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ABSTRACT
Reliable operation of mobile devices, such as smartphones and
tablets, has become essential for great many users around the globe.
Mobile devices, however, have been reported to su�er from frequent,
unexpected shuto�s — e.g., shu�ing o� even when their ba�eries
were shown to have up to 60% remaining state-of-charge (SoC) —
especially in cold environments. �eir main cause is found to be
the inability of commodity mobile devices to account for the strong
dependency between ba�ery SoC and the environment tempera-
ture. To remedy this problem, we design, implement, and evaluate
EA-SoC, a real-time Environment-Aware ba�ery SoC estimation
service for mobile devices. EA-SoC estimates the ba�ery SoC by
predicting the end-of-discharge ba�ery resistance, grounding on
(1) a thermal circuit model that describes the interactions among
the ba�ery’s discharge current, temperature, and the environment,
and (2) an empirically validated data-driven model on the relations
between ba�ery temperature and resistance. We have conducted
35 experimental case-studies with two Nexus 5X smartphones to
evaluate EA-SoC. EA-SoC is shown to report an average of 3% SoC
when the phones shut o� even in a −15oC environment, while that
reported by the phones’ built-in fuel-gauge chips could be over
90%.
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1 INTRODUCTION
Mobile devices have become essential to great many people, and
their reliable operation depends strongly on the timely and accurate
estimation of their ba�ery state-of-charge (SoC). Mobile users, how-
ever, have frequently complained about the unexpected shuto�s of
their devices due to inaccurate/untimely SoC estimation [2, 4, 5]
— i.e., the devices were shut o� even when their remaining power
was shown to be up to 60% of full power [8], especially in a cold
environment [6]. Fig. 1 illustrates such an unexpected shuto� of
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Figure 1: Unexpected shuto� of Xperia Z smartphone in a
cold environment: the phone operates in a −15oC environ-
ment and shuts o� even when it was shown to still has 30%
SoC, which is then turned back on and operated for about 2
more hours a�er warming up to room temperature.

Xperia Z smartphone:1 (i) video streaming in a −15oC environment,
the phone shut o� prematurely when it was shown to have 30%
state-of-charge (SoC); (ii) the phone, a�er shu�ing o�, was moved
to and kept in a room-temperature environment for 2 hours; (iii) the
phone, without charging it, was turned back on again and operated
for about 2 more hours.

�ese premature shuto�s of mobile devices are due to the failure
of their fuel-gauge chips to capture the environment-dependent
ba�ery performance, thus leading to erroneous estimation of their
real-time SoCs. Cold temperature increases the internal resistance
of ba�eries, thus degrading ba�eries’ ability to deliver both the
stored energy (i.e., the energy that can be delivered to operate the
devices) and power (i.e., the maximum discharge power the ba�ery
can supply) [13, 15, 25, 30, 32]. When moving a mobile device from
a warm to a cold environment, the fuel-gauge chip of the device

1We conducted similar experiments with Nexus 5X and Nexus 6P smartphones and
made similar observations.
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cannot sense the change of the environment and thus cannot ac-
curately predict the ba�ery’s end-of-discharge condition. �is, in
turn, leads to the over-estimation of ba�ery’s remaining power
supply, i.e., SoC, and thus unexpected shuto�s. Note that unex-
pected shuto�s also risk deep-discharging and accelerate ba�ery
degradation [22, 31].

To address this problem, we design and implement EA-SoC, an
environment-aware ba�ery SoC estimation service for mobile de-
vices that achieves accurate SoC estimation even in a cold environ-
ment. EA-SoC compensates the environment’s impact on ba�ery
SoC by predicting the ba�ery’s end-of-discharge temperature in
real time, and then estimating the end-of-discharge ba�ery resis-
tance according to an empirically captured resistance–temperature
relationship of device ba�eries.

�e end-of-discharge ba�ery temperature, however, is a�ected
by both device operation and ambient temperature. To meet this
challenge, we analyze the thermal behavior of device ba�eries
with a thermal circuit model, capturing the interactions among the
ba�ery’s discharge current, steady-state temperature, and ambient
temperature. Speci�cally, the steady-state analysis of the thermal
model facilitates prediction of ba�ery temperature based on its
discharge current and ambient temperature, and its transient-state
analysis allows for estimation of ambient temperature based on
ba�ery’s recent discharge history. Combining these results, EA-SoC
learns and updates the thermal characteristics of device ba�ery,
and then estimates, in real time, the ba�ery SoC with environment-
awareness.

