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TurnsMap: Enhancing Driving Safety at Intersections with Mobile
Crowdsensing and Deep Learning

DONGYAO CHEN, University of Michigan, Ann Arbor, USA
KANG G. SHIN, University of Michigan, Ann Arbor, USA

Left turns are known to be one of the most dangerous driving maneuvers.1 An effective way to mitigate this safety risk is to
install a left-turn enforcement — e.g., a protected left-turn signal or all-way stop signs — at every turn that preserves a traffic

phase exclusively for left turns. Although this protection scheme can significantly increase the driving safety, information on
whether or not a road segment (e.g., intersection) has such a setting is not yet available to the public and navigation systems.

This paper presents a system, called TurnsMap, that exploits mobile crowdsensing and deep learning to classify the protection
settings of left turns. One of our key findings is that crowdsensed IMU sensor (i.e., gyroscope and accelerometer) data from
onboard mobile devices can be used to recognize different types of left-turn protection. TurnsMap first collects IMU sensor data
from mobile devices or smartphones carried by the driver/passenger(s) in a moving car. It then feeds the data to an analytics
engine powered by (1) a data mining engine for extracting and clustering left turns by processing raw IMU data, and (2) a
deep-learning pipeline for learning the model from the IMU data to identify the protection type of each left turn.

We have built and used a large-scale real-world driving dataset to evaluate TurnsMap, demonstrating its capability of
identifying different left-turn enforcements with 90.3% accuracy. A wide range of automotive apps can benefit (e.g., enhancing
traffic safety) from the left-turns information unearthed by TurnsMap.
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1 INTRODUCTION
Left turns are one of the most dangerous driving maneuvers that account for a large percentage of fatal traffic
accidents [1]. For example, among the different driving maneuvers at intersections, left-turns are reported to be the
deadliest due to oncoming (interrupting) traffic and pedestrians crossing the street the car is turning onto. According
to a survey report by the U.S. Department of Transportation, left-turns-related accidents alone constitute 53% of all
intersection-related crashes in the U.S. [1]. In fact, to mitigate left-turns-related accidents, some companies like
UPS are enforcing their delivery trucks to avoid, if possible, all left turns [2].

1In this paper, we focus on right-hand traffic countries. Our approach can be applied for right turns in left-hand traffic countries.
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(a) Protected (b) Unprotected

Fig. 1. Di�erent le�-turn se�ings.

There have been extensive transportation engineering efforts to enhance the safety of left turns by deploying
different left-turn regulations at intersections with high-frequency left turns. In general, these regulations can be
categorized as protected and unprotected settings.
Protected settings. At a protected left-turn, when the left-turn signal (e.g., a green left arrow as shown in Fig. 1(a))
is turned on, only left-turning vehicles are permitted. This is the most effective way to avoid/reduce left-turn-related
accidents. According to the NHTSA report [3], an intersection that has a protected left-turn signal can effectively
reduce the left-turns-related accidents by 87%, making the intersection safer for all traffic. Based on the traffic
regulation [4], a left turn protection (e.g., a green leftward arrow in the U.S.) reserves a traffic phase — a time
period assigned to certain traffic movements — exclusively for left turns.

Unprotected settings. At an unprotected left-turn, when vehicles are permitted to make left turns, it is the drivers’
responsibility to stay alert and avoid interrupting traffic and/or pedestrians. For example, in Fig. 1(b), circular traffic
lights (i.e., traffic lights that only show round-shaped light colors) and stop signs (as shown in the first three figures
in Fig. 1(b)) provide less restrictive protection by halting the crossing traffic (i.e., perpendicular to the ego-vehicle’s
initial heading). The rightmost figure in Fig. 1(b) shows the scenario in which no sign/signal is installed to regulate
traffic. Drivers of left-turning vehicles have to be extremely careful of, and avoid interrupting traffic/pedestrians
from all possible directions.

The information of left-turn settings is essential for drivers to enhance safety by using it before making dangerous
left turns; for example, drivers can choose to avoid less-protected left turns when planning a trip route with Google
maps.

Unfortunately, such information is not yet available to the public/drivers for two reasons.
• Lacking public datasets. Although traffic signals and signs are installed by the local transportation department,

the corresponding specification is fragmented or not even digitized due to the diverse development levels for
different regions. For example, Waze’s left-turn avoidance function [5] is available only in major cities of
California.

• High cost and low update-rate of road surveys. Information of traffic lights/signs can be extracted from the
images of intersections captured by a limited number of heavily instrumented road survey vehicles (e.g.,
mapping cars for Google StreetView). However, updating the road information is hampered by the prohibitive
road-survey cost. As a result, updating the database of on-road images may take years even in well-developed
regions. These limitations prevent a large coverage of road survey services and timely reflection of changes
of traffic lights/signs.

To narrow this gap and evaluate left-turns safety by discovering and sharing the left-turn setting information on
road segments (e.g., intersections), we have developed TurnsMap, a novel system that can effectively differentiate
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protected/unprotected left turns by using the crowdsensed data (i.e., gyroscope, accelerometer, and GPS data)
collected from mobile devices carried by drivers and passengers. In particular, TurnsMap is empowered by mobile
crowdsensing and a novel data analytics pipeline. It does not require any additional hardware from the users but
harvests the sensor data which are already being generated by various apps (e.g., fitness and health apps) on users’
mobile devices. The low overhead/cost of TurnsMap facilitates its timely and economical deployment.
TurnsMap’s data analytics scheme dives deep into the real-world driving behavior. Specifically, given a large

number of instances (e.g., extracted from crowdsensed data) of left turns, for less protected left-turns (i.e., the
protected setting is stricter than the unprotected ones), the interruptions caused by on-coming vehicles and/or
pedestrians are more likely to occur. To quantify and analyze this characteristic, TurnsMap is powered by two
key components. The first component is a data mining engine; after collecting the crowdsensed data, TurnsMap
extracts left turns by analyzing the raw sensor data. TurnsMap then clusters left turns to find left-turn hotspots (road
segments that have high-frequency left turns. This concept will be elaborated in Sec. 5). The second component is
a deep learning pipeline (Sec. 6) that can learn the features of the underlying intersection information from the
crowdsensed data. We use a novel data augmentation to enhance the size and representativeness of the dataset,
which can be used for training with a recurrent neural network based on using long-short term memory (LSTM)
units.

The evaluation of TurnsMap is also challenging due to the lack of mobile sensing-based dataset collected from
drivers and ground truths of left-turns information. The mobile driving data is collected from smartphones of 18
different drivers (14 males and 4 females), building a 1.6GB dataset over a cumulated travel distance of more than
3,589km. To collect ground truths, we have designed an interactive traffic-scene annotation system (Sec. 6). We
then recruited 231 participants on Amazon Mechanical Turk for the annotation task. Finally, we have aggregated
the annotations from the participants to construct a new dataset which is comprised of 965 labeled left-turn hotspots.
Our evaluation results show that TurnsMap is able to differentiate left-turn settings with 90.3% accuracy.

This paper makes the following main contributions:
• Building and demonstration of TurnsMap, a mobile crowdsensing system for classifying pro-

tected/unprotected left turns;
• Design, implementation and evaluation of a novel data analytics pipeline for large-scale time-series data

classifications.

2 MOTIVATION
We motivate this work by answering two questions: (1) how does TurnsMap’s revelation of left-turns information
actually help the automotive ecosystem? and (2) what would be the advantage(s) of using mobile sensing?

