacency matrix [18] representing
the number of edges between users i and j. Note that each
edge eij ∈ E (co-flow users i and j) can be spotted Aij times
within the stream S. �

To quantify the formation of CFs, we leverage the concept
of modularity for graph partitioning (clustering) [18]:

Definition 5: Crowd-Flow Graph Modularity: In CFid, the
modularity of a crowd-flow graph is defined as the fraction of
the edges that fall within the given CFs F’s minus the expected
fraction if edges were distributed randomly [18]. Specifically,
let Q be the modularity of G, i.e.,

Q =
1

2|E|
∑

i

∑
j

(
Aij −

δiδj
2|E|

)
Iij , (2)

describes the division strength of graph partitioning [18]. Iij =
1(0) if i and j are (not) in the same flow. �
Q can be interpreted as the probability that an edge lies

within its assigned subgraph minus δiδj/(2|E|), the probabil-
ity that an edge, if chosen proportionally to the vertex degrees,
lies in the subgraph (a randomized version of the original
G, or null model) [18,19]. In general, the higher the Q, the
more credible or confident that a graph partitioning has led
to crowd-flows F’s (cluster). Note that direct optimization of
graph modularity is NP-hard [18], and hence various heuristics
have been proposed to approximate and push the limit (e.g.,
see [18] for details which are omitted due to space limit).

Based on the aforementioned concepts, we present the
problem formulation in CFid as:

Definition 6: Crowd-Flow Identification (CFI): Let bli be the
decision variable that a user i belongs to flow l, i.e., bli = 1 if
i ∈ l and bli = 0 otherwise. From user i’s smartphone sensors,
we get the WiFi and magnetic readings, denoted as [Wi,Mi].
Let f(i, j,Wi,Wj ,Mi,Mj) be the co-flow similarity func-
tion between users i and j given {i, j,Wi,Wj ,Mi,Mj}.
With the batched user measurements, their mutual Φ(i, j)’s
and a decision function Γ(Φ(i, j), l), the CFI in CFid is to
find the flows F’s of users, or dense subgraphs (clusters) in G,
such that the modularity Q of the streamed graph partitioning

is maximized, i.e.,
arg max
{F′s}

Objective (2), (3)

s.t. Φ(i, j) = f(i, j,Wi,Wj ,Mi,Mj), bli ∈ {0, 1},

(bli, b
l
j) = Γ(Φ(i, j), l), ∀i, j,

∑
l
bli = 1. �

B. Datasets for Crowd-Flow Studies
We study the CFI with the following 3 real-world datasets.
Dataset A: We recruited 50 volunteers for data collection at

7 different urban sites (including our university campus, recre-
ation center, student dormitory apartment, academic building
and premium shopping mall) during more than 8 months. A
wide spectrum of smartphones, including Samsung Note 7,
S6 Edge+, Note 5, Note II, LG G3, Google Pixel, Pixel XL,
Nexus 6P and Nexus S, are involved. A total of 2,516 walking
sequences/traces (each is of average size 55kB) have been
collected for our data analysis. A total of 442 WiFi access
points (APs) are detected (covering over 3,700m2 in total; see
Sec. VI-A for details).

Dataset B [20]: This is a public dataset collected in an
academic building (of hall ways and corridors) with Sony
Xperia M2 and LG G Watch R (W110), which contains over
648 user walking traces with WiFi/geomagnetic readings. A
total of 127 APs are detected in sites covering over 180m2.

Dataset C [21]: A public WiFi/geomagnetism dataset col-
lected from 6 different indoor areas of an office building
(including labs, offices and lounges), which contains over 461
user walking traces (details are referred to [21]). A total of
219 APs are detected in sites covering over 70m2.

For each of the datasets, we have the timestamps, WiFi
MAC addresses (basic service set identifier or BSSID), names
of networks (service set identifier or SSID, if available), re-
ceived signal strength indicators (RSSI; in dBm), geomagnetic
readings (three dimensions; in µT) and user/crowd IDs for data
analytics in the following sections.

