
Keep Others from Peeking at Your Mobile Device
Screen!

Chun-Yu (Daniel) Chen, Bo-Yao Lin, Junding Wang, and Kang G. Shin
CSE/EECS, University of Michigan

Ann Arbor, MI, USA
{chunyuc,boyaolin,jundwang,kgshin}@umich.edu

ABSTRACT
People use their mobile devices anywhere and anytime to
run various apps, and the information shown on their de-
vice screens can be seen by nearby (unauthorized) parties,
called shoulder surfers. To mitigate this privacy threat, we
have developed HideScreen by utilizing the human vision
and optical system properties to hide the users’ on-screen
information from the shoulder surfers.

Specifically, HideScreen discretizes the device screen into
grid patterns to neutralize the low-frequency components
so that the on-screen information will “blend into” the back-
ground when viewed from the outside of the designed range.
We have developed and evaluated several ways of hiding
both on-screen texts and images from shoulder surfers. Our
extensive experimental evaluation of HideScreen demon-
strates its high protection rates (>96% for texts and >99%
for images) while providing good user experience.

CCS CONCEPTS
• Security and privacy→ Privacy protections.

KEYWORDS
Shoulder surfing; mobile privacy; privacy protection; human
machine interaction

ACM Reference Format:
Chun-Yu (Daniel) Chen, Bo-Yao Lin, Junding Wang, and Kang G.
Shin. 2019. Keep Others from Peeking at YourMobile Device Screen!.
In The 25th Annual International Conference on Mobile Computing
and Networking (MobiCom ’19), October 21–25, 2019, Los Cabos,
Mexico.ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/
3300061.3300119

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3300119

1 INTRODUCTION
People use mobile devices everywhere they go, even in public
areas. The information shown on their device screens could
be personal or sensitive (e.g., bank account information and
text messages to/from personal friends), and hence the users
would not want others to see it. However, people nearby can
easily see the information displayed on the device screen
by peeking at (or shoulder surfing) the screen, as shown in
Fig. 1.

Shoulder surfer seesUser sees

Figure 1: A common case of shoulder surfing in a
train/bus and the effect of applying our proposed so-
lution, HideScreen.

Although users will take proper defensive actions when
they beware of someone else’s peeking at their device screens,
they are reported to beware of only 7% of shoulder surfing
incidents [1]. Moreover, shoulder surfers are reported to suc-
ceed in obtaining a 6-digit PIN with a 10.8% probability by
taking just one peek [2]. Users may try not to view sensi-
tive/private information in public areas, but cannot always
help it. For example, the Justice Secretary of Philippines,
Vitaliano Aguirre II, was enraged at the leakage of his text
messages by someone who had peeked at, and taken a picture
of, his smartphone screen during a Senate hearing [3].
The most popular defense against shoulder surfing is to

attach a privacy film on the device screen, which limits the
visible range of screen to a certain viewing angle to hide the
on-screen information (OSI). Even though it is an effective
way to protect OSI when the shoulder surfer is outside of the
visible range, the privacy film provides little protection inside
the visible range, e.g., the shoulder surfer is right behind the
user (Section 8.5). Also, it requires users to beware of the
privacy risks and take appropriate actions before viewing
any sensitive OSI. This requires users to buy and attach a
privacy film, or buy devices equipped with privacy films (e.g.,
HP Sure View [4]), incurring additional cost and/or effort.

https://doi.org/10.1145/3300061.3300119
https://doi.org/10.1145/3300061.3300119
https://doi.org/10.1145/3300061.3300119

Researchers and IT companies have been seeking software
solutions that can proactively protect users’ OSI from the
end of information provider (e.g., Google’s shoulder surfer
detection [5]), or let users hide their OSI without requiring
other hardware protection (e.g., BlackBerry’s Privacy Shade
[6]). They usually focus on the protection of (i) authenti-
cation secrets, which can be used to “unlock” devices and
provide access to their contents, and (ii) other general infor-
mation, including the on-screen texts and images displayed
by applications. The former only focuses on the protection
of authentication secrets, while the latter usually blocks the
information altogether, which also prevents the intended
user from viewing the OSI (Section 11).

One of the most recent and promising ways of preventing
shoulder surfing is IllusionPIN [7]. It utilizes the concept of
hybrid image [8] to hide the real and the decoy keypads in
high and low spatial frequency bands, respectively. That way,
users can read the real keypad while shoulder surfers cannot.
Even though IllusionPIN is able to protect general images,
as the authors of [7] stated, the parameters used need to be
appropriately tuned for each particular task to achieve the
required protection (Section 11).
Considering the possible leakage of sensitive OSI (SOSI)

and the lack of their effective protection, we would like to
enable information senders/providers to proactively protect
SOSI instead of passively relying on the awareness and pres-
ence of protection at the receivers, such as use of a privacy
film. We meet this goal by developing a novel solution, called
HideScreen, for SOSI protection without requiring any addi-
tional hardware. It (i) can protect the SOSI without compro-
mising users’ intended tasks/apps, and (ii) is simple enough
to implement and run on commodity mobile devices while
consuming as little resources (e.g., computing power and
energy) as possible to support good user experience.

We have developed HideScreenwith the goal of providing
the user a special “private view” that can be deployed as an
API, a built-in function in the device OS, or a stand-alone
app (Section 10.1). Developers or information providers can
choose to display sensitive information (with protection in
the private view) on the screen that can still be seen correctly
by the user. Before displaying the protected information,
HideScreen will first acquire the information — either via
direct input with the API call, or image processing — to be
displayed, generate and then display the protected version.

HideScreen is tailored to meet the need of apps that dis-
play some short but sensitive information — such as PIN,
account/password, and partially-personal messages — and
protect the OSI from unauthorized parties located outside
of the designed viewing range. Specifically, HideScreen fo-
cuses on the protection of short texts on the screen which
can also protect the texts shown on soft keypad/keyboard.

When key shuffling is used, HideScreenwill prevent a shoul-
der surfer from acquiring sensitive information by observing
the on-screen locations the user touches. Other than on-
screen texts, some images, such as personal photos or the
security picture used for bank account login, can also be
privacy/security-sensitive, and hence HideScreen’s protec-
tion is extended to on-screen images.

Unlike IllusionPIN that utilizes the spatial frequency of in-
formation itself, HideScreen injects high spatial frequency
components into the information to be displayed, thereby
neutralizing the low-frequency components that are easily
viewable by shoulder surfers. This mechanism is equivalent
to moving the low-frequency components to the higher-
frequency space that cannot be seen by shoulder surfers
(Fig. 2). Specifically, based on optical system properties and
human vision characteristics (Section 3), we propose use
of grid patterns to display information so that the informa-
tion to be protected can only be viewed within a designed
range (Section 4). Furthermore, since HideScreen does not
rely on the spatial frequency of the OSI itself to provide
protection, the viewable range of the protected information
can be adjusted dynamically and automatically based on
the user’s viewing distance by changing the grid parame-
ters, thus broadening its use for various applications with
different requirements.

Low Freq.
Components

(a) Unprotected

Low Freq.
Components

(b) Protected
Low

High

Figure 2: This example shows the spatial frequency
spectrum of a single character ‘a’ before and after
HideScreen is applied.

The only requirement for deploying HideScreen is that
the displayed colors must be calibrated (Section 7). There-
fore, the figures shown throughout this paper may not reveal
the designed effect because the colors/images displayed may
varywith devices. This calibration is needed only once per de-
vice and takes only several minutes, which can be done by de-
vice manufacturers or users. Like all the protection schemes,
HideScreen inevitably degrades the legitimate user’s read-
ability of OSI (Section 10.2). So, we have also developed
mechanisms to enhance the user experience while maintain-
ing the level of protection. Furthermore, since HideScreen
is a software-based approach, it can be implemented to give
users the options to enable/disable the protection in the pri-
vate view at any time, depending on their needs.

This paper makes the following contributions:

10 in

20 in
User

Shoulder
Surfer

Phone

~22 in

(a) Top-down view of Fig. 1

28 in

(b) Seat pitch between rows

Figure 3: Threat model settings

• Proposal of grid-based display for OSI protection (Sec-
tion 4), based on optical system properties and human
vision characteristics (Section 3);
• Development of text (Section 5) and image (Section 6)
protection, and demonstration of their effectiveness
in protecting texts/images (Section 8) at a low rate of
information leakage (≤ 3.8% and ≤ 0.9%, respectively).
• Demonstration of HideScreen’s practical usability by
evaluating its readability, energy consumption, and
use-case study (Section 9).

2 THREAT MODEL
The goal of adversaries (shoulder surfers) is to acquire the
information shown on the user’s device screen. The infor-
mation that shoulder surfers interested in would be texts
and static images associated with applications such as mes-
saging/texting and account login. Since the reported/known
shoulder surfing events are mostly casual and opportunistic
[1], we assume the most common case in which shoulder
surfers (SSs) use their eyes or smartphone cameras to ac-
quire/comprehend the on-screen information.