We evaluate EA-SoC with two Nexus 5X smartphones and via
35 experimental case-studies, with [-15, 25]oC ambient tempera-
ture. �e results show that EA-SoC reliably captures temperature
e�ect on the remaining usable capacity of ba�eries, thus achieving
accurate SoC estimation even in an environment as cold as −15oC
— phones shut o� when EA-SoC concludes they have only ≈3%
remaining SoC. On the other hand, such end-of-discharge SoCs
provided by the fuel-gauge chips of the phones are averaged at
≈50% for all of the 35 case-studies, indicating a ≈17x improvement
by EA-SoC in accurately predicting phones’ shuto�s.

�is paper makes the following main contributions.
• Empirically capturing the ba�ery’s resistance–temperature

relationship.
• Characterization of interactions among ba�ery tempera-

ture, current, and environment.
• Design of EA-SoC, an environment-aware ba�ery SoC esti-

mation service for mobile devices.
• Evaluation of EA-SoC with 2 Nexus 5X smartphones, show-

ing EA-SoC reports ≈3% end-of-discharge ba�ery SoC even
in a−15oC environment, while that reported by the phones’
built-in fuel-gauge chips could be over 90%.

�e paper is organized as follows. �e background and motiva-
tion are presented in Secs. 2 and 3, respectively. Secs. 4–6 detail
the design, implementation, and evaluation of EA-SoC, respectively.
�e related literature is discussed in Sec. 7, and the paper concludes
in Sec. 8.

2 BATTERY STATE-OF-CHARGE
Here we introduce the necessary background on the estimation of
ba�ery SoC.
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Figure 2: Circuit model of mobile devices: battery provides
voltage Vbat = OCV − I · rbat to device chips, which has to
be higher than a pre-de�ned level required by the voltage
regulator; otherwise, the device will shut o�.

2.1 Circuit Model of Mobile Devices
Fig. 2 illustrates the power architecture of mobile devices with a
circuit model, consisting of the ba�ery, the individual hardware
components of the device, and a voltage regulator connecting them.
�e device ba�ery is represented as a series connection of an ideal
voltage source and its internal resistance r [7, 36]. �e ideal volt-
age source provides a voltage that is commonly referred to as the
ba�ery’s open circuit voltage (OCV), de�ned as the voltage between
its terminals when no loads/charger is connected. �is way, the
ba�ery supplies a voltage of

Vbat = OCV − I · r −VP (I , t) ' OCV − I · r (1)
to the voltage regulator, where I is the discharge current, t is time,
and VP is a polarization voltage which represents voltage transient
over time (t ) when it supplies current (I ). Note that polarization
voltage does not a�ect ohmic resistance and instantaneous voltage
drop in the mobile application. Also, high-rate measurement in a
mobile device can capture instantaneous voltage drop by limiting
the in�uence of voltage transient. �is allows for simpli�ng ba�ery
equivalent circuit model without the loss of voltage estimation
accuracy. �e voltage regulator then converts Vbat to a required
level to power various device modules, such as screen, CPU, etc.

�e voltage regulator, however, needs an input voltage (i.e.,Vbat
in Fig. 2) no less than a pre-de�ned level Vshutof f ; otherwise, it
will be unable to provide the required voltage to the device, and
thus the device will shut o�. According to Eq. (1), a mobile device
will shut o� when its ba�ery OCV decreases to Vshutof f + I · r ,
which is commonly referred to as the end-of-discharge OCV, i.e.,
OCVend .

2.2 Estimation of Battery SoC
SoC quanti�es the remaining capacity of a ba�ery, de�ned as the ra-
tio of ba�ery’s remaining usable capacity to its full charge capacity,
i.e.,

SoC =
Cr emain
Cf ull

× 100%. (2)

Commodity mobile devices estimate their ba�ery SoCs mainly
based on the OCV–DoD relationship of their ba�eries2. �is is
2DoD (depth-of-discharge) describes the ba�ery capacity that has been discharged as
a percentage of its maximum capacity. Also, many SoC estimation methods have been
proposed in the literature [14, 19, 20]. Here we mainly focus on their basic principles.
A complete and detailed example on estimating the ba�ery SoC for mobile devices
can be found in [34].
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Figure 3: OCV–DoD relationship of batteries: facilitates the
estimation of battery SoC based on its OCV.
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Figure 4: Resistance estimation: estimating a battery’s re-
sistance based on the voltage response when switching cur-
rents between two stable levels, i.e., r = ∆V /∆I .

because Lithium-ion ba�eries, the most widely used ba�eries for
mobile devices, demonstrate a monotonic relationship between
their OCVs and DoDs as shown in Fig. 3. �is relationship is tested
to be stable for ba�eries of the same chemistry and does not vary
much with manufacturer (e.g., < 5mV variances in OCV with given
DoD [1, 18]). We use d = D(v) to refer to the mapping from ba�ery
OCV v to DoD d in the rest of the paper, and will elaborate on how
to obtain the OCV–DoD relationship in Fig. 3 in Sec. 5.