IV. CO-FLOW FEATURE EXTRACTION & SIMILARITIES

To characterize Φ(i, j), the feature extraction in CFid
needs to (1) define similar patterns, and (2) design their
similarity measures. Given the collected smartphone signals
(Sec. IV-A), Fig. 2 illustrates the co-flow features explored
in CFid, where the WiFi (APs set and signal sequence in
Sec. IV-B) and geomagnetic features (spectral/temporal, as in
Sec. IV-C) are characterized and compared. Finally, we present
hybrid similarity and feature refinement (Sec. IV-D).
A. Smartphone Signal Collection & Preprocessing

Via the existing mobile APIs (e.g., Android), each WiFi-
tuple measurement from an access point (AP) can be easily ob-
tained, and is represented as [MAC,RSSI,SSID,Timestamp].
SSID is the service set identifier, if any, which is usually the
name of WiFi network shown in the user interface (like the
well-known “eduroam”). For each user i, let W k

i (t) be the
RSSI from an AP indexed by k at time t. Mobile APs tethered
by third parties are filtered out based on the vendor-dependent
organizationally unique identifiers (OUIs) inside their MAC
addresses. RSSI values are converted from dBm to mW to
differentiate strong and weak signals.
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To measure the magnetic signal, for Android platforms we
utilize calibrated magnetic field (TYPE MAGNETIC FIELD),
as the hard iron bias [12] is removed from the given sensor
readings (self-calibration due to distortions that arise from
magnetized metal or permanent magnets on the device). Then,
a temporal sequence of size ω (a predefined sliding window)
is defined as Mi = [M(1),M(2), . . . ,M(ω)]. We normalize
the readings to cope with device heterogeneity, apply a 5-order
Butterworth low-pass filter upon them, and focus on the signals
below 12Hz as they are more likely associated with normal
human movements (including walking and turning) [12].
B. WiFi Co-Flow Feature Extraction & Comparison

To illustrate similar WiFi patterns of two co-flow users,
we plot in Fig. 2 their sequentially-scanned heatmaps (with
spatio-temporally alike strengths within a 10s window) w.r.t.
all APs (vertical axis) along the same path (horizontal axis).
Such correlations can be leveraged to detect the co-presence.
So, co-flow feature extraction with WiFi is mainly based on
comparison in AP sets (spatial) and AP signal sequences
(temporal). Due to a certain coverage area of the shared
APs, set comparison can semantically characterize the co-
presence of users A and B, while signal sequence comparison
upon these shared APs further differentiates them. Fig. 2
illustrates these two perspectives, where the spatio-temporal
WiFi diagrams of two users are compared. Given a sliding
window T of latest WiFi readings, we will detail these two
design perspectives.

(a) Semantic AP Set Comparison: In terms of detected AP
sets (union of APs within the sliding window T ), we design
the following spatial metrics assessing two users’ closeness:
• Adapted Tanimoto Similarity: For each user i, we consider

a bit vector Ii representing a set of all candidate APs (union
of all available MACs), where each element or bit Ii[k] is 1
if s/he detects this AP k, and 0 otherwise. Then, the adapted
Tanimoto similarity [22] between them, ψT (i, j), is

ψT (i, j) ,
1 + Ii · Ij

1 + |Ii|2 + |Ij |2 − Ii · Ij
. (4)

In other words, the more APs of the detected are shared
by two users, the higher ψT (i, j) and the more likely they
belong to the same crowd-flow. Note that such an adaptation
is to ensure ψT (i, j) ∈ (0, 1].

• Adapted Adamic-Adar Similarity: Apart from the ratio of
shared APs, our adapted Adamic-Adar similarity [23] eval-
uates the closeness in terms of shared APs from another
vantage, where the co-presence of more unpopular APs is

Algorithm 1: Fast WiFi sequence comparison.
Input: Wi, Wj : two sequences; γ: threshold; p: window size.
Output: LB K difference divided by the mean length.

1 lb sum←0; Wi←shorter(Wi, Wj ); Wj←longer(Wi, Wj );
/* Enumerate shorter Wi for efficiency */

2 for id, e in enumerate(Wi) do
3 if id > len(Wj ) then
4 break;
5 end

/* Upper & lower values: u & l */
6 u←max(Wj [(id-p if id-p ≥ 0 else 0): (id+p)]);
7 l←min(Wj [(id-p if id-p ≥ 0 else 0): (id+p)]);
8 if e > u then
9 lb sum←lb sum + (e-u)2;

10 else if e < l then
11 lb sum←lb sum + (e-l)2;
12 end
13 end
14 end
15 return sqrt(lb sum)/mean([len(Wi),len(Wj )]);

more likely to indicate the closeness of two users. Popular
APs, on the other hand, can be less informative in set
comparison due to their large coverage.
Specifically, let P k be the popularity of AP k (P k ∈ (0, 1]),
i.e., ratio or proportion of those detecting AP k within
all the involved users. Formally, the adapted Adamic-Adar
similarity ψA(i, j) (ψA(i, j) ∈ (0, 1)) for all shared APs
that are detected by both users i and j is given by

ψA(i, j) ,
∑|Ii∩Ij |

k=1

1

1 + log(1 + P k)
, (5)

where |Ii ∩ Ij | is the set cardinality of their shared APs.
From the analysis of our datasets (CDFs of P k’s in Fig. 3),
we have observed in Datasets A and B that more than 80%
of the detected APs have popularities P k’s lower than 45%,
while in Dataset C P k’s are higher due to denser APs, which
may account in part for performance differences (Sec. VI).