2.1 How Does Classifying Le�-Turn Se�ings Enhance Driving Safety?
As discussed in Sec. 1, the protected left-turn setting are the most effective way to mitigate the safety risk at
intersections. However, it is not feasible or even desirable to install the protection at every left-turn hotspot, because
strict protection of left turns (Fig. 1(a)) degrades the overall traffic throughput. For example, since a protected
left-turn signal only allows left-turning vehicles to go through the intersection, NHTSA suggests such a signal to be
installed only at those intersections where all intersecting roads have a similar traffic volume [6]. Since drivers
(especially novice drivers with limited driving experience) may choose only protected turn lefts, the information of
protection settings of left turns, if publicly available, will help them and automotive apps to enhance safety.

Navigation Systems. As we will elaborate in Sec. 8, planning a route with a minimum number of high-risk
(i.e., un-/less-protected) left turns in navigation systems (e.g., Google maps , Waze [5]) by utilizing left-turns
enforcement information would be highly desirable. Let us consider a typical usage scenario. If the user enables
this functionality on his/her navigation app, then it can exploit the left-turns information on all possible routes to
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generate the route with the least number of risky left-turns while ensuring an acceptable estimated arrival time

(ETA) at the destination. Note that by providing its users with safer travel paths, a navigation app can also efficiently
collect data from its users to help expand/update TurnsMap, achieving a win-win collaboration between the app and
its users.

Self-driving Cars. As highlighted by self-driving car companies (e.g., Waymo [7, 8] and Zoox [9]), handling
unprotected left turns is a challenging task for this rapidly emerging technology since it requires not only human-
level driving skills but also even psychological understanding [10]. For example, some pedestrians may let
left-turning cars go first, while others may ignore or fail to see left-turning cars and cross the street without paying
attention to the approaching cars and pedestrians. In such a case, both human drivers and pedestrians could use
a body language or even eye contact to resolve this conflict, but it is very challenging for autonomous cars to
understand and resolve this type of conflict.

Hence, autonomous cars can avoid such intersections by using TurnsMap to enhance safety for both cars and
pedestrians by selecting paths with a minimum number of unprotected left turns in the path planning process [6].

2.2 Why Mobile Sensing for Classifying Protected/Unprotected Le� Turns?
TurnsMap outsources the data collection task to the crowd and only processes the IMU sensor data, thus can enable
a much larger coverage and faster update-rate than the existing road-survey (e.g., mapping cars of Google Street
View) and camera-based approaches, which collect road images by using cameras on either dedicated mapping
car or users’ smartphones. Specifically, the performance of understanding traffic scenes (i.e., classifying left-turn
enforcements) from image data — one of the most common data sources for legacy scene perception tasks, could
be hampered by both diverse real-world settings and limited resources:

• Poor visibility of traffic signals/signs: The visibility of traffic signals/signs may be distorted due to the
weather, lighting condition and even local regulations. Moreover, the location of traffic lights/signs may be
different in different regions — they could be located at the middle of an intersection or above a waiting line
(e.g., in European countries). In fact, determining a region-of-interest (ROI) based on computer vision is still
a challenging open problem [11]. The complexity of accounting for real-world environments makes it even
harder for a computer vision task to function correctly on a large and diverse image dataset.

• Limited coverage: Due to the different level of development, a vast majority of regions in the world cannot
be covered by dedicated road survey services. For example, as of 2017, only a small number of areas are
fully covered by Google StreetView [12]. In fact, many countries and regions in Asia and Africa are not yet
covered, nor planned to be covered in the near future.

• High cost/overhead of collecting road image from smartphones: Processing image data requires high
computational power and is thus expensive to run locally on the user’s smartphone. Even if the developer
chooses to upload the image(s) to the cloud service for processing, transmission of the bulky image and/or
video data may exhaust mobile network bandwidth. Moreover, to have a clear view of an intersection, the
user has to fix the phone on the windshield, which is a stringent and often undesirable requirement for various
use-cases.

The design of TurnsMap aims to collect and publicize the safety-critical left-turns information at low overhead/cost
and eventually enhance traffic safety at scale. TurnsMap will be detailed in Secs. 5 and 6.

3 OVERVIEW OF TURNSMAP
As shown in Fig. 2, TurnsMap is comprised of three key building blocks: the data collection module for collecting
mobile data (i.e., IMU + GPS) from users, data mining module for constructing the database of left turns, and
machine learning pipeline for differentiating left-turn protection schemes. First, TurnsMap collects IMU sensor and
GPS data from the mobile devices carried by drivers and passengers (Sec. 4). Next, the data mining module (Sec. 5)
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Fig. 2. An overview of TurnsMap

extracts left turns from these data and identifies the road segments, called left-turn hotspots, with high-density
left-turn driving data traces. To classify protected/unprotected left turns based on people’s driving behavior, we
devise a machine learning pipeline. For fast and accurate collection of ground truths for the machine learning task,
we take a human-in-the-loop approach by outsourcing annotation (i.e., ground truth labeling) tasks on Amazon
Mechanical Turk. These efforts together help construct a dataset for traffic scene understanding at intersections.
Finally, we propose a recurrent neural network-based model to learn the classifier for differentiating left-turn
protection schemes. Note that TurnsMap can help enrich navigation app’s functionality (Sec. 8) and enhance users’
driving safety. Allowing the TurnsMap framework to intrinsically incentivizes users of automotive apps (e.g.,
navigation apps on smartphones) to participate in data collection for building a continuously-expanding database.
This feature helps formulate a win-win collaboration between the user and TurnsMap.

4 COLLECTION OF DRIVING DATA
TurnsMap classifies left turns using smartphone IMU sensor and GPS data (i.e., the longitude and latitude pair).
Specifically, TurnsMap needs a time series of sensor data collected from the user’s phone while driving. A ground
truth dataset of left-turn protection settings is also needed for building and testing the machine learning algorithm.
Since no datasets are available for developing and testing TurnsMap, we collected and constructed a dataset. Our
driving data collection methodology is introduced in this section and our approach for collecting the ground truth is
highlighted in Sec. 6.

Collection of Real-world Driving Data from Smartphones. There are three key rationales behind the design
of our mobile app for collecting the natural driving data. First, different phone postures (e.g., sitting on a phone
mount or cupholder) can affect the IMU sensor readings. For example, if the smartphone’s screen is facing down,
its yaw axis angular speed will be the inverse of the readings with the screen facing up. Second, since smartphones
have limited resources (e.g., CPU, battery, and cellular network bandwidth), the data collection should incur low
overhead on the users’ devices — a high overhead will likely discourage the users in adopting and/or contributing
to TurnsMap. Third, a comprehensive database should cover heterogeneous intersection setups, i.e., the dataset
should cover different drivers since different driving habits may incur diverse driving maneuvers at left turns. This
is an essential requirement for building a comprehensive classifier that is resilient to the changing environment and
users.