Smartphones/tablets/laptops are assumed to be viewed by
their users from a distance up to 24" (equal to the length of
human arms [9]). If and when the SS tries to acquire OSI
with his own eyes, the difference between the user’s and
the SS’s viewing distance is assumed to be greater than 12"
because a SS would not want to be caught by the device
user that he is peeking at the screen. As shown in Fig. 3(a),
this is also the difference between the user’s and the SS’s
viewing distance when the SS is sitting right next to the user
while the distance between the user and the SS is 20" (i.e., the
average shoulder width [9]) and the viewing distance of the
user is 10" (i.e., average smartphone viewing distance [10]).
We assume that the SS may also try to acquire the user’s

OSI by using his smartphone camera, for example, when
he is sitting in a seat behind the user. In such a case, the
distance between the device and the SS will be the size of
the seat pitch (Fig. 3(b)). Since the seat pitch (≥28" [11]) on
an airplane tends to be smaller than other transportation
vehicles, we use it as the setting of our threat model, erring
on the conservative side.

As mentioned before, we also assume casual and oppor-
tunistic shoulder surfers, but not malicious professionals
with special equipments, such as binoculars and digital cam-
eras, who target a specific individual for specific informa-
tion. This excludes the case in which the shoulder surfers
use a camera to video-record the user’s device screen and
then process the video to extract the sensitive information.
This exclusion should not diminish the value of HideScreen,
since users are unlikely to view their confidential informa-
tion in public areas and the attackers have other ways to
obtain the target information than shoulder surfing, such
as implanting/installing malware in the targeted user’s de-
vice. Nevertheless, we will discuss the protection against the
attacker’s use of special equipments in Section 8.

3 RESOLVING POWER AND HUMAN
VISION

Before detailing HideScreen, we first introduce some neces-
sary background.

3.1 Resolving Power of Optical Systems
An optical system is capable of producing or perceiving light.
Here we focus on optical systems that perceive light. The
resolving power of an optical system is defined as its ability
to distinguish two adjacent light sources [12]. It is usually
represented by the minimum angle with which the system
can distinguish two separate light sources as individual ones
(i.e., minimum resolvable angle).

The limit of the resolving power of an optical system is
determined by the diffraction of light. According to Rayleigh
Criterion, an optical system with an aperture can resolve
two separate point light sources if the first principal diffrac-
tion minimum (PDMin) of one light source coincides with
the principal diffraction maximum (PDMax) [12]. Figs. 4(a),
4(b), and 4(c) show the conditions for two light sources to
be resolvable, just resolvable (i.e., Rayleigh Criterion), and
unresolvable, respectively. This minimum angle separation
is then given by

θmin = 1.22λ/D, (1)
where λ is the wavelength of light, and D is the aperture
diameter of the optical system [12]. As shown in Eq. (1), the
resolving power of an optical system is determined by its
aperture. That is, the larger the aperture, the greater the
resolving power.

3.2 Human Vision Characteristics
Human vision is nothing but an optical system and hence is
subject to Rayleigh Criterion. However, humans’ perception
of images/patterns has some special characteristics. The au-
thors of [13] conducted experiments to determine humans’
perception sensitivity with respect to spatial frequencies.

(b) (c)(a) PDMax

PDMin

Figure 4: This figure illustrates (a) resolvable condi-
tion, (b) Rayleigh Criterion, and (c) unresolvable con-
dition.

Human vision is shown to have the highest sensitivity when
the spatial frequency is around 8 cycles per degree (c/d) and
the perception of patterns is cut off around 60 c/d (i.e., a
person cannot recognize that there is a pattern).

4 SYSTEM DESIGN
4.1 Design Overview
While the information embedded in the texts is their mean-
ing, the information embedded in the images is their spatial
pattern. To deal with their unique characteristics, we in-
troduce different schemes for different protection targets.
HideText, HideImage, and SelImage are the three protec-
tion schemes employed in HideScreen.
These three schemes are compared and summarized in

Table 1. HideText focuses on the protection of texts, and the
other two protect images. All of these are designed to protect
information by viewing distance and angle, meaning that
a shoulder surfer will not be able to read the information
correctly from the outside of the designed viewing range.

The two image protection schemes differ in loss or no loss
of information. HideImage protects the images at the cost
of some content loss (i.e., not showing the original image
on the screen), while SelImage protects the images without
loss of content, thus allowing a SS to be able to identify the
real information with some probability.

HideText HideImage SelImage
Protection Target Text Image Image
Protection by
Viewing Distance
Protection by
Viewing Angle
Protection by
User Interaction × ×

Plain Text/Image
Protection ×

Lossless Protection ×

Table 1: Comparison of protection schemes in
HideScreen

(a) View in close distance (b) View from far away

Grid Size

Bright
Component
Dark
Component

Figure 5: Basic concept of HideScreen

All schemes are built on one basic idea: if a user views a
grid pattern within the designed range, he will see the grid
(Fig. 5a), else he will only see an area of single color (Fig. 5b).
HideScreen captures the information to be shown on the
screen and transforms it into a grid image, which is an image
composed of grids. Before discussing the details of a grid
image, we first introduce the properties of a grid.

4.2 Characteristics of a Grid
There are three main characteristics of a grid (Fig. 5a). The
first is grid size, which is defined as the size of a single color
square. Since we can approximate a single-colored square
as a single point light source, the grid size determines the
range that users can view the information (denoted as visible
range). The larger the grid size, the longer the visible range.
The second and third characteristics are the colors of bright
(Hbr iдht) and dark (Hdark) components in the grid, respec-
tively.1 These two characteristics determine the color a user
will perceive when viewing the grid. We use H ≈ H1 ⊕H2 to
mean that a grid with (H1,H2) components looks the same as
a single color H when it is viewed from far away. Note that
the colors may look slightly different on different screens
even if they are displaying a color with the same color value.
So, to use HideScreen, the displayed colors must be cali-
brated a priori only once for each device. We will discuss
how this calibration is done in Section 7.2.

4.3 Calculation of Visible Distance and
Angle for General Optical Systems

Let us consider how to calculate the visible distance and
angle for a given grid pattern with grid size ℓ. Suppose we
are using an optical system, such as a camera, to view the
grid pattern, and its aperture/lens size is D. The maximum
resolution [12] is determined by the minimum resolvable
angle (Eq. (1)).
Fig. 6(a) shows the relationship between the minimum

resolvable angle (θmin) and the visible distance (dmax). After

1Each color H can be represented as (r, д, b), where r , д, and b are the
values of red, green, and blue components, respectively. It can also be
represented by a single integer (#000000 - #FFFFFF) when 24-bit color coding
is used.

ℓ𝜃#$%

𝑑#'(

𝑂

𝑆+

𝑆,

=
=

(a) Minimum resolvable angle
θmin and visible distance dmax

ℓ/2

𝜃%&'

𝑂

𝑆*

𝑆+
ℓ/2

𝑑′

𝑑.𝑐𝑜𝑠𝜙%34

𝜙%34

𝑄

(b) Minimum resolvable an-
gle and visible angle ϕmax

Figure 6: Illustration of visible range calculation

obtaining θmin , we can calculate the visible distance as:

dmax =
ℓ

2 tan (12θmin)
=

ℓ

2 tan (0.66 λ
D)
. (2)

Now, let’s consider the case when a user is viewing the
grid from distance d ′ < dmax as shown in Fig. 6(b). If the
user keeps moving away from the perpendicular line, the
maximum visible angle ϕmax will occur when the viewing
angle between S1 and S2 is θmin . We can obtain ϕmax by
solving Eq. (3) = Eq. (5):

area(∆OS1S2)

=
1
2
× |S1S2 | × |OQ | =

1
2
ℓd ′ cosϕmax (3)

=
1
2
sin (∠S1OS2) × |OS1 | × |OS2 | (4)

=
1
2
sinθmin ×

√
(d ′ cosϕmax)2 + (d ′ sinϕmax +

ℓ

2
)2

×

√
(d ′ cosϕmax)2 + (d ′ sinϕmax −

ℓ

2
)2. (5)

If d ′ ≫ ℓ and ϕmax is not close to 0, we have ϕmax ≈

cos−1 (d ′θmin/ℓ).

4.4 Viewing Distance Calculation for
Human Vision

Asmentioned in Section 3.2, human vision has the perception
cutoff at around 60 c/d. Therefore, the minimum resolvable
angle for human vision is

θH,min ≈ 1/60° ≈ 3 × 10−4 (rad). (6)

Note that the equations in Section 4.3 can also be applied
to human vision if we replace θmin with θH,min . The reason
for this substitution is that the result obtained in Section 4.3
depends only on the resolving power, i.e., the limit of spatial
frequency that certain optical systems can resolve. So, it can
be applied to any optical systems as long as their resolving
power is known. The visible distance for human vision is

𝐺

𝑑

𝑑#𝑈

Threat Model
Visible Range

Equal to User’s
Viewing Dist.