(b) Efficient AP Signal Sequence Comparison: Beyond
the detected AP set, we also consider AP signal sequence
comparison to account for the users’ dynamic patterns, thus
incorporating user co-flow mobility in practice.

To facilitate the WiFi sequence comparison, we leverage
the LB Keogh bound (LB K) [24], which efficiently returns
a lower-bound of the dynamic time warping (DTW) distance
between two temporal sequences in linear time (illustrated in
Algo. 1). Specifically, for each user i, let Wk

i = [W k
i (t −

T ), . . . ,W k
i (t)] be her/his measured WiFi sequence from AP

k within a sliding window of T . When comparing two given
sequences Wk

i and Wk
j of users i and j from AP k (Line 1),

LB K takes in the global path constraints, i.e.,
idj − p ≤ idi ≤ idj + p, p > 0, (6)

where idi and idj are indices of the warping path w.r.t. two
series, and p is a predefined path constraint. Then, LB K finds
the upper and lower values along the path, u and l (Lines 6
to 7), for the difference accumulation, and a lower-bounding
measure lb sum of difference is later returned (Lines 8 to 12).

Finally, we define if LB K distance, LB K
(
Wk

i ,W
k
j

)
,

divided by the mean length of the two sequences (Line 15),
is less than a positive threshold γ, or equivalently,

LB K
(
Wk

i ,W
k
j

)
≤ 1

2

(
|Wk

i |+ |Wk
j |
)
· γ, γ > 0, (7)



then we conclude that the input pair may be similar (we
empirically find optimal γ as 0.002mW in our experiment), or
dissimilar otherwise. Note that complexity of computing LB K
is linear with the input WiFi sequence length [24]. Via this
fast regional decision, we can quickly prune some unnecessary
computation for the later magnetic field (Sec. IV-C) when two
users are not likely co-present.

If the average LB K is sufficiently small, we further form
a metric and find the similarity between WiFi sequences of
users i and j, denoted as ψK(i, j) (ψK(i, j) ∈ (0, 1)), i.e.,

ψK(i, j) ,
1

1 + log
(
1 +

∑
k LB K

(
Wk

i ,W
k
j

)) . (8)

We select the three strongest APs (in terms of RSSI) which
are shared by two users for the above comparison, as they are
more likely to be detected and lead to longer measurement
sequences for better differentiation.

Finally, given the above components of Eqs. (4), (5) and (8),
the hybrid similarity ΦW (i, j) between users i and j in WiFi
signal space is defined as

ΦW (i, j) , ψT (i, j) · ψA(i, j) · ψK(i, j). (9)
For ease of interpretation and integration, we normalize all
ΦW (i, j)’s into the range ΦW (i, j) ∈ (0, 1).
C. Geomagnetic Co-Flow Feature Extraction & Comparison

Besides WLAN, urban/indoor sites are usually cluttered
with diverse geomagnetic anomalies due to the steel-reinforced
buildings. As in Fig. 2, when users A and B move along
the same path with magnetometers on their phones, similar
magnetic sequences are captured, implying the crowds’ spatio-
temporal co-presence.

Instead of focusing on individual magnetic reading, CFid
takes in much less ambiguous patterns based on spatio-
temporally measured sequence. Further, fusing geomag-
netism’s profound mobility-related features with the WiFi’s
regional indication enhances CFid’s fine-grained accuracy,
and robustness against external and environmental interfer-
ences (validated in Sec. VI). In what follows, we present the
spectral and temporal features considered in CFid.

(a) Spectral features: Fig. 2 shows similar spectrograms of
magnetic readings when users A and B are walking in the same
flow. Due to their similar step speed, human body movement
and turning on the same walking path, the geomagnetism may
show similar profound mobility features.

