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Abstract— Cache-enabled network architecture has great
potential for enhancing the efficiency of content distribution
as well as reducing the network congestion. This, in turn, has
called for joint optimization of traffic engineering and caching
strategies while considering both network congestion and content
demands. In this paper, we present a distributed framework for
joint request/data forwarding and dynamic cache placement in
cache-enabled networks. Specifically, to retrieve the information
about content demands and network congestion over the network,
we establish a dual queue system for both requests and data,
and define a dynamic mapping between the two queues with
the help of dummy data such that the nodes can determine
packet forwarding and caching strategies based only on local
information. As the local objective function associated with Lya-
punov optimization is time-varying due to the stochastic evolution
of request/data queues, we develop a low-complexity distributed
forwarding and caching algorithm via stochastic network utility
maximization. We also prove the proposed algorithm achieves
queue stability, and derive its region stability property for
time-varying local optimization to demonstrate the convergence
behavior. The simulation results verify queue stability and shows
the proposed algorithm outperforms the existing ones.

Index Terms— Wireless communications, resource allocation,
content caching, Lyapunov optimization, network utility
maximization.

I. INTRODUCTION

THE rapid expansion of wireless services and mobile
devices has led to a rapid increase of traffic load in

wireless networks. To alleviate this increasing network load,
the popular contents can be cached at base stations (BSs), relay
stations and mobile devices, which allows users to request
their desired contents from the nearby cache-enabled nodes
for avoiding duplicate content transmission and reducing over-
the-air traffic [1], [2]. As one of the emerging techniques for
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5G communications, cache-enabled infrastructures have also
been drawing considerable interest from industry [3].

Significant theoretical and experimental research has been
done to show that content caching can significantly enhance
the system performance. A large wireless caching network
is investigated in [4] with a hierarchical tree structure of
transmissions to derive the scaling results on the capacity
region. Distributed caching at macro BSs is introduced in [5]
to improve the network capacity. In [6], caching is adopted
at BSs and mobile devices to reduce the traffic. The access
delay performance is improved by caching at relay stations
in cellular networks [7]. In [8], the energy consumption is
minimized by appropriately caching popular contents in a
proactive manner. In [9], the content caching is studied to
balance the tradeoff between content dissemination delay and
energy consumption. However, most of the existing work
designs caching strategies according to the known content
demands only without considering data-forwarding issues,
such as link sharing by multiple content objects and network
congestion due to heavy traffic.

Data forwarding can significantly affect the performance
gain with content caching. Consider a motivating example:
if a serious network congestion occurs in the transmission
path of a content object from its server to its destination node,
it is important to cache this content at the nodes near the
destination node. Therefore, it is necessary to jointly optimize
forwarding and caching, which are intrinsically coupled.

In this paper, we would like to explore distributed for-
warding and caching for cache-enabled networks. Considering
mutual coupling between forwarding and caching, there are
two technical challenges.

1) How to retrieve the network state information?
To efficiently utilize the limited link capacity and the
limited cache space at the nodes, we need to retrieve the
network state information, including content demands
and network congestion. The content demands reveal the
degree of necessity of forwarding and caching, and the
network congestion implies the transmission condition.
The excessive cost of flooding the information about
content demands and network congestion over the entire
network makes it difficult for nodes to quantitatively
retrieve the information directly.

2) How to locally optimize the performance?
The coupling between forwarding and caching
makes the local optimization problem non-convex.
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Moreover, obtaining distributed solutions for the
coupling cases involves iterative update and explicit
message passing, making it unrealistic to assume
that the wireless channel remains unchanged over the
iterations. It is nontrivial to develop efficient forwarding
and caching algorithms and investigate the convergence
behavior of such iterative algorithms.

To meet the above challenges, we develop a distributed
framework for joint request/data forwarding and dynamic
caching in cache-enabled networks. The main contributions
of this paper are two-fold:

1) Dual Queue System with Dynamic Mapping.
To indirectly extract the information about content
demands and network congestion over the network,
we establish a dual queue system including both
request/data queue sub-systems, and define a dynamic
mapping between the request/data queues such that
the nodes can retrieve the combined effect of content
demands and network congestion from local queues
only. Dummy data is designed to guarantee the mapping
when the data is not many enough. We prove that the
amount of dummy data in the network is stochastically
upper-bounded, implying that the dummy data will not
affect the stability of the proposed algorithm.

2) Distributed Forwarding and Caching with Explicit
Message Passing.
The stochastic evolution of request/data queues makes
the local objective function associated with Lyapunov
optimization time-varying. The distributed algorithms
involve iterative solutions with explicit message passing
among nodes, meaning that the objective function may
change before the convergence. By stochastic network
utility maximization, we develop a low-complexity dis-
tributed forwarding and caching algorithm. The pro-
posed algorithm updates the request/data forwarding
and cache placement strategies iteratively. We prove
that the proposed algorithm achieves the queue stability
and derive its region stability property in stochastic
environments to demonstrate the convergence behavior.

The rest of this paper is organized as follows. Section II
discusses the related work and Section III presents the system
model. In Section IV, we establish a dual queue system by
allowing neighbor nodes to exchange the request and data
packets. In Section V, we propose the joint forwarding and
caching algorithm, which can be implemented distributively
with a low complexity. Following this, the performance of the
proposed algorithm is evaluated in Sections VI. Finally, this
paper concludes with Section VII.

II. RELATED WORK

This paper proposes a distributed forwarding and caching
algorithm with a dual queue system to address the two
technical challenges mentioned above. We briefly review the
existing research on these challenges.

A. Network State Retrieval From Local Information

Instead of retrieving the network state information directly,
one commonly adopted approach is the back-pressure

algorithm [11], in which the local queue information is utilized
and the forwarding over a link is driven by the differences of
queue lengths at transmit and receive nodes. It is demonstrated
that by embracing the back-pressure algorithm, the throughput
performance can be optimized such that the stability of general
multi-hop queueing networks can be ensured for any arrival
rate vector within the network stability region [12].

Significant research has been done on back-pressure algo-
rithms for data forwarding, but most of it adopts the back-
pressure algorithm operating on data queues. A distributed
resource allocation algorithm is proposed in [13] to meet
end-to-end throughput demands for multiple sessions using
back-pressure data forwarding in multi-hop networks. More
efficient routes are selected in [14] according to back-pressure-
based forwarding to achieve desirable delay performance and
avoid the waste of network resources.

In contrast with the above efforts where the data trans-
mission is initiated by source nodes, in the cache-enabled
networks, the data transmission is usually initiated by data
requesters (content consumers), and the nodes which cache the
contents do not maintain a long queue to provide the pressure
for data forwarding. As a result, the back-pressure algorithm
operating on data queues cannot account for dynamic con-
tent demands. To overcome this problem, a back-pressure
algorithm operating on request queues is proposed in [15],
where the local request queue information is adopted for
providing the demand information for data forwarding and
content caching. However, our problem is different due to
the consideration of the mutual coupling between forwarding
and caching, where the information about network congestion
is implied in the data queues. To this end, we construct
a quantitative dynamic mapping between data and request
queues, such that the combined effect of network congestion
and content demands can be captured from the local queue
information.