To handle different phone postures inside a car and achieve consistency in data analytics, Our data collection app
aligns the phone coordinate with the earth coordinate by using the coordinate transformation as described in [13].
This capability enhances TurnsMap’s usability by eliminating the restriction of the device’s posture, i.e., a phone
can be placed at any stable position, such as on a cupholder/phone mount, inside the car.
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Lowering the overhead on the user’s smartphone is another key objective of our data collection app. Specifically,
the app samples the thus-aligned IMU sensor data and GPS (i.e., (longitude, latitude) pair) data at 100Hz and 1Hz,2
respectively. The snapshot in Fig. 3 shows the data format — one geolocation sample includes a timestamp vector,
a gyroscope data vector, and an accelerometer data vector, where each vector consists of 100 data samples. Because
of the light-weight feature of IMU and GPS data, our collection process incurs low overhead on users’ mobile
devices; our on-road data collection is shown to generate only 6.2MB data per hour. To enhance the flexibility of
using their data plan, the participants can choose to upload the data in real time, or when a free Wi-Fi connection is
available. Finally, the data collection app is shown to incur only marginal CPU and energy overheads (Sec. 7.2).

We also aim to enrich the diversity (e.g., different driving behaviors and car models) of our dataset from the
participants’ perspective. To this end, we recruited 18 drivers (14 males and 4 females of age ranging from 23 to 70)
and installed our data collection app on their smartphones. The participants are students, university professors, and
company employees. We used 10 different car models, including coupe, sedan, SUV, and sporty cars. To collect
natural driving data, no restriction was imposed on driving route, vehicle type, smartphone model and location, etc.
That is, the participants were told to drive their own cars for daily commute as normally as possible. To secure the
participants’ privacy and data safety, we applied and received our university’s IRB approval (registration number:
IRB00100245).

The data collection app has been collected data in a region that includes both urban and suburban environments
in Ann Arbor and Detroit metropolitan area in the U.S. Our data-collection process has thus far yielded 1.6GB
mobile IMU data, covering an area of approximately 300km2, with the accumulated travel distance of more than
3,589 km. The data collection was conducted between 7:30 am to 6:30 pm. Each driver Here we show a suburban
area of driving data we collected in Fig. 4. The red traces are the driving trajectories. The dataset includes 105 trips
contributed by all participants, with the accumulated driving time 78.3 hours. The histogram of the average driving
velocity is shown in Fig. 5. The majority of the trips has average speed between 20 – 45 km/h, reflect the normal
average driving speed in cities. There are a few trips have high averaged speeds, e.g., exceed 80 km/h. These trips
were collected from driving on highways.

5 MINING THE DRIVING DATA
TurnsMap infers left-turn protection settings by using the mobile sensor data. We need to answer the following
questions for this inferencing. How to differentiate intersection settings by using the mobile sensory data and how
to organize the crowdsourced data for this purpose? To answer the first question, we elaborate how IMU sensor
readings can capture the interruptions between left-turning cars and the crossing traffic and/or pedestrians. These
interruptions are then used to differentiate left turn setups. To answer the second question, we use data mining to
extract and cluster the left-turn data snippets to discover left-turn hotspots, road segments with many left turns.
21Hz is the default sampling rate on the current location chipset embedded in smartphones.
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Note that a hotspot could be an intersection and even an entrance of a popular plaza. These answers are essential
for constructing a comprehensive dataset of left turns for the subsequent machine learning.

5.1 Di�erentiating Le�-Turn Enforcements from IMU Sensor Readings
The key for distinguishing protected and unprotected left turns is the fact that left turns are likely to be interrupted
on road segments without strict left-turn enforcements, such as left-turn signals or stop signs. Based on this
observation, we uncover the root causes of interruptions which are identified by utilizing phone IMU sensor data.

The root causes of these interruptions are (i) the enforcement-free intersection setup to increase the traffic
throughput3 and (ii) pedestrians crossing the street the car is left-turning to. Due to the low priority given to
left-turning cars, their drivers need to pay full attention to any sudden situation change and prepare to pause and/or
yield to the oncoming traffic and pedestrians crossing the street they are turning onto.

Fig. 6 (a) shows possible interruptions that a car may experience while turning left at an intersection with
a unprotected enforcement (i.e., circular traffic light in Fig. 6 (a)). The most common (as stated in the driver
manual [14]) left-turn maneuver works as follows. A left-turning car first enters the intersection after the green
light comes on and then suspends its turn if there is an oncoming car from the opposite direction. Upon resuming
the left turn, the car needs to pay attention to, and prepare to pause for, pedestrians crossing the street/road it is
turning onto. Finally, the left-turning car completes the turn by exiting the intersection.

Similar interruptions also occur at the intersections with stop signs. After making a full stop at the sign, the
left-turning car needs to proceed until the driver can see the approaching traffic. In summary, interruptions are
likely to happen while making unprotected left turns at intersections.

In contrast, interruptions occur rarely at intersections with protected enforcements, because the protected traffic
signal (i.e., the left-turn traffic arrow) grants left-turning cars an exclusive traffic phase, hence preventing pedestrians
and oncoming vehicles from crossing the intersection. In fact, as stated in the NHTSA intersection engineering
handbook [6], one of the main purposes of enforcing left-turns protection is to reduce the left-turning cars’ conflicts
with the oncoming traffic and crossing pedestrians.

TurnsMap uses the smartphone’s gyroscope to detect the interruptions. Since an interruption is essentially a
pause of steering maneuver, the coordinate-aligned gyroscope data (i.e., angular speed) can capture the differences
between normal and interrupted left-turns. Fig. 6 (b)-(d) shows the gyroscope readings of three scenarios: no
interruption, interruption at the middle of an intersection (interruption 1 in Fig. 6 (a)), and a left turn with an
interruption at the crosswalk (interruption 2 in Fig. 6 (a)). When a car makes a left turn, the gyroscope reading
captures the car’s angular speed (w). As depicted in Fig. 6(b), when the driver makes a (normal) left turn without
interruption, s/he first turns the steering wheel counter-clockwise, creating a monotonic increase of the vehicle’s
angular speed w . The driver then makes a clockwise turn of steering wheel until the car’s orientation returns to
straight, or w returns to approximately 0. Hence, a smooth left turn generates a single bump in the gyroscope
reading. When an interruption occurs, the rise of w stops and returns to 0, thus creating the first bump in the
gyroscope reading; after the driver resumes the left turn, w will first rise and then drop until the driver exits the
intersection, creating the second bump in the gyroscope reading. Figs. 6(c) and (d) show this unique pattern of the
gyroscope reading.

The above finding/observation is the cornerstone of TurnsMap, showing that IMU data collected during each
left-turn contains information useful to capture the left-turn enforcement information.

3Oncoming cars from the opposite direction share the same green light phase with left-turning cars.
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(b) No interruption
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(c) Interruption 1
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(d) Interruption 2

Fig. 6. (a) Possible conflicts at an unprotected le�-turn. The gyroscope readings shows (b) no interruption, (c) an interruption
occurs at the middle of intersection, and (d) an interruption occurs at a crosswalk, respectively.

5.2 Extraction of Le� Turns from Mobile Sensing Data
The size of the crowdsourced time-series data can be massive, and some portions of the data may be redundant and
not useful for TurnsMap, i.e., driving on straight roads. Hence, it is necessary to extract data snippets that contain
the targeted driving maneuver (i.e., left turn).

To achieve this goal, TurnsMap extracts left turns from the IMU and GPS sensor data of the driver’s smartphone.
Specifically, we propose a novel left-turn detection scheme based on the VSense algorithm [13] as detailed in
Sec. 5.1.