To quantify such a subtle spectral similarity, we perform
the Fast Fourier Transform over the magnetic sequence (we
empirically set a window of ω = 5s), and extract a total of 11
spectral features sn (indexed by n ∈ {1, . . . , 11}), i.e., mean,
standard deviation (STD), entropy, minimum nonzero energy,
weighted average of frequency (based on energy), domain
frequency ratio, coefficient of variation, skewness, kurtosis,
flatness, and spread (i.e., dispersion of spectrum around the
centroid). Details of these features have been well documented
in the literature [22], and are thus omitted. The thus-formed
vectors (S = [s1, s2, . . . , s11]) of spectral features, Si and Sj

w.r.t. users i and j are compared with the Euclidean distance
(l2-norm). Then, distS(i, j) = ‖Si − Sj‖2 is returned.
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Fig. 4: (a) CFD accuracies vs. the number of selected spectral features;
(b) Probability of spectral features to be selected (Dataset A).

(b) Temporal features: We also take into account the
temporal sequence differences. Unlike applying LB K bound
upon the coarse-grained WiFi signals, magnetic readings of
high sampling rates (often 100Hz vs. 1Hz of WiFi) and
more features need a fast but fine-grained similarity measure.
Specifically, we design in CFid a fast dynamic time warping
(DTW) [22] augmented with Z-normalization (normalized to
zero mean and unit of energy) and early comparison aban-
doning. Z-normalization makes CFid focus on the temporal
trend instead of offsets and noises. Specifically, each reading
M(t) is subtracted by µ and then normalized by σ, i.e.,

µ =
1

m

m∑
t=1

M(t), σ =

(
1

m

m∑
t=1

(M(t))
2 − µ2

) 1
2

. (10)

When comparing each pair of elements from two sequences,
we track the cumulative LB K lower bound [24] so far, and
abandon the following comparison early if it is larger than
the calculated DTW up to this moment. Further, if the final
DTW result is larger than a predefined threshold (0.24 in
our setting), we conclude that they are not co-flow (the edge
is pruned). Hence, the efficiency of temporal comparison is
significantly improved (often 20× faster). Finally, the temporal
DTW distance distT (i, j), if not pruned, is returned.
D. Hybrid Similarity & Feature Refinement

In summary, given the above temporal and spectral dis-
tances, i.e., distS(i, j) and distT (i, j), inspired by [25] we
design the similarity ΦG(i, j) ∈ (0, 1) between users i and j
in geomagnetic signal space, which is formally given by

ΦG(i, j) ,
1

1 + log (1 + distS(i, j) · distT (i, j))
. (11)

Then, taking Eqs. (9) and (11) into account, the hybrid
similarity Φ(i, j) between users i and j is defined as
Φ(i, j) , β ·ΦW (i, j) + (1−β) ·ΦG(i, j), β ∈ [0, 1], (12)

where β is a customizable parameter characterizing and bal-
ancing the weight of importance. The similarity metric Φ(i, j)
in Eq. (12) enables us to include many other signals [4,9,10]
if available, interpret performance, customize for and extend
to other crowd-related applications.

To support efficient and large-scale deployment, one may
also utilize the FEAST toolbox [26] and choose the Joint
Mutual Information (JMI) criterion for offline selection of
more useful features, reducing unnecessary online vector
computation. We choose JMI for its advantages in balancing
among accuracy, stability, and flexibility [26], and select
features offline w.r.t. each application site or scenario.

Fig. 4(a) shows a case study (Dataset A) with the mean
co-flow detection (CFD) accuracy vs. the number of selected
geomagnetic features (with standard deviations). For each



case, we conduct 5 different test trials to find its mean and
variance. When the number of features is small, accuracy is not
high due to little recognizable information. As more features
are selected, accuracy improves and then degrades as some
noisy signals are also included. To reflect this tradeoff, we
select the top 7 features ranked by JMI by default.

Fig. 4(b) shows the spectral features selected based on
JMI, with the probability of each feature being selected at
3 typical sites from Dataset A. For each site, we conduct 10
permutations and feature selections to evaluate the probability
of selected features. We can see that magnetic features from
statistics of higher order (say, kurtosis of index 9) may vary
with sites, because user activity freedom as well as the spatial
magnetic diversity may be different.

V. CROWD-FLOW CONSTRUCTION & IDENTIFICATION

Due to the crowd-flow dynamics in practice, we transform
the identification to a graph stream clustering problem, which
consists of fast detection and edge construction (Sec. V-A),
and dynamic graph streaming and clustering (Sec. V-B).
A. Fast Co-Flow Detection & Flexible Edge Construction

A co-flow edge is formed if the similarity Φ(i, j) of two
users is found to be sufficiently high. We design automatic
self-learning to adaptively parameterize this decision rule, and
then conduct fast co-flow edge detection accordingly.

