
Thermal-Aware Resource Management for Embedded Real-Time Systems

Youngmoon Lee, Kang G. Shin

University of Michigan

ymoonlee,kgshin@umich.edu

Hoon Sung Chwa

DGIST

chwahs@dgist.ac.kr

Shige Wang

General Motors R&D

shige.wang@gm.com

ABSTRACT
With an increasing demand for complex and powerful System-on-

Chips (SoCs), modern real-time automotive systems face significant

challenges in managing on-chip-temperature. We demonstrate, via

real experiments, the importance of taking into account dynamic
ambient temperature and task-level power dissipation in resource

management so as to meet both thermal and timing constraints.

To address this problem, we propose a real-time thermal-aware

resource management framework, called RT-TRM. We first intro-

duce a task-level dynamic power model that can capture different

power dissipations with a simple task-level parameter called the

activity factor. We then develop two new scheduling mechanisms,

adaptive parameter assignment and online idle-time scheduling. The
former adjusts voltage/frequency levels and task periods according

to the varying ambient temperature while preserving feasibility.

The latter generates a schedule by allocating idle times efficiently

without missing any task/job deadline. By tightly coupling the solu-

tions of these two scheduling mechanisms, we can guarantee both

thermal and timing constraints under dynamic ambient tempera-

ture variations. We have implemented RT-TRM on an automotive

microcontroller to demonstrate the effectiveness of our framework,

achieving better resource utilization by 18.2% over other runtime

approaches while satisfying both thermal and timing constraints.

1 INTRODUCTION
Thermal-aware resource management has become critical to mod-

ern embedded real-time systems like automotive controls and smart-

phones as they are increasingly implemented on powerful comput-

ing platforms with exponentially increasing power density. High

on-chip temperatures shorten the platform lifetime and severely

degrade its performance and reliability, risking safety (e.g., vehicle

breakdown or smartphone explosion). Therefore, we must maintain

the processor temperature below the peak temperature constraint

while satisfying all application timing constraints.

There are two key thermal issues to consider for embedded

real-time systems: 1) dynamically varying ambient temperature and
2) task-level power dissipation. Our experimental evaluation has

shown the ambient temperature of an automotive module to vary

highly and dynamically even during a single driving event, and its

seasonal temperature varies widely, showing up to a 28°C differ-

ence. Moreover, the average power consumed by each application

differs up to 140%, according to the results from various automotive

benchmark applications (to be detailed in §3).

These dynamic thermal features pose significant challenges in

meeting the application timing constraints. In particular, the max-

imum available computation power varies with the ambient tem-

perature, as the processor temperature depends on its ambient tem-

perature. According to our experimental results (§3), an increase

of 14.9°C in ambient temperature results in a maximum reduction

of 28.8% in the processor’s computation power. In such a case,

the processor’s thermal constraint may be violated if it executes

a task whose average power dissipation exceeds a certain limit.

One may reduce the processor temperature by idling or slowing it

down, but such an action may also lead to a task/job deadline miss,

thus violating the app timing constraint. This calls for adaptive

resource management that considers dynamically varying ambient

temperature and task-level power dissipation so as to meet both

the processor’s thermal and the app’s timing constraints.

A significant amount of work has been done on real-time thermal-

aware scheduling (see [21] for a survey). Existing approaches usu-

ally employ DVFS scheduling [8, 11], idle-time scheduling [22],

or task scheduling [6] to minimize the peak temperature while

guaranteeing the timing constraint. Worst-case temperature anal-

yses [23, 31] have also been proposed for offline guarantees of

thermal constraints. The concept of thermal utilization [2] was in-

troduced to capture the thermal impact of periodic real-time tasks

on processors. Most of these existing solutions, however, make

an assumption of either fixed ambient temperature or constant
task-independent power dissipation. Although there exist real-time

feedback thermal control methods to minimize the error between

the current processor temperature and the desired temperature by

regulating task utilization [15] or frequency [16], they are limited to

guarantee the thermal constraints due to temperature overshooting

in the feedback thermal controller.

In this paper, we propose a new real-time thermal-aware resource

management framework, called RT-TRM, that captures not only

varying computation power bounds due to the variations of ambient

temperature but also different power demands by different tasks. RT-

TRM adaptively makes a parameter assignment (voltage/frequency

levels and a task period assignment) and builds a schedule (making

the processor idle or active and priority ordering of tasks) so as to

meet both thermal and timing constraints.

We first propose a task-level dynamic power model that uses

a simple task-level parameter called the activity factor to capture

different power dissipations by different tasks. Building on this

dynamic power model, we study the effect of task-execution or

processor-idling on the processor temperature. Our model is also

validated experimentally with several automotive benchmarks run-

ning in various realistic environments. Second, we propose the

notions of dynamic power demand of a task set and dynamic power
bound at the ambient temperature and derive the feasibility condi-

tions for a parameter assignment with respect to both thermal and

timing constraints. We then develop a runtime adaptive strategy

that can preserve feasibility in the presence of ambient temperature

variations by adjusting the parameter assignment. Third, building

on a feasible parameter assignment, we develop an online schedul-

ing policy that determines not only the processor state (active or

idle) but also the execution ordering of tasks in active state. Our

scheduling algorithm can reclaim slack (spare capacity) at runtime

and allocate it to tasks in proportion to their power demands by
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considering the fact that a task with higher power dissipation re-

quires more idle time. This way we can meet both thermal and

timing constraints with much fewer preemptions. Finally, we have

implemented RT-TRM on an automotive microcontroller to show

the effectiveness of our framework under varying ambient tem-

perature. Our framework is shown to improve resource utilization

by 18.2% over runtime feedback thermal control approaches while

guaranteeing both thermal and timing constraints.

