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ABSTRACT

In recent years, augmented reality (AR) has drawn significant at-

tention in the automotive industry and shown great potential for

a variety of driver-assistance applications. Tracking the driver’s

head is vital to seamlessly merge the AR content in the driver’s

view but still remains an open problem. Specifically, most existing

in-vehicle AR solutions rely on cameras for head tracking, which

suffer from low sampling rate, weak performance at night, and even

high computation costs. Wearing a dedicated headset, on the other

hand, is intrusive and inconvenient for daily driving.

To overcome these limitations, we propose ViHOT, a novel wire-

less CSI-based predictive & device-free head tracking system for

in-vehicle use. Given that drivers usually mount phones on the

dashboard for navigation, ViHOT leverages the CSI of the phone’s

WiFi signal to track the driver’s head, with a light-weight design

suited for real-time driving assistance. Thanks to the high WiFi

frame rate, ViHOT achieves more than 10× sampling rate over

conventional camera-based approaches and thus eliminates mo-

tion blur. Moreover, ViHOT’s novel tracking algorithm accurately

translates CSI phase readings to head orientations (merely 4◦–10◦

median error) without relying on any head-mounted device.
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1 INTRODUCTION

Recent years have witnessed an increasing interest in head track-

ing technologies, which are the foundations of augmented reality

(AR) systems, and an explosive growth of AR development in both

automotive and consumer electronics industries. For instance, the

automotive AR-related market is projected to grow steadily at a

compound annual rate of 30% to reach a market size of $8 billion
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Figure 1: WiFi CSI and the driver’s head orientation are

strongly correlated at a certain head position.

by 2025 [31]. AR-enabled car windshields are emerging, and head-

up displays (HUD) from Continental become an important part of

the Human-Machine-Interface of the Audi, BMW, and Mercedes-

Benz [8]. The AR technology augments the physical world, e.g.,

critical road lanes, traffic signs, other cars and pedestrians in the dri-

ver’s head direction with virtual tags, notifications or alarms in real

time, providing a safe and pleasant driving experience. Despite the

success in each individual area of head tracking and in-vehicle AR,

the problem of in-vehicle head tracking remains largely unexplored.

In-vehicle head tracking has also shown great potential in a

variety of advanced driver-assistance systems (ADAS). At a corner-

side of night time, the car’s headlight can follow driver’s head

orientation before making a sharp turn to avoid blind spots. It

also enables inspection of the side mirror and no fatigue/distracted

driving. Furthermore, at an intersection, head turning crowdsourced

from drivers can help teach self-driving cars which direction to pay

more attention to.

Existing head-tracking systems still suffer from several limita-

tions that hinder their practical in-vehicle use. Generally, they are

either camera-based or wearable solutions. For camera-based solu-

tions, their low frame-rate and the resulting motion blur prevents

smooth tracking. Besides, the brightness in a car cabin varies greatly

with driving scenarios. Unfortunately, the frame quality of a typical

camera drops significantly in the dark, while the infra-red cameras

like those on the Kinect cannot function well in bright sunlight [41].

High-end cameras and their image processing may mitigate the

above problems, but they incur higher financial cost, computational

latency, and energy consumption. On the other hand, the wearable

solutions [14, 15, 21] require the driver to wear an intrusive and

inconvenient headset, which is also unsafe in a vehicle with airbags.

Meanwhile, the IMU sensors in the headset are interfered by the

vehicle steering [7] and unable to isolate the driver’s head motions.

To overcome the limitation of existing solutions, can we accurately

track the driver’s head using a light-weight & device-free system with

a high sampling rate?
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In this paper, we present ViHOT, a device-free Head Orientation

Tracking system customized for in-vehicle scenarios. Given the

facts that many people drive with their phones on the dashboard

for navigation and that modern cars start to incorporate built-in

WiFi while adding aftermarket WiFi to an older car is cheap [5],

our solution leverages the in-vehicle WiFi links, and tracks the

driver’s head based on the WiFi signals reflected from her/his head.

Specifically, ViHOT leverages the phase of wireless CSI (Channel

State Information) collected from the in-vehicle WiFi links to ac-

curately track the driver’s head (Fig. 1 shows an example of the

CSI-orientation relation). It first collects a CSI profile that contains

the relation between the head pose (position & orientation) and

CSI phase, then matches the run-time CSI reading with the pro-

file to obtain current head pose. This way, ViHOT’s performance is

not limited by the light condition, the driver has no need to wear a

headset, and the high WiFi frame rate ensures a high sampling rate

that makes ViHOT ideal for vehicular applications requiring smooth

tracking without motion blur.

The realization of ViHOT faces several unique challenges:

(i) CSI phase is determined by not only the head orientation, but

also the head position: After a driver slightly shifts her/his head

position, a different CSI phase will be observed under the same

head orientation, thus we cannot simply map current CSI phase

to an estimated head orientation following a fixed CSI-orientation

relation like in Fig. 1.

Tomeet this challenge, ViHOTfirst employs a position-orientation

joint profiling mechanism (Sec. 3.3) which can quickly build a CSI

profile of the CSI-orientation relation at a wide range of head posi-

tions. To achieve fast and flexible profiling, we let the driver turn

her/his head continuously at each of the different head positions,

while the ground truths of head position & orientation can be col-

lected in real time using either headsets or camera on the phone.

ViHOT then employs a position-orientation joint tracker (Sec. 3.4)

in the run-time, which first estimates the rough head position based

on the stable CSI phase before the head turning, and then translates

the subsequent phase readings to the orientations according to the

CSI-orientation relation at that particular position. The complex

in-vehicle signal reflection may lead to the same CSI phase value at

different head orientations, making direct CSI-orientation mapping

difficult. To uniquely find the present orientation, ViHOT uses both

the current and historical CSIs to form a short time-series and

then searches for the unique best match of this series in the CSI

profile, while applying Dynamic Time Warping (DTW) to cope

with different head-turning speeds.

(ii) The strong phase noise in the CSI measurement from the com-

modity WiFi hardware: The measured CSI phase contains an un-

known phase offset caused by the Carrier Frequency Offset (CFO)

and Sampling FrequencyOffset (SFO) ofWiFi hardware [47]. ViHOT

handles this challenge by leveraging the multiple antennas of the

commodity WiFi device. Since the CSI measurements from differ-

ent receiving antennas suffer from the same CFO and SFO [38], we

compute the CSI phase difference between two receiving antennas

to cancel the CFO and SFO noises (Sec. 3.2).

(iii) Various sources of CSI distortions in the cabin besides the

driver’s head motions: Interference like the passengers’ motions and

the driver’s hand motion when steering the car further complicates

the relation between the driver’s head pose and CSI phase.

ViHOT handles the CSI polluted by various motions from mul-

tiple aspects: First, it leverages the multiple antennas on the com-

modity WiFi device to suppress the motion interference from the

passenger side while retaining the CSI fluctuation caused by the

driver’s head motions (Sec. 3.5). Second, it leverages the phone’s

IMU sensors to distinguish the phase variations caused by the large-

scale hand steering motion and can fall back to backup solutions

like camera-based tracking when CSI is severely polluted (Sec. 3.6).

ViHOT is prototyped on a Dell laptop with Intel 5300 WiFi NIC

which uses the 802.11n CSI tool [16] to obtain the raw CSI, while

our phone-side implementation runs on commodity Android smart-

phones (Sec. 4). We evaluate the performance of our prototype

under various scenarios by varying drivers, passengers, road condi-

tions, and WiFi interference conditions. Our experimental results

(Sec. 5) demonstrate a low error of 4◦–10◦ in terms of median

orientation angle estimation, and 400Hz of the sampling rate for

head orientation tracking, which is more than 10× conventional

camera-based approaches. Furthermore, we observe that ViHOT

works reliably under the interfering motions from passengers and

hand steering. Our experiment also reveals ViHOT’s robustness

over a long time between profiling and run-time, which ensures in-

frequent re-profiling and low maintenance costs. The related works

are discussed in Sec. 6, and the paper concludes in Sec. 8.