B. Joint Forwarding and Caching Optimization

In the literature, the joint routing and caching optimization
in cache enabled networks has recently drawn extensive atten-
tion. In [16], a centralized joint routing and caching algorithm
is proposed, where the needed content can be accessed either
in one hop or two hops. In [17], collaborative caching among
small-cells is mainly considered, which exploits heterogeneous
cache diversity that accounts for the superiority over the
non-cooperative paradigm. Different to the above two works,
we address the issue of the mutual coupling between routing
and caching in a multi-hop network and in a distributed
manner, in which we retrieve the network state information
by establishing a dual queue system with dynamic mapping,
such that we are able to extract the combined effects of both
content demands and network congestion locally to optimize
the performance. In [18], joint caching and routing schemes
with optimality guarantees for arbitrary network topologies
are investigated in view of minimizing the routing cost, and
takes the assumption that data follows the same path as its
corresponding request, which may result in traffic congestion
due to the asynchronism of the source routing.
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It is very challenging to jointly optimize forwarding and
caching due to the requirement on iterative explicit message
passing in distributed implementation. A throughput-optimal
caching and forwarding algorithm is proposed in [15] for
named data networks using Lyapunov optimization, where
caching and forwarding are decoupled by local optimization.
In [19], taking one more step, the authors further improve the
performance of the existing VIP algorithms in [15] by reflect-
ing more accurately the actual interest packet traffic in the
NDN network under interest suppression. However, the cost of
this decoupling is loosening the bound of the Lyapunov drift
which is not the global optimization objective, reducing the
improvement of performance. A potential-based forwarding
algorithm is proposed in [20] for information-centric networks,
while the random caching is adopted. In [21], cooperative
caching algorithms are heuristically designed without optimiz-
ing the forwarding strategy jointly.

These existing studies utilize heuristic algorithms or tech-
nical tricks to avoid the coupling between forwarding and
caching, such that forwarding and caching can be opti-
mized separately, which significantly simplifies the problem.
We address this issue head-on by embracing both Lyapunov
optimization and stochastic network utility maximization.

C. Stability-Based Considerations

There are several common approaches to handle stability-
based delay-aware resource allocation [22]. Large devia-
tion [23] is an approach to convert the delay constraint into
an equivalent rate constraint. However, this method achieves
good delay performance only for a large delay regime.
Stochastic majorization [24] provides a way to minimize the
delay for the cases with symmetric arrivals. Markov decision
process (MDP) [28] can minimize the delay for general cases
but leads to the curse of dimensionality by brute-force value
iteration.

Lyapunov optimization [10] is an effective approach on
queue stability, which ensures that the queue system is stable
as long as the average arrival rates are within the system
stability region. In addition, the Lyapunov optimization has
two benefits for solving the problem in our work,

1) The scheduling decision is make purely based on local
information, i.e., channel conditions with the neighbor
nodes and local queue backlogs. The Lyapunov drift
approach that we adopt divides the queue stability into
the effort of minimizing the drift in each time slot.
Therefore, we are able to optimize the performance in
a distributed manner.

2) Lyapunov optimization approach has a lower computa-
tional complexity to achieve the queue stability, which
makes it possible to apply the proposed algorithm to
very general scenarios with different request models.

By embracing Lyapunov optimization, we are trying to opti-
mize both the delay performance (by the average queue
backlog) and the power consumption, where we can adjust the
Lagrangian multiplier νij (i.e., the price of power) to optimally
balance delay performance and power consumption.

TABLE I

LIST OF NOTATIONS

III. SYSTEM MODEL

We introduce the architecture of cache-enabled networks
and outline the key resource-allocation variables. After dis-
cussing the queue dynamics, we formulate the forwarding and
caching problem from a queue stability perspective. We have
summarized the notations of main symbols in Table I.

A. Network Architecture

Consider a multi-hop cache-enabled network modeled by
a directed graph G = (N ,L), where N and L are the sets
of N nodes and L links, respectively. Assume that (i, j) ∈ L
whenever (j, i) ∈ L due to the channel reciprocity. Let Z(i) be
the set of the neighbor nodes of node i, i.e., for any j ∈ Z(i),
(i, j) ∈ L. Time is slotted and the duration of each time
slot is one unit of time. The channels remain constant within
a time slot and is i.i.d. over time slots. Let Cij(t) be the
time-varying channel capacity of link (i, j) at time slot t, and
C(t) = {Cij(t), ∀(i, j) ∈ L} as the global channel capacity
information1 at time slot t.

The storage space at a node is consisted of two parts,
namely, a CDN server2 and a buffer. One of the typical
functionalities of a CDN server is content outsourcing and
distributions, i.e., to replicate and cache contents. Let Si ≥ 0
be the size of cache at node i ∈ N . The contents in the
network are represented by K data objects, denoted as K.
For simplicity, we assume that all content objects have the
same size3 [16], [18], [19]. We consider the cases with limited
cache sizes, i.e., Si < K, ∀i ∈ N , where no node can cache
all content objects.4 To make sure the system is stabilizable,
there is a designated server node that always caches all the
data objects [18]. This server node permanently stores all data
objects in excess memory outside its cache.

1The effect of MAC can be included in the link capacity where the MAC
scheme is given.

2In the rest of the paper, the CDN server is referred as cache for simplicity.
3Our work can be extended to more general cases with different content

size by partitioning data objects with different size into fine-grained mini
data objects with the same size.

4There is usually much more data than a node’s cache can hold. Otherwise,
each node caches all the data, making the cache placement problem trivial.
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At the beginning of each slot, a node decides on two
actions, including data forwarding and cache placement. The
associated control variables are defined as:

• Cache placement b(t): Define b(t) =
{
bk
i (t), ∀i ∈

N , ∀k ∈ K}
, where bk

i (t) ∈ {0, 1} and bk
i (t) = 1

represents that node i caches data object k in slot t.
• Data forwarding rate r(t) 5: Define r(t) ={

rk
ij(t), ∀i, j ∈ N , ∀k ∈ K}

, where rk
ij(t) is the

rate of data object k from node i to node j in slot t.
Note that rk

ij(t) = −rk
ji(t), where the negative rate indicates

the transmission along the reverse direction of the link.

B. Queue Dynamics and Stability

There is a bursty request arrival at each node.6 Let A(t) =
{Ak

i (t), ∀i ∈ N , ∀k ∈ K} be the random request arrival from
the application layer. Assume that A(t) is i.i.d. over time slots,
with E[Ak

i (t)] = λk
i , where λk

i is the average request arrival
rate for data object k at node i.

Each node has a request queue recording the unsatisfied
requests, whose length is denoted as W k

i (t) for data object k
at user i in slot t. Let W(t) = {W k

i (t), ∀i ∈ N , ∀k ∈ K}
be the global request queue information7. A request is met
when and only when receiving a copy of the requested data
object. Especially, if node i determines to cache data object k,
it generates as many copies as necessary to satisfy the requests
until all the requests are satisfied, i.e., the queue W k

i (t) reaches
zero. The queue dynamics of W k

i (t)is

W k
i (t+1) =

(
1 − bk

i (t)
)
(

W k
i (t) −

∑

j∈Z(i)

rk
ji(t)

)+

+ Ak
i (t),

(1)

where (x)+ represents max{x, 0}.
It is important to study the problem from the perspective

of queue stability. Unstable queues result in infinite delay
for the nodes requesting the data. It also builds up network
congestion. According to [10], we define the queue stability as:

Definition 1 (Queue Stability): A queue W k
i (t) is strongly

stable if

lim
T→∞

1
T

(
T∑

t=0

E[W k
i (t)]

)

< ∞. (2)

The system is said to be stable if all the queues in the system
are strongly stable.