𝑑#%&

Visible Range of
Our Scheme

Figure 7: This figure shows the visible range of a user
U whose viewing distance is d and dmax is designed to
be d + dm inches.

then given as

dH,max =
ℓ

2 tan (12θH,min)
≈ 3333ℓ. (7)

4.5 Visible Distance and Range
Once the grid size ℓ is set, the visible distance of the grid is
determined by:

d ′ ≈
ℓ cosϕ
θmin

, (8)

whereϕ is the viewing angle, θmin is the minimum resolvable
angle, and d ′ is the corresponding visible distance. It shows
that the visible distance is proportional to the cosine of view-
ing angle for a given grid size. Hence, the visible range is a
circular area with the diameter equal to dmax (Fig. 7). Here
we design

dmax = dH,max = d + dm ,where dm = 12". (9)

The rationale behind this design, instead of setting dmax = d ,
is to leave the margin (dm) for errors in the measurement of
viewing distance, errors of grid quantization, and individual
vision differences. This design also ensures that the pro-
tected information has better readability, since human vision
generally has better sensitivity at lower spatial frequencies.
dm = 12" is chosen as it is the minimum difference of viewing
distances between the user and the shoulder surfer defined
in our threat model.

4.6 Information Protection by Grids
We can utilize grids for hiding OSI because if a person views
the grid from the outside of the visible range, he cannot re-
solve the bright and dark components into two individual
sources. Therefore, he will only see the “mixture” of the two
light sources. By utilizing this property, we can use the grid
to create a pattern P for a designated visible distance dmax .
What remains is to find a background B that has the same
color as P when viewing from the outside of the visible range.
We can then create a grid image G = P + B, so that only the
person within the visible distance can see the pattern cor-
rectly. Fig. 8(a) shows an example of applying the protection

(a) Example of basic pro-
tection by grids

(b) Example of HideText

Figure 8: Text protection examples

by grids to a text, where the word “book” is the P component
that is replaced by grids and the gray background is the B
component.

5 TEXT PROTECTION
We now discuss how to utilize the background knowledge
and the system design introduced in Sections 3 and 4 to
protect on-screen text information.

5.1 Overview of HideText
Let d be the user’s viewing distance. Based on our design
captured in Eq. (9) and the result of Eq. (7), we can calculate
the grid size ℓ as:

ℓ = (d + 12”)/3333. (10)

Since the grids are composed of pixels, the actual grid size,
ℓ∗, is also determined by the pixel size, ℓp :

ℓ∗ = round[ℓ/ℓp] × ℓp . (11)

From our preliminary testing of pure grid-based protec-
tion, we find it sometimes difficult for users to comprehend
the protected texts. So, we need to enhance the readability of
the protected texts without weakening the protection against
shoulder surfers.
We propose the most intuitive way to enhance the in-

tended user’s readability — adding boundaries to the girds.
However, directly adding boundaries to the grid-based texts
will compromise protection, because adding boundaries is
equivalent to adding a constant low-frequency component
to the original grid-based texts, and hence a shoulder surfer
can see this low-frequency component from far away. To
solve this problem, we need to add not only the boundaries
to the grid-based texts, but also its complementary compo-
nents to neutralize the effect of low-frequency component.
Fig. 8(b) shows an example of grid-based texts with boundary
enhancements.2

5.2 Generating HideText
We take three basic steps to generate a protected text: (i)
identify the text boundaries, (ii) replace the text boundaries,
and (iii) fill in background.
2Note that readers may find it easier to comprehend Fig. 8(a) than Fig. 8(b)
because the colors/images displayed vary with devices.

1st 2nd 3rd

…

Figure 9: The boundary layers of text “b”

5.2.1 Identify Text Boundaries. The first step of generating
a protected text is to identify the text boundaries. Since a
text can be viewed as a binary image when displayed on
the screen, the pixels that have direct contact with the back-
ground are considered as boundary pixels. HideText divides
the text recursively by identifying the pixels that are next to
the inner part of the previous boundary as shown in Fig. 9.
We refer this set of boundaries as “boundary layers”.

5.2.2 Replace Text Boundaries. After obtaining the bound-
ary layers, we can use grids to display the texts as shown in
Fig. 8(a). To create the highest contrast, Hdark and Hbr iдht
should be set to black (#000000) and white (#FFFFFF), respec-
tively. The next step is to replace the first three boundary
layers with curves of different colors. The rule of thumb is
to replace the first and second boundary layers with darker
and brighter curves, respectively, than the background color
(HBG), and the difference in color between the boundary lay-
ers and HBG should decrease as L increases. We chose the
colors for the first three boundary layers as:

HL = round

[
HBG +

(3 − L) (−1)L

10
Hbr iдht

]
, (12)

where L = 1, 2, 3 are the indices of boundary layers. This
way, HideText is able to compensate the low frequency com-
ponents of each replaced layer. The boundary layers are used
because they will increase low-frequency components and
enhance the readability. However, adding more boundary
layers will also make it easier to see the information from
far distances. According to our preliminary experimental re-
sults, replacing three boundary layers can enhance readabil-
ity without injecting low-frequency components too much.

5.2.3 Fill Background. The last step is to fill in the back-
ground with a certain color HBG , so the protected text will
blend into the background (i.e., HBG ≈ Hbr iдht ⊕ Hdark)
when viewed from the outside of the visible distance. In
Section 7.2.1, we will discuss how to calibrate color to find
HBG .

5.3 Properties of HideText
The protected texts that HideText generates can be consid-
ered as a special type of font, which hides the texts from
shoulder surfers. HideText can be implemented so as to
store the previous computation results (as font files) and
reuse them later. Since the grid patterns are composed of

Original Protected

Figure 10: Example of applying HideImage protection

pixels, the grid size can only be certain discrete values. De-
pending on the user’s regular viewing distance and the size
of an individual pixel, the grid size is usually composed of
3–5 pixels. So, it won’t take up much storage space.

Since HideText protects information based on the average
of adjacent pixels, it provides better protection if the original
information has more lower frequency components. That is,
HideText will provide better protection if the original texts
are in bolder fonts than in thinner fonts.

HideText can also be applied to colored texts by changing
the color of bright components. For example, if the desired
text color is red, the bright components Hbr iдht,R can be set
to (255,0,0) and we can use this colored grid with background
HBG ≈ Hbr iдht,R ⊕ Hdark to display texts with colors.

6 IMAGE PROTECTION
6.1 HideImage
HideImage — HideScreen’s direct image protection — is an
enhancement of HideText. While HideText displays the full
text without information loss, the protection of images will
be achieved at some loss of information. The goal of HideIm-
age is thus to provide a coarse-grained but comprehensible
image to the user when he views the protected image.
Like HideText, HideImage utilizes the fact that a grid

will look like a single-colored background when viewing
from the outside of the designed range. Moreover, it utilizes
different grids of the same “average” color (Havд) to represent
a different brightness scale. Fig. 10 shows an example of the
original image and the corresponding protected version.
The first step of applying HideImage is to transform the

image into grayscale and partition the greyscale image into
layers of different color levels. We choose to use color levels
that evenly partition the entire grayscale. Assuming we have
a grayscale image (1-byte per pixel) as Fig. 10 and the desired
number of levels (Nlevel) is 6, HideImage will identify the
pixels within each level as shown in Fig. 11(a). The next step
of applying HideImage is to replace the identified color levels
with grids of different bright–dark component combinations

Lv.1 Lv.2 Lv.3 Lv.4 Lv.5 Lv.6

(a) The pixels that are within each color level are marked as white.

(b) The pixels marked as white in each level are replaced by the correspond-
ing grids.

Figure 11: Example of applying color level partition

1 2 3 4 5

Users are asked to choose
a position by clicking on
one of the buttons.

Figure 12: Image protection via user interaction

(Fig. 11(b)). Finally, the protected image can be obtained by
adding the levels together.

The bright–dark component combinations are determined
as follows. First, we identify the “average” color Havд =

round[(Hwhite +Hblack)/2]. Second, the color of dark com-
ponent for layer i is identified by:

Hdark,i = round

[
(Havд − Hblack)

Nlevel
× i + Hblack

]
. (13)

Finally, we identify Hbr iдht,i such that Havд ≈ Hbr iдht,i ⊕

Hdark,i using the color calibration process (Section 7.2.2).

6.2 SelImage
Since HideImage protection will cause some visual informa-
tion loss, we discuss an alternative image protection, called
SelImage, which doesn’t incur any information loss. This
protection utilizes the concept of k-anonymity [14] to hide
an image. That is, the real image is displayed along with k−1
other decoy images on the screen. Fig. 12 shows an example
of SelImage. Before showing an image on the screen, the
system will display blank image icons and ask the user to
choose where to display the image. Of course, all the texts
shown on the screen are protected by HideText and the
order of choice options is randomized.

7 IMPLEMENTATION
We used Android smartphones and a tablet3 for prototyping
HideScreen. In particular, we have implemented 6 apps for
3Nexus 5X, Nexus 6P, Pixel XL, and Nvidia Shield K1 tablet.

the purpose of (i) color calibration, (ii) text protection eval-
uation, (iii) image protection evaluation, and (iv) use-case
study (×3), respectively. Given below are the implementation
details of these apps.