Let us first review how the VSense algorithm detects left turns from the mobile sensing data. VSense detects
vehicle steering maneuvers by harvesting the morphological patterns of the sequential4 gyroscope data. First, VSense
analyzes the gyroscope data to detect the start and end points of a “bump”-shaped curve by using a predetermined
threshold derived from the common driving behavior. Next, to validate if the current bump is incurred by a driving
maneuver or noise (e.g., system glitch), VSense examines the statistical features (e.g., duration, magnitude) of the
bump. VSense also handles false detections. Specifically, since some vehicle movements (e.g., driving on a curvy
road, or up/down hill) may also regard a bump-shaped curve as a turning maneuver. To detect these false detections,
VSense calculates the moving vehicle’s displacement and uses it to validate the detection result. By performing the
above steps, a turning maneuver can be detected with linear time complexity. We refer the interested readers to
Sec.3.2 of [13]. Compared to other sequential data analytics schemes, this method has the following advantages:

• Resilience to the changing environment: although approaches based on location information (e.g., GPS
data) can detect the vehicle’s heading and thus inferring turns, their performance depends on the received
satellite signal strength (as shown in [15, 16]). So, they could result in varying performance due to the
changing real-world environment.

• Linear time complexity: VSense [13] uses the statistical feature in time-series gyroscope data to detect the
“bump” (as shown in Fig. 6) that reflects turns, thus only incurring linear time complexity. Compared to legacy
time-series classification algorithms such as k-nearest-neighbors dynamic-time-warping (knn-DTW [17]),
which has quadratic time complexity, VSense is more efficient in processing large-scale crowdsourced
time-series data;

• Easy parameter setting: Unlike existing time-series data classifications, VSense does not require any
pre-defined pattern but uses the thresholds derived from a natural driving model.

However, TurnsMap faces a unique challenge — one bump may not contain a complete left turn since the turn
can be interrupted (e.g., by crossing pedestrian/cars), thus generating two or more bumps in a left turn. To overcome

4In this paper, we use the terms “sequential data” and “ time-series data” interchangably.
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this challenge and accurately crop the sensor data trace that contains a complete left turn, we examine whether or
not the neighboring bumps are geo-located adjacently. Specifically, if neighboring bumps on the same IMU trace
are adjacent in geo-distance, i.e., great-circle distance between two points on the surface of the earth, then they
together represent a single left-turn maneuver. In this line, we propose a two-stage bump detection process. Upon
detecting a bump by the VSense algorithm, whether the bump represents a complete left turn is not yet determined.
To determine if the pending bump’s geolocation is close to the neighboring bump(s), we check if the geo-distance
between the centroids of geolocations of those bumps (let loccur and locpend denote the centroid of the geolocation
of the current bump and the pending bump, respectively) is within a threshold qgeo.5 The centroid is derived by
using FindCentroid (·), which is the mean of latitude and longitude readings. Note that this averaging step can also
mitigate the fluctuation of GPS readings. The geo-distance is calculated by using the haversine formula [18]. Thus,
if the current and pending bumps are from the same left turn, we merge the current bump with the pending bump(s).
Otherwise, the current bump is a complete left turn. Finally, the start and end timestamps (i.e., tcur,start , and tcur,end)
of the current bump can be used for cropping the left-turn data snippets from all necessary time-series data traces
— gyroscope, accelerometer, and geolocation data. For example, a framed The left-turn detection algorithm is
summarized in Algo. 1.

Algorithm 1 Left-turn detection algorithm of TurnsMap
Input gyroscope (�), accelerometer (�), and location (�) data traces
for w in � do

Detect a valid bump based on VSense algorithm
Find the timestamp range of the current bump [tcur,start , tcur,end ]

loccur = FindCentroid(�tcur,end

tcur,start
). Here, �tcur,end

tcur,start
is the cropped location data trace based on timestamp

if Haversine(loccur, locpend )  qgeo then

/*Update the bump information*/
tcur,start = tpend,start

loccur = FindCentroid(�tcur,end

tcur,start
)

else

/*Range[tcur,start , tcur,end ] includes a complete left turn*/
Extract IMU and location data snippets (i.e., ÇÄro, acc, and loc) respectively.
Calculate the centroid of this left turn: ck = FindCentroid (loc )

end if

Update the timestamp range: tpend,start = tcur,start , tpend,end = tcur,end , locpend = loccur

end for

We can form the output of left-turn detection as follows. To organize the thus-extracted heterogeneous data (e.g.,
IMU sensor and geolocation traces), for each left-turn maneuver, we store its data as a tuple called left-turn tuple l :

lk = {ck,ÇÄrok,acck,lock},
L = {l1, · · · ,lk, · · · ,lK}

(1)

where k 2 {1, . . . ,K}, K is the total number of left turns extracted by Algo. 1; ck is the centroid of the k-th left turn;
ÇÄro and acc are IMU sensor vectors cropped from IMU sensor traces; loc is the geo-location data trace. L is the
list that stores all left-turn tuples.

5
thetageo is derived from the diameter of road intersections. We use qgeo = 30m.
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Fig. 7. Clustering result of DBSCAN. Each cluster of le�-turn traces is a le�-turn hotspot.

5.3 Construction of Le�-turn Hotspots
It is not possible to capture the left-turn setting of an intersection based only on discrete left-turn traces. There
could also be false detections of left turns in the left-turn extraction step; for example, a swerving maneuver at a
parking lot could be classified as a left-turn maneuver. To address this problem, we cluster multiple left-turn traces
to form left-turn hotspots — road segments with left turn maneuvers.

We propose a DBSCAN-based clustering [19] method to discover left-turn hotspots from L. DBSCAN is a
density-based algorithm that does not require a pre-defined number of clusters and is proven to perform well
in clustering spatial data. In our case, DBSCAN (·) uses the centroid of each left-turn instance as the clustering
criterion. The output (i.e., C) of DBSCAN (·) is a collection of clusters, which is comprised of left-turn tuples (ls).
We only keep those clusters with “enough” left turns — any cluster with less than 5 left-turn tuples are discarded
owing to the insufficient number of traces. Finally, for each cluster, we group its gyroscope, accelerometer and
location traces, respectively, to derive left-turn hotspots. Our clustering algorithm is summarized in Algo. 2.

Each of the thus-constructed left-turn hotspot can be represented by a data tuple x :
xi = {ci,GÄroi,Acci,Loci},
X = {x1, . . . ,xi, . . . ,xN}

(2)

where i 2 {1, . . . ,N}, N is the number of left-turn clusters. GÄro, Acc, Loc denote the thus-aggregated gyroscope,
accelerometer, and location traces, respectively. X is the list of left-turn hotspot tuples.

Algorithm 2 Cluster Left Turn Traces
Input:
C = DBSCAN (L)
for each cluster in C do

if Number of left-turn instance in this cluster is less than 5 then

/*Discard this cluster*/
else

c =FindCentroid (centroids of left-turn tuples in this cluster)
Aggregate ÇÄro, acc, and loc of each left-turn tuple into set GÄro, Acc, and Loc, respectively.
The data tuple of this left-turn hotspot is {c, GÄro, Acc, Loc}.

end if

end for
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Map	View StreetView Option Description

1 Traffic light - protected

2 Stop sign – all-way

3 Traffic light - regular

4 Stop sign – two-way

5 Unprotected

6 None of the above
Label	options

Fig. 8. Online annotating system of TurnsMap. The le�
figure is a screenshot of its interface (the instruction
section is omi�ed due to space limit). The right table
shows the options available to the annotators.