Based on this OCV–DoD relationship, mobile device estimates
its ba�ery SoC by predicting its end-of-discharge OCV according
to

OCVend = Vshutof f + Iend · rend , (3)
and then estimating the ba�ery SoC as

SoC(t) =
D(OCVend ) − D(OCV (t))

D(OCVend )
× 100%. (4)

Combination of Eqs. (1), (3), and (4) reveals the ba�ery resistance
r (both current value and the one at the time at end-of-discharge)
is needed to estimate ba�ery OCV. Ba�ery resistance is measured
on mobile devices based on the principle of r = dV /dI [26, 34], as
illustrated in Fig. 4 with a ba�ery of the Galaxy S3 phone. Switching
the discharge current from 1A to 0.5A, the ba�ery voltage recovers
instantly from 3.61V to 3.66V, and then reduces gradually again due
to continuous discharge. �is way, a current change of |1 − 0.5| =
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Figure 5: Battery resistance increases with reduced temper-
ature.
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Figure 6: Evolution of battery temperature and resistance
a�er putting into a −12oC environment.

0.5A causes the ba�ery a voltage response of |3.66 − 3.61| = 0.05V,
indicating a 0.05V /0.5A = 0.1Ω ba�ery resistance according to
Ohm’s law. However, the two stable current levels (i.e., 1A and 0.5A
in the above example) are needed to obtain a reliable dI , which are
not always available on mobile devices due to their dynamic usage
pa�erns, degrading both the availability and accuracy of real-time
resistance.

Moreover, the ba�ery’s internal resistance depends strongly on
the temperature, complicating its estimation further. To shed more
light on this, we log the ba�ery resistance of a Nexus 5X smartphone
a�er pu�ing it in a freezer and until it shuts o�. �ese experiments
are repeated 3 times and a total number of 1, 263 pairs of ba�ery
resistance and temperature are collected, as plo�ed in Fig. 13: the
ba�ery resistance increases dramatically when its temperature
drops below 5oC.

3 UNEXPECTED DEVICE SHUTOFFS IN COLD
ENVIRONMENTS

Knowing the basics of ba�eries and the estimation of their SoC, we
next examine why the mobile devices tend to prematurely shut o�
in cold environments.

Cold temperature slows down the chemical reactions inside the
ba�eries, impeding the ba�eries to produce the same current and
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Figure 7: Control �ow of EA-SoC: estimating SoC with the awareness of battery’s resistance-temperature relationship
and by predicting battery’s steady-state temperature in real time; such battery characteristics are learned and updated
online.

deliver the same capacity as with warmer temperature. �is chemi-
cal degradation is observed physically as the increase of ba�ery’s
internal resistance [15, 25, 32], as empirically validated in Fig. 5.
Also, such an increase of ba�ery resistance in cold environments
occurs gradually. Fig. 6 plots the resistance and temperature of a
Nexus 5X phone’s ba�ery a�er pu�ing an idle Nexus 5X phone
into a −12oC environment: (i) the ba�ery temperature reduces
gradually to −11.8oC , and during the same process, (ii) the ba�ery
resistance gradually increases to about 0.66Ω. �is gradually chang-
ing ba�ery information, albeit intuitive, makes the estimation of
end-of-discharge ba�ery condition (i.e., Eq. (3)) non-trivial. Let
us consider the scenario in which a mobile user is moving from
a warm to a cold environment. �e fuel-gauge chip of the mobile
device will estimate the end-of-discharge condition of the device
ba�ery based on its current information, i.e., a resistance measured
in a warm environment rwarm [34]. Such an estimation, however,
is clearly inaccurate because the ba�ery resistance will increase
when it is moved to the cold environment, denoted as rcold and
rcold > rwarm . �us, the device’s fuel-gauge chip will underesti-
mate rend in Eq. (3), leading to under-estimation of OCVend . �is
will, in turn, cause over-estimation of ba�ery SoC according to
Eq. (4), thus causing unexpected device shuto�s.

4 ENVIRONMENT-AWARE ESTIMATION OF
BATTERY SOC

To mitigate the unexpected shuto�s of mobile devices in cold envi-
ronments, we design a novel method called EA-SoC to estimate the
ba�ery SoC for mobile devices with the awareness of environment
temperature.