To our knowledge, ViHOT is the first CSI-based driver head

tracking system, with the following contributions:

• Design of ViHOT, a light-weight device-free head tracking sys-

tem for the in-vehicle scenario, laying a foundation for various

in-vehicle AR and ADAS applications.

• Identifying and resolving the unique challenges of realizing CSI-

based driver head tracking, including the CSI’s sensitivity to the

head position and the interference of various motions in the cabin.

• ViHOT is compatible with the commodity WiFi hardware. Our

concept of CSI-based head tracking can also be used for dedicated

hardware to support more challenging scenarios like tracking the

pilot’s head in an airplane cockpit.

2 BACKGROUND AND MOTIVATION

2.1 Limitation of Existing Solutions

Head tracking has been a hot research topic for years (Sec. 6). In-

vehicle head tracking, however, remains largely unexplored, and

existing solutions fail to handle this important use-case.

On one hand, the headset-based solutions require the driver

to wear a headset throughout an entire trip, which is intrusive

and inconvenient. Furthermore, despite their popularity for indoor

VR/AR applications [14, 15, 21], headsets are unsafe during driving

as they can be hazardous if the airbag pops out.

On the other hand, the device-free solutions typically use cam-

eras for head tracking. These solutions suffer from low sampling

rate and motion blur due to the limitation of rolling-shutter cam-

eras [58], thus failing to track head turning smoothly. For instance,

if the driver quickly turns head, camera-based solutions (e.g., the

popular FaceRig App [9]) may temporarily lose track of the head.

Although the slow-motion cameras incur less motion blur, their

wide deployment is still hindered by the high device cost and the

heavy processing overhead due to high video frame rates. Moreover,

typical cameras perform poorly in the nighttime while the infrared
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Figure 2: The driver’s head typically turns within 2D hori-

zontal plane (headset, merely for ground-truth collection, is

not necessary when ViHOT is running).

cameras cost much more. Finally, the camera-based solutions re-

quire complicated image processing algorithms that are unsuitable

for real-time ADAS applications.

2.2 Why WiFi for Head Tracking?

To overcome the limitation of existing head tracking solutions in

ADAS, we propose WiFi CSI-based head tracking based on the

following two critical observations. First, it is a common practice

to mount the smartphones on the dashboard for navigation and

hands-free phone control, and almost every phone nowadays has

a WiFi interface. Second, most new cars come with built-in WiFi,

and it is also cheap to add portable WiFi devices on an old car.

Inspired by these two practical observations, we propose to track

the driver’s head orientation based on the CSI of the WiFi link

between the smartphone on the dashboard and the car’s WiFi re-

ceiver. Such a CSI-based solution is preferable to existing camera-

or headset-based approaches for the following reasons. First, it is

device(headset)-free, readily deployable, and also minimizes safety

risk and inconvenience. Second, it can support a more than 10× sam-

pling rate over a typical camera thanks to the high WiFi frame rate,

and the 2.4GHzWiFi carrier frequency ensures a very small Doppler

frequency shift under the human head rotation speed. Therefore,

our CSI-based solution is free from the motion blur, unlike the

camera-based solutions. Finally, CSI-based head tracking runs a

simple matching algorithm, and thus renders an ideal solution for

real-time ADAS.

Note that our algorithm is general enough to be extended to

other emerging wireless techniques like 60GHz sensing [28, 54, 57],

despite its unavailability on existing commodity smartphones for

our prototyping at this time.

2.3 Understanding Head Turning & CSI

First, we focus on the head turning rather than eye movement in

this paper, as existing measurement studies [24, 44] have shown

that the vehicle steering is strongly correlated with the driver’s

head turning, while the driver’s eyes mostly stay close to the head

axis (< 5◦) and the eye movements have very weak correlation

with the vehicle steering. Although the human head can turn to

various orientations in the 3D space, a driver usually turns her/his

head horizontally since most roads are flat. To validate this, we asked

a volunteer driver to wear a VR headset reversely on the back of

his head (a detailed setup in Sec. 5) and turn his head repeatedly

to check the roadside objects on both sides. The IMU sensor in

the headset measure the driver’s head-turning angle against the

3 different axes as shown in Fig. 2. The results in the same figure
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Figure 3: CSI phase vs. head orientation (colors indicate dif-

ferent rounds).

confirm that the head turns mostly in the horizontal plane with

only small projections on the other two planes. Therefore, we focus

on the 2D head rotation. Our solution can also extend to 3D cases

like in the aircraft cockpit, which is beyond the scope of this paper.

In the same experiment, we also simultaneously recorded the

resultant WiFi CSI phase during the periodic head turning (more

detailed experiment setup in Sec. 4). Before introducing the results,

we first define the head position i and head orientation θ : the head
position i is the relative position of the driver’s head center w.r.t.

the WiFi transmitter (the phone), while the head orientation θ is

the angle between the direction where the driver faces and the

direction from the car’s back to the front, as shown in Fig. 3(a). Our

results in Fig. 3(b) illustrate that the relation between the CSI phase

and head orientation depends not only on the head orientation

but also on the head position. Although the driver’s head position

typically does not vary much during a trip, the CSI is sensitive to

slight head position and turning trajectory variations, leading to a

set of parallel curves in Fig. 3(b).

To perform head tracking, we first build a CSI profile by recording

the set of CSI-orientation curves as shown in Fig. 3(b) and label each

curve with its corresponding head position. Then in the run-time,

our head tracking algorithm can estimate the head position first

thus locate the curve corresponding to current head position from

the parallel curves in Fig. 3 (Sec. 3.4.1), then translate current CSI

reading to the head orientation based on that CSI-orientation curve

(Sec. 3.4.2).

Although the CSI phase varies continuously with the horizontal

head rotation in Fig. 3(b) at a certain head position, the same phase

value can be observed at different head orientations, even within

a single head-turning round. In other words, the mapping from

head orientation to phase is a non-injective function, and thus the

inverse mapping from phase to head orientation does not return a

unique output, which is unacceptable for head tracking applications.

Therefore, our design must be able to uniquely determine the head

orientation even if a current CSI phase reading can be observed at

different head orientations in the CSI profile (Sec. 3.4.3).

3 VIHOT DESIGN

In this section, we introduce the design details of ViHOT system.

Fig. 4 outlines ViHOT’s workflow that involves two devices: a

smartphone mounted in front of the driver with an HUD-style

phone holder and another WiFi receiver on the car (a laptop in our

prototype). ViHOT operates in two stages: profiling and run-time.

In the profiling stage, it employs a position-orientation joint profiling

mechanism to build the CSI profile of a driver, which collects (i) the
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Figure 4: ViHOT system architecture.

ground-truth head position and orientation using the phone’s front

camera1 and (ii) the coinciding WiFi CSI reading. The profiling can

be done quickly (within 100 seconds in our prototype) as our design

allows real-time data collection during head rotation. Such profiling

only needs to be done infrequently as ViHOT can tolerate a long

time gap between profiling and run-time tests (Sec. 5.2.4). Then in

the run-time, ViHOT uses a position-orientation joint tracker to map

current CSI phase reading to the head position and orientation.

3.1 WiFi CSI Model in the Cabin

WiFi sends data over multiple OFDM subcarriers. Let Xf (t) denote
the symbol transmitted over subcarrier f at time t , andYf (t) denote
the corresponding received symbol. We have Yf (t) = Hf (t) · Xf (t),

where the complex-valued factor Hf (t) = Af (t)e
jϕf (t ) is the CSI of

subcarrier f at time t with its amplitude Af (t) characterizing the
channel’s attenuation, and phase ϕf (t) characterizing the phase

distortion.