Fig. 9. Inter-annotator reliability of each type of le�-
turn protection.

Fig. 7 shows part of our clustering result. The location traces are interpolated to show the trajectory of a
left-turning car. In the zoom-in view, one intersection is not covered due to lack of driving data, but the other
intersections are clustered by DBSCAN. We evaluate the performance of our hotspot extraction in Sec. 6.1.

6 DEEP LEARNING FRAMEWORK
Thus far, we have constructed a dataset X of time-series traces at left-turn hotspots. To enable classification of
left-turn settings by using the time-series data, we first collect the ground truth of each left-turn hotspot in X , and
then use a deep learning pipeline to train the classifier.

6.1 Collection of the Ground Truth
Due to the lack of the ground truth of each hotspot’s left-turn setting, we need to collect the ground truth from sratch.
A human-in-the-loop method is used to collect this information efficiently. Specifically, we outsource annotation
tasks to the crowd on Amazon Mechanical Turk (AMT) and use Google StreetView — a large-scale image database
that includes traffic scene information collected by mapping cars — as the accessible reference for the annotators
to identify the left-turn protection setting of each hotspot.

An easy-to-follow annotation process is essential to minimize the participants’ confusion for good quality of
annotation. To meet this requirement, we design an interactive labeling/annotation webpage as the participants’
working platform. Described below is how to annotate each left-turn hotspot on this webpage. Before starting
the annotation, each AMT participant will be asked to read our instruction carefully to understand the annotation
process. Next, our backend system (a php script running on the server for hosting the webpage) will randomly
pick a hotspot x from X and then display the corresponding Google StreetView based on the centroid of x . The
annotator then needs to inspect the StreetView (i.e., by zooming in/out and changing the viewing angle) to get a
clear view of the left-turn protection setting. The annotator will then be asked to choose one of the six options in
the table of Fig. 8. Option 1 represents the protected left-turn signal; options 2–5 the unprotected left turns; option
6 none of the five aforementioned options according to the participant’s perception/judgement, e.g., parking lots
and/or road segments without any StreetView image. Finally, our backend system will record the annotator’s input,
and a new hotspot will be displayed on the webpage.

After publishing the annotation task on AMT, we recruited 231 annotators, and asked each of them to inde-

pendently annotate/label 30 randomly-selected hotspots from X . Each annotator spent an average of 26.5min to
complete the task, which is reasonable for a new annotator to understand and annotate hotspots.
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Data Augmentation (RPCat): Random permutation + concatenation
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Fig. 10. The machine learning pipeline. The le� frame shows the gyroscope and accelerometer traces in a le�-turn hotspot
x ; the middle frame shows RPCat permutation and concatenation of IMU data in x ; the right-hand side network shows the
LSTM-based network architecture.

Although crowdsourcing the collection of ground truths via AMT can significantly speed up the annotation,
erroneous annotations are inevitable since the AMT participants are not domain experts and may have different
levels of perception. Thus, we try to enhance the quality of the collected annotations as follows.

• Recruiting proficient annotators. We ensure the annotators’ competence by only recruiting “master” work-
ers [20] — elite workers who have demonstrated superior performance in their previous tasks and have been
acknowledged by the corresponding requesters. We must also pay the master workers more to incentivize
their participation.

• Ensuring participants’ clear understanding of the annotation task. A thorough and clear understanding of
the annotation task can improve the participant’s performance. To meet this goal, we only recruited drivers
who reside in the U.S., since our driving data is collected from a US metropolitan city. Our easy-to-follow
instruction helps the annotators understand different left-turn protection mechanisms and the annotation
process.

• Aggregating the collected annotations via majority voting. Annotated data need to be filtered and refined
for accuracy. We first ensure each left-turn hotspot received multiple annotations from the participants.
Specifically, we discard any left-turn hotspot with less than 3 annotations. Then, for each remaining hotspot,
we apply simple majority voting to determine its annotation. That is, we select the annotation with the largest
number of repetitions. Note that a similar criterion is also commonly used in other large-scale ground truth
collections, e.g., ImageNet [21] and DeepDrive [22].

We randomly select 1,000 hotspots from X and collected 6,016 annotations — each hotspot has an average of
5.47 annotations. We assess the quality [23] of our dataset by inspecting the inter-annotator reliability of each
left-turn protection setting, which measures the consistency among different annotators. It is a commonly used
evaluation metric for assessing the quality of annotations collected from the crowd [24]. As shown in Fig. 9, the
inter-annotator reliability of each category is around 85%.

Moreover, the annotation result can also help us understand the performance of our left-turn hotspot extraction
(as stated in Sec. 5). Since false detections of a hotspot may be due to cars’ swerving in open areas (e.g., parking
lots), we can use the annotators’ feedback on each hotspot to inspect if the hotspot is indeed a road segment that
can facilitate left turns. According to the aggregated annotation results, 96.5% (965 out of 1,000) of the annotated
hotspots are road segments that can be categorized into one of the five scenarios as shown in Fig. 1. Our left-turn
hotspot extractions shown to be able to accurately identify road segments that can facilitate left turns.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 78. Publication date: September 2019.



TurnsMap: Enhancing Driving Safety at Intersections with Mobile Crowdsensing and Deep Learning • 78:13

Finally, we construct our dataset by using the annotated hotspots. Specifically, for hotspot i, we denote its ground
truth as yi if it has an annotation that passed our quality control test. Thus, we can have

X = {x1, . . . ,xi, . . . ,xN0},
Y = {y1, . . . ,yi, . . . ,yN0}

(3)

where y 2 {1,2,3,4,5} as shown in Fig. 8; i 2 {1, . . . ,N0}, N
0 is the number of valid hotspots with valid annotations.

In the current dataset, N
0 = 965. Note that by associating X with Y , we can have (x ,y) pairs, which can be applied

in supervised machine learning.

6.2 Formulation of the Learning Problem
Classification of protected/unprotected left turns based on mobile sensing data at hotspots (X ) can be cast as a
supervised learning problem for binary classification of time-series data. We modifyY to form a binary classification
task: label 1 (as shown in Fig. 8) is categorized as a protected left turn while labels 2–5 are categorized as unprotected
left turns. That is, yi ={Protected, Unprotected}, i 2 {1, . . . ,N 0}, N

0 = 965. As a result, we have 206 protected and
759 unprotected hotspots. The supervised machine learning problem can be formally state as follows.
Problem statement. Given N

0 pairs of data of the form {(x1, y1), . . ., (xN0 , yN0 )}, the objective is to learn a model
X !Y , where y is an annotation, x is the measurement represented as a tuple of several time-series traces.

The key challenge in this learning task is how to form the input data by using the observation tuples (shown in
Eq. (2)). The input data formation is different from many existing time-series classification tasks, such as pattern
matching [25], and DeepSense [26] — a recent light-weighted deep learning framework which is optimized for
running on mobile devices. Specifically, in the legacy time-series classification, each observation x is a single data
trace (vector). For example, to train a classifier for the GaitID task (identifying a user based on his/her gait traces),
each observation in the training set is a 2-dimensional vector of IMU sensor readings. However, in TurnsMap, each
observation is a tuple of data traces. As shown in Eq. (2), the data of each observation x is comprised of ÇÄro and
acc, which are sets of gyroscope and accelerometer data vectors of different lengths. Without such data formation,
it is not possible to distinguish left-turn settings based on one time-series data vector. For example, the left side
frame in Fig. 10 illustrats the accelerometer and gyroscope data traces collected from an unprotected left turn. Note
that not all traces exhibit the interruption pattern, i.e., some of the collected time-series traces are as smooth as
if they were collected from a protected left turn. Therefore, a machine learning pipeline needs to pre-process the
time-series data tuple to form data that can be used as input for the machine learning algorithm.