Furthermore, to ensure that the system is stabilizable,
we define the capacity region following [10] as:

Definition 2 (Capacity Region): The capacity region Λ is
defined as the closure of the set of all input rate vec-
tors λ stabilizable under some rate allocation algorithm

5Since buffers only temporarily cache the data without the capability of data
replication, if a node have several requests for the content that is not cached
in the CDN server, it needs to receive the same amount of copies to satisfy
the requests due to the heterogeneity of the storage space.

6Similarly to [15], node i is considered as a point of aggregation which
combines many network users. Such an aggregation point is likely to submit
many requests for a given data object over time.

7W(t) cannot capture the network state information since it contains only
the requests of the node itself. In section IV, we propose a dual queue system
to address this issue.

that conforms to the transmission capability constraint∑
k∈K rk

ij(t) ≤ Cij(t).
Throughout this paper, we assume that the input rate vector

λ is strictly interior to the capacity region, such that the system
is stabilizable.

C. Problem Formulation

Our goal is to stabilize the system by optimizing forwarding
and caching strategies. For any λ ∈ Λ, the cache placement
b(t) and data forwarding rate r(t) should satisfy the following
conditions:

W k
i (t), ∀i ∈ N , ∀k ∈ K, are strongly stable, (3)

∑

k∈K
rk
ij(t) ≤ Cij(t), ∀(i, j) ∈ L, (4)

∑

k∈K
bk
i (t) ≤ Si, ∀i ∈ N , (5)

bk
i (t) ∈ Vk

i (t), ∀i ∈ N , ∀k ∈ K, (6)

where (3) implies the stability constraint, (4) implies the
limitation on link capability, (5) implies the limitation on cache
size and (6) implies that the caching decision of a node is
based on an action set V(t), which is determined from the
currently received data objects, i.e., Vk

i (t) = {0, 1} if data
object k is available to cache at node i, and Vk

i (t) = {0} if
data object k is not available.

Without prior knowledge of traffic arrival rates, which are
generally not known to the controller or users, it is difficult to
directly judge whether the stability constraints (3) are satisfied.
By rewriting (3) as the queue stability condition in Defini-
tion 1, we will design a distributed forwarding and caching
algorithm, observing the local queue information to fulfill the
stability constraint and the above limitations by establishing a
dual queue system and optimizing the forwarding and caching
strategies locally.

IV. DUAL QUEUE SYSTEM WITH DYNAMIC MAPPING

The current request queue W(t) cannot capture the network
state information because it contains only the requests of the
node itself. To retrieve the network state information, including
content demands and network congestion, we allow the nodes
to forward the requests such that the local queue information
can capture this network state information.

In this section, we will address the first technical challenge
by establishing a dual queue system including request/data
queue sub-systems. Furthermore, we will define the dynamic
mapping between both request/data queues and present the
queue dynamics in this new dual queue system.

A. Request Forwarding

To make the content demands extractable from the local
queue information, we allow the nodes to forward the requests,
such that the request queue of a node contains not only the
requests generated by itself but also those from other nodes
in the network. We introduce a new control variable for this:

• Request forwarding rate μ(t): Define μ(t) ={
μk

ij(t), ∀i, j ∈ N , ∀k ∈ K}
, where μk

ij(t) is the
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request forwarding rate of data object k from node i to
node j in slot t.

Remark 1 (Physical Meaning of Request Forwarding): The
request queues can be interpreted as the potential. For any
data object, there is a downward gradient from the nodes with
longer queues to those with shorter ones, which is similar to
load balancing with the back-pressure algorithm.

With requests forwarding, we establish a dual queue system,
which includes request queues Q(t) and data queues D(t),
where Qk

i (t) and Dk
i (t) are the request and data queues,

respectively, for data object k at user i in slot t.

B. Dynamic Mapping Between Data and Request Queues

Besides the content demands, the network congestion infor-
mation is also important. It is possible to extract the network
congestion information from data queues, while the content
demands are captured by request queues. For extraction of
the combined effect of both content demands and network
congestion, we define a dynamic mapping between data and
request queues.

The concept of this dynamic mapping is, when the requests
are forwarded from node i to its neighbor node j, the same
amount of data should be transmitted over the reverse link,
i.e., from node j to node i. However, it is nontrivial to achieve
this from time to time, because the data queue of node j may
not always be long enough for transmission. To render this
dynamic mapping valid, we introduce the concept of dummy
data. Let H(t) denote the dummy data queue, where Hk

i (t)
is the dummy data queue for data object k at user i in slot t.

With the dynamic mapping between data and request
queues8, we can determine data forwarding rate rk

ij(t) indi-
rectly by controlling the request forwarding rate μk

ij(t).
However, rk

ij(t) cannot be determined simply as rk
ij(t) =

−μk
ij(t), because the data queue is not always long enough

for the transmission on the reverse link. Let γk
ij(t) denote the

dummy data rate for data object k on link (i, j). We need
to discuss the values of μij(t), Qk

i (t) and Dk
j (t) before

determining rk
ij(t) and γk

ij(t). Here, we assume that the
requests are sent from node i to node j, i.e., μk

ij(t) > 0 and
μk

ij(t) ≤ Qk
i (t),

• The data queue is long enough, μk
ij(t) ≤ Dk

j (t): The
request rate equals the data rate over the reverse link
rk
ij(t) = −μk

ij(t) without transmitting the dummy data,
i.e., γk

ij(t) = 0.
• The data queue is not long enough, μk

ij(t) > Dk
j (t):

The request rate equals the data rate plus the dummy
data rate rk

ij(t)+γk
ij(t) = −μk

ij(t) with node j generates
γk

ji(t) = μk
ij(t) − Dk

j (t) dummy data.
Note that the dummy data are generated to balance the ideal

mapping, which are not actually transmitted over-the-air.9

8It is not necessary for the dynamic mapping that the data forwarding rate
is equal to the request forwarding rate, since some systems may have the
capability to copy the data packets. Our proposed dual queue system can
be extended to the cases where the relationship between the data forwarding
rate and the queue length is determinate by adjusting the dynamic mapping
between data and request queues.

9We will later prove that the number of dummy data is stochastically upper-
bounded, which will not affect the stability of the queuing system.

Besides the transmission between nodes, the dynamic map-
ping between data and request queues also exists when the
packets enter and exit the network. The requests are removed
from the system when they are forwarded to a node which
caches the requested data object, while the same amount of
data is generated by this node. The requests are added into the
system while the data or dummy data are removed from the
system with a total rate Ak

i (t). One major difference between
actual and dummy data is that when dummy data are received
by the node requesting the data, extra requests will be added
to the system because the requests are not actually met.

C. Queue Dynamics in Dual Queue System

1) Dynamics of the Request Queues: In the request queue
sub-system, using the request forwarding rate μk

ij(t) instead
of the data forwarding rate rk

ij(t) in (1) due to the mapping
between r(t) and μ(t), we obtain the queue dynamics of the
request queue Qk

i (t) as

Qk
i (t + 1) =

(
1 − bk

i (t)
)(

Qk
i (t) −

∑

j∈Z(i)

μk
ij(t)

)+

+ Ak
i (t) + min{Hk

i (t), Ak
i (t)}. (7)

where

(
Qk

i (t)−∑
j∈Z(i) μk

ij(t)
)+

in the first term represents

request forwarding with neighbor nodes,
(
1 − bk

i (t)
)

in the
first term represents if node i determines to cache data object
k, it generates as many copies as necessary to satisfy the
requests until all the requests are satisfied, and the last term
min{Hk

i (t), Ak
i (t)} is the extra requests which are added due

to the receipt of dummy data.
The data queue sub-system consists of two closely related

queues, namely the data queue and the dummy data queue. The
dummy data are generated to balance the dynamic mapping
between data and request queues when the data queue is not
long enough.