This paper makes the following main contributions:

• Demonstration of the importance of accounting for dynamic

ambient temperature and task-level power dissipation for

real-time thermal-aware resource management (§3);

• Development of a dynamic power model that captures dif-

ferent power dissipations with a simple task-level parameter

called the activity factor and its experimental validation (§4);

• Development of an adaptive parameter assignment frame-

work under varying ambient temperature while preserving

feasibility (§5);

• Development of an online idle-time scheduling algorithm

that enables dynamic idle-time allocation with much fewer

preemptions while guaranteeing both thermal and timing

constraints (§6);

• Implementation and evaluation of the effectiveness of the

RT-TRM on an automotive microcontroller (§7).

2 RELATEDWORK
Significant efforts have been made on thermal management at both

hardware (e.g., architecture design, floorplan) and OS level (e.g.,

thermal-aware DVFS, scheduling) [21]. In this paper, we focus on

OS-level thermal-aware resource management for hard real-time

systems, such as cars.

Thermal-aware real-time scheduling is an active subject of re-

search to guarantee timing and thermal constraints under a con-
stant environment. DVFS scheduling determines the voltage and

frequency of a processor to minimize the peak temperature subject

to timing constraints on a single-core [7, 8, 33] or multi-core plat-

forms [11]. Multi-core task scheduling [6] determines task-to-core

assignment and scheduling to minimize the peak temperature. Ther-

mal shaping inserts idle periods during task execution at runtime

to reduce the peak temperature without missing deadlines [22].

Researchers focus on different task-level power dissipation to re-

duce the peak temperature [3, 19] or maximize throughput [18, 34]

by interleaving the execution of hot and cold tasks. By analyz-

ing such task-level power variability and worst-case scheduling

scenario, the peak temperature is derived to guarantee thermal

constraint [23]. The concept of thermal utilization was introduced

[1, 2] to capture the different thermal impact of periodic real-time

tasks.

A few studies consider on adaptive thermal-aware resource man-

agement for real-time applications to cope with dynamic environ-

ment. Feedback control approaches regulate the processor tem-

perature by adjusting processor utilization [15, 26] or operating

frequency [16] subject to the timing constraint.

While researchers have developed task-level scheduling and

processor-level thermal control techniques to deal with both ther-

mal and timing requirements, they have not yet addressed large

environmental variations and peak temperature caused by task

workloads together. To this end, we first verify the significance of

these factors in automotive systems. We then develop and validate a

task-level thermal model that can capture individual tasks’ different

power dissipations. Building upon the task-level thermal model, we

propose a new thermal-aware resource management scheme that

(i) jointly adapts task periods and processor frequency in response

to the varying ambient temperature and (ii) schedules tasks to meet

both thermal and timing constraints.

3 TARGET SYSTEM, CHALLENGES, AND
SOLUTION OVERVIEW

This section presents our target system (§3.1) and introduces the

challenges faced therein (§3.2) followed by an overview of our

approach (§3.3).

3.1 Target System
We consider a prototypical embedded real-time system running a

set of real-time tasks on a computing platform.

Processor and taskmodel. We consider a uniprocessor platform

that provides dynamic voltage and frequency scaling (DVFS) with a

separate set of discrete frequency/voltage levels. If an operating fre-

quency f is determined within the specified range of [fmin , fmax ],

its corresponding voltage V is determined according to a typical

implementation principle [12, 16]. We also consider a task set τ
composed of implicit-deadline periodic tasks. Each task τi ∈ τ
is characterized by period pi and its worst-case execution time

(WCET) ei ( f ) as a function of operating frequency f . We assume

that pi is adjustable within [pmin
i , pmax

i ] based on typical applica-

tion elasticity [10, 32]. Such τi is assumed to generate a sequence of

jobs, once every pi time-units, with each job needing to complete

ei ( f ) within a relative deadline of pi time-units.

Power and thermal model. We consider dynamic power man-

agement where the processor is in either idle or active state. The
processor is said to be in active state if it is currently executing a

job, or in idle state otherwise. Its power dissipation (Pproc ) is then
expressed as Pproc = Pleak + Pdyn , where Pleak is the leakage

power for the processor to stay ready (in active or idle state) for

execution of jobs, and Pdyn is the additional dynamic power to

execute a job (in active state). The term Pleak is modeled as [25]:

Pleak = V · (β1 ·T + β0), where β1 and β0 are processor-dependent
constants, and T is the processor’s temperature. Note that Pdyn
depends on the task currently running on the processor, and its

detailed model will be described in §4.

To translate the processor’s power dissipation to its temperature,

we use a well-known thermal circuit model [4]. If average processor

power and ambient temperature are Pproc (t ) and Tamb (t ), respec-
tively, over a time period t , then the processor temperature T (t ) at
the end of this period is

T (t ) = T (0) · e−
t

R ·C + (Tamb (t ) + Pproc (t ) · R) · (1 − e
− t
R ·C ), (1)

where R and C are the thermal resistance and capacitance, respec-

tively, and T (0) is the initial temperature of the processor. We can

observe from Eq. (1) that the temperature will increase/decrease

towards and eventually reachTamb (t ) + Pproc (t ) ·R. We define the

steady temperature T (∞) of the processor as
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Figure 1: Ambient temperature variations over time and the
corresponding available computation power.

T (∞) = Tamb (t ) + Pproc (t ) · R. (2)

3.2 Problem Statement and Motivation
Problem Definition We want to address the following real-time

thermal-aware resource management problem.

Definition 1. Given a task set τ running on a uniprocessor, de-
termine (i) the voltage/frequency (V /f ) level, (ii) the period {pi } of
task τi ∈ τ parameters, and (iii) the schedule of jobs such that (a)
temperatureT (t ) never exceeds the peak temperature constraintTmax
(thermal constraint), and (b) all jobs of τi ∈ τ meet their deadlines
for all possible legitimate job arrival sequences (timing constraint).

To generate a job schedule, we need to determine not only the

processor state (active or idle) but also the order of executing jobs

in active state. From real embedded systems (e.g., cars and smart-

phones), we found two key thermal characteristics: (1) dynamic

changes in the ambient temperature and (2) different power dissipa-

tions by different tasks. These are the primary motivation behind

our proposed approach in this paper.