7.1 SystemWorkflow
Since we use visual characteristics to hide the on-screen in-
formation, HideScreen first calibrates the color of the screen
and creates a color profile. This is a one-time effort and ev-
ery device needs color calibration once. After the calibration,
HideScreen-supported applications will be able to load the
information (i.e., texts or images) and generate protected
texts/images to be displayed on the screen according to the
estimation user’s viewing distance [15] and the color profile.

7.2 Color Calibration
The main goals of color calibration are to identify (i)HBG for
grids with different grid sizes and (ii) Hbr iдht,i for different
color layers in HideImage. Fig. 13 shows the user interface
we use during the development of HideScreen.

7.2.1 Identifying HBG . First, a target grid is shown on the
screen and the user should move the smartphone until s/he
cannot see the details of the grid. The user can then adjust
the background color by moving the seek bars. The next
step is to adjust the brightness of background to match the
target grid. The user may repeat the adjustments until s/he
cannot distinguish the grid from the background (i.e., HBG ≈

Hbr iдht ⊕ Hdark). This process should be repeated for each
grid size.

7.2.2 Identifying Hbr iдht,i . Opposite to the process of iden-
tifying HBG , the background color will first be set to Havд .
The user should then adjust the seek bar of Hbr iдht,i until
Havд ≈ Hbr iдht,i ⊕ Hdark,i for a given Hdark,i . This process
should be repeated for each combination of color levels and
grid sizes.
During the development of HideScreen, we recruit par-

ticipants to assess the calibration time using the interface
shown in Fig. 13. The average calibration time per calibration
is 16.0s. For a smartphone, it usually requires 3 grid sizes
and 6 color levels to provide proper protection, i.e., a total of
3× (1+ 6) = 21 cases. That is, users will be able to finish the
entire calibration process within 6 minutes.

8 PROTECTION EFFECTIVENESS
8.1 General Evaluation Settings
Fig. 14 shows the basic evaluation settings. We recruited 20
volunteers of ages 18–40 on our campus for the evaluation of
HideScreen.4 There are at least 10 participants in each test.

4Institutional Review Board (IRB) No.HUM00140993.

Adjust
Grid

Adjust
Background

Figure 13: Screenshot of screen color calibration app

𝐺

𝑑#$

𝑅𝑈 𝑑'𝑑((,'*+

Shoulder Surfing Area (𝐴(()

𝐺

𝑑#$ 𝑑'
𝐻.

𝐺

𝑑#$ 𝑑'
𝐻/

(a) (b)

(c)

Figure 14: (a) Basic evaluation settings. (b) Settings
when testing with a smartphone. (c) Settings when
testing with a tablet or a laptop.

Before the evaluation starts, devices were placed on a table
or a stand (position G in Fig. 14 (a)). Participants first act as
the real user (RU) and view the content shown on the screen
from certain distances (dRU) right in front of the device. The
information displayed on the screen is adjusted based on the
estimation of the viewing distance. After acting as a RU, the
participants act as a shoulder surfer and try to read/acquire
the information shown on the screen. While acting as a SS,
the participants are free tomove their position as long as they
are in the shoulder surfing area (ASS). ASS is defined to be
the area in which the viewing distance (dSS) is greater than
dSS,min = dRU + dm . In each case, we ask shoulder surfers
to identify the information shown on the screen when it is
viewed (a) from the outside of the designed visible range and
(b) with special equipment. The participants were asked to
try their best to identify as many targets as possible while
acting as both a RU and a SS. Note that the participants did
not know their roles in the experiment, since we did not
tell them which roles they were to play and they were only
asked to view the OSI within a certain range.
When testing with a smartphone (Fig. 14(b)), the partici-

pants were standing with the device placed on a phone stand
(H1 = 50 − 55") according to participants’ heights. When
testing with a tablet or a laptop (Fig. 14(c)), the device was
placed on the desk (H2 = 30") and the participants were
sitting while acting as a user, and standing while acting as a
shoulder surfer.

8.2 Evaluation Metrics
We use shoulder surfer recognition rate (SSRR) and user
recognition rate (URR) as the metrics for the evaluation of
HideScreen’s effectiveness. SSRR is defined as the probabil-
ity that the surfer successfully reads the information on the
screen:

SSRR = NSS,Success/NTotal = 1 − RProtect ion ,

where RProtect ion is the information protection rate. SSRR
indicates the likelihood to fail to protect the on-screen infor-
mation. Similarly, URR is defined as the probability that the
user successfully reads the information on the screen:

URR = NRU ,Success/NTotal .

URR indicates whether or not the protection scheme main-
tains the comprehensibility of information. Ideally, SSRR
(URR) should be close to 0 (1).

8.3 Evaluation of Text Protection
8.3.1 Experiment Settings. To evaluate the effectiveness of
HideText, the protected texts are displayed in large size
(0.3" character height on smartphone, 0.4" on tablet, 0.6" on
laptop). In each test, one word is displayed on the screen
with different levels of difficulty. The RU is asked to read out
the displayed word. Similarly, the SS is also asked to read
out the displayed word.

Even though this evaluation uses a single word at a time, it
does not imply that HideText can only be applied to the short
single word. On the contrary, we simulated the worst case for
the users where the shoulder surfer knows exactly what s/he
is looking for and directly targets that specific text on the
screen. Furthermore, this design gives the shoulder surfer the
advantage of using the length to identify the corresponding
word. If the shoulder surfer cannot recognize a simple large-
size word (e.g., boy), then it will be much harder for him
to identify a specific, small-size (and possibly random) OSI
mixed within a complete, protected message.

The test consists of 10 simple-level words (≤ 5 characters),
10 medium-level words (6–10 characters), and 10 difficult
words (11–15 characters). The words in the lists are chosen to
be easily recognizable by the participants. That is, there are
no difficult words in the lists that a college-level participant
may not know. Some examples of “difficult” words (11–15
characters) are: congratulation, environment, and neighbor-
hood. For each test-case, the participants were given 5 sec-
onds to identify the word. In 5 seconds, the participants are
able to guess or identify the word as many times as they can.
For the evaluation of smartphone, RUs are asked to read

the words from 10–12” and 20–24”, respectively. The former
simulates the conditions that people hold/use the phone in
normal posture while the latter simulates the conditions that
the user stretches his arm forward to read the content. The SS

is then asked to view the information from a distance greater
than, or equal to dSS,min = dRU + 12 inches, simulating the
case of the SS standing just behind the RU or sitting next to
the RU. Similarly, we ask RUs to view the devices from their
normal viewing distances, and ask SSs to view the device 12"
away from the RU for the evaluation of tablet/laptop. Finally,
we ask the SS to use binoculars from anywhere greater than
200" (≈ 5m) to identify the information shown on the screen.
This simulates the attacker’s observation of users across the
street.

8.3.2 Results. The results of protection effectiveness are
summarized in Table 2, showing that HideText is able to
achieve high URR (≥ 96.4%) and low SSRR (≤ 3.8%). In sce-
narios with normal viewing distances, URRs are 100%. That
is, HideText can protect text information without degrading
the RU’s readability. To ensure that low SSRR values are not
caused by texts being too small or participants’ nearsight-
edness, we also ask SSs to identify the unprotected (plain)
texts, which have the same size as the protected texts. The
results show that all SSs are able to identify the plain texts
(i.e., SSRR = 100%), confirming HideScreen’s prevention of
SSs from recognizing the texts.

When they are free to move while keeping their distance
to the device greater than 200", all attackers with binocu-
lars are able to identify the unprotected texts; none of the
attackers using binoculars is able to identify the protected
texts, which have the same size as the unprotected texts. This
protection against use of binoculars is expected according to
the calculation of resolving power. The binoculars we used
in the experiments have 2.5cm (0.98") object lens diameters,
hence requiring the SS to view the information within 193".

We further ask SSs with binoculars to move inside the 200"
range to see if they can identify the texts. The recognition
rate in this case is only 1.8%. This is due to the mismatch
of focus range of binoculars and the visible range of the
protected text. That is, depending on the attacker’s vision,
it usually requires a greater than 193" distance to correctly
focus on the device screen.

Case (dRU) URR (%) SSRR (%) SSRR w/ Bin. (%)
Phone (10-12") 100 3.8 0
Phone (20-24") 96.4 2.2 0
Tablet (≈18") 100 0.0 0
Laptop (≈24") 100 3.6 0

Table 2: Effectiveness of text protection

8.4 Evaluation of Image Protection
8.4.1 Experiment Settings. Similar to the testing scenarios of
HideText, a protected image (0.5"×0.5") was displayed on the
screen. In each test, RUs and SSs were asked to identify the
protected image. We evaluated the protection effectiveness
of HideImage with the following settings. Participants first

act as RUs and are asked to view the figure shown on the
screen from the standard viewing distance (10–12"). The
participants are asked to identify the protected images. Next,
participants act as SSs and try to identify the information
displayed on the device screen from 12" away from the RU
and are also asked to identify the images.

Participants are asked to identify the protected images in
two ways: with or without reference images. For the 20 test
cases without reference images, participants are asked to
identify the presented images, such as a human figure or a
dog. These tests evaluate whether participants are able to
identify the coarse-grained information.
For the 10 test cases with reference images, participants

are asked to identify the original images from 5 given options.
These tests evaluate whether participants can tell differences
between multiple images with similar coarse-grained infor-
mation. We made sure that all the original (unprotected) im-
ages were recognizable by shoulder surfers before applying
HideImage to eliminate the possibility that the protection is
the result of image size being too small.