6.3 Deep Learning Pipeline
To address these challenges, we propose a deep learning pipeline that is comprised by a novel data augmentation
process and a deep Recurrent Neural Network (RNN) based on Long-Short Term Memory (LSTM) cells.

6.3.1 Data Augmentation. The goal of the data augmentation [27] is to construct and expand the training dataset
without undermining the underlying pattern. For this purpose, we design randomly permuted concatenation (RPCat)
for each hotspot data, i.e., X . As shown in the second frame on the left of Fig. 10, RPCat has two steps: (i) expand
the set of observations by permuting the sequence within x ; (ii) concatenate the data traces of each permuted
observation. This approach is inspired by [28] in the area of natural language processing (NLP), where data snippets
(e.g., phrases in NLP) are concatenated together to form an overview of the overall dataset.

Let us illustrate RPCat using an example shown in Fig. 10. Suppose a hotspot’s data x is comprised of J

gyroscope and J accelerometer traces (i.e., J is the number of the clustered left-turn maneuvers at this hotspot). The
sequence of data traces in x is originally organized according to the timestamp (we use epoch time in TurnsMap) of
the collected data. Note that different left turns at this hotspot are independent of each other. That is,

P(T1, . . . ,Tj, . . . ,TJ ) = P(T1) · · ·P(Tj ) · · ·P(TJ ), (4)
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where Tj is the j
th left-turn event and P(Tj ) is the probability of Tj’s occurrence. Due to the independence of

different left turns, the arrival sequence of these data traces should not affect the classification result.
RPCat reflects the this insight and reconstructs x as shown in the second frame in Fig. 10. Specifically, RPCat

firstly permutes the sequence of data traces in x and then concatenates the data. After each permutation, RPCat
generates a new sequence of data traces. Finally, to unify the data size for machine learning, we resize each trace to
length FixLen. We repeat RPCat J times to obtain a J⇥FixLen⇥2 tensor for x . We execute the above process for
all N

0 hotspots. Finally, after reshaping and splitting the data based on batch size, we transfer the data into the input
tensor for the LSTM network.

The parameters of the current RPCat are set as follows:
• Repetition of permutation. This parameter is to balance the dataset. For example, unprotected hotspots

constitute the majority of the current dataset due to their prevalence in the real world. To avoid an imbalanced
dataset, if x is an unprotected hotspot, we repeat the permutation J times, whereas for each protected
hotspot, we permute 2J times. This allows us to have a more balanced dataset, which is necessary for
better performance in training the LSTM network. We do not repeat RPCat full permutation times because
permutation of J unique elements (Perm(J,J)) can be very large, e.g., Perm(10,10) = 3,628,800. Such a
large dataset would be imbalanced and can take prohibitive long time for training.

• Length of data traces. Our current implementation uses FixLen = 800. The optimization of the unified data
length is left as our future work.

It is importation to note that the permutation does not undermine the sequential pattern of the data for TurnsMap.
As highlighted in Sec. 5, the sequential pattern (e.g., interruptions) of left-turn data resides in each left-turn
maneuver. Since the permutation only shuffles the order of left turns, it does not change the sequential pattern of
each left-turn data.

Now, the remaining question is how to learn the pattern based on the augmented training data.

6.3.2 RNN Framework. We use a deep RNN framework with LSTM cells to learn the underlying pattern(s) from
the augmented data. As a specific type of RNN architecture, LSTM has proven advantages [29] over other machine
learning algorithms, such as SVM, random forest, convolutional neural network, etc., for classifying sequential
data. Specifically, each LSTM cell uses a forget gate to adjust the extent of passing the state variable to the next
unit — an important feature for capturing dependencies through time [30]. Moreover, the forget gate design is
shown to have a desirable effect on mitigating the vanishing gradient problem [31], a common limitation for the
classical RNN architecture that may restrict the network from learning the pattern from sequential observations. We
used stacked LSTM since a deeper hierarchical structure enables the network to gain more accurate understanding
of the intrinsic pattern by disseminating the learning task to each layer [29, 32].

The hyper-parameter settings of our network are: 2 LSTM layers, 32 LSTM cells per layer, batch size of 300,
and the training rate of 0.001. We use the tanh function for updating the cell and hidden state, whereas the sigmoid
function is used for the gates in LSTM cells. To mitigate overfitting, we applied a 0.5 dropout rate in each LSTM
layer. The Adam optimizer [33] is used for iteratively updating network weights. Finally, the network feeds the
thus-learnt feature vector (1⇥32) into a softmax layer for generating the classification result.

Now, we first test the efficacy of our RPCat + deep LSTM pipeline by evaluating the training loss. To obtain the
test data, we randomly selected 20% of hotspots from X and then applied RPCat to build an augmented testing
set. We have implemented our learning pipeline with TensorFlow on our lab server equipped with one Titan Xp
GPU. Fig. 11 shows the efficacy of RPCat and also the training and testing loss (training/testing loss is the penalty
of misclassification of training/testing set [31]) by using our learning pipeline. Without applying RPCat, both
training and testing losses converged to high values, indicating underfitting — the LSTM network does not have
enough data for learning the underlying pattern. With RPCat, despite the fluctuation caused by the convergence
feature of Adam optimizer, both training and testing losses decrease with the increasing number of epoch (in neural
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Fig. 11. E�icacy of RPCat on training with LSTM.

network epoch, one epoch means the number of times the entire dataset is processed by the algorithm). Specifically,
training and testing losses are stabilized at 0.4 and 0.45, respectively, after about 900 epochs. We will evaluate the
performance of our machine learning pipeline in Sec. 7.

7 EVALUATION
We first evaluate the overhead of TurnsMap, then the performance of our deep learning pipeline, and finally present
the insights gained from the evaluation.

7.1 Performance Metrics of TurnsMap
7.1.1 Evaluation Metrics of the Deep Learning Pipeline. We evaluate our machine learning pipeline’s performance
by using the cross-validated performance metrics. Fig. 12 shows the confusion matrix where each row represents
the actual class; each column represents the predicted class. Fig. 13 shows the precision, recall and F-1 score, where
precision represents the ratio of true positive detections to the total positive detections, and recall represents the
classifier’s sensitivity with the ratio of true positive detections to the total actual positive observations. Accordingly,
our classifier can identify different left-turn settings with high performance. Note that the number of instances of
unprotected settings takes a large portion in our dataset due to its popularity in real-world, our classifier is not
biased as evidenced by the performance metrics in Fig. 13. This shows the model trained on the augmented (and
thus balanced) dataset is not biased and our LSTM framework successfully learns the feature(s) for differentiating
left-turn protection schemes.
TurnsMap errs on the safe side of misclassifications to mitigate the impact of erroneous classifications. Specifi-

cally, it has a lower rate of misclassifying unprotected left turns as protected ones than that of classifying protected
left turns as unprotected ones. This means that while identifying protected left turns with good accuracy, TurnsMap
achieves better performance in identifying the unprotected left turns.