4.1 EA-SoC Overview
EA-SoC estimates the ba�ery SoC by (i) predicting the end-of-
discharge ba�ery temperature, (ii) estimating the end-of-discharge
ba�ery resistance based on the thus-predicted temperature, and

then (iii) estimating ba�ery SoC based on Eqs. (3) and (4). Fig. 7
provides the �ow chart of EA-SoC.

4.2 Predicting the End-of-Discharge Battery
Temperature

EA-SoC predicts the end-of-discharge ba�ery temperature by ex-
ploiting the interplays between ba�ery temperature and that of
the ambient environment. Note that same as with phone’s built-in
fuel-gauge chips, EA-SoC assumes the recent discharge current of
the ba�ery will be kept stable until shuto� [34].
• Battery’s �ermal Model. Ba�ery temperature Tbat is jointly
determined by device operation and ambient environmentTamb , as
shown in Fig. 8 with a thermal circuit model. According to Fourier’s
law, a thermal circuit is analogous to an electric circuit where
voltage represents temperature (Tbat ), current source represents
heat generation (Pbat ), and thermal resistance and capacitance (Rth ,
Cth ) describes how ba�ery dissipates heat. Since heat conserves,
heat generation from the ba�ery must equate to the heat dissipation
through thermal capacitance and resistance:

Cth ·
dTbat (t)

dt
+
Tbat (t) −Tamb

Rth
= Pbat , (5)

where the le�-hand side is heat dissipation and the right-hand side
is heat generation from the ba�ery. Eq. (5) can be further divided
into two cases based on dTbat (t)/dt : the ba�ery will be in a stable
thermal state when dTbat (t)/dt = 0, and in a transient thermal
state otherwise. Fig. 6 highlights the two-state thermal behavior
of ba�eries. EA-SoC estimates, and update in real time, the (to-
be-converged) stable-state ba�ery temperature based on recent
ba�ery information, and use it as the ba�ery temperature at the
end-of-discharge to estimate the ba�ery SoC.
• Estimating Battery Temperature via Stable-State Analy-
sis. Eq. (5) facilitates the identi�cation of ba�ery’s steady-state tem-
perature, i.e., the equilibrated ba�ery temperature when dTbat (t )

dt =
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Figure 8: Battery’s thermal
circuit model: thermal be-
havior of battery is charac-
terized as thermal resistance
(Rth) and capacitance (Cth).

Figure 9: Experimentally val-
idate the relationship among
I , Tbat and Tamb .
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and I2 is observed, andTamb contributes toTbat as an o�set.

0. Speci�cally, given stable device operation and ambient environ-
ment, ba�ery’s steady-state temperature Tbat can be calculated
as

dTbat (t)

dt
= 0 ⇔

Tbat (t) −Tamb
Rth

= Pbat

⇔ Tbat = Tamb + Rth · Pbat. (6)
We can see that (i) Tbat is linear to ba�ery’s heat dissipation Pbat ,
and (ii) the ambient temperature Tamb contributes to Tbat as an
o�set.

Ba�ery’s heat generation Pbat can be modeled by the Joule’s
law, and according to Eq. (11), we know

Pbat = I2 · rbat

= I2 · (a1 · e
b1 ·Tbat + c1 · e

d1 ·Tbat ). (7)
Substituting Eq. (7) into Eq. (6), we get

Tbat = Tamb + Rth · I
2 · (a1 · e

b1 ·Tbat + c1 · e
d1 ·Tbat ), (8)

which can be used to estimate the stable-state ba�ery temperature
based on that of the ambient environment.

Next, we empirically validate these observations with a Nexus
5X smartphone. Speci�cally, we use an Android app called
BatteryDrainer to regulate the phone operation and thus achiev-
ing a (relatively) stable phone operation but with a controllable
intensity. �e phone, with the thus-regulated operation, is then
put in a thermal chamber to achieve controllable ambient tempera-
ture, as shown in Fig. 9. We conducted 27 such experiments with
[−13, 30]oC ambient temperature, during which the ba�ery temper-
ature and current are logged at 1Hz. Each experiment lasts at least 1
hour which is observed to be long-enough for ba�ery temperature
to equilibrate. Fig. 10 plots the experiment results, showing (i) clear
linearity between Tbat and I2 (i.e., the key factor in ba�ery’s heat
generation) and (ii) Tamb ’s contribution to Tbat as a temperature
o�set, validating the analytical observations in Eq. (8). Also note
that all other parameters in Eq. (8) can be identi�ed on mobile de-
vices in practice: Rth and <a1,b1, c1,d1,> can be identi�ed based on
collected training samples, and I can be accessed from the devices’
fuel-gauge chips.3