2) Dynamics of the Data Queues: The dynamics of the data
queue Dk

i (t) satisfies

Dk
i (t + 1) =

(
Dk

i (t) −
∑

j∈Z(i)

rk
ij(t) −

(
Ak

i (t) − Hk
i (t)

)+

+ bk
i (t)

∑

j∈Z(i)

(
rk
ij(t)

)+
)+

. (8)

Data generation: Data can only be generated at the node
caching the specific data, hence the request queue of this node
is empty. While the request queues of the neighbor nodes are
non-empty, the neighbor nodes will forward requests to this
node. Then, the received requests move out of the system, and
the same amount of data is generated and transmitted over the
reverse link. This procedure accounts for the second term and
the last term.

Data consumption: Upon data arrival, the data are used to
satisfy the local request first, i.e., requests and data cancel
out when meeting. The rest of the data are then stored in the
data queue waiting forwarding. This procedure accounts for
the third term.
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Fig. 1. Illustration of the dual queue system.

3) Dynamics of the Dummy Data Queues:

Hk
i (t + 1)

=
(

Hk
i (t) −

∑

j∈Z(i)

γk
ij(t) − Ak

i (t)

+
(
1 − bk

i (t)
)
( ∑

j∈Z(i)

μk
ji(t)−Hk

i (t)−Dk
i (t)

)+)+

. (9)

Dummy data generation: Dummy data are generated at a node
when the sum of request rates from its neighbors is larger than
the sum of the dummy data queue length and the data queue
length. This procedure accounts for the second term and the
last term.

Dummy data consumption: This procedure is similar to
that of data consumption. Upon the arrival of dummy data,
the dummy data are used to satisfy the local request first and
the remaining dummy data are put into the dummy data queue.
Extra requests will be added if dummy data are consumed,
which accounts for the third term.

Fig. 1 illustrates how the dual queue system works. The
dual queue system consists of two sub-systems, namely the
request queue sub-system and the data queue sub-system.
There is a downward gradient from node 1 to the data source,
which is similar to load balancing through the back-pressure
algorithm. Unlike the conventional back-pressure algorithm
operating on data queues, we operate on request queues to
consider dynamic content demands. The longer the request
queue becomes, the more urgent the node needs the data.
The growth of node 1’s request queue leads to the growth
of those of nodes 2 and 3, which results in a larger amount
of data transmitted over the reverse link due to the dynamic
mapping between data and request queues. The dummy data
is generated to balance the ideal mapping and is not actually
transmitted over-the-air. The satisfied dummy data needs to be
added to the system again because the requests are not actually
met. The dummy data are generated to establish the system,
and the correspondent excessive data stay in the system for
the dynamic mapping, which are the cornerstone of the dual
queue system.

V. DISTRIBUTED FORWARDING AND

CACHING ALGORITHM

In the dual queue system, nodes forward the requests and
are equipped with a quantitative relationship with data queues

such that they can obtain network state information for the
forwarding and caching optimization based on local request
queues Qk

i (t). The key obstacle in deriving a distributed
forwarding and caching algorithm is the iteration with explicit
message passing in a stochastic environment, which is due to
the coupling between forwarding and caching.

Here we address the second technical challenge by decom-
posing the Lyapunov drift optimization problem via stochastic
network utility maximization. Two decomposed subproblems,
including forwarding and caching optimizations, are solved
iteratively. Furthermore, we analyze the queue stability prop-
erty and the region stability property for time-varying local
optimization to demonstrate the convergence behavior.

A. Stability-Driven Optimization

To meet the stability constraints, we adopt the Lyapunov
optimization method with a commonly-used quadratic
Lyapunov function [10], which increases quadratically with
the queue length and can provide a large enough penalty to
stabilize the system. The Lyapunov function is

L
(
Qk

i (t)
)

=
∑

i∈N

∑

k∈K

(
Qk

i (t)
)2

. (10)

According to Definition 1, all queues should be stabi-
lized for system stability. Thus, we formulate the associated
Lyapunov drift optimization problem as

max
µ(t),b(t)

Y (μ(t),b(t))

=
∑

i∈N

∑

k∈K

(
2
(
1 − bk

i (t)
)
Qk

i (t)
∑

j∈Z(i)

μk
ij(t)

+ bk
i (t)

(
Qk

i (t)
)2 + bk

i (t)
( ∑

j∈Z(i)

μk
ij(t)

)2)
. (11)

See Appendix A for the detailed derivation of the above
Lyapunov drift optimization problem.

Note that the optimization problem (11) is a non-convex
and non-monotonic problem even after relaxing the feasible
region of b(t) to [0, 1]. It is very difficult to obtain a closed-
form solution and extract insights on the design of forwarding
and caching. This is because the queues are coupled with each
other due to the coupling constraints of the request forwarding
rate μ(t) and the caching placement b(t), which stem from
the limitations of link capacity and cache size.
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B. Decomposed Forwarding and Caching Optimization

To derive a distributed algorithm, we decompose the opti-
mization problem in (11) into subproblems for each node
and each link by using a similar approach to network utility
maximization. However, unlike conventional network utility
maximization, we consider its iterative solution in a stochas-
tic environment. Specifically, the stochastic evolution of the
request queue Qk

i (t) and the link capacity Cij(t) yield the
time-varying property of the optimal value.

By rewriting the optimization problem in (11) in the view of
nodes, we decompose it into the caching subproblems for each
node to optimize b(t) with given μ(t). Similarly, by rewriting
this optimization problem in the view of links, we decompose
it into the forwarding subproblems for each link to optimize
μ(t) with given b(t). Following the above discussion, next
we design and present a distributed algorithm.

1) Caching Optimization: Rewrite (11) in a form that can
be decomposed by nodes:

max
b(t)

∑

i∈N

∑

k∈K
2Qk

i (t)
∑

j∈Z(i)

μk
ij(t)

+
∑

i∈N

∑

k∈K
bk
i (t)

(
Qk

i (t) −
∑

j∈Z(i)

μk
ij(t)

)2

.

s.t.
∑

k∈K
bk
i (t) ≤ Si, ∀i ∈ N . (12)

Theorem 1 (Optimal Cache Replacement Algorithm):
Given request forwarding rate μ(t), for the optimality of the
caching objective (12), the caching priority function is

fk
i (t) =

(
Qk

i (t) −
∑

j∈Z(i)

μk
ij(t)

)2

. (13)

In the optimal caching strategy, the data objects with the
highest Si caching priorities are stored at node i.

Proof: By taking a partial derivative of (12) with respect
to bk

i (t) for each i and k, we obtain the caching priority
function (13).

Since (12) is linear in bk
i (t), considering the limitation on

cache size in (5), the data objects with the highest Si caching
priorities should be stored for optimality.

Remark 2: (Interpretation of Theorem 1): The request
queue length represents the urgency of requiring the data
object. The longer the request queue length is, the more urgent
the data object should be cached. When the requests are
forwarded to neighbor nodes, the data are sent back on the
reverse path at the same rate, thus lowering the urgency.