Similar to the previous evaluation setting, participants are
asked to first act as RUs and then SSs in the evaluation of
SelImage. Five options are shown on the screen for the RU
to pick which one is the real image (as the example shown in
Fig. 12). For instance, if the RU chooses Fifthh,5 the real object
(the moon image) will be shown in the rightmost box. The
locations of these object options are generated randomly and
protected by HideText. After one of these options is chosen,
the options disappear and the real object is then shown along
with other four decoy images.

8.4.2 Results. Tables 3 summarizes the results of the ef-
fectiveness of HideImage and SelImage. Without reference
images, HideImage is able to achieve 92.5% URR and 0.9%
SSRR. Even though SSRR with reference images seems to
be higher, 12% is still less than the probability of making a
random guess (i.e., randomly picking one of the five image
options as the real information). That is, given the protected
image, an attacker is not able to read information more ac-
curately than making a random guess. For SelImage, URR
is 100% and SSRR is 2%, indicating HideScreen’s protection
of information from a SS who tries to read on-screen in-
formation. We also asked participants to use binoculars to
read the OSI. Participants are then asked whether they have
any clue in telling the real object. As expected, none of the
participants was able to read the information.

5As one way to help the participants avoid using the length of the word as
a hint to determine the information, we deliberately added an additional
character at the end of shorter words.

URR (%) SSRR (%) SSRR w/ Bin. (%)
HideImage (w/o ref.) 92.5 0.9 0
HideImage (w/ ref.) 92.7 12.0 0
SelImage 100.0 2.0 0

Table 3: Effectiveness of image protection

8.5 Protection of Applying Privacy Film
We compare the protections provided by HideScreen and
a privacy film. We use a standard privacy film with a 60°
viewing range [16], which will dim the brightness of the
screen when the viewing angle (ϕ) exceeds 30°. We adopted
the same settings as shown in Fig. 14(b) and asked the par-
ticipants to view the OSI from various distances and angles.
Participants were asked to first stand in front of the device
and gradually increase the viewing angle while maintain-
ing the same viewing distance (d ′ = 24"). The participants
were shown unable to recognize the 0.3" texts at around 42°,
indicating that the privacy film provides strong protection
if the shoulder surfer is outside of a certain viewing angle.
However, all 10 participants were able to recognize 0.3" un-
protected texts when d ′ = 36" and ϕ < 60°. Furthermore, all
participants were also able to read regular size texts (14sp)
when d ′ = 24" and ϕ < 60°. That is, using a privacy film
provides only little to no protection if the shoulder surfer is
standing behind the user while HideScreen provides > 96%
protection.

8.6 Protection Against Smartphone
Cameras

We now consider a case when a malicious party (MP) uses
the camera on his smartphone to take snapshots6 at the RU’s
screen. Fig. 15 shows an example of how a protected image
will appear in the photos taken from different distances (d ′)
and angles (ϕ). We use iPhone 6 and Pixel XL to take pictures
of the RU’s screen from 28" away. In this setting, the theoret-
ical visible distance is around 34". That is, the MP is only 83%
of the maximum visible distance away from the device. We
took pictures of the 30-word test cases as in Section 8.3 and
recruited 17 participants to view the pictures. The rate of
correctly identifying at least one character in each photo is
only 1.6% while the recognition rate of correctly identifying
the entire word in each photo is only 0.8%.
We also use Google Cloud Vision API [17] to analyze

the photos of protected information. The results show that
only 3.3% of the photos are recognized as texts (within top 5
recognition results/tags). Furthermore, none of the texts can
be correctly identified by the optical character recognition
(OCR) function in Google Doc even if the recognition results
6Note that all the cameras are set to use their maximum zooming level to
take photos in this part of experiments.

suggest that certain images contain texts. Similarly, we also
ask participants to identify the objects shown in photos of
protected images. The rate of correctly identifying the infor-
mation in each photo is 0%, and that of using vision API is
also 0%. When choosing the texts and images for this evalua-
tion, we make sure that all of their unprotected versions can
be identified by the vision API from the photos. In summary,
HideScreen is able to provide good information protection
even when the MP uses his smartphone camera to take a
picture of the user’s screen.
Albeit not included in our original threat model, we also

conducted experiments with compact digital cameras and
digital single-lens reflex (DSLR) cameras and took photos
within 83% of their theoretical maximum visible distances.
Using the same previous methodology, the results show that
the recognition rate is 0% (4%) for texts (images) and that of
vision API is 0% (0%).

(a) 𝑑" = 10”,	
						𝜙 = 0°

(b) 𝑑" = 10”,	
𝜙 = 45°

(c) 𝑑" = 28”,	
𝜙 = 0°

(d) 𝑑" = 28”,	
𝜙 = 45°

Figure 15: Photos of protected images

8.7 Information Loss/Difference
We evaluate the information loss/difference of HideImage-
protected images, especially the average information loss by
computing the entropy differences [18] between the origi-
nal and protected images. Note that the information loss of
HideImage is due to converting the image into greyscale and
partitioning the images into color layers. Since there is no
information loss when switching color layers with grids, the
information loss is independent of the viewing range of the
protected image. We used 100 color images (512×512 size,
24-bit color-coded) for this evaluation. The average informa-
tion loss is shown to be 4.66 bits with maximum (minimum)
of 5.87 (1.79) bits.
We further evaluate the pixel-wise value differences be-

tween the original and the protected images as an indicator
of how different the protected images appear from the origi-
nal image. Table 4 shows the mean, maximum, and minimum
of root-mean-square of the pixel-wise differences with vari-
ous dmax . The pixel-wise differences are shown to be around
90 within normal viewing distances (dmax = d + dm = 24”)
and gradually increase when dmax increases.

9 EVALUATION OF USER EXPERIENCE
We evaluate users’ experience with HideScreen. Specifically,
we evaluate (i) the readability of protected information, (ii)

ℓ (pixel) 1 2 3 4 5 6 7
dmax (inch) 6.24 12.48 18.72 24.97 31.21 37.45 43.69

Mean 89.55 89.55 89.55 91.64 91.38 92.32 92.31
Max. 112.39 112.39 112.39 115.43 117.21 117.12 117.07
Min. 60.29 60.29 60.29 61.00 59.99 60.54 60.52

Table 4: This table shows the root-mean-square of the
pixel-wise differences with various maximum view-
ing distance dmax based on the screen resolution of
Pixel XL (534 ppi) .

Simple Word Medium Word Difficult Word
TC (s) TC (s) TC (s)

Plain 1.29 1.22 1.40
Protected 1.88 2.07 2.75
Overhead 0.59 (46%) 0.85 (70%) 1.35 (96%)

Table 5: Comprehension time, TC , for a single word

the amount of energy HideScreen consumes, and (iii) use-
case study.

9.1 Evaluation of HideText Readability
We evaluate the time needed for users to comprehend (called
comprehension time TC) the protected texts; it is an indicator
of how HideText affects user experience. Under an ideal
condition, HideText should not increase the comprehension
time much to provide good user experience. We use the
same settings in Section 8.3 and record the comprehension
time of both protected and (unprotected) plain texts. Table 5
summarizes the results of average comprehension time.
TC for protected texts increases as word length increases.

The overhead per word is reasonable for our target appli-
cation with up to 96% for difficult words. Since HideText
is targeting privacy-sensitive applications, such as messag-
ing, and the lengths of sensitive parts are usually short (a
maximum of 160 characters for SMS), users will not have
any problem in reading the entire protected message for less
than 1min.7 The use of a single word can also be considered
as the worst case in terms of reading time. Since no other
context can be used to help the user predict the word, s/he
can only identify the word by visual perception. Therefore,
it will take the user longer to identify the word individually
than in a sentence.

9.2 Energy Consumption and Latency
Since energy consumption is an important concern to
smartphone users, we evaluate the energy consumption of
HideScreen. We use Nexus 5X (Android 6.0) as the main
device for this evaluation.
We consider a typical scenario where a user uses instant

messaging apps implemented with HideScreen’s API. So,
7Calculated based on the average reading speed of 987 characters/min [19]
and the researchers have shown no significant effect of font size on reading
speed [20–22].

HideScreen need not capture the original screenshot and
process it before generating the protected information. In
such a case, the main energy consumption stems from the
estimation of viewing distance, which depends highly on
the design choice of how frequently HideScreen performs
the estimation. Table 6 summarizes the energy consumption
incurred by the estimation of viewing distance. It is calcu-
lated when the brightness of the screen is adjusted to 50%
and all communication functions (i.e., WiFi, Bluetooth, and
cellular) are turned off. Since users tend to maintain the same
viewing distance, the estimation is done every 5min and the
corresponding energy overhead is 3.39%.

