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Abstract—With an increasing demand for complex and
powerful System-on-Chips (SoCs), modern real-time automo-
tive systems face significant challenges in managing on-chip-
temperature. We demonstrate, via real experiments, the impor-
tance of accounting for dynamic ambient temperature and task-
level power dissipation in resource management so as to meet both
thermal and timing constraints. To address this problem, we pro-
pose RT-TRM, a real-time thermal-aware resource management
framework. We first introduce a task-level dynamic power model
that can capture different power dissipations with a simple task-
level parameter called the activity factor. We then develop two new
mechanisms, adaptive parameter assignment and online idle-time
scheduling. The former adjusts voltage/frequency levels and task
periods according to the varying ambient temperature while pre-
serving feasibility. The latter generates a schedule by allocating
idle times efficiently without missing any task/job deadline. By
tightly integrating the solutions of these two mechanisms, we can
guarantee both thermal and timing constraints in the presence of
dynamic ambient temperature variations. We have implemented
RT-TRM on an automotive microcontroller to demonstrate its
effectiveness, achieving better resource utilization by 18.2% over
other runtime approaches while meeting both thermal and timing
constraints.

Index Terms—Thermal-aware resource management, embed-
ded real-time systems, dynamic ambient temperature, task-level
power dissipation.

I. INTRODUCTION

Thermal-aware resource management has become critically
important to modern embedded real-time systems like au-
tomotive controls and smartphones as they are increasingly
realized on powerful computing platforms with exponentially
increasing power density. High on-chip temperatures shorten
the platform lifetime and severely degrade its performance
and reliability, risking safety (e.g., vehicle breakdown or
smartphone explosion). We must, therefore, keep the proces-
sor temperature below the peak temperature constraint while
satisfying all application timing constraints.
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There are two key thermal issues to consider for embedded
real-time systems: (1) dynamically varying ambient temper-
ature and (2) task-level power dissipation. Our experimental
evaluation has shown the ambient temperature of an automo-
tive electronic module to vary highly and dynamically even
during a single driving event, and its seasonal temperature
also varies widely up to a difference of 28◦C. Moreover,
the average power consumed by each application differs up
to 140%, according to our evaluation of various automotive
benchmark applications (to be detailed in §III).

These dynamic thermal features pose significant challenges
in meeting the application timing constraints. In particular,
the maximum available computation power varies with the
ambient temperature, as the temperature of a processor de-
pends on its ambient. According to our experimental eval-
uation (§III), an increase of 14.9◦C in ambient temperature
results in a maximum reduction of 28.8% in the processor’s
computation power. In such a case, the processor’s thermal
constraint may be violated if it executes a task whose average
power dissipation exceeds a certain limit. One may reduce
the processor temperature by idling or slowing it down, but
such an action may also lead to task/job deadline miss(es),
thus violating the app timing constraint. This calls for adap-
tive resource management that considers dynamically varying
ambient temperature and task-level power dissipation so as
to meet both the processor’s thermal and the app’s timing
constraints.

A significant amount of work has been done on real-time
thermal-aware scheduling (see [1] for a survey). Existing ap-
proaches usually employ DVFS scheduling [2], [3], idle-time
scheduling [4], or task scheduling [5] to minimize the peak
temperature while guaranteeing the timing constraint. Worst-
case temperature analyses [6], [7] have also been proposed for
offline guarantees to meet thermal constraints. The concept of
thermal utilization [8] was introduced to capture the thermal
impact of periodic real-time tasks on processors. Most of these
existing solutions, however, assume either fixed ambient tem-
perature or constant, task-independent power dissipation. Al-
though there exist real-time feedback thermal controllers that
minimize the error between the current processor temperature
and the desired temperature by regulating task utilization [9]
or frequency [10], they are limited to guaranteeing thermal
constraints due to temperature overshooting.