(a) Automatic self-learning of decision parameters:
When CFid is initialized, affinity propagation clustering

(APC) [27] is done upon the users, given their pairwise
similarities Φ(i, j)’s, to learn the decision parameters. Unlike
conventional k-means clustering, the APC reveals the inner
discrepancies among the input user data without explicit des-
ignation of partition/cluster number or extensive calibration.

Two sets of information are alternatively updated and ex-
changed within APC, i.e., responsibility r(·, ·) and availability
a(·, ·). Specifically, the responsibility updates are broadcast,
quantifying how suitable a node k is to serve as an exemplar:

r(i, k) , Φ(i, k)−max
k′ 6=k

a(i, k′) + Φ(i, k′). (13)

The availability is then updated to valuate the appropriateness
of picking k for i as exemplar when taking into account others’
preferences, i.e.,
a(i, k) , min

{
0, r(k, k) +

∑
i′ /∈{i,k}

max (0, r(i′, k))
}
, (14)

if i 6= k, and otherwise
a(k, k) ,

∑
i′ 6=k

max (0, r(i′, k)) . (15)

The iterations are to maximize the net similarity ρi of each
user i [27] with others until crowd partitioning converges, i.e.,

ρi = max
j

{
a(i, j) + r(i, j)

}
, ∀i. (16)

Given the preliminary partitions, we find the latent statistics
of intra-flow similarities to acquire a big picture of crowd-
flows without explicit labeling. Specifically, we find the mean
Φ and standard deviation σΦ of all the mutual similarities
Φ(i, j)’s from those who are partitioned into the same flow.
Note that this stage is done only once, and hence the self-
learning does not incur much overhead to the system.
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Fig. 5: (a) Case study: 3 crowd-flows or CFs in an office building
(Dataset A); (b) temporal similarity dynamics of the CFs in (a).

(b) Fast co-flow edge detection:
Given the aforementioned Φ and σΦ via APC, we design

a fast edge-detection rule (for the decision function Γ(·) in
Eq. (3)). Specifically, an edge is detected between a pair of
users i and j (indicated by Aij’s in the augmented adjacency
matrix) if the mutual similarity Φ(i, j) satisfies Φ(i, j) ≥ Φ−
α · σΦ, or otherwise Aij remains constant, i.e.,

Aij ,

{
Aij + 1, if Φ(i, j) ≥ Φ− α · σΦ;

Aij , otherwise,
(17)

where α > 0 is a predefined parameter (empirically evaluated
in Sec. VI), and all Aij’s are initially to 0.

Recall that for efficient deployment, given the detected WiFi
set, CFid first partitions the incoming users before making
more computation-intensive mutual comparisons. Specifically,
if two users share too few APs (say, fewer than three in
our setting), or the average LB K is not sufficiently small
(Sec. IV-B) in spite of some shared APs, we do not compare
the rest of their similarities (Secs. IV-C & IV-D) and quickly
determine Aij = 0.

Fig. 5(a) shows a typical crowd analytics scenario in a
3,000m2 office building (from Dataset A; each CF consists of
3 users’ walking traces), where different CFs are identified and
labeled. Fig. 5(b) further shows the temporal similarities from
each other. Specifically, for each data point we find the mean
similarities Φ(i, j)’s between the users within and across the
crowd-flows. One can see that at the beginning (before around
3s) when the flows are not formed, the intra- and inter-flow
similarities are low. When the flows are formed gradually (after
around 5s), the inter-flow similarities become notably higher
than the intra ones. The 3 crowds split at about 18s. Note
that the intra similarities are not always 0, and may show less
noticeable temporal variations.
B. Efficient Crowd-Flow Graph Construction & Identification

The basic idea of our CFI works as follows. Since the
incoming edges arrive and evolve in a sequential and random
order due to the dynamics of opportunistically-encountered
users, we consider the setting of dynamic graph streaming
such that each edge is examined only once. Recall that many
intra-flow edges are expected to be compared with inter-flow
ones (Def. 5). So, an intra-flow edge is more likely to increase
the degrees of identified crowd-flows before an inter one likely
splits the flows due to excessive degrees. Merging smaller
crowds with the larger ones strengthens such an increment.
The edges are then examined sequentially to check the degree
updates and reduce the entire complexity [19].