Dynamic changes on ambient temperature. Unlike desktops
or data-centers, embedded real-time systems experience a wide

range of environmental variations (especially the ambient tempera-

ture) during their operation/life. To confirm this fact, we measured

the ambient temperature of a vehicle infotainment module embed-

ded in the dashboard over days and months, and the results are

plotted in Fig. 1. When the car was driven for several days, the

change in the ambient temperature was highly dynamic and fluctu-

ating between 0°C and 23°C. During a single driving event on Feb.

21, 2018 the ambient temperature was increased by up to 180%. The

seasonal variation of the ambient temperature is also very wide. A

similar phenomenon was also reported in [20] for car engine and

transmission control units.

Under such a varying ambient temperature, real-time thermal-

aware resource management becomes much more challenging be-

cause the processor’s temperature is affected by the ambient tem-

perature. Using Eq. (2), we can calculate the maximum processor’s

power dissipation without exceeding Tmax for a given ambient

temperatureTamb as
Tmax−Tamb

R . The change in the maximum pro-

cessor’s computation power under varying ambient temperature is

then plotted in Fig. 1 (see the gray line).
1
For example, on Feb. 21,

2018 as the ambient temperature increased by 14.9°C from 8.3°C,

the available processor computation power decreased by 28.8%.

1
We set Tmax = 60°C and R = 22°C/W.
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Figure 2: Average power consumptions for various automo-
tive applications.

Task-level power dissipations. We also measured the proces-

sor’s average power consumption to run various automotive bench-

marks [17], and plotted the results in Fig. 2. Each app is shown to

consume a different amount of power. For example, a table lookup

task consumes 1726mW,while a bit manipulation task does 2348mW

at the maximum processor frequency.
2

In summary, the available processor’s computation power varies

with the ambient temperature. In addition, the execution of each

task imposes a different power demand on the processor. So, we

need to consider different task-level power dissipations and make

adaptive parameter assignments and job schedules according to

the varying ambient temperature so as to meet both thermal and

timing requirements.

3.3 Overview of the Proposed Approach
To solve the real-time thermal-aware resource management prob-

lemwhile considering the varying ambient temperature and diverse

task-level power dissipations, we address the following questions:

Q1. How to model power dissipations of different tasks and ana-

lyze the impact of their execution on the processor’s thermal

behavior?

Q2. How to make adaptive parameter assignments under dynam-

ically changing ambient temperature while meeting both

thermal and timing constraints?

Q3. How to derive an actual job schedule that satisfies both

thermal and timing constraints upon parameter assignment?

To answer Q1, we develop a task-level dynamic power model by

using a simple task-level parameter called the activity factor. Based
on this task-level dynamic power model, we analyze the effect of

task execution on the processor’s temperature, i.e., whether it in-

creases or decreases the processor’s temperature. Moreover, we

empirically determine the activity factors for several automotive

apps and verify ourmodel in various environments, i.e., under differ-

ent processor-frequency/task-utilization settings, varying ambient

temperature, and executing multiple tasks.

To address Q2, we define a dynamic power demand of a task

set τ that represents the total dynamic power demand by τ at the

processor’s steady temperature. We also define a dynamic power
bound function of Tamb that represents the maximum processor’s

2
A table lookup operation is used by an engine control module to find an output value

corresponding to an input value (e.g., the ignition angle). A bit-manipulation operation

is used by a display module where the pixels are moved into a display buffer until the

entire buffer is displayed.
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dynamic power Pdyn at Tamb without violating the thermal con-

straint. Based on these concepts, we derive the feasibility conditions

of a task set and formulate an optimization problem that finds a

feasible parameter assignment for a given Tamb . We also develop a

runtime adaptive strategy that can preserve feasibility by adapting

the parameter assignment to ambient temperature changes .

To answer Q3, building on a feasible parameter assignment de-

rived by answering Q2, we develop an online scheduling policy.

In particular, we calculate the minimum idle-time required for the

execution of each job with respect to the thermal constraint. We

then develop an idle-time scheduling algorithm that can reclaim

unused resources at runtime and utilize them to allocate idle time

efficiently while meeting all deadlines with the minimum idle-time

for each task. As a result, our algorithm can guarantee both thermal

and timing constraints with much fewer preemptions.

4 TASK-LEVEL POWER-CONSUMPTION
MODEL

We present a task-level power-consumption model that captures

different dynamic power dissipations by individual tasks. In partic-

ular, we use a simple task-level activity factor to characterize each

task’s dynamic power dissipation (§4.1) and empirically validate

the model using a automotive platform and workloads (§4.2).

4.1 Task-Level Dynamic Power Model
For automotive workloads, power dissipation is found to vary sig-

nificantly with the executing task (Fig. 2). Since individual tasks

programmed with distinct sets of instructions generate different

switching activities and dynamic power dissipations, we used a

task-level activity factor αi to capture such different dynamic power

Pi consumed by each task τi as Pi = V 2 · f · αi . Using this task-

level dynamic power model, we can analyze how the processor’s

temperature changes with the execution of each job/task. Let T (t )
(Ti (t + ei ( f ))) be the temperature at the beginning (end) of the

execution of a job of τi . Using Eqs. (1) and (2), Ti (t + ei ( f )) can be

written as:

Ti (t + ei ( f )) = T (t ) · e
−
ei (f )
R ·C +T∞i (Tamb ) · (1 − e

−
ei (f )
R ·C ), (3)

where T∞i (Tamb ) is the steady temperature associated with the

execution of τi that would be reached if the processor executes τi
continuously. T∞i (Tamb ) can be expressed as:

T∞i (Tamb ) = Tamb + (Pi + Pleak ) · R. (4)

We observe from Eqs. (3) and (4) that (i) if T (t ) < T∞i (Tamb )
then the temperature increases towardsT∞i (Tamb ), and (ii) ifT (t ) ≥
T∞i (Tamb ) then the temperature decreases towards T∞i (Tamb ). A
task τi is said to be hot if T∞i (Tamb ) > Tmax , or cold otherwise.

Depending on the ambient temperature Tamb , τi can become hot

or cold.