Update Period (min) 1 3 5 10 30
OH. of Dist. Est. (%) 16.95 5.65 3.39 1.69 0.57
OH. w/ Processing (%) 18.09 6.03 3.62 1.81 0.60

Table 6: HideScreen’s energy overhead

The other energy consumption comes from generating pro-
tected information. Since HideScreen can be implemented
in a way that it stores the generated HideText characters and
reuses them later, there will be no energy/latency overhead
after their first use for text protection. Therefore, we consider
the instant message displaying images of size 256×256. The
second row of Table 6 lists the total energy overhead when
images are received at the same rate of updating viewing
distance. According to Facebook’s statistics [23, 24], a Mes-
senger user sends an average of 0.5 photo per day. Even if
we consider the case where the user receives a photo every
5min, the energy overhead is only 3.62%. Since this overhead
is compared to the condition with communication turned off,
the energy overhead will be even lower in the normal usage
scenario with cellular connection on. We thus conclude that
HideScreen’s energy overhead is very low while providing
good user experience.
During this evaluation, we also measured the latency of

generating protected images. We use different-size images
and repeat the HideImage generation 20 times. The average
latency of generating a 128×128 image is 131ms, and that
of a 256×256 and a 512×512 image are 533 and 1684ms, re-
spectively. This latency is reasonable for apps like instant
messages to provide good user experience since the main
delay for these applications is the time for delivering the in-
formation from one device to another, and all 10 participants
who provided feedback on the latency agree that it is short
enough for good user experience.

9.3 Use-Case Study
9.3.1 Preliminary User Feedback. After participants tried
the basic functions of HideScreen, we asked their opinions
about the protection of sensitive OSI and their feedback

on HideScreen’s user experience. While 16 (80%) of par-
ticipants indicate they want to protect their OSI, only 5 of
them stated that they may buy/use a privacy film for their
mobile devices and the rest clearly stated they will not use
a privacy film. After trying HideScreen, 90% (45%) of the
participants reported HideText (HideImage) is moderately
easy, or easy to use for comprehension and protection of
OSI. All participants are willing to use HideScreen for at
least one type of applications for information protection, and
password entering (80%), texting/messaging (50%), and un-
locking phones (50%) are the top three apps of HideScreen.
Based on this preliminary feedback, we implemented three
prototypes with HideScreen’s protection (i.e., account login,
messaging, and PIN entering) for the evaluation of practical
use-cases.

9.3.2 Evaluation Settings. Since SystemUsability Scale (SUS)
[25, 26] has proven to be a robust tool for evaluating user
experience, we chose it as the evaluation metric. Our aver-
age SUS scores are compared against the average SUS score
(=68/100) in [27] and are transformed to adjective user ex-
perience (UX) ratings [26] to see if those applications can
provide good user experience. The larger the SUS, the better
the UX.
We recruited 25 participants most of whom also partici-

pated in the previous evaluation. For each application, we
conducted a usability study by taking the following steps.
First, we introduce the functions of the application to the
participants. Second, we ask the participants to perform cer-
tain tasks as RU. Third, one of the authors acts as RU and
the participant acts as a SS who tried to acquire the sensitive
OSI. We use the same settings as in Fig. 14, where dm = 12".
Finally, we ask participants to fill out SUS evaluation form.
We evaluate how HideScreen can be integrated into

(bank) account login process by using the UI shown in
Figs. 16(a) and (b). During the evaluation, participants were
asked to perform the following tasks: (i) input their school
ID in the account field (region A) using the HideScreen-
protected and randomly shuffled keyboard (region F), (ii)
choose HideImage (Case I) or SelImage (Case II) using
the buttons in region B to show the security image in re-
gion C, and (iii) input password (region D) using the same
HideScreen-protected keyboard. After completing the tasks,
participants were asked to fill out two SUS forms, where one
is for the case of using HideImage and the other is for the
case of using SelImage. When acting as a shoulder surfer,
the participants were asked to identify the characters on the
keyboard and the account.
Fig. 16(c) shows the UI for PIN entering, where the num-

bers are randomly shuffled and HideText-protected. Partici-
pants were asked to enter PIN for at least two times and act
as a SS to identify the numbers on the keypad.

A

B

C

D

E

F

(a) Account Login - HideImage (b) Account Login - SelImage

(c) PIN Entering (d) Messaging

Figure 16: Testing UI used in use-case study

Fig. 16(d) shows the testing UI of a HideScreen-supported
messenger, where the participants are able to send protected
messages by enclosing the target texts with ‘{’ and ‘}’. In this
use-case, we adopt a smaller text size (≈14sp) for protected
texts. The participants were asked to interact with a sim-
ple chatbot, which simulates the condition of exchanging
some sensitive information. During the evaluation, partici-
pants will receive some protected information and are asked
to send messages with protected contents, including both
partially and completely protected messages.

9.3.3 Results. Table 7 summarizes the results of our use-case
study, showing that all use-cases have SUS scores greater
than the average SUS score (=68). Furthermore, when trans-
formed to adjective UX ratings, 3 out of 4 use-cases are able
to provide good (71.4) to excellent (85.5) user experience [26].
It is worth noting that the participants’ feedback on applying
HideScreen to the messaging app is very positive and they
all agree that it is a very useful function.
Even though the SUS of account login seems to be lower

than others, the participants indicate that it is mainly due to
the shuffling of the keyboard that affects the user experience,
but not HideScreen itself. However, the keyboard must be
shuffled to provide protection in this use-case, else shoulder

surfers will be able to obtain the user’s password by observ-
ing the position where the user clicked. This is a tradeoff
between convenience and privacy protection.

We also asked participants whether they would use these
apps frequently in future after trying the prototypes. Their
willingness of using HideScreen is similar to, or higher
than their preliminary feedback, meaning that the effect
of HideScreen and its user experience is similar to, or better
than their expectation when applied to real usage scenarios.
Furthermore, for PIN entering and messaging, participants’
interest in using HideScreen increases noticeably after try-
ing the prototypes, and only one participant indicates that
he will not use the protection frequently. Since no partici-
pants are able to retrieve the protected OSI during the use-
case study, we conclude that HideScreen is able to provide
moderate or excellent user experience while providing the
protection of information.

Application SUS Adjective May/Will Use
UX Rating Frequently (%)

Account Login (I) 71.0 OK - Good 72.0
Account Login (II) 77.6 Good - Excellent 92.0
PIN Entering 79.3 Good - Excellent 96.0
Messaging 84.7 Good - Excellent 96.0

Table 7: Results of use-case study

10 DISCUSSION
We discuss some relevant topics that have not been covered
in this paper.

10.1 Deployment of HideScreen
There are several ways to deploy HideScreen in devices:

HideScreen API: HideScreen can be deployed as a li-
brary/API that provides a special “view” to display sensitive
information. Developers can use this API to exercise fine-
grained control over whether or not to protect certain infor-
mation. This method has the most flexibility for developers
to provide the best user experience.

Built-in Function in OS: OS vendors can deploy
HideScreen as a built-in function in their OS. Once
HideScreen is enabled, every piece of information that a
user requests will be processed and protected before it is dis-
played on the screen. This deployment can provide system-
level protection without the support from app developers,
but requires OS modifications.

Stand-Alone App: Without requiring any modification
to the mobile device OS, HideScreen can be deployed as
a stand-alone app and acts as a software filter applied to
on-screen information. After the user grants necessary per-
missions, this stand-alone app will first block all the infor-
mation shown on the screen, capture the screenshot, process
the contents, and finally generate the protected contents for
display.

10.2 Limitations and Future Work
Discussed below are the limitations of current version of
HideScreen. First, the protected OSI will be harder for legit
users to read than the original OSI, so HideScreen is not
suitable for reading a long text/article. Also, since HideText
utilizes edge replacement to boost readability, the minimum
size of the resulting protected information is bounded by
this mechanism. That is, the stroke width of a protected
text must be greater than 6 pixels for proper protection and
readability enhancement. If the original OSI is too small,
HideScreen may scale the OSI to the minimum applicable
size to provide its full protection capability. For the image
protection, HideImage will sacrifice the color information
and some high-frequency components of images as a tradeoff
for privacy protection, which is not suitable for apps that
require users to examine details of images.
Protection of color images and videos is a natural exten-

sion of HideScreen which is part of our future work. To
protect color images, we can utilize the bright components
of the grids to represent the original color and utilize its com-
plementary color as the dark components to make the grids
look like another color when viewing from far away. Since
human eyes have different sensitivities to different colors,
how to adjust the colors so that the protected images will
look more natural is an important topic to be explored.
Theoretically, HideImage can be applied to create a pro-

tected video since each video is composed of image frames,
but there are some special video properties that may make
the protection difficult. For example, device screens may
have different display mechanisms while playing consecu-
tive frames, incurring unexpected visual effects. Last but not
the least, how to efficiently process live stream or chat videos
while incurring minimum delay and energy overheads is a
practical challenge that needs to be investigated.