In a car cabin, the WiFi signal reflects on the driver’s head and

other interior objects, so there are multiple signal paths between

the WiFi sender and receiver, and then we have:

Hf (t) =
K∑

k=1

Ak
f
(t)e

jϕk
f
(t )
=

K∑

k=1

Ak
f
(t)e

j2π
dk (t )

λf , (1)

where K denotes the total number of paths, Ak
f
(t) is the signal

attenuation, dk (t) is the length of propagation path k , and λf is the

WiFi signal wavelength on channel f .
As in Fig. 4, the driver’s head motion changes the length dk∗ of

a reflection path k∗ from the driver’s head, thus the phase ϕf (t)
changes along with the head orientation θ (t) and head position

i . Similarly, the motion of the driver body and passengers also

cause CSI phase change, which is essentially the interference for

the driver head tracking. Sec. 3.6 details how ViHOT handles such

interference. Since other car interior objects are stationary2 with no

1 Note that the camera is used only for the profiling, and is turned off during run-time.
Our prototype uses a headset with IMU sensors to obtain the ground truth of head
position and orientation for the evaluation purpose.
2In practice, there are many micro-motions and vibrations in the car cabin, but our
measurements in Sec. 5.3.1 demonstrate that they only cause tiny CSI phase variations
and do not affect ViHOT’s performance. They can be even metal objects and lead to
strong reflection.

relative movement w.r.t. the WiFi sender and receiver, the signals

reflected on them do not contribute to the CSI phase variations.

In summary, the head position i and orientation θ (t) jointly
determine the reflection path lengthdk∗ (t) and finally the CSI phase
ϕf (t), while the target of ViHOT is to estimate i and θ (t) based on

the observed ϕf (t).

3.2 Removing the CFO & SFO Noise in CSI

Due to the imperfection of commercial hardware, there is a carrier

frequency offset (CFO) between the WiFi sender and receiver, caus-

ing an unknown phase offset β(t) [47]. The sender and receiver

also have different A/D sampling clocks [39], and this sampling fre-

quency offset (SFO) causes a time lag Δt and a phase error 2π
f
N Δt

that increases linearly with the subcarrier index f . The CFO and

SFO jointly cause a noisy CSI phase measurement ϕ̂f (t):

ϕ̂f (t) = ϕf (t) + 2π
f

N
Δt + β(t) + Zf , (2)

where Zf is the measurement (e.g., thermal) noise.

To remove the phase noise caused by CFO and SFO, we leverage

the multiple antennas on the WiFi receiver. Most WiFi devices

nowadays support 802.11n/ac, and come with at least two antennas.

When receiving packets, these antennas share the same oscillator

and sampling clock, thus suffering from exactly the same CFO and

SFO w.r.t. the single-antenna sender (the phone). In other words,

the phase measured on RX antennas 1 and 2 (denoted as ϕ̂1
f
(t) and

ϕ̂2
f
(t)) share the same β(t) and Δt , thus the noises caused by both

CFO and SFO can be removed by computing the difference between

the two antennas’ noisy phase measurements, i.e.,

ϕ̂1
f
(t) − ϕ̂2

f
(t) = ϕ1

f
(t) − ϕ2

f
(t) + (Z 1

f
− Z 2

f
). (3)

To further reduce the measurement noise Z 1
f
− Z 2

f
, we compute

the average phase difference ϕ(t) across all K WiFi subcarriers as

ϕ(t) = 1
K

∑K
f =1

(
ϕ1
f
(t) − ϕ2

f
(t)

)
.

As a result, ViHOT utilizes the phase difference ϕ(t) between
the two RX antennas for head tracking. For simplicity, we still use

“phase” to denote ϕ(t) for the rest of this paper.

3.3 Position-Orientation Joint Profiling

Before running head tracking, ViHOT needs a CSI profile of the

driver that associates theWiFi CSI with the driver’s head position &

orientation. Although the objects in the cabin are mostly stationary,

if some objects move (like the driver seat adjustment), the CSI

profile needs to be updated. As a result, our design calls for a quick

CSI profiling with low time overhead. To that end, ViHOT employs

a position-orientation joint profiling mechanism that enables a

quick and easy profiling process within 100 seconds. Instead of

collecting the CSI fingerprint at a discrete set of head positions &

orientations as in existing studies, ViHOT obtains the ground truth

head orientation & position in real time using wearable headsets,

and then labels them with the CSI measured at the same moment.

Therefore, the driver can perform the profiling by simply turning

her/his head in the horizontal plane to scan through all possible

orientations at a certain head position, and then repeating that at

different possible positions by leaning head forward/backward.

During the profiling process, the phone keeps streaming tiny

packets to the WiFi receiver on the car that extracts CSI phase
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Figure 5: Position-orientation joint profiling.

ϕ∗c (τ ) from each packet received at time τ (For clarity, we use τ
for the time index of profiling data and t for the time index at run-

time). Meanwhile, the driver turns head from the anatomic leftmost

head orientation to the rightmost at a certain head position i and
the instant head orientation θ∗c (τ ) is measured by the phone based

on its front camera3 in real time. It is worth noting that the head

rotation in the CSI profiling stage can be made slow intentionally

to guarantee the accuracy of the camera-based head tracking. In

the run-time, we use the WiFi CSI phase to estimate the head

orientation & position based on the collected CSI profile P, and the

head rotation can be much faster than the profiling stage as WiFi

sensing has a high sampling rate.

This way, we obtain a time-series of CSI measurements Φ∗c =
{ϕ∗c (τ )} and another time-series of head orientations Θ∗

c = {θ∗c (τ )}.
By labeling each CSI measurement with the corresponding head

orientation sharing the same timestamp τ , we get a profile set

Ci = {Φ∗c ,Θ
∗
c } that contains a seamless CSI-to-orientation mapping

at a head position i .
In typical driving, head turns at different time have slightly

different head positions and turning trajectories, and the relation

between CSI phase and head orientation also varies slightly as

shown in Fig. 3. ViHOT addresses this problem by letting the driver

repeat the above profiling process for different head positions4 as

illustrated in Fig. 5. This way, we finally obtain a driver’s CSI profile

P = {C1,C2, . . . ,Ci , . . .} that covers a wide range of possible head

positions and orientations. Meanwhile, for head position i , we also
record the CSI phase before the head rotation (when the head is

at center with 0◦ head orientation) which is denoted as ϕ0c (i) and
later used as the fingerprint of head position i in Sec. 3.4. Since the

CSI profile P is from a discrete set of head positions & orientations,

the run-time head position/orientation to estimate can be drawn

from P, i.e., picking the one in P with the closest CSI features

(Sec. 3.4.3).

Intuitively, if the CSI profile P contains more head positions, the

system tends to be more robust. In other words, there is a trade-

off between the profiling overhead and system robustness. From

our evaluation (Sec. 5), we found that 10 different head positions

measured within 100 seconds can already provide a high accuracy

in typical driving scenarios. ViHOT also allows to keep updating a

3In order to show the full potential of the CSI-based head tracking, our evaluation still
uses a headset to provide the ground truth of the head position & orientation.
4Our CSI profiling does not include the abnormal poses like head tilting. Such poses
are rare during driving and last only for a short time, ViHOT handles these temporary
poses with the algorithm in Sec. 3.4.3.

driver’s CSI profile by adding new traces after each trip so that the

system performance can be timely improved after each use.

3.4 Position-Orientation Joint Tracking

Given the driver’s CSI profile P, we can run ViHOT head track-

ing based on the instantaneous CSI phase reading ϕr (t). The CSI
phase is estimated based on the WiFi packets from the smart-

phone to the vehicle’s built-in WiFi. To guarantee a fine-grained

phase measurement, when the application data is insufficient to

sustain a continuous WiFi packet stream, dummy packets will be

inserted/transmitted to maintain a small packet interval. ViHOT

adopts a two-level design for head tracking: it first estimates the

driver’s current head position i based on ϕr (t) and CSI profile P,

and then estimates the driver’s head orientation based on ϕr (t)
and the profiled mapping Ci ∈ P corresponding to current head

position i .