To consider the effect of idling the processor on its temperature,

we let T0 (t + l ) denote the temperature at the end of an idle period

of length l . Similarly to Eq. (3), T0 (t + l ) can be written as:

T0 (t + l ) = T (t ) · e
− l
R ·C +T∞

0
(Tamb ) · (1 − e

− l
R ·C ), (5)

where T∞
0
(Tamb ) = Tamb + Pleak · R is the processor’s steady

temperature in idle state.

Table 1: Identifying activity factors and maximum errors

Task Angle Bit Table Edge FFT PID

T∞i (°C) 66.1 73.6 59.9 61.6 69.5 67.8

αi
3

0.355 0.446 0.284 0.304 0.435 0.377

So far, we have discussed the thermal effect of continuous execu-

tion (idling) of a single job (a processor). Now, let’s consider the im-

pact of a schedule of periodic tasks and idle-times. LetT (t ,W (t )) de-
note the temperature at the end of a scheduleW (t ) = {wi (t )}, where
wi (t ) is the total workload scheduled in (0, t]. Then,T (t ,W (t )) can
be written as:

T (t ,W (t )) = T (0) · e−
t

R ·C

+ (Tamb + (
∑
τi

Pi ·
wi (t )

t
+ Pleak ) · R) · (1 − e

− t
R ·C ), (6)

where

∑
τi Pi ·

wi (t )
t is the average dynamic power consumed by

W (t ). Note that every task τi generates a sequence of jobs executing
ei ( f ) every pi time-units, consuming an average dynamic power

of Pi ·
ei (f )
pi . We can then define the steady temperature T (∞,τ ) of

a task set τ as:

T (∞,τ ) = Tamb + (
∑
τi

Pi ·
ei ( f )

pi
+ Pleak ) · R. (7)

Note that the steady temperature of a task set is independent of

its schedule, which serves as a basis for the feasibility condition

presented in §5.

Identifying task-level activity factors. To identify the activity

factor of each task, we ran automotive benchmarks, one at a time,

with 100% resource utilization at the maximum frequency under the

room temperature. We then measured the steady temperature and

determined each task’s activity factor by using Eq. (4), and presented

them in Table 1.
4
The activity factor varies greatly with tasks by

up to 65%. For example, a table-lookup task with a large number of

conditional switches and I/O accesses shows a low activity factor,

while a bit-manipulation task with a high instruction-per-cycle rate

shows a high activity factor.
5

4.2 Model Validation
To confirm that the task-level power-concumption model and its

thermal effect represent real hardware behaviors, we measured

the steady temperature of the processor and compared it with

our model’s estimation under various settings. In particular, we

validated the task-level power model under (i) different processor-

frequency/task-utilization settings for each task, (ii) running multi-

ple tasks together, and (iii) different ambient temperatures.

First, as shown in Fig. 3, we varied the task period to achieve the

processor utilization ranging from 10% to 90% with a 10% increment

as well as the frequency level from 0.4GHz to 1GHz for each task

and measured the steady temperature.
6
Fig. 3 shows the measured

steady temperature as dotted points while the estimations with our

4
The detailed experimental setup will be given in §7.

5
The activity factor α is normalized by the maximum power, i.e., α = 1 means the

maximum power dissipation.

6
See §7 for more details of the experimental setup.
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Figure 3:Model validation for each taskwith varying utiliza-
tions.

model are plotted as lines with an error up to 0.65°C.

Second, as shown in Fig. 4, we ran two tasks — bit manipulation

and angle-time conversion — together on a single core at 1GHz by

varying their utilizations. The result shows that the steady tem-

perature of the processor is linearly increased with each task’s

utilization (plotted as a linear surface) as formulated in Eq. (7). We

also confirmed that the same tendency is observed for different

numbers of tasks (i.e., 4 and 8 tasks) with an error up to 1.2°C.

Finally, we validated our model for different ambient tempera-

tures ranging from 20°C to 35°C. For each configuration, we repeated

this 10 times with sufficient intervals, showing an error of up to

0.98°C.

5 ADAPTIVE PARAMETER ASSIGNMENT
We now present how to adjust a voltage/frequency level and task

period assignment according to the varying ambient temperature,

called Adaptive Parameter Assignment Framework (APAF). Specifi-

cally, we derive feasibility conditions for a parameter assignment,

formulate a parameter optimization problem, and introduce a run-

time strategy for adapting to the varying ambient temperature.

5.1 Parameter Assignment
We first consider the feasible parameter assignment problem for a

given ambient temperature.

Definition 2 (Feasible parameter assignment). Given a task
set τ and the ambient temperature Tamb , determine V , f and pi for
every τi ∈ τ such that if τ is feasible (i.e., meeting the thermal and
timing constraints), it remains feasible even with the new parameter
assignment.

To solve this problem, we introduce two conditions for a param-

eter assignment to be feasible with respect to thermal and timing

constraints for a given ambient temperature and formulate an opti-

mization problem to find a feasible parameter assignment.

Feasibility condition. Recall that for a given task set τ , the pro-
cessor temperature will eventually reach the steady temperature

T (∞,τ ) of τ (defined in Eq. (7)) regardless of its schedule. There-

fore, to meet the thermal constraint, the steady temperatureT (∞,τ )
should be lower than or equal to the peak temperature constraint
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Figure 4: Model validation for running two periodic tasks
with varying utilizations (Bitmanipulation, Angle-timeCon-
version ).