11 RELATEDWORK
11.1 Authentication Protection
Authentication protection focuses on the protection of au-
thentication secrets (e.g., PIN). Its goal is to prevent shoulder
surfers from obtaining the authentication secrets from the in-
formation displayed on the device screen so that they cannot
access the legitimate user’s device in his absence. It usually
adopts some special UI by (i) displaying decoy information
on the screen [28–31], (ii) asking users to authenticate de-
vices with the information derived from the authentication
secret [32–34], or (iii) adopting multiple channels to dis-
play/perform the authentication process [35–45].
Since the authentication protection schemes usually in-

volve dedicated UI to protect authentication secrets, most of
them cannot be used for general information, such as texts or
images. One exception is IllusionPIN [7], which preserves the

high-frequency components (HFCs) of OSI and eliminates
the low-frequency components (LFCs) for privacy protec-
tion. This approach is more suitable than HideScreen for
apps that require inspection of HFCs. However, its protection
mainly depends on the frequency components of the OSI
itself and, therefore, the OSI needs to be properly formatted
to meet the app requirements to ensure that the required in-
formation will not be removed along with LFCs. In contrast,
HideScreen’s protection is achieved by replacing the LFCs
that are easily seen by others with HFCs, instead of their
elimination, thus making it more flexible to handle different
types of information.

11.2 General Information Protection
We introduce three most commonly used schemes in this
category.

Interpretation barrier [46, 47] slows down the information
leak by displaying the OSI in specific formats that only the
user can understand easily, but shoulder surfers cannot. It
aims at slowing down, not preventing, the OSI leakage.
Shoulder surfer alert [5, 48] utilizes sensors, such as cam-

eras, to detect whether there are any people around the user
trying to peek at the user’s device screen.
Information blocking [6, 49–51] hides the information on

the screen by dimming the screens or removing the informa-
tion on the screen. The latter two schemes usually require
additional hardware, or directly block either partial or en-
tire on-screen information, which limits their protection or
prevents users from performing certain tasks.

12 CONCLUSION
We have proposed HideScreen to protect the information
displayed on device screens from shoulder surfers. Specif-
ically, HideScreen is comprised of HideText, HideImage,
and SelImage. These protection schemes are grounded on
optical system properties and human vision characteristics,
which provide fundamental protection guarantees. Grids are
used to replace low-frequency components so that the in-
formation may not be distinguished from the background
when viewed from the outside of the designed viewing range.
Shoulder surfers or malicious parties will not be able to
read the information on the screen while the user can read
it without difficulty. Our extensive evaluation has shown
HideScreen to be able to provide a high rate of on-screen in-
formation protection (> 96% for texts and > 99% for images)
while incurring low overhead. Furthermore, our use-case
study shows that HideScreen achieves good user experi-
ence while providing privacy protection.

ACKNOWLEDGEMENT
The work reported in this paper was supported in part by
the NSF under grants CNS-1505785 and CNS-1646130.

REFERENCES
[1] Malin Eiband, Mohamed Khamis, Emanuel von Zezschwitz, Heinrich

Hussmann, and Florian Alt. Understanding Shoulder Surfing in the
Wild. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems - CHI ’17, pages 4254–4265, New York, New York,
USA, 2017. ACM Press.

[2] Adam J. Aviv, John T. Davin, Flynn Wolf, and Ravi Kuber. Towards
Baselines for Shoulder Surfing on Mobile Authentication. In Proceed-
ings of the 33rd Annual Computer Security Applications Conference on -
ACSAC 2017, pages 486–498, New York, New York, USA, 2017. ACM
Press.

[3] Polotiko. Aguirre furious at photo leak of private text mes-
sage. http://politics.com.ph/aguirre-furious-photo-leak-private-text-
message/, 2017. Accessed: 2018-01-31.

[4] HP. HP Introduces World’s Only Notebooks with Integrated
Privacy Screens. https://press.ext.hp.com/us/en/press-releases/2016/
hp-introduces-worlds-only-notebooks-with-integrated-privacy-
scre.html, 2016. Accessed: 2018-07-28.

[5] Hee Jung Ryu and Florian Schroff. Electronic Screen Protector with
Efficient and Robust Mobile Vision Demo Video. https://nips.cc/
Conferences/2017/Schedule?showEvent=9757, 2017. Accessed: 2018-
02-01.

[6] BlackBerry Limited. BlackBerry Privacy Shade - Android Apps on
Google Play. https://goo.gl/MFGeAX, 2016. Accessed: 2018-02-01.

[7] Athanasios Papadopoulos, Toan Nguyen, Emre Durmus, and Nasir
Memon. IllusionPIN: Shoulder-Surfing Resistant Authentication Using
Hybrid Images. IEEE Transactions on Information Forensics and Security,
12(12):2875–2889, Dec 2017.

[8] Aude Oliva, Antonio Torralba, and Philippe G. Schyns. Hybrid images.
In ACM SIGGRAPH 2006 Papers on - SIGGRAPH ’06, volume 25, pages
527–532, New York, New York, USA, 2006. ACM Press.

[9] NASA. Anthropometry and Biomechanics. https://msis.jsc.nasa.gov/
sections/section03.htm, 2000. Accessed: 2017-11-27.

[10] Michitaka Yoshimura, Momoko Kitazawa, Yasuhiro Maeda, Masaru
Mimura, Kazuo Tsubota, and Taishiro Kishimoto. Smartphone viewing
distance and sleep: an experimental study utilizing motion capture
technology. Nature and science of sleep, 9:59–65, 2017.

[11] Wikipedia. Airline seat, 2017. Accessed: 2017-12-29.
[12] Devraj Singh. Fundamentals of optics. Prentice-Hall Of India, 2015.
[13] J. Mannos and D. Sakrison. The effects of a visual fidelity criterion

of the encoding of images. IEEE Transactions on Information Theory,
20(4):525–536, Jul 1974.

[14] Latanya Sweeney. k-Anonymity: A Model For Protecting Privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 10(05):557–570, Oct 2002.

[15] Jakub Dostal, Ola Kristensson, and Aaron Quigley. Estimating and
using absolute and relative viewing distance in interactive systems.
Pervasive and Mobile Computing, 10:173–186, 2014.

[16] Tech Armor. Tech Armor Website. https://techarmor.com/, 2018.
[17] Google. Vision API – Image Content Analysis. https://

cloud.google.com/vision/, 2018. Accessed: 2018-01-29.
[18] Ze-Nian Li, Mark S. Drew, and Jiangchuan Liu. Introduction to Multi-

media. Springer, 2014.
[19] Susanne Trauzettel-Klosinski and Klaus Dietz. Standardized Assess-

ment of Reading Performance: The New International Reading Speed
Texts IReST. Investigative Opthalmology & Visual Science, 53(9):5452,
Aug 2012.

[20] David Beymer, Daniel Russell, and Peter Orton. An Eye Tracking
Study of How Font Size and Type Influence Online Reading. In Pro-
ceedings of the 22nd British HCI Group Annual Conference on People
and Computers: Culture, Creativity, Interaction - Volume 2, pages 15–18.
British Computer Society, 2008.

[21] Iain Darroch, Joy Goodman, Stephen Brewster, and Phil Gray. The
Effect of Age and Font Size on Reading Text on Handheld Computers.
pages 253–266. Springer, Berlin, Heidelberg, 2005.

[22] Mark C Russell and Barbara S Chaparro. Exploring Effects Of Speed
And Font Size With RSVP. In Proceedings of the Human Factors And
Ergonimics Society 45th Annual Meeting, 2001.

[23] Facebook. Making Visual Messaging Even Better – In-
troducing High Resolution Photos in Messenger. https:
//newsroom.fb.com/news/2017/11/making-visual-messaging-
even-better-introducing-high-resolution-photos-in-messenger/, 2017.
Accessed: 2018-01-29.

[24] Facebook. We now have over 1.2 billion people actively using Messen-
ger every month. https://goo.gl/diJ4t4, 2017. Accessed: 2018-01-29.

[25] John Brooke. SUS - A quick and dirty usability scale Usability and
context. Usability evaluation in industry, 1986.

[26] Aaron Bangor, Philip Kortum, and James Miller. Determining What
Individual SUS Scores Mean: Adding an Adjective Rating Scale. Journal
of Usability Studies, 4(3):114–123, 2009.

[27] Jeff Sauro. MeasuringU: Measuring Usability with the System Usability
Scale (SUS), 2011.

[28] W; Eekelen, J; Van Den Elst, J V Khan, Wouter Van Eekelen, John
Van Den Elst, and Vassilis-Javed Khan. Dynamic layering graphical
elements for graphical password schemes. Proceedings of the Chi Sparks
2014 Conference, pages 65–73, 2014.

[29] Haichang Gao, Zhongjie Ren, Xiuling Chang, Xiyang Liu, and Uwe
Aickelin. A New Graphical Password Scheme Resistant to Shoulder-
Surfing. In 2010 International Conference on Cyberworlds, pages 194–
199. IEEE, Oct 2010.

[30] Jan Gugenheimer, Alexander De Luca, Hayato Hess, Stefan Karg, Den-
nis Wolf, and Enrico Rukzio. ColorSnakes: Using Colored Decoys to
Secure Authentication in Sensitive Contexts. In Proceedings of the 17th
International Conference on Human-Computer Interaction with Mobile
Devices and Services - MobileHCI ’15, pages 274–283, New York, New
York, USA, 2015. ACM Press.