The performance of TurnsMap is essential for many applications, such as finding the safest left turns for novice
drivers and route planning for self-driving cars, selecting a road with the minimum number of unprotected left turns
using TurnsMap.

Now, we examine our classification performance based on the unbalanced dataset. To evaluate the classifier’s
performance while varying the threshold (i.e., cut-off probability), we first tested the performance and report the
Receiver Operator Characteristic (ROC). Then, to evaluate whether performance of protected left turns detection
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Fig. 12. The normalized onfusion matrix for analyzing
TurnsMap’s performance.

Category Precision Recall F-1

Protected 0.90 0.86 0.88

Unprotected 0.91 0.93 0.92

Average 0.90 0.90 0.90

Fig. 13. Performance metrics of the LSTM-based
pipeline.
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Fig. 14. ROC curve.
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Fig. 15. Precision-recall (PR) curve.

is not dwarfed due to the imbalance of the current dataset, we also reported the Precision-Recall (PR) curve to
examine if precision captures the number of false positives.

As shown in Figs. 14 and 15, both the ROC and PR curves show the efficacy of our classifier. Specifically,
both curves have significantly better performance than their corresponding reference lines (i.e., random guess).
Moreover, the area under curve (AUC) for ROC and PR curves is 0.954 and 0.926, respectively.

7.1.2 Comparison with Other Machine Learning Algorithms. Our model’s performance is compared with the
models trained by other learning algorithms based on the augmented dataset, and the averaged performance metrics
are plotted in Fig. 16 where we tested a standard RNN, which is known to have good performance for sequential
data [34]. One of its key differences from LSTM is that the standard RNN cell lacks gates (e.g., forget gate)
for learning the sequential dependencies that may have varying (e.g., short- or long-term) timespans. We also
compared with kernelized support vector machine (SVM), and random forest (RF). Specifically, the RNN uses the
same hyper-parameter setting as our LSTM network. We used 200 decision trees for the RF algorithm. Note that
we used the same training data setting for testing different algorithms. That is, the performance of RF and SVM
with feature vector optimization is not the focus of this paper.

For TurnsMap, LSTM outperforms the others in all metrics considered. As discussed in Sec. 6, the advantages of
LSTM over others is its capability of capturing dependencies through time. For example, RNN cells are susceptible
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Fig. 16. Comparison between LSTM and other machine
learning algorithms.
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Fig. 17. CPU usage of TurnsMap app.

to the vanishing gradient decent problem, making it very hard to capture the dependencies in time-series data. SVM
has a low average F-1 score, because it misclassified many unprotected hotspots as protected ones while showing
good performance in detecting protected hotspots.

7.2 Overhead of the Data-collection App
Mobile devices are resource-limited and susceptible to power and/or computation-hungry apps. A high overhead of
the data-collection app could consume lots of the mobile device’s resources, thus discouraging use of TurnsMap.
We have highlighted the data-collection app’s generation of low network traffic in Sec. 4. Here we test its additional
CPU usage and energy consumption on the users’ mobile devices.

We installed our data-collection app on a Google Pixel phone that runs Android 7.1.2 Nougat OS. We experi-
mented with two sampling rates of IMU sensor: 200Hz and 100Hz. We used the 100Hz sampling rate for most of
time and also tested the 200Hz sample rate to study the maximum overhead incurred to users’ smartphones.

Since TurnsMap can be used as a collaborative add-on functionality for existing navigation apps (we will
elaborate on this in Sec. 8), we also measured the overhead of a popular navigation app (i.e., Google Maps) and
compared it with our data-collection app. Fig. 17 shows the CPU usage overhead of TurnsMap. It consumes an
average of 7% and 3.7% CPU for 200Hz and 100Hz sampling rate, respectively, whereas Google Maps consumes
11% CPU. For the energy consumption, we measured the current drawn by the Pixel phone. It shows that the data
collection app consumes only 45mA with IMU sensor sample rate of 100Hz, whereas Google Maps consumes
727mA. That is, the extra energy consumption is only 6.2% of the navigation app. This low overhead comes from
the fact that the data collection activity does not use any power-hungry sensors (e.g., camera) and operates in
background mode.

7.3 Real-world Insights from TurnsMap
TurnsMap can accurately differentiate the protection settings of different left turns. In the testing phase of TurnsMap
(i.e., classifying testing data with the thus-learnt model), we have gained some interesting insights (Fig. 18).

7.3.1 Protected. One of the left turns with protected settings is shown in Fig. 18(a) — an isolated left-turn road

in an urban area. The driver can use this dedicated road for left turns, a complete isolation from other traffic and
pedestrians.

7.3.2 Unprotected. Fig. 18(b) shows a busy market in an urban area where left-turning cars are likely to be blocked
by a large crowd of people and street stalls. Fig. 18(c) shows an intersection enforced by a 2-way stop sign where the
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(a) Isolated left lane (b) Busy market
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Fig. 18. Real-world insights from TurnsMap result.

view of right-hand-side road is blocked by lush vegetation. Fig. 18(d) shows an intersection without any protection,
which is also a joint spot of a narrow road with a major road (with a speed limit of 45mph). Such a left turn is very
risky because the left-turning driver needs to pick up the speed quickly while paying attention to fast-approaching
cars from the right-hand side. Fig. 18(e) shows an intersection with all-way stop sign located inside of a campus.
Especially during inter-class time (e.g., 10:30am on weekdays), many students travel through this intersection to
get to other classrooms, thus increasing the possibility of causing frequent conflicts between left-turning cars and
pedestrians. Fig. 18(f) shows a confusing layout in a suburban area, where each entrance of the intersection is
enforced by a stop sign, but there is a pedestrian island in the middle of the street. This blockage in the middle of
the road requires drivers to be extra careful when turning left.

8 USE CASE AND USER STUDY
Since left-turn enforcement is critical for driving safety, TurnsMap has potential for use in various app scenarios,
such as navigation systems for both human- and self-driving cars, and reporting unprotected left-turn hotspots to
the local transportation department. In this section, we focus on assessing TurnsMap’s utility in navigation systems.

In existing navigation systems (e.g., Google map), one of the key limitations is the lack of safety assessment (as
highlighted by Waze [5], finding dangerous left turns) of different routes. In fact, route/trip planning selects the
route by minimizing the estimated time of arrival (ETA) [35]. As the result, the navigation system may generate a
route with many risky unprotected left turns, as shown in Fig. 19(a).

One of TurnsMap’s exemplary application is augmenting existing navigation app with left turn setting information
at intersections. That is, with the left-turn information discovered by TurnsMap, TurnsMap can provide this
information with the collaborating navigation app to plan a route that also considers left-turn safety at intersections
— which is not yet achieved functionality by using state-of-the-art approaches. Specifically, users of a navigation
app can enable unprotected left turn avoidance in the setting of the app. Thus, the app can suggest an alternative
route, as shown in Fig. 19, which has safer turning maneuvers (e.g., right turns).