Tmax , i.e.,

C1: T (∞,τ ) ≤ Tmax . (8)

We define a dynamic power demand PD (τ ) of τ as the total dy-

namic power demand by τ at the steady temperature, which is

written as:

PD (τ ) =
∑
τi

Pi ·
ei ( f )

pi
= V 2 · f ·

∑
τi

αi ·
ei ( f )

pi
. (9)

We also define a dynamic power bound PB (Tamb ) of Tamb as the

maximum processor’s dynamic power at Tamb without exceeding

Tmax . We can derive PB (Tamb ) by solving T (∞,τ ) = Tmax :

PB (Tamb ) =
Tmax −Tamb

R
−V · (β1 ·Tmax + β0). (10)

Using these, the feasibility conditionC1with respect to the thermal

constraint can be re-written as

C1: PD (τ ) ≤ PB (Tamb ). (11)

To meet the timing constraint, we use a well-known exact feasi-

bility analysis by Liu and Layland [24]:

C2:

∑
τi

ei ( f )

pi
≤ 1. (12)

If a parameter assignment satisfies both C1 and C2, the steady

temperature of τ is guaranteed not to exceedTmax without missing

any task deadline when a task set is scheduled by an optimal sched-

uling algorithm. However, as can be seen from Eq. (6), a job schedule

may affect a transient temperatureT (t ,W (t )), potentially violating

the thermal constraint before reaching the steady temperature. To

avoid this situation, we define the minimum idle-time Imin
i (Tamb )

required for the execution of each job without violating the thermal

constraint and include the term in C2 (to be detailed in §6). Then,

the feasibility condition C2 can be extended to:

C2:

∑
τi

ei ( f ) + I
min
i (Tamb )

pi
≤ 1. (13)

So, if there exists a parameter assignment satisfying both C1 and

C2, we can guarantee that a task set τ is feasible with respect to

both thermal and timing constraints.

5



Parameter optimization. We formulate the parameter assign-

ment problem as an optimization problem subject to the feasibility

conditions (C1 and C2):

maximize
f ,pi

∑
τi

wi ·
1

pi
(14)

s.t. C1: PD (τ ) = V 2 · f ·
∑
τi

αi ·
ei ( f )

pi
≤ PB (Tamb ) (15)

C2:

∑
τi

ei ( f ) + I
min
i (Tamb )

pi
≤ 1 (16)

f ∈ [fmin , ..., fmax ]. (17)

∀τi pmin

i ≤ pi ≤ pmax

i (18)

As an optimization goal, a QoS function associated with resource

usage can be used as in [10, 32]. Our objective in Eq. (14) is to max-

imize the weighted sum of each task-rate
1

pi .
7
Eq. (17) specifies the

discrete frequency scaling levels available on the processor. Eq. (18)

specifies the minimum and maximum bounds of an allowable task

period within [pmin

i , pmax

i ]. We use linear programming to deter-

mine a task period assignment for a given voltage/frequency level

starting from the maximum level. If there is no solution, we lower

the voltage/frequency level until a feasible solution is found. The

computational complexity isO (m ·n3.5) for n tasks andm frequency

scaling levels [27].

5.2 Runtime Parameter Adaptation
We now propose a runtime parameter adaptation strategy that es-

timates ambient temperature variations and dynamically adjusts

the voltage/frequency level and period assignment. To this end, we

need to determine when and how to adjust the parameter assign-

ment. We set fixed points of the ambient temperature threshold

{TSamb (k )}, which are determined by

TSamb (k + 1) = TSamb (k ) + ∆T , (19)

where ∆T is a tolerable ambient temperature range.

Our runtime adaptation policy periodically estimates the am-

bient temperature and adjusts the parameter assignment when-

ever the estimated ambient temperature is out of the range

(TSamb (k ),TSamb (k + 1)] for any k . The parameter assignment in

(TSamb (k ),TSamb (k+1)] is determined by solving the optimization

problem in Eq. (14) with the ambient temperature of TSamb (k + 1).
The challenge is then how to choose∆T and estimate the ambient

temperature.

Trade-off between resource efficiency and adaptation over-
head. In choosing ∆T , there exists a trade-off between resource

efficiency and adaptation overhead as shown in Fig. 5. A smaller

∆T can achieve efficient resource utilization with prompt response

upon small ambient temperature changes at the expense of high

adaptation overhead. To determine the optimal value of ∆T , we
analyze the ambient temperature trace in Fig. 1a and compare the

runtime overhead and resource efficiency depending on ∆T . Fig. 5a
illustrates how our parameter adaptation responds to the varying

ambient temperature for different values of ∆T . From the trace,

we obtain the total number of parameter adaptations and the total

7
The value ofwi can be determined according to the importance of each task.
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Figure 5: Runtime adaptation with (a) different different
adaptation intervals and (b) trade-off between adaptation
overhead and resource efficiency

resource utilization for each value of ∆T . Fig. 5b shows the trade-
off between resource efficiency and adaptation overhead, where

the adaptation overhead (dotted line) decreases, but the resource

utilization loss (grey line) increases as ∆T increases. We set the

optimal value of ∆T to the point where the sum of the adaptation

overhead and resource utilization loss (solid line) is minimized,

which is ∆T = 1°C.

Ambient temperature estimation. To estimate the ambient tem-

perature, RT-TRM monitors the on-chip temperature every δ time-

units and estimates the ambient temperature using Eq. (1) as:

T
[k] = T[k−1] · e

− δ
R ·C + (Tamb + R · P[k]) (1 − e

− δ
R ·C )

Tamb = λ ·T
[k] + (1 − λ) ·T

[k−1] − R · P[k],
(20)

where T
[k] and T[k−1] are current and previous temperature mea-

surements, P
[k] is the power dissipation during the two consecutive

measurements (calculated by using Eq. (6)), and λ = 1

1−e−
δ
R ·C

. We

set δ to 1s by considering the chip thermal time constant of our

evaluation platform [14].

6 ONLINE IDLE-TIME SCHEDULING
So far, we have discussed how to adaptively adjust the proces-

sor’s voltage/frequency and the task periods under the varying

ambient temperature. We now consider how to schedule task/job

executions and idle-times in order to meet both thermal and tim-

ing requirements. Specifically, we want to address the following

problem, which we call the schedule-generation problem.

Definition 3 (Schedule generation). Given the assignment of
V , f , and {pi } (with APAF), determine a schedule of job executions
and idle-times such that the processor temperature T (t ) does not
exceedTmax at any time t while all jobs of all tasks τi ∈ τ meet their
deadlines.