3.4.1 Estimating driver head position based on CSI. Since the CSI

phase depends on both the driver head position and orientation,

at a first glance, it is difficult to uniquely identify the driver head

position based on CSI phase when the head orientation is unknown.

However, ViHOT can still realize that thanks to a unique and rea-

sonable feature of the real-world driving scenario — drivers have to

always focus on the road in the front for safety, and they will never

keep the neck twisted for a long time for comfort. In other words, if

current CSI phase measurement is stable, we know the driver is facing

the front with 0◦ head orientation at this time. We denote the CSI

measurement at this time as ϕ0r .
Based on this unique feature, ViHOT estimates the driver head

position by comparing the run-time phase ϕ0r measured under the

0◦ head orientation with the phase ϕ0c (i) corresponding to head

orientation i and the same 0◦ orientation in the CSI profile. Finally,

the head position estimation i∗ will be the one with the closest

profiled phase to ϕ0r :

i∗ = argmin
i

��ϕ0c (i) − ϕ0r
��. (4)

3.4.2 Estimating driver head orientation based on CSI & head po-

sition. Given current head position estimation i∗, we can then es-

timate the head orientation based on the CSI profile Ci∗ ∈ P,

which is essentially the CSI-orientation relation at head position

i∗. Ci∗ contains a pair of time series: the WiFi CSI samples Φ∗c =
{ϕ∗c (τ ) : τ ∈ [τS ,τE ]} and the corresponding head orientations

Θ∗
c = {θ∗c (t) : t ∈ [τS ,τE ]}, where τS is the starting time of the pro-

filing stage and τE is its ending time. Given this CSI profile Ci = {Φ∗c ,
Θ∗
c } and current CSI phase reading ϕr (t), one may assume that we

immediately get a mapping function R(·) for

θ∗c = R(ϕ∗c ), (5)

Then the current head orientation θr (t) can be directly estimated

by mapping the current CSI phase ϕr (t) to θ̂r (t) = R(ϕr (t)). Un-
fortunately, our measurements reveal that R(·) is not a one-to-one

mapping (Fig. 3). Although a particular head orientation θ1r leads to

a unique CSI phase measurement ϕr , another θ
2
r � θ

1
r may result

in the same ϕr , rendering the aforementioned idea inapplicable.

3.4.3 Overview: Series Matching Algorithm. To address the above

problem, we design a light-weight series-matching algorithm that

estimates the instantaneous head orientation θr (t), taking into

account not only the current CSI phase reading ϕr (t), but also the
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Figure 6: DTW-based series matching algorithm.

historical CSI samples in a time window T = [t −W , t], whereW is

the time length of the window. If current ϕr (t) is unable to uniquely
identify its corresponding head orientation θr (t), the historical CSI
phase values in T help us narrow down the scope and obtain a

precise estimation of θr (t) without ambiguity. In other words, we

transform the problem of head-orientation tracking into a time-

series matching problem that matches a time-series containing both

current and historical reading (Φr = {ϕr (t) : t ∈ T }) with the CSI

profile series Φ∗c = {ϕ∗c (τ ) : τ ∈ [τS ,τE ]}, rather than the single-

point mapping like Eq. (5). Such a series matching algorithm also

makes the ViHOT system more robust under bursty motions that

cause unintended variations in the WiFi CSI, as a few noisy samples

in the input time-series will not change the matching result.

Fig. 6 outlines our matching algorithm:

(Step.1) CSI Series Matching: We first find the best match of the

input CSI series Φr in the CSI profile series Φ∗c . Since the CSI sam-

pling interval is random due to WiFi CSMA, we resample Φr and
Φ∗c to the same sampling rate before matching them. We denote

this best match as Φ∗m = {ϕ∗c (τ ) : τ ∈ [τs ,τe ]}, where the starting
and ending time of Φ∗m are denoted by τs and τe , respectively. Thus,
Φ∗m is essentially a fragment of the CSI profile series Φ∗c .

(Step.2) Mapping to Head Orientation : GivenΦ∗m and its time span

[τs ,τe ], we segment the head orientation seriesΘ∗
c in the CSI profile

based on this time span to get the corresponding head orientation

series of Φ∗m , which is denoted as Θ∗
m = {θ∗c (τ ) : τ ∈ [τs ,τe ]}.

(Step.3) Head Orientation Estimation: Since the current CSI mea-

surement ϕr (t) is the last sample of the input CSI series Φr =

{ϕr (t) : t ∈ [t −W , t]}, the estimation θ̂r (t) of current head orienta-

tion θr (t) should also be the last sample of Θ∗
m , i.e., θ̂r (t) = Θ

∗
m (τe ).

3.4.4 Challenge: Mismatched Head-Turning Speed. The different

head-rotation speed between profiling and run-time poses a new

challenge — given the current input Φr and its lengthW , the length

of its best match Φ∗m remains obscure due to the unknown head-

rotation speeds, and we cannot find Φ∗m without knowing its length.

To handle this speed mismatch, ViHOT employs Dynamic Time

Warping (DTW) [35]. Specifically, in order to accommodate the

different head-rotation speed between the profiling and run-time,

we assume the potential length Lm of Φ∗m is within a wide range

from 0.5W to 2W . We then enumerate a set of candidate lengths

Ln ∈ [0.5W , 2W ]. For each Ln , ViHOT performs DTW matching to

find the potential best match (Φ∗n ) of Φr , and then singles out the

length Lm ∈ {Ln } leading to the best matching with Φr .

Algorithm 1 DTW-based head orientation estimation.

Input:W – Time length of the CSI input window

Φr – CSI phase series in current input window

Φ∗c – Entire CSI phase series in the CSI profile

Θ∗
c – Head orientation series in the CSI profile

Output: θ̂r (t ) – Current head orientation

1: A setup time ofW to fully fill the input window

2: //Find the best match (Φ∗m ) of Φr in Φ∗c
3: List all possible lengths of Φ∗m as Ln ∈ [0.5W , 2W ] with a step ΔL
4: for all Ln ∈ [0.5W , 2W ] do

5: for all τj ∈ [τS , τE ] do

6: Φ∗n (Ln, τj ) = {ϕ∗
c (τ ) : τ ∈ [τj , τj + Ln ]}

7: d (Φ∗n ) = DTW(Φr , Φ
∗
n )

8: Φ∗m (τs , Lm ) = argmind (Φ∗n )
9: The ending time of Φ∗m is τe = τs + Lm
10: Θ∗

m = {θ ∗
c (τ ) : τ ∈ [τs , τe ]}

11: θ̂r (t ) = Θ
∗
m (τe )

3.4.5 AlgorithmDesign. As summarized inAlgorithm.1, the system

first needs an initialization time ofW to fill the input CSI window

(Line 1). Note that this does not add any delay to head tracking

after the initialization is finished (t > W ). Then, given the input

CSI series of lengthW (Line 2), its best match has many potential

lengths Ln ∈ [0.5W , 2W ] (Line 4). For each Ln , we search through

all possible segments with length Ln in the profile CSI series to find

the one that best matches current inputΦr = {ϕr (t) : t ∈ [t−W , t]},
i.e., the segment with the minimum distance to Φr under DTW

(Lines 5–8).

In this way, we obtain a list of best-matching segments {Φ∗1,Φ
∗
2, . . .}

with different lengths from 0.5W to 2W . Among all elements in this

list, the one with the minimum DTW distance to Φr is our target
Φ∗m — the overall best match of Φr .