2) Forwarding Optimization: Rewrite (11) in a form that is
decomposable by links,

max
µ(t)

∑

(i,j)∈L

∑

k∈K
2μk

ij(t)
(
Qk

i (t)
(
1−bk

i (t)
)−Qk

j (t)
(
1−bk

j (t)
))

+
∑

i∈N

∑

k∈K

(
bk
i (t)

(
Qk

i (t)
)2

)

s.t.
∑

k∈K
μk

ij ≤ Cij(t), ∀(i, j) ∈ L. (14)

Theorem 2 (Optimal Request Forwarding Algorithm):
Given a caching placement vector b(t), for the optimality of
the forwarding objective (14), the request rate allocated for
data object k over link (i, j) is

μk
ij(t) =

1
2
(
ωk

ij(t) − ω∗
ij(t)

)+
, (15)

where ω∗
ij(t) satisfies

∑

k∈K

1
2
(
ωk

ij(t) − ω∗
ij(t)

)+ = Cij(t), (16)

and ωk
ij(t) = Qk

i (t)
(
1−bk

i (t)
)−Qk

j (t)
(
1−bk

j (t)
)

is a weight
depending on the difference between the request queues of the
two end nodes of link (i, j) for data object k.

Proof: Taking partial the derivative of (14) with respect
to μk

ij(t) for each link (i, j) and object k using the Lagrange
method, we obtain

∂Y (μ(t))
∂μk

ij(t)
= 2ωk

ij(t) − νij , (17)

where νij is the Lagrangian multiplier which is adjusted to
satisfy the link capacity constraint (14).

Instead of scheduling the requests for only one data object as
the conventional back-pressure algorithm, we schedule request
packets at a finer granularity for multiple data objects for
transmission in the same time slot. This is to achieve better
performance. One request for the data object with the largest
ωk

ij(t) will be scheduled according to (17) and ωk
ij(t) decreases

with the transmission. Executing such an algorithm iteratively
finds the optimal solution to (14), where the requests for
the data objects which satisfy ωk

ij(t) > ω∗
ij(t) are scheduled

with a request rate that is a half of the backlog difference,
i.e., μk

ij(t) = 1
2

(
ωk

ij(t)−ω∗
ij(t)

)+
. The total transmission rate

is limited by the constraint (14), which provides a convenient
way of determining ω∗

ij(t) by substituting (15) into (14).
Remark 3 (Interpretation of Theorem 2): This back-

pressure-based forwarding algorithm allocates a request rate
for each data object and each link, which is different from
the back-pressure scheduling that schedules only one user.
Specifically, the larger ωk

ij(t) is, the larger request rate is
allocated. ωk

ij(t) is related to the queue difference, the back-
pressure approach maximally balances the queues to avoid too
long request queues in some part of the network.

Note that both the back-pressure-based forwarding algo-
rithm and the max-weight caching algorithm are distributed
algorithms. To implement such a forwarding algorithm, neigh-
bor nodes need to exchange their queue length information
periodically via explicit message passing. The implementation
of such a caching algorithm only needs local decisions without
any information exchange.

C. Algorithm Design

Based on the decomposed forwarding and caching optimiza-
tion, we propose an algorithm to solve the two types of sub-
problems. We adopt a modified order of updates: Gauss-Seidel
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algorithm [28], which iteratively adjusts only one variable to
its optimal value while keeping the other variables intact, i.e.,

xi(t + 1) = argmax
xi

f

(
x1(t + 1), · · · , xi−1(t + 1),

xi, xi+1(t), · · · , xn(t)
)

,

where x1, · · · , xn represent the optimization variables.
Note that the variables can be updated at only one iteration

in each time slot due to explicit message passing, while the
objective function will change due to the stochastic evolution
of Qk

i (t) and Cij(t) in the next time slot.10

Algorithm 1 provides the details of this using pseudo codes,
which is launched at the beginning of each time slot.

Algorithm 1 Distributed Forwarding and Caching Algorithm
1: loop
2: Each node i observes channel capacity Cij(t), j ∈ Z(i).
3: Each node i receives the information about the request

queue length Qk
j (t) and the cache status bk

j (t) of its
neighbors ∀j ∈ Z(i), ∀k ∈ K.

4: Allocate the request rate μ(t) according to (15) in
Theorem 2.

5: The data rate r(t) and the dummy data rate γ(t) are
obtained according to μ(t), D(t) and C(t).

6: Each node i observes current request rates of connected
links μk

ij(t), j ∈ Z(i) at t.
7: Compute the caching priority function according to (12).
8: The data objects with the largest Si caching priorities are

stored at node i at t according to Theorem 1.
9: The queues are updated according to (7), (8), and (9).

10: end loop

In Algorithm 1, lines 3–5 optimize the request rate μ(t) and
then obtain the data/dummy data rate, and lines 6–8 optimize
the caching strategy b(t). The request forwarding rate μ(t)
and cache placement b(t) are updated online and iteratively.

Remark 4 (Computational Complexity of Algorithm 1): The
most time-consuming part of Algorithm 1 is the ordering in
line 8, which could be solved using a quick sort with the
running time O(K log2 K). The optimal request forwarding
rates in Line 5 can be found using the gradient method,
whose complexity is low, and the other parts can be cal-
culated in closed-form, whose computational complexity are
low.

D. Performance Evaluation

In this subsection, we first demonstrate the convergence
behavior of the proposed algorithm. Then, we prove that the
proposed algorithm achieves queue stability, such that the
system is stabilized. Finally, the performance overhead brought
by allowing the nodes to forward the requests is analysed,
including the queue system overhead and the communication
overhead.

10Although the result after one iteration is suboptimal, such a solution
actually track the trajectory of optimal values in a stochastic evolutionary
environment, which will be proved later.

The stochastic evolution of request/data queues makes the
local objective function associated with Lyapunov optimiza-
tion time-varying. The distributed algorithms involve iterative
solutions with explicit message passing among nodes, meaning
that the objective function may change before the iterative
algorithms converge, which indicates that the optimal point
is also changing and hence, the algorithm trajectory will
not converge to a single point but rather a limit region.
Therefore, to analyse the convergence property of the proposed
algorithm in time-varying environments, we invest the region
stability property of the proposed algorithm alternatively,
which is a widely adopted performance measure of iterative
algorithms in time-varying environments, especially for hybrid
systems [26], [27]. The region stability is defined as follows.

Definition 3 (Region Stability): A discrete-time system
with state vector x(t) is said to be stable w.r.t. a limit region
X , if for every trajectory x(t,x(0)), there exists a time instant
T (x(0)) such that from then on, the trajectory is always
within the limit region X . Mathematically, ∀x(t,x(0)),
∃T (x(0)), such that x(t,x(0)) ∈ X , ∀t ≥ T (x(0)).

To analyze the tracking behavior of the proposed algorithm,
we first consider the case when the request queue lengths
and the channel capacity remain unchanged within a time
slot. Let Y ∗(t) denote the optimal value of (11) in slot t.
In slot t, the proposed iterative algorithm executes the iteration
once. We introduce the contraction property of the proposed
algorithm,

Y ∗(t) − Y 1(t) ≤ β(t)(Y ∗(t) − Y 0(t)), (18)

where β(t) is referred to as the contraction modulus of
an iteration in slot t, Y 0(t) (Y 1(t)) represents the value
before (after) performing the iteration in slot t. Note that the
contraction modulus satisfies β(t) < 1, because the proposed
algorithms try to reduce the difference among the request
queues at the nodes, and hence the quadratic Lyapunov drift
decreases, i.e., the objective function increases Y 1(t) > Y 0(t).