To solve this problem, we must consider two key issues: 1)

transient temperature T (t ) varies with the task running at any

given time, and 2) ambient temperatureTamb also affectsT (t ). Sup-
pose that the processor has reached Tmax (i.e., T (t ) = Tmax ) and

two tasks — a cold task τ1 and a hot task τ2 — are ready to run

at time t . If a cold task τ1 is scheduled, the temperature will de-

crease since T∞
1
(Tamb ) ≤ Tmax . On the other hand, if a hot task

τ2 starts to run immediately, the temperature will increase (since

T∞
2
(Tamb ) > Tmax ), and the thermal constraint will be violated.

To avoid the processor temperature exceeding Tmax , we must idle

the processor to drop its temperature to a safe temperature before

6



executing τ2. With this safe temperature, continued execution of τ2
will not violate the thermal constraint. The main challenge is then

how to derive a safe temperature and schedule idle-times to reach

the temperature before executing each hot task. Note that each task

has a different power dissipation, so the safe temperature may vary

with task. Moreover, the amount of idle time required to reach a

safe temperature varies with the ambient temperature. Without

a proper idle-time scheduling decision, it may end up with some

undesirable situations, such as those where (a) the temperature

exceeds Tmax and/or (b) a task/job deadline miss occurs.

To resolve such issues, we develop a thermal-aware online idle-

time scheduling policy that determines idle-times between the

execution of tasks to meet both thermal and timing constraints.

We assume that tasks is priority-ordered according to the earliest

deadline first (EDF) policy. We calculate the minimum idle-time
required for the execution of each task to avoid the situation (a)

and take the minimum idle-time into account in our adaptive pa-

rameter assignment to avoid the situation (b). Our proposed online

scheduling algorithm then makes the trade-off between the total

amount of required idle-time and preemption overhead. In partic-

ular, it updates available slack at runtime and effectively utilizes

it to allocate more idle-time with much fewer preemptions while

guaranteeing both thermal and timing constraints.

Calculation on the minimum idle-time. Now, we describe
the relation between the amount of necessary idle-time and the

number of preemptions. We first consider the case of executing a

hot task τi for ei ( f ) units without any preemption. We define the

safe temperature of τi to execute for ei ( f ) units at Tamb (denoted

byT
saf e
i (ei ( f ),Tamb )) as the initial temperature at which the tem-

perature reachesTmax after the execution of ei ( f ) units. Then, the
safe temperature can be derived by solving the term T (t ) in Eq. (3)

when Ti (t + ei ( f )) = Tmax :

T
saf e
i (ei ( f ),Tamb ) = T

∞
i (Tamb ) −

T∞i (Tamb ) −Tmax

e−
ei (f )
R ·C

. (21)

Similarly, we can calculate the idle-time necessary to reach

T
saf e
i (ei ( f ),Tamb ) (denoted by tidle (ei ( f ),Tamb ) by solving the

term l in Eq. (5) when T0 (t + l ) = T
saf e
i (ei ( f ),Tamb ) and T (t ) =

Tmax :

tidle (ei ( f ),Tamb ) = R ·C · ln(
Tmax −T

∞
0
(Tamb )

T
saf e
i (ei ( f ),Tamb ) −T

∞
0
(Tamb )

).

(22)

Now, let’s consider the case where preemption is allowed, i.e.,

splitting each task τi into multiple —mi (mi > 1) — sub-tasks and

inserting idle-time in between. Likewise, by using Eqs. (21) and

(22), we can calculate the safe temperature and idle-time required

for executing each sub-task for
ei (f )
mi

units. Then, the cumulative

idle-time to execute mi sub-tasks at Tamb can be calculated as

mi · tidle (
ei (f )
mi
,Tamb ).

Fig. 6 shows the cumulative idle-time asmi increases. It is im-

portant to observe that the more sub-tasks, the less cumulative

idle-time required, as was also observed in [18]. In Fig. 6(a), we can

see that the amount of required idle-time also depends the ambient

temperature. As shown in Fig. 6(b), each task requires a different
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amount of idle-time. Note that cold tasks — e.g., a table-lookup task

— does not require idle-time. The results shown in Fig. 6 imply that

the cumulative idle-time can be reduced by splitting each task into

more sub-tasks with frequent idling of the processor. However, the

benefit of frequent idling becomes saturated asmi increases, and

the preemption overhead can no longer be ignored. Considering

this, we derive the minimum idle-time for a task τi (denoted by

Imin
i (Tamb )) as follows. We calculate a decreasing amount of cumu-

lative idle-time by taking derivative
∂

∂mi
(mi · tidle (

ei (f )
mi
,Tamb )),

and find the value ofmi (denoted bymmax
i ) where the value of the

derivative becomes closest to the preemption cost for switching

between active and idle states. Then, the minimum idle-time of τi
can be calculated as

Imin
i (Tamb ) =m

max
i · tidle (

ei ( f )

mmax
i
,Tamb ). (23)

Guarantee of thermal and timing constraints. For every in-
vocation of a task τi , if the minimum idle-time is correctly sched-

uled before finishing the execution of τi , we can guarantee that the

thermal constraint is never violated. The question then becomes

how to guarantee the timing constraint when all tasks are sched-

uled together with their minimum idle-time. To address this, we

derive a new feasibility condition by incorporating the minimum

idle-time for each task. In order for a task set τ to be feasible un-

der both thermal and timing constraints, every job of each task τi
should have its minimum idle-time (for at least Imin

i (Tamb )) and
finish its execution (for at most its WCET ei ( f )) before its deadline.
Then, a new feasibility condition can be derived by extending the

utilization-based exact feasibility analysis by Liu and Layland [24]:

∑
τi

ei ( f ) + I
min
i (Tamb )

pi
≤ 1. (24)

We include the feasibility condition (Eq. (24)) in the optimization

formulation for the parameter assignment presented in §5.1. This

way RT-TRM can guarantee both thermal and timing constraints.