[31] Nur Haryani Zakaria, David Griffiths, Sacha Brostoff, and Jeff Yan.
Shoulder surfing defense for recall-based graphical passwords. In
Proceedings of the Seventh Symposium on Usable Privacy and Security -
SOUPS ’11, New York, New York, USA, 2011. ACM Press.

[32] Alexander De Luca, Katja Hertzschuch, and Heinrich Hussmann. Col-
orPIN — Securing PIN Entry through Indirect Input. In Proceedings
of the 28th international conference on Human factors in computing
systems - CHI ’10, pages 1103–1106, New York, New York, USA, 2010.
ACM Press.

[33] Volker Roth, Kai Richter, and Rene Freidinger. A PIN-entry method
resilient against shoulder surfing. In Proceedings of the 11th ACM
conference on Computer and communications security - CCS ’04, pages
236–245, New York, New York, USA, 2004. ACM Press.

[34] Susan Wiedenbeck, Jim Waters, Leonardo Sobrado, and Jean-Camille
Birget. Design and evaluation of a shoulder-surfing resistant graphical
password scheme. In Proceedings of the working conference on Advanced
visual interfaces - AVI ’06, pages 177–184, New York, New York, USA,
2006. ACM Press.

[35] Abdullah Ali, Ravi Kuber, and Adam J Aviv. Developing and evaluating
a gestural and tactile mobile interface to support user authentication.
In IConference 2016 Proceedings, 2016.

[36] Andrea Bianchi, Ian Oakley, Vassilis Kostakos, and Dong Soo Kwon.
The phone lock: audio and haptic shoulder-surfing resistant PIN entry
methods for mobile devices. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied interaction - TEI ’11,
pages 197–200, New York, New York, USA, 2011. ACM Press.

[37] Alexander De Luca, Martin Denzel, and Heinrich Hussmann. Look
into my eyes!: can you guess my password? In Proceedings of the 5th

http://politics.com.ph/aguirre-furious-photo-leak-private-text-message/
http://politics.com.ph/aguirre-furious-photo-leak-private-text-message/
https://press.ext.hp.com/us/en/press-releases/2016/hp-introduces-worlds-only-notebooks-with-integrated-privacy-scre.html
https://press.ext.hp.com/us/en/press-releases/2016/hp-introduces-worlds-only-notebooks-with-integrated-privacy-scre.html
https://press.ext.hp.com/us/en/press-releases/2016/hp-introduces-worlds-only-notebooks-with-integrated-privacy-scre.html
https://nips.cc/Conferences/2017/Schedule?showEvent=9757
https://nips.cc/Conferences/2017/Schedule?showEvent=9757
https://goo.gl/MFGeAX
https://msis.jsc.nasa.gov/sections/section03.htm
https://msis.jsc.nasa.gov/sections/section03.htm
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://newsroom.fb.com/news/2017/11/making-visual-messaging-even-better-introducing-high-resolution-photos-in-messenger/
https://newsroom.fb.com/news/2017/11/making-visual-messaging-even-better-introducing-high-resolution-photos-in-messenger/
https://newsroom.fb.com/news/2017/11/making-visual-messaging-even-better-introducing-high-resolution-photos-in-messenger/
https://goo.gl/diJ4t4

Symposium on Usable Privacy and Security - SOUPS ’09, New York, New
York, USA, 2009. ACM Press.

[38] Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner,
and Heinrich Hussmann. Touch me once and I know it’s you!: implicit
authentication based on touch screen patterns. In Proceedings of the
2012 ACM annual conference on Human Factors in Computing Systems -
CHI ’12, pages 987–996, New York, New York, USA, 2012. ACM Press.

[39] Alexander De Luca, Marian Harbach, Emanuel von Zezschwitz, Max-
Emanuel Maurer, Bernhard Ewald Slawik, Heinrich Hussmann, and
Matthew Smith. Now you see me, now you don’t: protecting smart-
phone authentication from shoulder surfers. In Proceedings of the 32nd
annual ACM conference on Human factors in computing systems - CHI
’14, pages 2937–2946, New York, New York, USA, 2014. ACM Press.

[40] Alexander De Luca, Emanuel Von Zezschwitz, and Heinrich Hußmann.
VibraPass - Secure Authentication Based on Shared Lies. In CHI, pages
913–916, 2009.

[41] Alain Forget, Sonia Chiasson, and Robert Biddle. Shoulder-surfing
resistance with eye-gaze entry in cued-recall graphical passwords. In
Proceedings of the 28th international conference on Human factors in
computing systems - CHI ’10, pages 1107–1110, New York, New York,
USA, 2010. ACM Press.

[42] Mohamed Khamis, Florian Alt, Mariam Hassib, Emanuel von
Zezschwitz, Regina Hasholzner, and Andreas Bulling. GazeTouch-
Pass. In Proceedings of the 2016 CHI Conference Extended Abstracts on
Human Factors in Computing Systems - CHI EA ’16, pages 2156–2164,
New York, New York, USA, 2016. ACM Press.

[43] Behzad Malek, Mauricio Orozco, and Abdulmotaleb El Saddik. Novel
Shoulder-Surfing Resistant Haptic-based Graphical Password. In Proc.
EuroHaptics, Vol. 6, 2006.

[44] Toan Van Nguyen, Napa Sae-Bae, and Nasir Memon. DRAW-A-PIN:
Authentication using finger-drawn PIN on touch devices. Computers
& Security, 66:115–128, May 2017.

[45] ChristianWinkler, Jan Gugenheimer, Alexander De Luca, Gabriel Haas,
Philipp Speidel, David Dobbelstein, and Enrico Rukzio. Glass Unlock:
Enhancing Security of Smartphone Unlocking through Leveraging
a Private Near-eye Display. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems - CHI ’15, pages
1407–1410, New York, New York, USA, 2015. ACM Press.

[46] Malin Eiband, Emanuel von Zezschwitz, Daniel Buschek, and Heinrich
Hußmann. My Scrawl Hides It All. In Proceedings of the 2016 CHI
Conference Extended Abstracts on Human Factors in Computing Systems
- CHI EA ’16, pages 2041–2048, New York, New York, USA, 2016. ACM
Press.

[47] Emanuel von Zezschwitz, Sigrid Ebbinghaus, Heinrich Hussmann, and
Alexander De Luca. You Can’t Watch This!: Privacy-Respectful Photo
Browsing on Smartphones. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems - CHI ’16, pages 4320–4324,
New York, New York, USA, 2016. ACM Press.

[48] Mohammed Eunus Ali, Tanzima Hashem, Anika Anwar, Lars Kulik,
Ishrat Ahmed, and Egemen Tanin. ProtectingMobile Users from Visual
Privacy Attacks. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing Adjunct Publication
- UbiComp ’14 Adjunct, pages 1–4, New York, New York, USA, 2014.
ACM Press.

[49] Frederik Brudy, David Ledo, Saul Greenberg, and Andreas Butz. Is
Anyone Looking? Mitigating Shoulder Surfing on Public Displays
through Awareness and Protection. In Proceedings of The International
Symposium on Pervasive Displays - PerDis ’14, pages 1–6, New York,
New York, USA, 2014. ACM Press.

[50] Shiguo Lian, Wei Hu, Xingguang Song, and Zhaoxiang Liu. Smart
privacy-preserving screen based on multiple sensor fusion. IEEE Trans-
actions on Consumer Electronics, 59(1):136–143, Feb 2013.

[51] Peter Tarasewich, Richard Conlan, and Jun Gong. Protecting Private
Data in Public. In Extended Abstracts Proceedings of the 2006 Conference
on Human Factors in Computing Systems, 2006.

	Abstract
	1 Introduction
	2 Threat Model
	3 Resolving Power and Human Vision
	3.1 Resolving Power of Optical Systems
	3.2 Human Vision Characteristics

	4 System Design
	4.1 Design Overview
	4.2 Characteristics of a Grid
	4.3 Calculation of Visible Distance and Angle for General Optical Systems
	4.4 Viewing Distance Calculation for Human Vision
	4.5 Visible Distance and Range
	4.6 Information Protection by Grids

	5 Text Protection
	5.1 Overview of HideText
	5.2 Generating HideText
	5.3 Properties of HideText

	6 Image Protection
	6.1 HideImage
	6.2 SelImage

	7 Implementation
	7.1 System Workflow
	7.2 Color Calibration

	8 Protection Effectiveness
	8.1 General Evaluation Settings
	8.2 Evaluation Metrics
	8.3 Evaluation of Text Protection
	8.4 Evaluation of Image Protection
	8.5 Protection of Applying Privacy Film
	8.6 Protection Against Smartphone Cameras
	8.7 Information Loss/Difference

	9 Evaluation of User Experience
	9.1 Evaluation of HideText Readability
	9.2 Energy Consumption and Latency
	9.3 Use-Case Study

	10 Discussion
	10.1 Deployment of HideScreen
	10.2 Limitations and Future Work

	11 Related Work
	11.1 Authentication Protection
	11.2 General Information Protection

	12 Conclusion
	References