Based on the above analysis, we derive the region stability
of the proposed algorithm in the following theorem.

Theorem 3 (Region Stability): There exists a time instant T
such that for t > T , the trajectory of the objective function
(11) is always within a limit region

X =
{

x|x ≤ max
t>T

Y ∗(t) + δ
β

1 − β
+ Δ

}
, (19)

where Δ can be chosen arbitrarily small, δ = maxm>T

δm−1,m = maxm>T |Y ∗(m) − Y ∗(m − 1)| denotes the
maximum distance between the target optimal solution of one
slot and that of the next slot, β = maxm>T β(m) represents
the minimum performance improvement per time slot.

Proof: Please refer to Appendix B.
Remark 5 (Interpretation of Theorem 3): The trajectory of

the objective function is always within a limit region X , which
indicates a bounded tracking error.

Next, we prove that the proposed algorithm achieves queue
stability in the following theorem, such that the system is
stabilized.

Theorem 4 (Queue Stability): If the performance under the
proposed algorithm is 1

1+α of that under the optimal algorithm,
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then the capacity region will shrink by 1
1+αλmaxI, and the

corresponding average queue lengths satisfy

lim
T→∞

1
T

( T∑

t=0

∑

i∈N

∑

k∈K
Dk

i (t)
)
≤ lim

T→∞
1
T

( T∑

t=0

∑

i∈N

∑

k∈K
Qk

i (t)
)

≤ (1 + α)B
2(ε − 1

1+αλmax)
, (20)

lim
T→∞

1
T

( T∑

t=0

∑

i∈N

∑

k∈K
W k

i (t)
)
≤ (1+α)B

2(ε− 1
1+αλmax)

, (21)

Proof: Please refer to Appendix C.
Remark 6 (Interpretation of Theorem 4): For any input

rate vector λ interior to the capacity region Λ − 1
1+αλmaxI,

all queues in the system can be stabilized by Theorem 4.
Finally, the performance overhead brought by allowing the

nodes to forward the requests is analysed, including the queue
system overhead and the communication overhead.

Queue System Overhead: To render the dynamic mapping
valid, we introduce the concept of dummy data, which in
return brings the extra overhead to the queue system. In the
following, we analyze the amount of dummy data in the
following theorem to show that the amount of dummy data
is bounded in probability and adding dummy data will not
affect the stability of the proposed algorithm.

Theorem 5 (Bound of the Generated Dummy Data): The
total amount of the generated dummy data in the network
satisfies

Pr
(∣

∣
∣∣
∑

i∈N

T∑

t=0

Hk
i (t) − (1 + α)B

(ε − 1
1+αλmax)

∣
∣
∣∣ ≥ ν

)

≤
2var

(
∑

i∈N Ak
i (t)

)
+ 2var

(
∑

i∈L Cji(t)
)

ν2
, (22)

where var represents the variance, var

(
∑

i∈N Ak
i (t)

)
and

var

(
∑

i∈L Cji(t)
)

can be calculated according to their

corresponding probability density functions.
Proof: Please refer to Appendix D.

Remark 7 (Stability with Dummy Data): According to The-
orem 5, when the amount of the dummy data exceeds a
threshold, the probability of adding more dummy data to the
system declines by O(1/ν2), where ν is the distance between
the amount of the dummy data and the threshold. Therefore,
the probability of the amount of the dummy data becoming
infinity approaches 0, suggesting that the average amount of
the dummy data is stochastically upper-bounded and adding
dummy data does not affect the system stability. However,
the generated dummy data induces the same amount of data
eventually, which always stay in the system to render the
dynamic mapping valid in the dual queue system.

Communication Overhead: The communication overhead
will slightly increase by allowing the nodes to forward the
requests. To clearly describe such influence, suppose the length
of the request queue of node i is larger than that of the
neighbor nodes, and the length of the frame is T . The signaling
procedure includes three stages:

Fig. 2. Stability of request queue length.

• Node i broadcasts the queue information to its neighbor
nodes, which takes Tsig amount of time.

• Node i forwards the requests to its neighbor nodes
separately, which takes at most HTsig amount of time,
where H is the maximum degree of the network graph.

• Node j transmits data/dummy data to node i, which takes
Tdata amount of time.

Due to the added request forwarding time, we will suffer
a slight performance degradation. Specifically, the influence
brought by the request forwarding time Tsig is given in the
following theorem.

Theorem 6 (Influence of the Communication Overhead):
Suppose the input rate vector λ satisfies

(
1 + (H+1)Tsig

T

)
λ is

interior to the capacity region Λ, where T is the length of the
frame, Tsig is the communication time. For any Tsig satisfying
0 <

( (H+1)Tsig

T

)
λmax ≤ ε, where λmax = maxi,k{λk

i },
the proposed caching and forwarding algorithms stabilize all
queues of the system. If the performance under the proposed
algorithm is 1

1+α of that under the optimal algorithm, then
the capacity region will shrink by 1

1+αλmaxI, and the corre-
sponding average queue lengths satisfy

lim
T→∞

1
T

( T∑

t=0

∑

i∈N

∑

k∈K
Dk

i (t)
)

≤ lim
T→∞

1
T

( T∑

t=0

∑

i∈N

∑

k∈K
Qk

i (t)
)

≤ (1 + α)B

2(ε − 1
1+αλmax −

( (H+1)Tsig

T

)
λmax)

, (23)

lim
T→∞

1
T

( T∑

t=0

∑

i∈N

∑

k∈K
W k

i (t)
)

≤ (1 + α)B

2(ε − 1
1+αλmax −

( (H+1)Tsig

T

)
λmax)

. (24)

Note that the performance loss due to exchanging queues
information is suffered by almost all queue-based algorithms.

VI. SIMULATION

We now evaluate the performance of the proposed dis-
tributed forwarding and caching algorithm by simulation.
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Fig. 3. Performance comparison. (a) K = 3000, N = 300 and Si = 30. (b) K = 3000, N = 300 and λ = 6. (c) N = 300, λ = 6 and Si = 30.
(d) K = 3000, Si = 30 and λ = 6.

Our simulation setup includes 300 nodes randomly forming a
fully connected graph. The link capacity Cab(t) is calculated
by Shannon formula Cab(t) = log2

(
1 + gij(t)plink

)
, where

gij(t) is the channel fading factor following the Rayleigh
distribution with fading coefficient 0.01 and plink represents
the power for each link which is 1 mW . Only one node
works as a server which caches all the data objects to ensure
that the system is stabilizable, while the other nodes have
limited caches and initially, caches are empty. All nodes have
the same cache size which is set to 30. Requests arrive
randomly according to a Poisson distribution with the same
average arrival rate for all nodes, and 3000 files are considered.
In each case, 10 instances are generated to obtain the average
performance.

Fig. 2 shows the stability of the proposed algorithm.
We adopt an average request arrival rate as 6 per slot per data
object, 3000 data objects, 300 nodes and cache size of 30 for
each node. From 0s to 600s, the average request queue backlog
drops quickly and oscillatorily. Such an oscillatory behavior is
caused for two reasons. First, if a node caches a data object,
it will generate as much data as necessary to satisfy all requests
in a time slot, which accounts for a fast drop. Second, due to
the link capacity constraint, it takes several time slots for a data
object transmitting from a node to another, which results in
the occasional increase. After 600s, the average request queue
length becomes close to 150 and fluctuates within a limited

region, which verifies our stability analysis of the proposed
algorithm.