Online idle-time scheduling. Building upon the parameter

assignment obtained by APAF, if we divide each task τi into

mi (I
min
i (Tamb )) sub-tasks and evenly distribute the idle-time

7



Algorithm 1 Slack calculation

1: U =
∑
τi

ei (f )+Imin
i (Tamb )
pi

2: p = 0

3: for i = n to 1, τi ∈ {τ1, ...,τn |d1 (tcur ) ≤ · · · ≤ dn (tcur )} do
4: ◃ In reverse EDF order of tasks

5: U = U −
ei (f )+Imin

i (Tamb )
pi

6: qi = max

(
0, e_le f ti ( f )+I

min
i (Tamb )− (1−U ) · (di (tcur )−

d1 (tcur ))
)

7: U = min

(
1.0,U +

e_lef ti (f )+Imin
i (Tamb )−qi

di (tcur )−d1 (tcur )

)
8: p = p + qi
9: end for
10: S (tcur ,d1 (tcur )) = d1 (tcur ) − tcur − p

Imin
i (Tamb ) between the execution of each sub-task, we can sched-

ule all tasks without violating thermal and timing constraints. How-

ever, such static idle time allocation under pessimistic assump-

tions cannot efficiently utilize all available slack resources at run-

time, which may, in turn, incur unnecessary preemption overheads.

Therefore, we develop an online idle-time scheduling algorithm

that reclaims unused resources and utilize them to allocate dynamic
idle-time for each task in an efficient way. As a result, our algorithm

can fulfill both thermal and timing requirements with much fewer

preemptions.

We here present our online idle-time scheduling algorithm. The

scheduler is invoked upon (i) release of a new job (JOB_RELEASE),
(ii) completion of a job (JOB_COMPLETION), or (iii) update of fre-

quency by APAF (FREQ_UPDATE). The scheduler keeps track of

the worst-case remaining execution time, e_le f ti ( f ) for the ac-

tive job of τi . This is set to ei ( f ) on JOB_RELEASE, decremented

as the job executes, updated according to frequency change on

FREQ_UPDATE, and set to 0 on JOB_COMPLETION. Upon each invo-

cation (either JOB_RELEASE, JOB_COMPLETION, or FREQ_UPDATE),
the scheduler updates available slack S (tcur ,d1 (tcur )) for the in-
terval of [tcur ,d1 (tcur )), where tcur is the current time instant

and d1 (tcur ) is the earliest absolute deadline among all released

jobs whose deadline is after tcur . Then, the scheduler assigns slack
S (tcur ,d1 (tcur )) to tasks in proportion to their average power dissi-
pation (i.e., Pi ·

ei (f )
pi ). The rationale for such a proportional slack

distribution is that a task with higher power dissipation requires

more idle-time. In this way, each task is assigned an amount of

idle-time equal to

Ii (tcur ) = Imin
i (Tamb ) + S (tcur ,d1 (tcur )) ·

Pi ·
ei (f )
pi∑

τi Pi ·
ei (f )
pi

. (25)

Based on the assigned idle time Ii (tcur ) and the remaining exe-

cution time e_le f ti ( f ), the scheduler splits τi into mi (Ii (tcur ))

sub-tasks and alternates the processor to be idle for
Ii (tcur )

mi (Ii (tcur ))

units and task execution for
e_lef ti (f )
mi (Ii (tcur ))

units.

Let’s consider how to calculate slack S (tcur ,d1 (tcur )). Our goal
is to find the maximum amount of slack time, which may be avail-

able during the interval [tcur ,d1 (tcur )), while guaranteeing 1) at
least the minimum idle-time for all future jobs and 2) all future

Table 2: Thermal parameters of i.MX6 processor [12, 13]

R (°C/W) C (J/°C) β1 (mA/°C) β0 (mA) Pmax (mW)

22 0.0454 0.435 611 3860

Table 3: Task execution time and min/maximum periods

(s) Angle Bit Table Edge FFT PID

ei 2.51 1.03 0.919 0.872 0.456 0.151

pmin
i ,pmax

i 15, 30 6, 12 6, 12 5, 10 2.5, 5 1, 2

deadlines (≥ tcur ) to be met. Algorithm 1 presents our slack cal-

culation method. At time tcur , we look at the interval until the

earliest absolute deadline d1 (tcur ) among all tasks and examine all

tasks in reverse EDF order, i.e., latest deadline first (Line 4). Note

that tasks are indexed in EDF order (i.e., for τi and τk where i < k ,
di (tcur ) ≤ dk (tcur )). We assume that future task invocations re-

quire the worst-case execution and minimum idle- times, and thus

their utilization is

∑
τi

ei (f )+Imin
i (Tamb )
pi (Line 1). We try to defer as

much execution/idling as possible beyondd1 (tcur ) and compute the

minimum amount of execution/idling p that must execute before

d1 (tcur ) in order to meet all future deadlines (Lines 5–8). This step

is repeated for all tasks. To calculate p, we use the similar approach

as in [9, 30]. Then, the slack is set to the remaining time slots except

for p over the interval [tcur ,d1 (tcur )) (Line 10). The underlying
principle behind our slack calculation is that EDF will determine a

feasible schedule if the utilization in Eq. (24) is ≤1.0 at any time [5].

Runtime complexity.At each invocation (either JOB_RELEASE,
JOB_COMPLETION, or FREQ_UPDATE), our scheduling algorithm up-

dates the slack by Algorithm 1 with the complexity of O (n), where
n is the number of tasks. Then, our algorithm allocates the slack

to a job with the earliest deadline according to Eq. (25) with the

complexity of O (1). Thus, the complexity of our online scheduling

algorithm is O (n).

7 EVALUATION
We have implemented and evaluated RT-TRM on an automotive

and infotainment app processor. Our evaluation focuses on how it

guarantees thermal and real-time constraints.

Experimental setup. Our evaluation platform is i.MX6 [13] with

ARM A9 supporting 3 discrete frequency levels (1GHz, 0.8GHz,

0.4GHz) and the corresponding voltage levels (1.25V, 1.15V, 0.95V).