Algorithm 2: Crowd-Flow Identification in CFid.
Input: Stream of detected edges (pairs of users who are similar) and

the maximum crowd-flow size Cmax ≥ 1;
Output: F: identified crowd-flows (CFs); FID: index set of

discovered crowd-flows w.r.t. each user;
1 δ←zeros(1, N); C←{}; /* Initial degree δ & flow

size C of the N users */
2 FID←minus ones(1, N); l←0; /* l: total index */
3 for eij ∈ S do
4 if FID[i] == −1 then
5 FID[i]←l; l←l + 1; /* New CF id for i */
6 end
7 if FID[j] == −1 then
8 FID[j]←l; l←l + 1; /* New CF id for j */
9 end

10 δ[i]←δ[i] + 1; δ[j]←δ[j] + 1; /* Degree update */
/* Size updates of crowd-flows i and j */

11 C[FID[i]]←C[FID[i]]+1; C[FID[j]]←C[FID[j]]+1;
12 if C[FID[i]] ≤ Cmax && C[FID[j]] ≤ Cmax then
13 if C[FID[j]] ≥ C[FID[i]] then
14 C[FID[j]]←C[FID[j]]+δ[i]; /* Merge i */
15 C[FID[i]]←C[FID[i]]−δ[i]; FID[i]←FID[j];
16 else
17 C[FID[i]]←C[FID[i]]+δ[j]; /* Merge j */
18 C[FID[j]]←C[FID[j]]−δ[j]; FID[j]←FID[i];
19 end
20 end
21 end
22 return F←unique(FID) and FID;

Algo. 2 illustrates the clustering process upon the streamed
edges of the crowd-flows. Specifically, given each arrival of a
detected edge (co-flow features), we first initialize the crowds
for each user if s/he has not yet been assigned (Lines 5–8).
Then, CFid updates the degrees δ and flow sizes C, respec-
tively, which are two critical measures of flows (Lines 10–
11). If both flows are not yet sufficiently large (say, smaller
than a customizable Cmax), CFid merges the user from the
smaller flow into the larger one (Lines 12–20). If both flows
(subgraphs) have the same number of users (vertices), i.e.,
C[FID[i]] = C[FID[j]], we assign one user to the other’s
flow with the edges of newer timestamps. After all edges are
processed, the final CF set (identified flows F and index set
FID) is returned to the central monitor. Then, in Eq. (3),
decision variable bFID[i]

i = 1 while all other bli|l 6=FID[i] = 0.
Our design benefits flow identification in three aspects.
Flexibility: We transform the dynamic flow identification

to a graph streaming problem [18,19], allowing the incoming
detected edges to arrive one after another in a random order.
This way, closeness detection can be conducted by multiple
processors/machines and then the resulting edges can be fed
dynamically, making CFid flexible in dynamic flow analysis.

Efficiency: As shown in Algo. 2, each streamed edge is
processed and examined only once, and hence the computation
complexity is linear in the number of edges.

Identifiability: Given the incoming edge, the intra-cluster
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Fig. 6: The resulting graph and similarities of CFs in Fig. 5(a).

degrees tend to get larger than the inter-cluster ones [19].
This way, the metric in Eq. (3), the modularity of graph G,
is dynamically enhanced [19], making the formed subgraphs
(crowds) denser inside and more separated mutually.

Fig. 6 shows a snapshot of a constructed crowd-flow graph
(with the link width representing correlation) for Fig. 5(a).
Despite some rather weak links across different CFs (due likely
to similar WiFi coverage in Fig. 5(a)), other strong links are
still detected and the CFs are identified via Algo. 2.

The complexity of CFid is summarized briefly. GivenO(L)
APs and O(N) users, each of whom collects O(G) magnetic
readings, the complexity in edge detection is asymptotically
O(LN2+G2N2). The graph stream clustering is linear in
constructed edges, i.e., O(N2). So, the overall complexity
of CFid is asymptotically O(LN2+G2N2). Recall that with
coarse partitioning via WiFi AP set and LB K sequence check
(Sec. IV), the users can be divided before more sophisticated
computation is done within each partition.