3Current sensing is now pervasively supported by the fuel-gauge chips of mobile
devices, although not so a few years ago [33].
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Figure 11: Exponential equilibrating process of battery tem-
perature: battery temperature equilibrates according to the
transient temperature model, i.e., Tbat (t) = a2 · eb2 ·t + c2 (t >
0).
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• Estimating Battery Temperature via Transient-State Anal-
ysis. �e ambient temperature Tamb is needed to predict Tbat
based on Eq. (8). �e sensing of ambient temperature Tamb , how-
ever, is not supported by most commodity devices,4 thus requir-
ing the development of a new ambient temperature estimation
method. Fortunately, Eq. (5) also allows the transient-state analysis

4To the best of our knowledge, only a few existing device models support ambient
temperature sensing, such as Galaxy S4 and Note 3.
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of ba�ery’s thermal behavior, which, when combined with Eq. (8),
facilitates the estimation of Tamb .

From Eq. (5), the transient-state ba�ery temperature Tbat (t) can
be described as

Tbat (t) = (T0 − (Tamb + Rth · Pbat)) · e
−t

Rth ·Cth

+Tamb + Rth · Pbat, (9)
where T0 is ba�ery’s initial temperature, and the thermal-time
constant, Rth ·Cth , represents the time duration required for the
ba�ery temperature to stabilize. Note that the second term captures
the steady-state temperature while the �rst term corresponds to
the e�ects of initial temperature, which decays exponentially over
time.

Eq. (9) implies the equilibrating process of ba�ery temperature
conforms to an exponential process, i.e.,

Tbat (t) = a2 · e
b2 ·t + c2, (10)

for certain <a2,b2, c2>. As a validation, Fig. 11 plots the results
when ��ing an empirically collected temperature equilibrating
process according to Eq. (10), observing an excellent match. Fig. 12
plots the CDF of the goodness-of-�t (in terms of AdjRsquare) when
exponentially ��ing 34 such temperature equilibrating processes,
validating the soundness of the exponential model as a close-to-1
AdjRsquare indicates promising ��ing goodness.

Such an exponential equilibrating process allows EA-SoC to pre-
dict the steady-state ba�ery temperature based on its recent temper-
ature traces, if the device has operated stably for a certain amount
of time. EA-SoC determines the stable device operation based on
its recent current. Speci�cally, EA-SoC smoothes the recent (e.g., 10
minutes) current trace via moving average, and then applies linear
��ing on the smoothened current trace, concluding a stable device
operation if the resultant slop factor is small, e.g., ≤0.1. In case
of stable device operation, EA-SoC trains the exponential model in
Eq. (10) based on the recent 10-minute ba�ery temperature trace,
i.e., identifying <a2,b2, c2>, and using it to predict the steady-state
ba�ery temperature, i.e., when dTbat /dt < 1oC/5min. �e thus-
estimated steady-state ba�ery temperature is then used to estimate
the ambient temperature according to Eq. (8). We will experimen-
tally explore the required duration of stable device operation, e.g.,
10 minutes in the above explanations, in Sec. 6.

• Estimating Ambient Temperature. Now, we have identi�ed
two approaches to predict the ba�ery temperature, combination
of which forms a feedback loop to estimate the ambient temper-
ature, as shown in Fig. 7: estimates the end-of-discharge ba�ery
temperature and the ambient temperature by exploiting ba�ery’s
transient-state behavior when the device has been operate stably
recently, and use the thus-estimated ambient temperature to predict
the end-of-discharge ba�ery temperature otherwise.

4.3 Estimating the End-of-Discharge Battery
Resistance

EA-SoC then estimates the end-of-discharge ba�ery resistance
based on the above predicted end-of-discharge ba�ery temper-
ature. As shown in Fig. 5, ba�eries’ resistance increases with the
decrease of temperature, reducing their usable capacity. �is ex-
plains why commodity mobile devices operate reasonably well in
warmer environments (i.e., with relatively stable resistance), but fre-
quently su�er from unexpected shuto�s in a cold environment (i.e.,
due to increased resistance). Moreover, these empirically-collected
samples reveal a 2-term exponential relationship between ba�ery
resistance rbat and temperature Tbat , i.e.,

rbat (Tbat ) = a1 · e
b1 ·Tbat + c1 · e

d1 ·Tbat . (11)
Fig. 13 plots the regression results when applying such 2-term
exponential �t onto the collected samples in Fig. 5, achieving a
goodness-of-�t of RMSE<0.03 and AdjRsquare>0.998.