After obtaining Φ∗m along with its starting time τs and length

Lm , we immediately get its corresponding head-orientation series

Θ∗
m = {θ∗c (τ ) : τ ∈ [τs ,τe ]}, and the last sample of Θ∗

m is our

estimation of current head orientation θt as discussed in Sec. 3.4.3

(Lines 9–11).

3.4.6 Head Orientation Forecasting. Besides estimating the current

head orientation θ (t), ViHOT is also capable of predicting the head

orientation θ (t + th ) in the near future, where th is the prediction

horizon. This way, ViHOT can enable advanced functionalities like

smoothing the AR experience by masking the computational delay

for AR contents with speculative computation.

Intuitively, if we have found the best match segment Φ∗m =
{ϕ∗s (τ ) : τ ∈ [τs ,τe ]} of current input CSI series Φr = {ϕr (t) : t ∈
[t −W , t]} in the CSI profile series Φ∗c , the trend that Φr evolves in

near future should be similar to how Φ∗m evolves in the CSI profile

series Φ∗c as both corresponds to the driver head rotations.

Based on this idea, we design the following head-orientation

prediction algorithm: the CSI input has lengthW while its best

match has length Lm , then the ratio Lm
W is essentially the turning-

speed ratio between the profiling and run-time. With this ratio,

predicting th at run-time is equivalent to moving forward th ·
Lm
W in

the CSI profile. As a result, the CSI phase at t + th can be predicted

by Φ∗c (τe + th ·
Lm
W ), and its corresponding head orientation is:

θ̂ (t + th ) = Θ
∗
c (τe + th ·

Lm
W

). (6)
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Figure 7: Leveraging the 3Dantenna radiation pattern to sup-

press the signal reflection from the passenger

3.5 Handling the Passenger Interference

In many situations, people do not drive alone, and the passenger

sitting by the side of driver can cause strong interference in the

CSI variation (the reflected signals from passengers sitting on the

back seats are too weak to interfere with head tracking as they are

too far away from the smartphone). In theory, if the smartphone

can roughly beamform the WiFi signal to the driver, the reflection

from the passengers can be significantly reduced. However, com-

modity smartphones cannot perform transmit beamforming yet. As

a readily-deployable solution, ViHOT must handle the passenger

interference under omnidirectional WiFi transmission.

To address this challenge, we leverage the 3D radiation pattern

of the WiFi antenna inside the phone. Specifically, the phone’s WiFi

antenna is typically a wire hidden in the long edge of the phone,

According to the antenna theory [19], the radiation pattern of such

an antenna is like a “donut” as illustrated in Fig. 7. The 2D radiation

pattern is omnidirectional in the plane orthogonal to the phone’s

screen, which is designed to fit how most people hold the phone.

However, this radiation pattern is not omnidirectional in the 3rd

dimension which is parallel to the antenna. In other words, there

is a “hole” in the 3D radiation pattern, and the radiation is the

weakest in the direction to which the phone’s short edge points.

Therefore, the driver can place the phone on the dashboard so that

the phone screen points to her/his head to maximize the intended

signal strength, while the short edge points to the passenger to

suppress the reflection signal from the passenger.

3.6 Handling the Steering Interference

Besides head turning, the driver also frequently turns the steering

wheel during a trip, which also alters the WiFi signal reflection

path and changes the CSI phase. Since the head orientation can

only change continuously, the jumpy estimation caused by a small

& bursty steering motion to keep the car straight can be easily

filtered out. However, the large-scale steering event like turning at

intersection can significantly change the CSI phase in a large time

window and ViHOT must handle this challenge.

To demonstrate the impact of the hand movement during the

vehicle steering input, we let a test driver keep turning his head

back and forth without hand movement, and then start to turn the

steering wheel back and forth without any head motion. In the

meantime, we record the time-series of WiFi CSI phase and the

driver’s head orientation following the setup described in Sec 4.

From the results in Fig. 8, we can observe that when the driver

turns the steering wheel rather than his head, the head orientation

Figure 8: Steering-wheel turning affects CSI phases.

remains unchanged but the CSI phase varies significantly. As a

result, if we simply apply the design discussed in Sec. 3.4.2 for head

tracking, such CSI phase variation caused by the driver’s turning

of steering wheel may trigger the false alarm of head turning and

cause inaccurate tracking result.

3.6.1 Head Rotation vs. Steering Input. In order to distinguish the

driver’s turning of the steering wheel from head turning in the CSI

measurements, we first investigate the differences between them.

First, existing measurement studies [24, 44] revealed a strong

correlation between the driver’s head rotation and the car’s rotation

around one second later during a turn, because the driver must

turn her/his head to visually check the road before turning the

steering wheel, so head turning and driver steering occur at differ-

ent times. In other words, a large CSI variation comes from either

head turning or driver steering, and ViHOT needs to separate these

two possibilities. Besides the different timing, the head turning and

driver steering also have different impacts on the car’s movement.

Specifically, the car body will turn only if the driver’s hand turns

the steering wheel. In contrast, turning the head cannot directly

steer the car. This feature enables ViHOT to distinguish the head

turning from driver steering based on the car’s movement.

3.6.2 Identifying Steering Motion with Phone . ViHOT uses a smart-

phone to generate the WiFi signal that probes head motions, here

we leverage the IMU sensors in the same phone to detect the turn-

ing of the car body and identify the driver’s steering events [7]. In

particular, the smartphone is mounted rigidly on the dashboard,

thus the car body’s motion will be captured by the phone’s IMU sen-

sors. As discussed in Sec. 3.6.1, steering the wheel will immediately

redirect the vehicle’s movement while turning the head will not, so

we can leverage the phone’s IMU sensors to estimate whether the

car is turning and also whether the driver is steering the wheel, thus

finally identify whether a CSI variation at this moment is caused

by hand or head movement.

The workflow of the driver steering identifier can be summa-

rized as follows: (i) On detecting a CSI variation, ViHOT reads

the phone’s IMU sensor and estimates whether the car is turning.

If so, the CSI variation is from the steering wheel motion. Other-

wise, it is from the driver’s head rotation. (ii) If the CSI variation

is from the head rotation, ViHOT updates its estimation of head

orientation based on Sec. 3.3; Otherwise, the system falls back to

the video-based head tracking using the phone’s front camera, as

the driver directly faces the phone (WiFi sender) in ViHOT design.

More details of this fallback mode are in Sec. 4. It is worth noting

that the fallback mode is rarely triggered as the sharp turns are

infrequent thus ViHOT system still enjoys significant energy saving
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Figure 9: ViHOT prototype in a Toyota Camry car.

and lighter computation than conventional camera-based solutions.

Besides, this fallback mode in our design is to compensate for the

limitation of the commodity WiFi hardware, which is unable to

separate the signal reflections from the steering wheel and those

from the driver’s head. The next-generation WiFi, 802.11ax [4], will

support uplink MU-MIMO, and the receiver can perform beam-

forming to suppress the signal reflection from the steering wheel.

Therefore, the fallback mode is no longer necessary when 802.11ax

is available on future cars.

4 VIHOT IMPLEMENTATION

Our ViHOT prototype includes two devices: a smartphone mounted

on the dashboard in front of the driver as theWiFi sender, following

the placement discussed in Sec. 3.5, and a laptop as theWiFi receiver.

We attach two external WiFi antennas to the laptop to test various

antenna placements in the vehicle (Sec. 5.2.2), which are connected

to the laptop’s NIC via the SMA to U.FL converters [17]. Fig. 9

shows a running ViHOT prototype in a Toyota Camry car and the

phone is a Sony Xperia XZs.