To fully analyze user’s satisfaction on this functionality, we first conducted a survey of users’ expectations of a
navigation system that has the unprotected left-turn avoidance. Specifically, we recruited 564 participants from
Amazon Mechanical Turk. Each participant needs to be a legitimate driver in the US to participate in our study. To
assess people’s expectation of this functionality, we asked the participants the following questions:

Q1. Can you differentiate left-turn enforcements?
Q2. Have you ever experienced dangerous/difficult unprotected left turns recommended by a navigation app?
Q3. If there is a navigation app that can help you avoid those risky left turns, would you use it?

Fig. 20 summarizes the survey results. For Q1, 96% of the participants can differentiate between protected and
unprotected left-turns, indicating that most of our participants are aware of the protected/unprotected settings. For
Q2, 60% of the participants experienced risky/difficult unprotected left turns recommended by the navigation app.
Notice that 15% of the participants often encountered such left turns in the routes recommended by the navigation
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(a) w/o TurnsMap (b) w/ TurnsMap

Fig. 19. Exemplary application. Here, (a)
and (b) compares the usage of a navigation
app w/ or w/o TurnsMap’s capability.
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Fig. 20. User study of the exemplary app. Here, (a), (b), and (c) show
distributions of participants’ responses to our survey questions respec-
tively.
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Fig. 21. Illustration of formulating TurnsMap for di�erent time-of-day.

app. For Q3, 71% would like to use a navigation app that avoids unprotected left-turns while 34% prefer this
functionality only if the alternative route has a similar ETA (Condition 1 in Fig. 20(c)). Surprisingly, 37% indicated
that if driving safety can be enhanced, they won’t mind taking an alternative route with a prolonged ETA (Condition
2 in Fig. 20(c)), i.e., safety is more important to a large portion of navigation app users. In summary, the avoidance
of unprotected left turns is highly desired for navigation systems.

9 LIMITATION AND FUTURE EXTENSION
Although TurnsMap can achieve high accuracy in differentiating protected and unprotected left-turn settings, there
remains room for improvements, two of which are highlighted below.

9.1 Adapting TurnsMap to the Time-of-day
Currently, TurnsMap is trained based on driving data that is mostly collected during day-time (i.e., most of our
training data is collected during 7:00 –18:00. Also, some intersections are equipped with advanced traffic regulation
systems [36] that change the left-turn protection setting according to different times-of-day to accommodate the
varying traffic conditions. The intersections that allow for flexible left-turn settings need both regular traffic light
(i.e., circular light) and dedicated left-turn light (i.e., a green left-oriented arrow). For example, to maximize
the traffic throughput during the morning rush hour, the intersection can use the regular traffic light to regulate
left-turning traffic; during hours with moderate traffic, it uses the protected traffic light to enhance safety at the
expense of traffic throughput. The detailed information (e.g., location and the specific left-turn setting) of these
flexible traffic signals would be useful for various parties (drivers, navigation app developers). However, this
information is unknown to the public.

TurnsMap can adapt to this sophisticated scenario by learning different classification models for different times-
of-day. As shown in Fig. 21, 4 times-of-day can be 6:00 — 10:00, 10:00 — 16:00, 16:00 — 20:00, and 20:00 —
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6:00 (the next day). Note that the first and third time segments denote the two usual daily rush hours. Based on
the segmentation of time, one can divide the training data using the timestamp of data collection and train the
corresponding TurnsMap for each time segment.

9.2 Scalability of TurnsMap
We test TurnsMap by using the driving data collected from the Detroit metropolitan region in the U.S. that covers
various on-road environments (e.g., suburban and urban areas). Moreover, since TurnsMap harvests interruptions
(as elaborated in Sec. 5), the root cause of risks at intersections, TurnsMap can be used to enhance driving safety
at large scale. Specifically, TurnsMap can be used in cities/regions that have the same/similar traffic regulations.
For cities/regions with different traffic regulations, the current trained model of TurnsMap can help facilitate data
collection during the training phase. In particular, the app developer or local transportation department could apply
the transfer learning method [37] to use the existing model as a pre-trained model.

10 RELATED WORK
10.1 Detecting the Driving Behavior
One of the major tasks of TurnsMap is to accurately detect the driver’s maneuver based on mobile IMU sensor
readings. Recently, there have been a growing number of research efforts to meet similar goals. For example,
Yang et al. [38] used the smartphone accelerometer to detect if the phone is at the driver’s seat. VSense [13] uses
smartphones’ built-in IMU sensors to detect various steering maneuvers. BigRoad [39] extracts the steering wheel
angle from a smartphone’s gyroscope. Researchers have also investigated the accuracy of using a mobile IMU
sensor for detecting lane-change maneuvers [40]. One of TurnsMap’s novelties is to detect interruptions (e.g.,
caused by crossing pedestrians and/or oncoming cars), a unique feature that can be used to derive the left-turns
information at intersections.

10.2 Inferring the Road Information
Left-turns information is critical to driving safety, but the traffic databases maintained by local governments
(e.g., data.gov [41], such as Open Data Portal [42]) lack this information. The collaborative mapping database,
OpenStreetMap, has recently proposed a new feature to cover traffic light information [3] at intersections. However,
this new feature is still in its infancy (i.e., under the community’s review) and may take years to become practical.
Even after receiving an approval, it will require a long time for the contributors (i.e., mappers) to collect the data
due to the limited number of contributors.

To acquire traffic light/signal information at intersections, the corresponding industry has been devoted to the
collection of left-turns information by taking images of intersections with heavily-instrumented mapping cars. For
example, high-definition mapping services (Google Street View, here [43], TomTom [44]) use dedicated mapping
cars to collect street images and derive intersection information automatically by using computer vision algorithms.
However, this approach requires a significant investment of infrastructure, thus limiting its scalability, e.g., too
expensive to use in under-developed or developing regions.

There have been proposals to detect intersection information with cameras in more efficient ways, but they suffer
the natural limits of image data due to a variety of outdoor conditions [45]. Besides, placement of various traffic
signals/lights make it hard for onboard perception systems to ensure that the intersection information is captured by
using a limited number of cameras [46].

Aly et al. proposed Map++ [47], a crowdsourcing platform for mining traffic sign information from sensor
data collected from mobile devices. However, Map++ detects only coarse-grained road information, e.g., exis-
tence/absence of traffic light. TurnsMap extracts and uses the spatio-temporal features from IMU sensor data to
infer the specific protection type at left-turn hotspots — a safety-critical information unachievable with Map ++.
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Recently, a traffic pattern analysis with mobile crowdsensing is gaining popularity due to its potential for
benefiting smart cities. SmartRoad [48] uses mobile GPS data to determine whether or not traffic lights and/or stop
signs are present. However, none of these existing studies explored left-turns information at intersections, albeit its
importance to driving safety.

Unlike existing schemes, we focused on the left-turns information, a safety-critical yet unavailable data which
can be efficiently collected by TurnsMap’s crowdsensing. By crowdsensing mobile IMU sensor readings, TurnsMap
can collect this information in an efficient, scalable manner.

11 CONCLUSION
TurnsMap is a novel way of utilizing crowdsensing mobile IMU data and deep learning for enhancing driving safety.
It can infer the left-turn protection settings on road segments with high accuracy. To train and evaluate TurnsMap,
we constructed a real-world dataset. TurnsMap is empowered by two key enablers: a novel data mining engine for
extracting left-turn hotspots and a deep learning-based pipeline for learning the model for classifying left-turn
enforcements. The left-turns information uncovered by TurnsMap is essential for driving safety and can benefit
many vibrant apps in the automotive and transportation ecosystem.
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