Inspired by such a resistance–temperature relationship, EA-SoC
identi�es <a1,b1, c1,d1> in Eq. (11) based on empirically collected
samples of <rbat , Tbat>, and then estimates the end-of-discharge
ba�ery resistance based on the previously predicted the end-of-
discharge ba�ery temperature. Four pairs of di�erent <rbat ,Tbat>
are needed to determine <a1,b1, c1,d1>. To enhance reliability
and reduce �uctuation, EA-SoC determines <a1,b1, c1,d1> based
on the most recent n (n ≥ 4) di�erent pairs of <r ,Tbat> — calculat-
ing <a1,b1, c1,d1> based on each of C4

n possible combinations of
logged samples, and describing the resistance–temperature relation-
ship with the averaged <a1,b1, c1,d1>. Also, EA-SoC only updates
<a1,b1, c1,d1> when the device is fully charged and the charger is
kept connected, which (i) o�ers reliable conditions to estimate bat-
tery resistance [16] and (ii) does not incur any additional overhead
in ba�ery energy consumption due to the connected charger and
thus the existence of external power supply.

Note that we implicitly assume a uniform temperature distribu-
tion across the ba�ery, i.e., describing ba�ery temperature with a
single value Tbat . �is assumption is reasonable as most mobile
devices use single-cell ba�eries which are of much smaller form
factors than large multi-cell ba�ery packs, e.g., those for EVs, al-
though Lithium-ion ba�eries are known to have complex thermal
behaviors due to their non-uniform temperature distributions and
non-linear chemical reactions. Such a simpli�cation is also widely
used in practice — to the best of our knowledge, all commodity
mobile devices use a single thermal sensor to monitor their ba�ery
temperature, and thus represent their ba�ery temperature with a
single temperature reading.
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Algorithm 1 Pseudocode of EA-SoC.
1: initializing <a1,b1, c1,d1> and Tamb ;
2: while true do
3: estimate steady-state ba�ery temperature according to Eq. (8)

with I and Tamb;
4: estimate end-of-discharge ba�ery resistance according to

Eq. (11)
5: estimate end-of-discharge OCV according to Eq. (3);
6: estimate remaining usable capacity and thus SoC;
7: estimate SoC via Coulomb counting;
8: if stable operation for the past 10 minutes then
9: predict steady-state ba�ery temperatureTbat according to

Eq. (10);
10: update Tamb according to Eq. (8);
11: end if
12: if phone is fully charged and the charger is still connected

then
13: update <a1,b1, c1,d1>;
14: end if
15: time = time + 1;
16: end while

4.4 Estimating Battery SoC with Temperature
Awareness

At last, EA-SoC estimates the end-of-discharge ba�ery OCV based
on the predicted rend according to Eq. (3), and then further esti-
mates the ba�ery SoC based on Eqs. (1) and (4).

4.5 EA-SoC Summary
Alg. 1 summarizes EA-SoC in the form of pseudocode. EA-SoC
estimates the steady-state ba�ery temperature based on the dis-
charge current and ambient temperature with current and ambient
temperature (i.e., Eq. (8) and line 3), which is then used to pre-
dict the end-of-discharge ba�ery resistance according to Eq. (11)
(line 4). �is way, the end-of-discharge OCV can be calculated as
in Eq. (3) (line 5). EA-SoC then estimates ba�ery SoC based on
the OCV–DoD relationship as in Eq. (4) (line 6). EA-SoC updates
the knowledge of (i) ambient temperature Tamb when the device
has been working reliably for, e.g., 10 minutes (line 9-10), and (ii)
the resistance-temperature model a�er the device has been fully
charged and the charger is still connected (line 13).

5 IMPLEMENTATION
Given below are a few details of EA-SoC’s implementation.

5.1 Logging of Battery Information
EA-SoC monitors and logs real-time information on ba�ery cur-
rent and temperature, based on which the device’s SoC is es-
timated with environment-awareness. �is ba�ery informa-
tion can be obtained from the devices’ fuel-gauge chips, e.g.,
the system �les of current now and temp under directory
/sys/class/power supply/battery/ for Nexus 5X and Nexus 6P.
�e real-time logging of such information, however, incurs energy
consumption to the device. So, EA-SoC is desired to collect ba�ery
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Figure 14: Current trace of a Galaxy S5 phone with 5, 000Hz
sampling rate: based on which the impact of current sam-
pling rate on fuel-gauging accuracy is investigated.
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Figure 15: E�ects of current sampling rate: 1/10Hz sampling
rate can achieve over 99% fuel-gauging accuracy.

information at a low frequency while ensuring su�cient SoC esti-
mation accuracy. Note that the fuel-gauge chips of mobile devices
easily support up to 1Hz (or higher, depending on speci�c device
models) sampling rates of ba�ery information, which, for exam-
ple, can be adjusted on the Android platform by con�guring the
fuel-gauge driver at drivers/power/qpnp-fg.c.