In this paper, we propose a new real-time thermal-aware
resource management framework, called RT-TRM, that cap-
tures not only varying computation power bounds due to the
variations of ambient temperature but also different power
demands by different tasks. RT-TRM adaptively makes a
parameter assignment (voltage/frequency levels and a task
period assignment) and builds a schedule (the processor idling
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or task-execution, and priority ordering of tasks) so as to meet
both thermal and timing constraints.

We first propose a task-level dynamic power model that
uses a simple task-level parameter, called the activity factor,
to capture different power dissipations by different tasks.
Building on this dynamic power model, we study the effect
of task-execution or processor-idling on the processor tem-
perature. Our model is also validated experimentally with
several automotive benchmarks running in various realistic
environments. Second, we propose the notions of dynamic
power demand of a task set and dynamic power bound at a
given ambient temperature and derive the feasibility conditions
for a parameter assignment with respect to both thermal
and timing constraints. We then develop a runtime adaptive
strategy that can preserve feasibility under ambient tempera-
ture variations by adjusting the parameter assignment. Third,
building on a feasible parameter assignment, we develop an
online scheduling policy that determines not only the processor
state (active or idle) but also the order of executing tasks in
active state. Our scheduling algorithm can reclaim slack (spare
capacity) at runtime and allocate it to tasks in proportion to
their power demands by considering the fact that a task with
higher power dissipation should be assigned more idle time.
This way, we can meet both thermal and timing constraints
with much fewer preemptions. Finally, we have implemented
RT-TRM on an automotive microcontroller to demonstrate its
effectiveness in dealing with ambient temperature variations.
RT-TRM is shown to improve resource utilization by 18.2%
over the existing runtime feedback thermal controllers while
guaranteeing both thermal and timing constraints.

This paper makes the following main contributions:
• Demonstration of the importance of accounting for dy-

namic ambient temperature and task-level power dissipa-
tion for thermal-aware resource management (§III);

• Development of a dynamic power model that captures
different power dissipations with a simple task-level
parameter called the activity factor and its experimental
validation (§IV);

• Development of an adaptive parameter-assignment frame-
work under varying ambient temperature while preserving
feasibility (§V);

• Development of an online idle-time scheduling algorithm
that enables dynamic idle-time allocation with much
fewer preemptions while guaranteeing both thermal and
timing constraints (§VI);

• Implementation and evaluation of the effectiveness of RT-
TRM on an automotive microcontroller (§VII).

II. RELATED WORK

Significant work has been done on thermal management
at both hardware (e.g., architecture design, floorplan) and OS
level (e.g., thermal-aware DVFS, scheduling) [1]. The focus of
this paper is on OS-level thermal-aware resource management
for hard real-time systems, such as cars.

Thermal-aware real-time scheduling has been an active
subject of research trying to meet timing and thermal con-
straints in a constant environment. DVFS scheduling deter-
mines the voltage and frequency of a processor to minimize the

power consumption [11], [12] and peak temperature subject
to timing constraints on single-core [2], [13], [14] or multi-
core platforms [3]. Multi-core task scheduling [5] determines
task-to-core assignment and scheduling to minimize the peak
temperature. Thermal shaping puts idle periods during task
execution to reduce the temperature without missing deadlines
[4], [15].

Researchers focused on different task-level power dissipa-
tions to reduce the peak temperature [16], [17] or maximize
throughput [18], [19] by interleaving the execution of hot and
cold tasks. By analyzing such task-level power variations, the
peak temperature was derived to meet the thermal constraint
[6]. The concept of thermal utilization was introduced in [8],
[20] to capture the different thermal impacts of real-time
tasks. A few researchers considered adaptive thermal-aware
resource management for real-time tasks to cope with dynamic
environments. Feedback controllers regulate the processor
temperature by adjusting processor utilization [9], [21] or
operating frequency [10] subject to the timing constraint.