VI. EXPERIMENTAL EVALUATION

A. Experimental Settings
Data & system preparation. To prepare our Dataset A

(Sec. III-B), we collected data from total 50 volunteers (age:
23∼30; height: 155∼180cm; 47 males and 3 females) along
the walking traces. Each trace collection ranges from 15s
(apartment) to 30min (shopping mall), depending on the test
sites. For Datasets B and C, we emulate the crowd-flow
scenarios where 16 users are walking randomly over the time,
forming different crowds which follow the random waypoint
mobility model with resting [14]. For all datasets, we do not
assume a constant walking speed, and participants walk at
their own usual pace (device holding postures may vary) at
the site. Volunteers either label the crowd-flow ground-truths
(IDs) explicitly by themselves, or implicitly via the mutual
Bluetooth Low Energy detection [10,11].

For a thorough sensitivity/deployment evaluation, we further
utilize additional 332 walking traces from the 50 volunteers.
In particular, 200 of them form multiple crowds (maximum
10; minimum 4) over the time for sensitivity analysis, while
the rest are for device dependency evaluation. For Algo. 2, we
empirically set Cmax = 10. To balance between accuracy and
responsiveness (Dataset A), sampling frequency is set to 1Hz
and window size T = 5s for WiFi, and ω = 5s for magnetic
reading. While some preliminary signal feature processing and
filtering can be done on at their smartphones (Sec. III-B), the
CFid core algorithm is running on a PC server with Intel
i7-8700K 3.7GHz, 16GB RAM and Windows 10.

Performance metrics. (a) Co-flow detection (CFD): Consid-
ering whether each two users are co-flow or not, we measure
the detection performance with F1-score, true positive rate
(TPR) and true negative rate (TNR), where the notion of
positive represents the co-flow state (two volunteers are in
the same CF). (b) Crowd-flow identification (CFI): With the
ground-truth labels (multi-class labels), we can find the accu-
racy of identified CFs for every involved user (whether the
estimated ID matches the groundtruth one). We also evaluate



Dataset A B C
CFD F1-Score 95.31% 92.27% 91.64%

CFD TPR 96.83% 94.44% 91.36%

CFD TNR 93.65% 92.71% 94.72%

CFI Accuracy 95.67% 95.29% 93.54%

Table I: Overall performance (CFD and CFI) on
different datasets (Datasets A, B & C).
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the computation overhead, and measure energy consumption
upon smartphones using a mobile app called PowerTutor [28].
B. Evaluation Results

(1) Overall performance. We first show the overall perfor-
mance of CFid in terms of CFD and CFI.
• Performance on different datasets. With different datasets

(A, B and C in Sec. III-B), we show in Table I the performance
of CFid. CFid is found to be able to accurately detect if two
users are walking in the same flow, and determine the correct
crowd-flow they belong to. Due mainly to more differentiable
and stronger signal features (Sec. IV-B & IV-C) in the sites of
Datasets A and B (including higher popularities of WiFi APs
as in Fig. 3), CFid may experience slightly higher F1-scores,
TPRs/TNRs and accuracies upon them than the Dataset C.
• Measurement environments. By classifying different mea-

surement scenarios of the 3 datasets, we also show the perfor-
mance w.r.t. environments in Fig. 7. We also observe higher
degradation in the apartment buildings and office rooms, as
the mobility of users is more constrained there than at the
other sites, yielding weaker patterns for derivation. Despite
these variations, CFid achieves, in general, high accuracies
across different measurement environments (often by more
than 92.5%). Fig. 8 provides further details of the CFid’s
confusion matrix upon Dataset A, validating its accuracy.
• Temporal dynamics of modularity. We also illustrate the

modularity dynamics [18] in Fig. 9 using Dataset A. 24 users
are selected to evaluate the modularity (Eq. (2)) of their crowd-
flow graph. One can see that the modularity of all involved
users gradually increases and then decreases, showing their
temporal dynamics that the crowd-flows form (at around 3s)
and later disappear (at about 13s).

The results for all three datasets are qualitatively similar, so
we will focus on Dataset A for more comprehensive analyses.

(2) Sensitivity evaluation. We also study CFid’s sensitivity
to various settings.
• CFD decision boundary: Fig. 10 shows the CFD perfor-

mance vs. the decision parameter α (Eq. (17)). As α increases,
TNR increases and TPR decreases, showing the changes in
CFid’s sensitivity and adaptivity. A smaller α indicates a
stricter standard, leading to lower TNR and higher TPR, while
a larger α implies tolerance at the cost of higher TNR but

lower TNR. To balance these two, we chose α = 2.4.
• Different gestures & external interferences: Fig. 11 shows

the effects of measurement postures and external interferences
on the smartphone magnetometer readings. We test traditional
device-holding postures, varying walking speed (25% faster
or slower than normal), shaking the mobile device with hand,
inside pants pocket without or with keys. For test cases with
the magnet, we attach the device body with a smartwatch
charging dock of a strong magnet inside (magnitude grows
by 6.94×) to simulate scenarios when a user accidentally
brings a magnet (or magnetized object). We also conduct a
similar validation (same sample size) near a moving elevator
to evaluate the effect of external magnetic interference.