Fig. 3 compares the performance of the proposed algorithm
and two baseline algorithms:

• Baseline 1 (Throughput-optimal algorithm): Forwarding
and caching algorithms are optimized by solving a
decomposable Lyapunov optimization problem [15].

• Baseline 2 (LRU-based back-pressure algorithm): Least
recently used (LRU) cache replacement [29] combines
with back-pressure data forwarding [10].

• Baseline 3 (LCE-based back-pressure algorithm): Leave
copies everywhere (LCE) cache replacement [23], which
decides to cache all new data objects, combines with
back-pressure data forwarding.

• Baseline 4 (UNIF-based back-pressure algorithm): UNIF
cache replacement [30], which randomly chooses a cur-
rently cached data object for replacement, combines with
back-pressure data forwarding.

The simulation results in Fig. 3 show that the proposed algo-
rithm always outperforms two baseline algorithms, because
we consider forwarding and caching jointly, while the base-
line algorithms optimize them separately. With the proposed
framework, the local request queues capture the combined
effects of both content demands and network congestion, and
we dynamically replace the cached contents and forward the
requests based on these information, which accounts for the
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performance improvement. The simulation results also demon-
strate that the queue-based cache replacement schemes out-
perform the conventional LRU-based, LCE-based and UNIF-
based cache replacement schemes. Moreover, the performance
improvement brought by optimizing a tighter bound of the
Lyapunov drift out-weighs the performance loss due to the
sub-optimality of the stochastic optimization in each slot.

Fig. 3(a) shows that the performance gaps are almost the
same for small average request arrival rates (e.g., the rates
smaller than 8 in this figure), because if a node determines to
cache the data object, it generates as much data as necessary
in a slot to satisfy all the requests. However, when the average
request arrival rates are large enough (e.g., the rates larger than
8 in this figure) with limited cache sizes and the capacity con-
straint, the performance degrades rapidly with the increase of
the average request arrival rates. In Fig. 3(b), the performance
gap is large when the cache sizes is small, which signifies
the importance of joint optimization. Moreover, we observe
an interesting phenomenon that the performance gains are
almost the same for large cache sizes. Thus, the proposed
algorithm achieves good performance with limited cache sizes.
In Figs. 3(c) and 3(d), the performance gain of the proposed
algorithm is large when the numbers of data objects and nodes
are large, because the forwarding and caching algorithm has
a large number of degrees of freedom (DoFs).

VII. CONCLUSIONS

In this paper, we develop a low-complexity distributed
forwarding and caching algorithm by embracing both Lya-
punov optimization and stochastic network utility maximiza-
tion. First, to extract the network state information from local
queue information, we introduce a dual queue system with
dynamic mapping between the request and data queues. Sec-
ond, to derive an efficient forwarding and caching algorithm,
we iteratively update the request/data forwarding vector and
the cache placement vector using stochastic network utility
maximization. We prove that the proposed algorithm achieves
the queue stability and derive its tracking performance in a sto-
chastic environment. The simulation results confirm the queue
stability and show that the proposed algorithm outperforms the
conventional algorithms.

APPENDIX A
LYAPUNOV OPTIMIZATION PROBLEM

The Lyapunov drift in slot t is given by Δ
(
Q(t)

)
=

E
[
L

(
Q(t + 1)

) − L
(
Q(t)

)|Q(t)
]
. To calculate Δ

(
Q(t)

)
,

taking square on both sides of (7), we have
(
Q(t + 1)

)2

≤
∑

i∈N

∑

k∈K

(
1 − bk

i (t)
)

·
(

(
Qk

i (t)
)2 +

(
Ak

i (t) + min{Hk
i (t), Ak

i (t)})2

+
( ∑

j∈Z(i)

μk
ij(t)

)2

+ 2Qk
i (t)(Ak

i (t)

+ min{Hk
i (t), Ak

i (t)}) − 2Qk
i (t)

∑

j∈Z(i)

μk
ij(t)

)
, (25)

To obtain the Lyapunov drift in (11) and (12), we rearrange
the items in (25) as

Δ
(
Q(t)

)≤B1−
∑

i∈N

∑

k∈K

(
2
(
1 − bk

i (t)
)
Qk

i (t)
∑

j∈Z(i)

μk
ij(t)

− 4Qk
i (t)Ak

i (t) + bk
i (t)

(
Qk

i (t)
)2

+ bk
i (t)

( ∑

j∈Z(i)

μk
ij(t)

)2)
, (26)

where it is used that min{Hk
i (t), Ak

i (t)} ≤ Ak
i (t), μk

ij(t) ≤
Cij(t) and B1 is given by

B1 =
∑

i∈N

∑

k∈K
E
[
4
(
Ak

i (t)
)2] +

∑

i∈N

∑

j∈Z(i)

E
[(

Cij(t)
)2]

,

(27)

which is a bounded constant. To stabilize the system,
we minimize the Lyapunov drift in (26) and obtain (11)
and (12).

To obtain the Lyapunov drift in (14), we rearrange the terms
in (25) as

Δ
(
Q(t)

)≤B−E

[ ∑

i∈N

∑

k∈K

(
2
(
1−bk

i (t)
)
Qk

i (t)
∑

j∈Z(i)

μk
ij(t)

− 4Qk
i (t)A

k
i (t) + bk

i (t)
(
Qk

i (t)
)2

)]
, (28)

where B is defined as a finite constant that bound the terms
∑

i∈N
∑

k∈K
(
1 − bk

i (t)
)
(

(
Ak

i (t) + min{Hk
i (t), Ak

i (t)})2 +
(

∑
j∈Z(i) μk

ij(t)
)2

+ min{Hk
i (t), Ak

i (t)})
)

. Observing that

min{Hk
i (t), Ak

i (t)} ≤ Ak
i (t), μk

ij(t) ≤ Cij(t), we have that
B is given by

B =
∑

i∈N

∑

k∈K
E
[
4
(
Ak

i (t)
)2]

+
∑

i∈N

∑

j∈Z(i)

E
[(

Cij(t)
)2] +

∑

i∈N

∑

k∈K
λk

i . (29)

To stabilize the system, we minimize the Lyapunov drift in
(28) and obtain (14). Note that we have B > B1, so B1 is
replaced with B.

APPENDIX B
PROOF OF THEOREM 3

Consider a time interval [0, T ]. During this interval,
the optimal value changes T times. As a result, the dis-
tance {g(t), 1 ≤ t ≤ T } between the iterated Y (t) and
the target optimal solution at the end of each slot can be
bounded by

g(1) ≤ Y (0)β(1)

g(m) ≤ g(m − 1)β(m) + δm−1,m, (30)

where δm−1,m denotes the distance between the target optimal
solution of slot m− 1 and that of slot m. Iterating (30) from
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m = 1 to m = T , we can obtain

g(T ) ≤
(

(Y (0)β(1) + δ1,2)β(2) + δ2,3

)
β(3) + · · ·

≤ Y (0)
T∏

m=1

β(m) +
T∑

l=1

T∏

m=l

δm−1,mβ(m)

≤ Y (0)β(1+T )T/2 + δβ
1 − β(T−1)

1 − β
, (31)

where δ = maxm{δm−1,m} is the maximum distance between
any two optimal values and β = maxm β(m). Hence, g(T ) is
a strictly decreasing function of T .