Profiling: To collect the CSI profile for a driver, we configure

the smartphone as a WiFi hotspot without password protection

and run an Iperf client on it, while the laptop connects to this

hotspot and operates as an Iperf server. We use NTP to roughly

synchronize the phone and the laptop. This way, the phone keeps

sending a continuous stream of UDP packets to the laptop which

uses an Intel 5300 NIC[16] to measure the CSI from its received

packets in real time. To obtain the ground-truths of head position

& orientation, our implementation uses a Samsung GearVR headset

with a smartphone inside, which uses the builtin IMU sensor to

get the head position and orientation (Sec. 5.1). Note that, as a gen-

eral framework, ViHOT can easily employ other head-orientation

tracking schemes (e.g., Apple Face ID [3]) to achieve more accurate

ground-truth labeling, which is beyond the scope of this paper.

Run-time:Wekeep using the aforementioned Iperf client-server

setting during the run-time and measure the CSI on the laptop in

real time. Moreover, current CSI reading and the collected CSI pro-

file are already available on the laptop. Thus, it can easily run the

fine-grained mapping algorithm in Sec. 3.6 to track the head based

on current CSI phase reading in real time. Meanwhile, to combat

the interference caused by turning the steering wheel, the real-

time IMU sensor measurements from the WiFi sender phone are

required, which are UDP-streamed to the laptop along with the

dummy Iperf packets. The video-based head tracking used in the

fallback mode is implemented over the cross-platform dlib [22]

library. For the performance benchmark, we use a VR headset to

obtain the ground-truth head orientation and compare that with

the estimation of our ViHOT system.

5 EVALUATION

In this section, we evaluate the performance and efficacy of ViHOT.

We first introduce our experiment setup (Sec. 5.1), then conduct

extensive experiments to validate our design under various system

configurations (Secs. 5.2.1–5.2.5), and report our evaluation results

under a wide range of practical factors (Secs. 5.3.1–5.3.5) such as

passenger sitting beside the driver and antenna vibration caused

by car motion.

5.1 Evaluation Setup

Experiment settings. Unless stated otherwise, we use the follow-

ing default settings: Our evaluation involves multiple test drivers.

For each driver, we first build his unique CSI profile by asking him

to move head from front to back through 10 discrete positions as in

Fig. 5, and keep turning head back and forth for 10 seconds at each

head position. In the run-time, we run each test for 60 seconds, and

repeat the test session 10 times. The driver is alone in the vehicle

for our experiments unless stated otherwise. Since head tracking

focuses on the relative movement between the driver’s head and

car body, the car speed is unrelated. Meanwhile, the WiFi signals

reflected from other vehicles are much weaker than those reflected

from the driver’s head, as they are far away from the in-vehicle

WiFi antennas. Therefore, in our experiments, we drive the car on

a campus road with light traffic at a safe speed below 15mph only

to create enough vibrations of a moving vehicle.

System configuration. By default, we use a 100ms CSI input
window, a 0ms prediction horizon (deactivating head orientation

forecast), 1-minute interval between profiling and test, normal

head-turning speed around 100◦/s–120◦/s , and antenna placement

layout illustrated in Fig. 9. Furthermore, since our ViHOT prototype

operates on the 2.4GHz ISM band, we turn off the car’s Bluetooth

by default and evaluate the impact of the ISM band interference in

Sec. 5.3.5.

Performance metric & benchmark. We assess the angular

deviation (absolute estimate error) between ViHOT’s head orienta-

tion estimation and the ground truth obtained by a Samsung GearVR

headset worn on the back of the driver’s head as in Fig. 2 (to avoid

blocking the eyesight and avoid the unintended WiFi signal reflec-

tion from the headset rather than the head), and then compute

the CDF of the deviations across multiple head-turning events in

different experiments.

5.2 Testing Various Configurations

5.2.1 Prediction Horizon. VR/AR applications incur heavy compu-

tation overhead and suffer from high rendering latency. Therefore,

in existing VR/AR studies, speculative rendering facilitated by the

head pose prediction is often used to mask such delays [6, 25]. To

support in-vehicle AR, ViHOT is capable of predicting the head

orientation in the near future (Sec. 3.4.6.) We evaluate such pre-

dictive tracking performance under different prediction horizons.

Following the experiment setup in Sec. 5.1, we benchmark ViHOT’s

head orientation estimations, which are measured under a list of
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Figure 10: Orientation prediction accuracy (angular).

Figure 11: Antenna place-

ment affects the CSI-

orientation mapping.
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Figure 12: Tracking accuracy

under various antenna place-

ments.

prediction horizons from 0ms to 400ms , against the ground truth,

then plot the average estimation error in Fig. 10a with error bars

showing the standard deviation, and CDF of the estimation error

across multiple experiment sessions in Fig. 10b.

From the results in Fig. 10a, we first observe that the fine-grained

head orientation estimation is very accurate under a small predic-

tion horizon, e.g., only 4◦ mean angular error for the 0ms horizon
and 6◦ for the 100ms horizon. This figure also shows that the av-

erage estimation accuracy gradually decreases as the prediction

horizon increases, but even the aggressive prediction of 400ms still
has a small 18◦ estimation error. Such performance degradation is

illustrated with more details in Fig. 10b. We see that the maximum

error for the 0ms horizon is only around 10◦ and occurs rarely. Sim-

ilarly, even for the aggressive prediction horizons, notable errors

happen very rarely and never exceed 60◦.

These results validate ViHOT’s predictive tracking design and

demonstrate its potential in applications requiring predictive &

accurate head orientation tracking.

5.2.2 Antenna Placement. ViHOT needs a WiFi TX (the phone)

in front of the driver, which is easy to achieve given the popular

phone mounts, but a vehicle manufacturer can install the RX anten-

nas at various places. How does the RX antenna placement affect

the ViHOT’s performance, and are there any guideline for placing

these antennas? We answer these questions by conducting various

experiments.

We first compare the relation between CSI phase & head orien-

tation under two different placements: the Layout 1 follows Fig. 9

while Layout 2 has two RX antennas on the center console. From

the results in Fig. 11, we observe very different shapes of the CSI

phase curves for these two placement layouts even the head-turning

patterns are similar. We then conduct more experiments under 5
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Figure 13: Tracking accuracy vs. configurations.

different placements and plot the CDFs of the head orientation

estimation error in Fig. 11. One can see the performance variations

between different layouts: the best one has less than 5◦ median

error while this error can reach 20◦ for the worst layout. Among

the tested layouts, Layout 1 in Fig. 9 offers the best performance,

so we use it in all other experiments.

We then investigate why Layout 1 leads to good accuracy: since

the head rotation merely changes the signal reflection paths, the

head orientation is “modulated” only in the phase of such reflection

paths from the head, rather than the line-of-sight (LOS) path be-

tween the TX and RX antennas. Meanwhile, for noise cancellation,

the CSI phase used in ViHOT is essentially the phase difference

between the two RX antennas (Sec. 3.1). As a result, the ideal layout

should have one RX antenna receiving only the reflected signals

(non-LOS path), and the other RX antenna seeing a LOS path, so

the phase difference between these two antennas can retain most

of the phase variation caused by the head rotation. The layout in

Fig. 9 follows this principle—the direct path from the phone to one

RX antenna is blocked by the driver’s head, and the other antenna

has a LOS path.

5.2.3 CSI Input Window Size. We further evaluate the effect of

input window size of the CSI series to find the best trade-off between

the performance and the system initialization overhead. Under

the other setups in Sec. 5.1, we vary the window size from 10ms
to 300ms . The results in Fig. 13b reveal that a longer CSI input

window leads to higher accuracy as it is more robust to the bursty

motion noise and hardware thermal noise. Even if a bursty motion

or hardware thermal noise pollute a few phase samples in the

window, the best matching of the CSI data in the window is less

likely to go wrong with more samples in a longer window.

Despite the slightly lower performance under a smaller input

window, ViHOT still achieves high accuracy under all these configu-

rations. We also note that even the smallest 10ms CSI input window
can achieve only 7◦ of estimation error while eliminating all the

ambiguity. In other words, the ViHOT’s performance is insensitive

to the CSI measurement window size, and we can thus use a small
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window to reduce the initialization time and DTW computation

overhead in deployment while retaining good accuracy.