We empirically identify such proper sampling rates on ba�ery
temperature and current. First, we examine the frequency for bat-
tery temperature to change based on the 34 temperature equilibrat-
ing processes as used in Fig. 12, which are originally collected at 1Hz
sampling frequency. �is way, we �nd that the ba�ery temperature
changes every 8.9s, on average, based on a total of 17, 212 samples.
Second, the current information is needed to quantify the device’s
energy consumption. To identify the necessary current sampling
rate for accurate fuel gauging, we collected a 12-minute current
trace from a Galaxy S5 phone with the Monsoon power monitor run-
ning at 5kHz, as shown in Fig. 14, during which 114mAh capacity
is discharged. Using this trace, we calculate the total energy con-
sumption when emulating di�erent current sampling rates of 1Hz,
1/10Hz, 1/30Hz, and 1/60Hz, achieving the discharged capacity of
115mAh, 113mAh, 109mAh, and 98mAh, respectively — a 1/10Hz
sampling rate is able to achieve over 99% fuel-gauge accuracy, as
shown in Fig. 15. Combining the above empirical observations,
EA-SoC monitors and logs ba�ery temperature and current once
every 8s.
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Figure 16: Using the battery testing system to identify bat-
tery’s OCV–SoC relationship
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Figure 17: Empirically identi�ed OCV–SoC relationship of
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Figure 18: Predicting future battery temperature based on
its exponential equilibrating process: <2oC prediction error
when training with 18-minute temperature trace.

5.2 Identifying the OCV–DoD Relationship
EA-SoC needs the OCV–DoD relationship of device ba�ery to esti-
mate its DoD, which is collected via o�ine training. Given a speci�c
model of mobile device, e.g., Nexus 5X, we use the ba�ery tester as
in Fig. 16 to discharge its ba�ery with 200mA current and log the
process at 1Hz, collecting traces on the relationship between the
ba�ery terminal voltage and its DoD. We then perform resistance
compensation on the thus-collected traces based on Eq. (1) to derive
its OCV–DoD table. �e small current of 200mA is to reduce the
I · rbat voltage and thus improve the accuracy of the derived OCD–
DoD table. Fig. 17 shows the thus-collected OCV–DoD relationship
of a Nexus 5X ba�ery. �e OCV–DoD relationship shown in Fig. 3
is collected similarly.
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Figure 19: Needed training duration: a 10-minute training
trace is able to achieve <1oC prediction error.
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EA-SoC providesmore reliable SoC information to users than
existing estimations provided on Nexus 5X smartphone.

6 EXPERIMENTS
We have evaluated EA-SoC extensively with two Nexus 5X smart-
phones.

6.1 Accuracy in Predicting Battery
Temperature

We �rst validate the reliability of predicting ba�ery temperature
based on its exponential equilibrating process, i.e., Eq. (10). Specif-
ically, we collected 42 temperature equilibrating processes of a
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Figure 21: Environment-aware SoC estimation with 35 case-studies: EA-SoC achieves (i) much more reliable SoC esti-
mation in a cold environment, and (ii) comparable results in a warmer environment, compared to the existing SoC
estimation on Nexus 5X smartphone.

Nexus 5X phone’s ba�ery, while keeping the phone in stable op-
eration conditions. �ese traces last for [18, 190] minutes and the
ba�ery temperature varies in the range of [−9.5, 43]oC. We then
use the �rst x minutes of these traces to train the exponential equi-
librating model in Eq. (10), and then use the thus-trained models
to predict the ba�ery temperature at the end of their respective
traces.

Fig. 18 summarizes the prediction errors when the �rst 18-minute
portion of each trace is used for training, showing within ±2oC
errors for all the 42 traces and an average error of 0.366oC. To
further examine how long a stable operation is needed to train a
reliable model, Fig. 19 plots the average prediction error for the 42
traces when training with the �rst x-minute traces, together with
their 5- and 95-percentiles5 — higher prediction accuracy could be
achieved by training with longer traces, while a 10-minute training
trace is enough to achieve less than 1oC prediction error.