The chip is equipped with an on-chip thermal sensor with precision

of 0.4°C. Table 2 specifies the power and thermal parameters of our

target platform. We set the peak temperature constraint Tmax to

60°C. For the purpose of demonstration, we used realistic automo-

tive workloads obtained from MiBench [17], including Angle-time
Conversion, Bit Manipulation, Table Lookup, Edge Detection, FFT, PID.
The configuration of each workload are shown in Table 3.

We implemented RT-TRM on Linux using Resource Kernel [29]

for real-time scheduling and period adaptation. We also leverage

GNU LPsolver [28] for linear optimization. For idle-time scheduling,

we generate a kernel idle thread to preempt task execution.

Handling ambient temperature variation. To illustrate how

RT-TRM adapts to various environmental conditions to meet the
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Figure 7: Experimental results of RT-TRM showing proces-
sor temperature, frequency, task-rate traces under different
ambient temperatures (25/30/35°C).

thermal constraint, we conducted a set of experiments under am-

bient temperature 25, 30 and 35°C. Fig. 7 plots the real-time traces

of processor temperature, frequency and task-rate. The task-rate

is defined in Eq. (14) and normalized by the maximum rate. The

results show that RT-TRM effectively regulates the processor tem-

perature below Tmax . Under 25°C (dotted line) RT-TRM is shown

to be able to maintain the 1GHz processor frequency and 91.5% of

the maximum task-rate. Under 35°C (solid line) , the processor fre-

quency had to be reduced at time around 150s to meet the thermal

constraint, resulting in 65.6% of the maximum task-rate. At ambient

temperature 30°C (grey line), the processor frequency is switched

between 1 and 0.8GHz dynamically adjusting task-rate to achieve

82.6% of the maximum task-rate. RT-TRM used a combination of

adaptive parameter assignment and online idle-time scheduling to

maintain the processor temperature below the specified limit.

Effect of online slack usage. After demonstrating RT-TRM’s

ability to meet the thermal constraint under the dynamically chang-

ing ambient temperature, we analyze the effect of slack usage on

online idle-time scheduling. During the above-mentioned experi-

ment, we measure the total idle-time and the number of preemp-

tions per job, and they are shown in Table 4. Our online idle-time

scheduling algorithm can assign more idle-time by 0.054s by effi-

ciently utilizing runtime slack and, as a result, reduce the number

of preemptions by 7.4x, compared to the static minimum idle-time

allocation method. We observe that a small amount of additional

idle-time can dramatically reduce the number of preemptions. By

reclaiming the available slack at runtime, RT-TRM uses 24.4% more

idle-time to reduce 86.5% of preemptions without violating both

thermal and timing constraints.

Performance evaluation. We have thus far demonstrated how

RT-TRM to handle the dynamically changing ambient tempera-

ture and use runtime slack to reduce the number of preemptions

while satisfying thermal and timing constraints. We now focus

on resource-efficiency and compare RT-TRM with two baseline

approaches:

Table 4: Average number of preemptions and idle-time per
job

Preemption Used idle-time (s)

Static minimum idle-time 8.77 0.221

Online idle-time scheduling 1.18 0.275

• EDF: static parameter assignment under EDF

• RT-MTC : dynamic processor frequency assignment using

feedback control under EDF [16]

• RT-TRM: adaptive parameter assignment (§5) and online

idle-time scheduling (§6)

Under EDF, we consider two static parameter assignments
8
: one

assumes the average ambient temperature of 25°C (EDF-A), and

the other assumes the worst-case ambient temperature of 35°C

(EDF-W). Under RT-MTC, if the processor utilization exceeds the

schedulable utilization by lowering the processor frequency, task

periods are scaled to meet job/task deadlines. We use two metrics:

(1) the percentage of time during the thermal constraint is violated

and (2) the task-rate. Higher task-rate indicates higher resource-

efficiency.

Fig. 8 compares the processor temperature, frequency and task-

rate for three different thermal management schemes. EDF-A as-

signed the processor frequency of 1GHz and the task-rate of 100%

whereas EDF-W assigned the frequency of 0.8GHz and the task-rate

of 63.5% (Fig. 8a). Under EDF-A, the maximum temperature was

71.5°C, and thus the thermal constraint was violated for 76.7% of

the time. Under EDF-W, on the other hand, the thermal constraint

was satisfied for all the time with the maximum temperature of

59.1°C, but resources are severely under-utilized.

Under RT-MTC in Fig. 8b, when the processor temperature hit

the threshold at time 250s, the processor frequency was lowered to

0.8GHz. The temperature still exceeded the limit, so the frequency

was lowered again to 0.4GHz at time 750s. Due to the reduced

frequency to the lowest level, the task-rate for RT-MTC is reduced

to 67.2%. While the feedback control regulates the temperature

close to the set point, it violates the thermal constraint for 3% of

the time with the maximum temperature of 60.5 °C.

Fig. 8c shows that RT-TRM maintained the maximum processor

frequency for most of the time by adaptively adjusting the task

periods, achieving the task-rate of 79.4% — an 18.2% improvement

over RT-MTC. By efficiently scheduling idle-time, RT-TRM could

meet the thermal constraint for all the time with the maximum

temperature of 59.6 °C.

8 CONCLUSION
Emerging embedded real-time systems, such as connected cars

and smartphones, pose new challenges in meeting the timing con-

straints under the processors’ thermal constraints. Such a system

should consider a new dynamic computation power bound in addi-

tion to the conventional schedulable utilization bound. To address

this problem, we have developed a new thermal model that cap-

tures individual tasks’ heat generations as their activity factors. We

8
Parameters are assigned by solving the optimization problem Eq. (14)
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Figure 8: Experimental results of different schemes showing the processor temperature, frequency, and task-rate traces

then develop two new scheduling mechanisms, adaptive parame-
ter assignment and online idle-time scheduling. By tightly coupling

the solutions of these two scheduling mechanisms, we can guaran-

tee both thermal and timing constraints under dynamic ambient

temperature variations. Our evaluation of RT-TRM on a realistic

microcontroller using automotive benchmarks has demonstrated

the validity of the proposed thermal model and effectiveness of

RT-TRM in meeting both real-time and thermal constraints.
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