5.2.4 Profiling-Runtime Time Interval. Despite the fast profiling,

we still wonder how the preceding temporal accuracy degradation

would behave after a certain period from the profiling. Besides

the default setups, we test 4 different intervals from 1 minute to

1 week. The results in Fig. 13a show ViHOT to be robust under a

long time gap as it can still achieve a low median estimation error

around 10◦ even for the very long 1-week case. We also observe that

although the accuracy drops with a longer interval, the performance

of those long intervals from 1 hour to 1week shares a similarmedian

estimation error of around 10◦.

The reason for this is the driver’s sitting position—for the 1-

minute test interval, the driver did not leave the seat so that the

head positions during the profiling and test remained almost the

same and accuracy is the highest, while for other tests with 1 hour

to 1 week of profiling-runtime interval, the driver left the seat

and when he returned, the head position changed slightly from

that in the profiling, leading to a higher median estimation error.

Irrespective of how long the interval is, as long as the driver leaves

the seat before the test, the level of head position change is similar,

while the other objects in the cabin usually do not change much,

explaining why the long profiling-runtime intervals from 1 hour up

to 1 week share a similar median estimation error and why ViHOT’s

performance is insensitive to the profiling-runtime interval.

5.2.5 Different Drivers & Head-Turning Speeds. ViHOT allows each

driver to quickly build her/his unique CSI profile before running

the system. However, a driver’s unique features such as the head

size, sitting pose and head turning pattern still affect the track-

ing accuracy. Therefore, we need to compare ViHOT performance

under different drivers. In this experiment, following the default

setup, we measure the tracking accuracy for 3 different drivers

(heights: 170cm – 182cm) under the same condition, and the results

in Fig. 13d demonstrate that ViHOT performs well for all 3 different

drivers, with its median tracking error always below 10◦.

One major reason of the different tracking accuracy in Fig. 13d

is the head turning speed difference due to the drivers’ habits. Fur-

thermore, the head-turning speed of the same driver may vary

with different driving conditions. Hence, we then focus on the

impact of head-turning speed on the system performance. With

the default setup and one unchanged driver, we analyze the head

orientation tracking accuracy under various head-turning speeds.

Fig. 14 showcases the CSI phase and head orientation under two

different head-turning speeds for the same driver, and the CDFs

across multiple running instances are plotted in Fig. 13c, showing

the accuracy improves with the head-turning speed. Although the

median estimation errors are always under 10◦, we see a higher

maximum estimation error for lower head-turning speed. In fact,

since our algorithm focuses on finding the best match of the win-

dowed CSI input in the CSI profile, a small head-turning speed

yields fewer features in the scope of the fixed 300ms sliding win-

dow used in this experiment. The shortage leads to more candidates

for the matching series with very close DTW distances, and finally

degrades the accuracy.

Besides, the results in Fig. 13c also concur with our conjecture

that the Doppler frequency shift caused by head rotation is not

Figure 14: Rotation speed af-

fects CSI curve shape.
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strong enough to devastate the system performance (Sec. 2.2), the

accuracy under a higher rotation speed is actually better, i.e., no

motion blur problem.We note that the head-turning speed is always

above 120◦/s in typical driving as the driver should always focus

on the road in front and turn her/his head very quickly to minimize

the time looking away from the road. Therefore, ViHOT always

achieves high accuracy5 in typical driving.

5.3 ViHOT under Various Practical Factors

5.3.1 Micro-Motions in Car Cabin. There are variousmicro-motions

inside the car cabin, such as the natural human breathing and eye

blinking, the controlled eye movements when scanning the road

condition, and the vibration of surfaces when playing music. How

do these micro-motions alter the CSI phase and affect the ViHOT

operation? In this experiment, we seek the answer to this question.

We measure the time-series of CSI phase under the aforemen-

tioned micro-motions and head turning, and then compare the

results in Fig. 15. The driver’s head turning is found to cause much

stronger phase variations than these micro-motions, so ViHOT

remains robust under such micro-motions.

5.3.2 Antenna Vibration. The micro-motions discussed in Sec. 5.3.1

change the WiFi CSI by displacing the reflecting surface of the WiFi

signal. The bumpy road condition may also incur a slight vibration

of the WiFi TX and RX antennas, thus the WiFi signal path may

also change as one or both ends of the path moves. Will that affect

ViHOT’s performance?

To answer this question, we test both the cases with and without

antenna vibration. To evaluate the upper-bound of the antenna

vibration’s effect, we use the long and soft coil antennas shown

in Fig. 9, which vibrate a lot on bumpy roads and in practice the

car’s built-in antennas have less severe vibration. From the results

in Fig. 16, we first see two almost parallel curves for the CSI phase

measured under the antenna vibration, meaning that the antenna’s

vibration has a regular pattern. We can also observe that these two

curves have almost the same shape, and the gap between them is

very small, implying that the performance should not be affected

much. Our performance evaluation results in Fig. 17a concur with

5Our evaluation uses a headset to obtain the ground truth of head orientation, but the
headset may temporarily slip away during rotation, causing a high but rare error. In
future, we plan to improve the evaluation method by using dedicated head tracking
devices for the ground truth.
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Figure 16: WiFi antenna vibration causes noisy phase.
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Figure 17: Tracking accuracy w/&w/o various factors.

this conjecture. Although the antenna vibration reduces the ac-

curacy, ViHOT’s mediate estimation error is still a very small 6◦,

demonstrating that ViHOT remains robust even under the most

extreme antenna vibration.

5.3.3 Driver’s SteeringMovement. Wenow validate the driver steer-

ing identifier design (Sec. 3.6) that is used to identify and filter out

the CSI variations caused by the driver’s steering movement. To

show the efficacy of this module, we compare the head orienta-

tion accuracy measured under the same setup as in Sec. 5.1, while

enabling/disabling the driver steering identifier in each experiment.

The results in Fig. 17b first show that the driver’s steering move-

ment can affect the head-tracking accuracy, and the estimation

error can rise up to 80◦. We can also see the significant accuracy

improvement when the driver steering identifier is turned on to

detect the steering-related CSI phase variations, demonstrating the

efficacy of this module.

5.3.4 Presence of Passengers. In many situations, people do not

drive alone, and ViHOT has considered the interference of the

passenger’s movements by attaching the phone (WiFi sender) in

front of the driver, so the WiFi signal reflected on the driver’s head

is much stronger than the signal reflected on the passenger due to a

shorter propagation path. The results in Fig. 17c validate this design

choice by comparing ViHOT’s accuracy measured with and without

a passenger sitting by the driver. The participating volunteer acts

as a normal passenger who turns his head infrequently to look at

roadside scenes. Fig. 17c shows very similar performance for these

two cases with close median estimation error. Only a few of head-

turning instances yield high estimation error which corresponds

to the moments when the passenger turns his head, and the error

never exceeds 60◦.
5.3.5 Nearby WiFi Traffic. ViHOT is built on the commodity WiFi

interface, thus other devices sharing the ISM band may cause in-

terference, e.g., WiFi in the roadside building may interfere with

ViHOT. To create the interfering WiFi traffic, we parked the car by

the side of a building, then put another laptop on the passenger

seat playing a Youtube video through the WiFi connection to the

AP in the building, and finally performed experiments according to

the setup in Sec. 5.1 during the video streaming.