6.2 Accuracy of SoC Estimation
We next validate EA-SoC’s accuracy in estimating ba�ery SoC with
35 case-studies. �e thus-estimated environment-aware SoCs are
then compared with those provided by the phones, further validat-
ing EA-SoC’s reliability in predicting phones’ shuto�s. Speci�cally,
in each of these case-studies, the phones are used for either Youtub-
ing, or playing an o�ine video, or kept idle but with screen on,
until it shuts o�. �e experiments start with a [37, 100]% phone
ba�ery SoC, and are conducted in a [−15, 28]oC environment. �e
real-time SoCs estimated by EA-SoC, together with those provided
by the phone’s fuel-gauge chips, are logged. Note that a closer-to-0
end-of-discharge SoC indicates higher reliability in predicting the
phone’s shuto�s.

Fig. 20 plots the ba�ery voltage, current, temperature, and esti-
mated SoC during one of such case-studies. Speci�cally, the fully-
charged phone is put into a −13oC environment, and operates
without human interactions until it shuts o�, at which time its
fuel-gauge chip provides an SoC estimation of about 67% — i.e., the
phone shuts o� unexpectedly. �is case-study �nishes with a 3.66V

5Only the traces with a duration longer than x minutes are used for validation.

end-of-discharge ba�ery voltage, which is much higher than the
usual level, e.g., [3.2, 3.4]V [17], owing to the increased ba�ery re-
sistance at a low temperature. On the other hand, EA-SoC captures
the decreased ba�ery temperature in real time, and compensates
the SoC estimation accordingly — the phone shuts o� when EA-SoC
concludes its ba�ery only has a 3.8% SoC, showing EA-SoC’s ability
to predict the phone’s shuto� accurately.

Fig. 21 summarizes the end-of-discharge SoCs collected in all
the 35 case-studies, together with, and sorted according to, their
end-of-discharge ba�ery temperature. �e phones shut o� with
high and random phone-provided SoCs when their ba�eries’ end-
of-discharge temperature is low — they are high because the low
temperature and thus increased ba�ery resistance, and they are
random because the phones operate with di�erent currents. By cap-
turing the ba�ery’s resistance–temperature dependency, EA-SoC is
able to predict the phones’ shuto�s much more accurately, achiev-
ing a 3% averaged end-of-discharge SoC for the 28 case-studies with
end-of-discharge ba�ery temperature lower than 1oC. Also, EA-SoC
performs well in a warmer environment and achieves similar end-
of-discharge SoCs as the phones’ fuel-gauge chips, as observed in
the 29th–35th case-studies.

7 RELATEDWORK
Many SoC estimation methods have been proposed in the lit-
erature [14, 19, 20], including the OCV-based methods [21, 24],
Coulomb counting [23], neural network methods [11], and various
Kalman �lter-based methods [9, 12, 35]. For example, He et al. [18]
proposed a model to eliminate the e�ects of current dri� in the cur-
rent sensor, improving Coulomb counting accuracy. A method to
improve re-initialization of Coulomb counting is developed in [29].
A multi-cell ba�ery pack SoC estimation considering cell imbalance
is proposed in [37]. Trinh [28] explored ways to validate the SoC
estimation accuracy. An empirical study of comparison of various
SoC estimation methods can be found in [10].

Of these existing SoC estimation methods, combining the OCV-
based method and Coulomb counting to estimate real-time bat-
tery SoC is the most widely used for commodity mobile devices,
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thanks to its simplicity and reasonably good accuracy. Examples of
such deployment include TI’s Impedance Track [34] and Maxim’s
MAX17047/17050 fuel-gauge chips [3], to name a few. However,
the dependency between ba�ery performance and temperature is
still not covered well forcommodity mobile devices, causing them
to shut o� unexpectedly in a cold environment [6].

To address such de�ciency, we have proposed EA-SoC, an
environment-aware SoC estimation service for mobile devices,
achieving accurate SoC estimation even in cold environments. To
the best of our knowledge, the closest to EA-SoC is [27], which also
considers ba�ery temperature in its SoC estimation. �e method
proposed therein, however, requires various fundamental ba�ery
properties such as solid phase di�usion coe�cient and electrolyte
di�usion coe�cient, which are not available on mobile devices due
to the limited hardware support.

8 CONCLUSIONS
In this paper, we have designed, implemented, and validated EA-SoC,
an environment-aware ba�ery SoC estimation service for mobile
devices. EA-SoC captures the resistance–temperature relationship
of device ba�eries with an empirically established regression model,
and estimates ba�ery SoCs based on the thermal interactions among
ba�ery’s discharge current, steady-state temperature, and ambi-
ent temperature. Such interactions are uncovered by a thermal
circuit model of the ba�ery and validated experimentally. We have
evaluated EA-SoC with two Nexus 5X smartphones, achieving ≈3%
end-of-discharge SoC even in a −15oC environment and improving
reliability in predicting device shuto�s by 17x.
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