Clearly, different postures/gestures are likely to introduce
more diverse readings. Traditional device holding achieves a
CFI accuracy of 98.53±1.05%. With keys/magnets or moving
elevators nearby, the magnetometer sensitivity may change
and result in accuracy difference. Despite some offsets, we
find the overall shape of entire magnetic magnitude sequence
is preserved. CFid retrieves normalized and robust spatio-
temporal patterns for identification, which are free from value
differences. Faster collection speed may lead to some feature
loss in some measurements. Nevertheless, CFid focuses on
fusing those features which make the largest differences, hence
still accurately identifying the input sequences (often > 90%).
• Weight in WiFi & geomagnetism: Fig. 12 shows the CFI

accuracy (with standard deviation) vs. the weight β in Eq. (12).
As β increases, the accuracy improves and then degrades,
showing a tradeoff between ΦW (i, j) and ΦG(i, j). A slightly
small β implies modestly higher importance of geomagnetism
due to its more fine-grained granularity, but too small β with
too much an emphasis on magnetometer leads to over-sensitive
and fluctuating identification. Considering the aforementioned
tradeoff, we select β = 0.45 in our general setting.
• Number of detected APs: Fig. 13 shows the effects of

discovered APs on CFI accuracy (with standard deviations).
We randomly remove some of the APs to assess the perfor-
mance degradation of CFid. Clearly, the fewer APs detected,
the lower accuracy CFid may have. However, as CFid is
based upon the joint decision of WiFi and geomagnetism, it
can still achieve robust performance.
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(3) Deployment evaluation. Besides the aforementioned
general performance and sensitivity, we evaluate the deploya-
bility of CFid.
• Device dependency: We have recruited the volunteers

to study 9 different devices’ dependency for CFI accuracy.
Specifically, we evaluate mutual user similarities based on a
total of 108 WiFi/geomagnetic traces in the 9 same crowd
formations (on the same walking paths), where each device
model contributes 12 traces for each flow evaluation. As shown
in Fig. 14, we select several smartphone models. Different
identification accuracies mainly come from sensitivity differ-
ences in their chipset hardware, and hence accuracy varies
with the phone model. However, CFid shows generally good
device (including backward) compatibility.
• Computation overhead: Fig. 15 shows the computation

overhead of CFid. Thanks to the computation reduction and
fast CFI (Sec. V), we achieved more than 30% more efficiency
improvement than CFid without facilitation (w/o Reduction)
and the traditional spectral clustering (Trad. Cluster.) [18]. In
general, CFid incurs overall low computation overhead, hence
adapting to large-scale CFI scenarios.
• Energy efficiency: Fig. 16 shows that CFid takes average

power consumption of only 27.75mW (Samsung Note 5 as
an example), and the total consumption of the mobile device
is increased by only 4.21% on average. Our real-world test
traces showed the longest activation duration (among the 50
participants) to be 30min. Its corresponding energy consump-
tion is approximately 13.8mWh, which is less than 0.12%
of Note 5’s total battery capacity (11.1Wh). So, CFid is
energy-efficient, leaving a small power consumption footprint
upon mobiles. Other mobile platforms show qualitatively
similar results (which are thus omitted). In summary, on av-
erage, CFid consumes only 25.1347±4.1758mW, and overall
4.37±1.8924% additional energy (above normal usage) on the
Android platforms we used.

VII. CONCLUSION

We have proposed CFid, an efficient crowd-flow identifi-
cation system based on spatio-temporal signal fusion. It takes
into account the hybrid similarities in WiFi and geomagnetic
measurements when the target users are walking together with
smartphones. Without reliance upon location/pairing, we have

designed fine-grained features and identified their similarities
for co-flow detection. A graph stream clustering problem is
then formulated, where each of the users is considered as a
vertex and their closeness forms dynamically incoming edges.
Then, CFid efficiently identifies flows which are dense sub-
graphs within the constructed graph. Our experimental studies
with 3 different datasets have validated accuracy, efficiency
and flexibility of CFid in identifying crowd-flows.
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