The results in Fig. 17d show that ViHOT’s accuracy degrades

under the WiFi interference. Since WiFi has CSMA to avoid packet

collisions, the collected CSI remains clean even under the interfering

WiFi traffic; then, what causes the performance degradation? Its rea-

son lies in theWiFi frame rate or the CSI sampling frequency. When

there is no WiFi interference, ViHOT sends around 500 frames per

second at a 34ms maximum interval between frames, so the CSI

sampling frequency is 500Hz, while this sampling frequency drops

to 400Hz in the presence of WiFi interference, with a maximum

frame interval of 49ms . Since ViHOT resamples current CSI time-

series to do thematchingwith the CSI profile (Sec. 3.4.2), resampling

the data that contains a large time gap may lead to inaccurate re-

sults and a wrong matching, which, in turn, decreases the accuracy

as in Fig. 17d. Despite this performance degradation, ViHOT still

achieves an acceptable median angular error of around 10◦ in the

presence of interfering WiFi traffic.

6 RELATEDWORK

Device-based Head Tracking: Head tracking shows great po-

tential in the automotive industry, including in-vehicle AR/VR

and many subsequent applications [13, 27, 36, 42, 43, 51]. Using

embedded inertial measurement units (IMU) like accelerometer

and gyroscope, commercial head-mounted displays, represented by

Hololens[33], Oculus and HTC VIVE[18], achieve high accuracy

of head-orientation tracking to facilitate a smooth VR/AR expe-

rience indoors. Since some of the AR/VR headsets are equipped

with an internal WiFi transceiver, the authors of [23] proposed to

accurately estimate the VR user’s head position (rather than the

head orientation) by tracking the WiFi transceiver in the headset.

Another direction is to leverage the microphone on the headset

and the car’s speakers to perform acoustic ranging [53]. Unfortu-

nately, wearing a headset during driving is not only inconvenient

but also dangerous (Sec. 2.1), and in-vehicle head tracking calls for

a device-free solution.

Device-free Head Tracking: Many device-free solutions rely

on cameras and the associated image/video processing algorithms to

measure the head orientation, and their algorithms mainly fall into

two categories: geometric/shape feature-based and appearance/texture

feature-based. The shape-feature-based approaches analyze the face

model along with the geometric configuration of facial features

(eyes, lip corners, and the bounding box of the face [40]; pupils, nose

bottom, and pupil glints [20]; eye corners, nose corners, and the

nose tip [32]), while the texture-based approaches directly use raw

input data to train a wide range of learning models [2, 10–12, 34].
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Wi-Fi-based Human Sensing: Besides the camera-based solu-

tions, human activity detection based on RF signal, especially the

prevalent WiFi signal, has drawn significant attention in recent

years [59]. Despite simplicity in fingerprinting human activities,

Received Signal Strength Indicator (RSSI) hardly handles complex

environments with channel dynamics and multi-path [55]. Com-

pared to RSSI, the Channel State Information (CSI) provides more

comprehensive information of the wireless channel including the

signal attenuation, phase distortion and frequency selectivity, thus

enables a broad range of ubiquitous sensing applications for fine-

grained human activity detection. It has been shown to capture

the large-scale/“macro” human activities, such as detecting hu-

man falling down[1, 49], playing exergames [38], recognizing daily

household activities [48], detecting human presence [26], and count-

ing people in a crowd [52]. CSI has also been explored in sensing

the small-scale/“micro” movements, such as detecting a speaker’s

mouth shape [45], eavesdropping a conversation [50], identify-

ing the movements of different hands [56], monitoring a person’s

sleep [29], gauging the breathing rate [30, 46], and recognizing the

human gestures [37]. Unfortunately, such existing solutions are

not designed for in-vehicle use and are unable to handle the head

tracking challenges in a vehicle cabin.

7 DISCUSSION AND FUTUREWORK

Choice of radio frequency: Our current prototype only operates

in the 2.4GHz band due to the limitation of the CSI extraction

tool [16]. However, the concept of CSI-based head tracking is not

limited to the choice of RF signal frequency. At the deployment

stage, ViHOT may also work with 5GHz or even 60GHz frequency

as long as the phone supports these bands. In fact, we expect a

higher ViHOT’s performance on the 5GHz or 60GHz band. First,

the shorter wavelength of these bands leads to less diffraction, thus

improving the tracking accuracy. Besides, the higher propagation

loss of the 5GHz and 60GHz signals also reduces the interference

from unintended motions like passengers and cars nearby.

More accurate CSI profiling: ViHOT needs the ground-truth

head position & orientation in the CSI profiling, which can be ob-

tained by the phone’s front camera. However, the camera-based

head tracking results still contain errors. In our evaluation, we

obtained more accurate ground truth using a headset to avoid un-

derestimating our CSI-based solution due to the inaccurate ground

truth. In future, we would like to improve the CSI profiling design

with more advanced but costly ground-truth collection. Specifically,

we can design a hybrid system that uses an accurate but heavy

tracking solution for profiling while using a lightweight tracking

solution like CSI-based tracking at run-time. For instance, the new

phone models (like Sony Xperia XZs) are already equipped with a

slow-motion camera operating at around 1, 000FPS but cannot keep

running due to overheating. ViHOTmay leverage such slow-motion

cameras to achieve more accurate offline profiling and improve the

run-time accuracy without extra energy cost or overheating.

3D head tracking: Current ViHOT prototype only tracks the

head orientation in the 2D horizontal plane. Although this is rea-

sonable as a driver typically turns head in that way (Sec. 2.3), we

still consider extension of ViHOT to the 3D head tracking scenarios

like tracking the pilot’s head in the plane cockpit. ViHOT is proto-

typed for 2D tracking due to the limited number of antennas on the

802.11n devices (1 TX and 2 RX antennas are used). Since 802.11ac

is gaining popularity, up to 8 antennas may soon become available

on the cars and can then be leveraged to beam the WiFi signal to

periodically scan the 3D spaces for more accurate head tracking.

Combining with cameras: ViHOT achieves good performance

on its own. But it can also be combined with the cameras. Com-

pared to the CSI-based solutions, cameras still have their unique

advantages, e.g., they are more robust under various motions in the

cabin. In future, we can also build a hybrid system that uses sensor

fusion and energy-aware scheduling to make the most of both the

CSI-based and camera-based solutions.

Filtering passenger movements: By leveraging the 3D an-

tenna radiation pattern, current ViHOT prototype already mitigates

the impact of passenger movements by placing the smartphone

(WiFi sender) in front of the driver as described in Sec. 3.5. Since

the next-generation WiFi with MU-MIMO capability may soon be

available in future vehicles, we also consider use of multiple re-

ceiving antennas to perform RX beamforming—applying different

beamforming weights to different antennas to strengthen the WiFi

signal from the driver side and cancel that from the passenger side,

so that we can filter out theWiFi signal reflected from the passenger

and neutralize the interference of the passenger’s movements.

Computational & energy cost: ViHOT requires only 1D time-

series matching for head tracking, while camera-based solutions

require 2D image processing. Hence, ViHOT naturally incurs much

less computation than camera-based solutions, thus being more

suitable for real-time ADAS. Furthermore, in ViHOT design, most

computation is done on theWiFi receiver (expected to be embedded

soon in the vehicle) rather than the phone, and thus will not drain

the phone’s battery. The phone only has simple tasks including

periodic WiFi packet transmissions to trigger CSI measurement

and sharing its IMU readings with the WiFi receiver, consuming

much less energy than video processing.

8 CONCLUSION

We have presented ViHOT, a novel WiFi-CSI-based driver head

tracking system customized for in-vehicle use. Without requiring

any head-mounted device, ViHOT turns the driver’s smartphone

and the in-vehicle WiFi into a small radar system. It leverages the

WiFi signals reflected on the driver’s head to accurately track & pre-

dict her/his head orientation regardless of the head position. With

accurate head orientation estimation with 4◦–10◦ of median angu-

lar error and a more than 10× sampling rate than the conventional

camera-based solutions, ViHOT enables a wide range of in-vehicle

AR/ADAS applications with accurate and smooth head-orientation

tracking. Besides the in-vehicle use cases, its novel concept of CSI-

based head tracking can be applied to many practical and important

scenarios, including indoor/in-cockpit head tracking.
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