Therefore, there exists a T such that for t > T , for a region
X = {x|x ≤ maxt>T Y ∗(t) + δ β

1−β + Δ}, such that the
trajectory is always in the limit region X for t > T , where Δ
can be chosen arbitrarily small because Y (0)β(1+T )T/2−δ βT

1−β
can be arbitrarily small with a large enough T .

APPENDIX C
PROOF OF THEOREM 4

First, we analyze the stability region and the average queue
length when optimally solving the scheduling problem. Let
μk∗

ij (t) and bk∗
i (t) denote the optimal solution by solving (11).

A. Stability Region

The Lyapunov drift should be negative semi-definite to
stabilize the system. According to (26), we have

B +
∑

i∈N

∑

k∈K
2Qk

i (t)Ak
i (t)

≤
∑

i∈N

∑

k∈K

(
bk∗
i (t)

(
Qk

i (t) −
∑

j∈Z(i)

μk∗
ij (t)

)2

+ 2Qk
i (t)

∑

j∈Z(i)

μk∗
ij (t)

)
. (32)

If the average input vector λ satisfies the above equation, then
the average input vector λ is within the stability region Λ.

B. Average Queue Length

For any input rate vector λ inside the capacity region Λ,
the average output rate should not be smaller than the sum of
λk

i and ε. Note that the influence of (6) is included in ε. The
corresponding Lyapunov drift can be obtained

E[L(Q(t + 1))] − E[L(Q(t))]

≤ B +
∑

i∈N

∑

k∈K
2E[Qk

i (t)]λk
i −

∑

i∈N

∑

k∈K
2E[Qk

i (t)]
(
λk

i + ε
)

≤ B − 2ε
∑

i∈N

∑

k∈K
E[Qk

i (t)]. (33)

Summing over t from 0 to T , and let T → ∞, we have

lim
T→∞

1
T

T∑

t=1

∑

i∈N

∑

k∈K
E[Qk

i (t)] ≤ B

2ε
. (34)

If the performance under the proposed algorithm is 1
1+α of

that under the optimal algorithm,
∑

i∈N

∑

k∈K

(
bk∗
i (t)(Qk

i (t)−
∑

j∈Z(i)

μk∗
ij (t))2+2Qk

i (t)
∑

j∈Z(i)

μk∗
ij (t)

)

≤ (1 + α)
∑

i∈N

∑

k∈K

(
bk
i (t)(Qk

i (t) −
∑

j∈Z(i)

μk
ij(t))

2

+ 2Qk
i (t)

∑

j∈Z(i)

μk
ij(t)

)
. (35)

Substituting (35) into (25), we get

B

(1 + α)
+

∑
i∈N

∑
k∈K 2E[Qk

i (t)]λk
i

(1 + α)

≤
∑

i∈N

∑

k∈K
E

[
bk
i (t)

(
Qk

i (t) −
∑

j∈Z(i)

μk
ij(t)

)2

+ 2Qk
i (t)

∑

j∈Z(i)

μk
ij(t)

]
. (36)

Due to the sub-optimality of the iterative algorithm, the capac-
ity region shrinks by 1

1+αλmax, i.e., Λ′ = Λ− 1
1+αλmaxI, and

the parameter B′ should satisfy B′ = (1 + α)B.
Therefore, the average request queue length should satisfy

lim
T→∞

1
T

T∑

t=1

∑

i∈N

∑

k∈K
E[Qk

i (t)] ≤ (1 + α)B
2(ε − 1

1+αλmax)
. (37)

Using conservation property of the number of requests,

lim
T→∞

1
T

T∑

t=1

∑

i∈N

∑

k∈K
Qk

i (t) ≥ lim
T→∞

1
T

T∑

t=1

∑

i∈N

∑

k∈K
W k

i (t).

(38)

Note that it is an inequality, because W k
i (t) does not capture

the requests which re-enter the network due to receiving the
dummy data. Substitute (38) into (37) and take T → ∞,

lim
T→∞

1
T

T∑

t=1

∑

i∈N

∑

k∈K
W k

i (t) ≤ (1 + α)B
2(ε − 1

1+αλmax)
. (39)

We analyze the average data queue length. For one thing,
the arrival and the departure of the data queues just equal those
of the request queues in the reversed direction, and the stability
of the request queue implies that the average arrival rate equals
the average departure rate. For another, the generate of data is
triggered by the requests, meaning that the number of requests
should be larger than that of data. Therefore, we have

E

[ ∑

i∈N

∑

k∈K
Dk

i (t)
]
≤E

[ ∑

i∈N

∑

k∈K
Qk

i (t)
]
≤ (1 + α)B

2(ε − 1
1+αλmax)

.

(40)

APPENDIX D
PROOF OF THEOREM 5

To evaluate the number of the dummy data objects, we con-
sider a node i whose data queue length is 0, i.e., the dummy
data must be generated to balance the transmission. Observing
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the transmission rate of the requests is the same as the total
transmission rate of the actual and dummy data, we have

∑

j∈Z(i)

∑

k∈K
γk

ij(t) =
∑

j∈Z(i)

∑

k∈K
(rk

ji(t))
+

+
∑

j∈Z(i)

∑

k∈K
(μk

ji(t))
+

−
∑

j∈Z(i)

∑

k∈K
(μk

ij(t))
+. (41)

Summing (41) over t from 0 to T , we obtain

∑

i∈N

∑

k∈K

T∑

t=0

Hk
i (t) =

∑

i∈N

∑

k∈K

(
Dk

i (t) + Qk
i (t)

)
. (42)

To study the total number of dummy data in a probabilistic
sense, we first analyze the time expectation of the average
queue lengths of requests/data. According to Theorem 4,

E

[ ∑

i∈N

∑

k∈K
Dk

i (t)
]
≤E

[ ∑

i∈N

∑

k∈K
Qk

i (t)
]
≤ (1 + α)B

2(ε − 1
1+αλmax)

.

(43)

Then, we analyze the variance of the request/data queue
lengths. The arrival rate of the request queue is Ak

i . The depar-
ture rate of the request queue is

∑
i∈N bk

i (t)
∑

j∈Z(i)(μ
k
ji(t))

+

from the network’s perspective. We have

var

( ∑

i∈N
Qk

i (t)
)

≤ var

( ∑

i∈N
Ak

i (t)
)

+ var

( ∑

i∈L
Cji(t)

)
,

(44)

where var represents the variance and the inequality is obtained
∑

i∈N
bk
i (t)

∑

j∈Z(i)

(μk
ji(t))

+ ≤
∑

i∈N

∑

j∈Z(i)

(μk
ji(t))

+≤
∑

i∈L
Cji(t),

(45)

where the first inequality is established using bk
i (t) ≤ 1,

and the second one is established using capacity constraint.
Similarly, considering the arrival/departure of the data queues
are just the reverse of that of the request queues, we have

var

( ∑

i∈N
Dk

i (t)
)

≤ var

( ∑

i∈N
Ak

i (t)
)

+ var

( ∑

i∈L
Cji(t)

)
.

(46)

Therefore, the time expectation and the variance of the total
number of the dummy data are upper bounded by

E

[ ∑

i∈N

T∑

t=0

Hk
i (t)

]
≤ (1 + α)B

(ε − 1
1+αλmax)

var

( ∑

i∈N

T∑

t=0

Hk
i (t)

)
≤ 2var

( ∑

i∈N
Ak

i (t)
)

+2var

( ∑

i∈L
Cji(t)

)
.

(47)

The Chebyshev’s theorem [31] finishes the proof.
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