While researchers developed task-level scheduling and
processor-level thermal control techniques to deal with both
the thermal and timing requirements, they have not yet ad-
dressed both large environmental variations and peak temper-
ature caused by task workloads together. To meet this need,
we first verify the significance of these factors in automotive
systems, then develop and validate a task-level thermal model
that can capture individual tasks’ different power dissipations.
Building upon the task-level thermal model, we propose a new
thermal-aware resource management scheme that (i) jointly
adapts task periods and processor frequency in response to
the varying ambient temperature and (ii) schedules tasks to
meet both thermal and timing constraints.

III. TARGET SYSTEM, CHALLENGES, AND SOLUTION
OVERVIEW

This section describes our target system (§III-A) and in-
troduces the challenges faced therein (§III-B) followed by an
overview of our approach (§III-C).

A. Target System

We consider an embedded real-time system running a set
of real-time tasks on a computing platform.

Processor and task model. Our target system is a
uniprocessor platform that provides dynamic voltage and fre-
quency scaling (DVFS) with a separate set of discrete fre-
quency/voltage levels. If an operating frequency f is adjustable
within the specified range of [fmin, fmax], its corresponding
voltage V is determined according to a typical implementation
principle [22]. We also consider a task set τ composed of
implicit-deadline periodic tasks. Each task τi ∈ τ is character-
ized by period pi and its worst-case execution time (WCET)
ei(f) as a function of operating frequency f . We assume
that pi is adjustable within [pmini , pmaxi ] based on typical
application elasticity [23], [24]. Note that, for a task whose
period is fixed, we set its period range as pmini = pi = pmaxi .
Such τi is assumed to generate a sequence of jobs, once every
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pi time-units, with each job needing to complete ei(f) within
a relative deadline of pi time-units.

Power and thermal model. We consider dynamic power
management where the processor is in either idle or active
state. The processor is said to be active if it is currently
executing a job, or idle otherwise. Its power dissipation (Pproc)
is then expressed as Pproc = Pleak+Pdyn, where Pleak is the
leakage power for the processor to stay ready (in active or
idle state) for execution of jobs, and Pdyn is the additional
dynamic power to execute a job (in active state). The term
Pleak is modeled as [25]: Pleak = V · (β1 · T + β0), where
β1 and β0 are processor-dependent constants, and T is the
processor’s temperature. Note that Pdyn depends on the task
currently running on the processor, and its detailed model will
be described in §IV-A.

To translate the processor’s power dissipation to its tem-
perature, we use a well-known thermal circuit model [26]. If
average processor power and ambient temperature are Pproc(t)
and Tamb(t), respectively, over a time period t, then the
processor temperature T (t) at the end of this period is

T (t) = T (0) · e−
t

R·C + (Tamb(t) + Pproc(t) ·R) · (1− e−
t

R·C ),
(1)

where R and C are the thermal resistance and capacitance,
respectively, and T (0) is the initial temperature of the pro-
cessor. We can observe from Eq. (1) that the temperature
will increase/decrease towards and eventually reach Tamb(t)+
Pproc(t) · R. We define the steady temperature T (∞) of the
processor as

T (∞) = Tamb(t) + Pproc(t) ·R. (2)

B. Problem Statement and Motivation

Problem Definition. We want to address the following real-
time thermal-aware resource management problem.

Definition 1: Given a task set τ running on a uniprocessor,
determine (i) the voltage/frequency (V /f ) level, (ii) the period
{pi} of task τi ∈ τ parameters, and (iii) the schedule of
jobs such that (a) temperature T (t) never exceeds the peak
temperature Tmax (thermal constraint), and (b) all jobs of
τi ∈ τ meet their deadlines for all possible legitimate job
arrival sequences (timing constraint).
To generate a job schedule, we need to determine not only the
processor state (active or idle) but also the order of executing
jobs in active state. From real embedded systems (e.g., cars and
smartphones), we found two key thermal characteristics: (1)
dynamic changes in the ambient temperature and (2) different
power dissipations by different tasks. These are the primary
motivation behind RT-TRM.

Dynamic changes on ambient temperature. Unlike desk-
tops or data-centers, embedded real-time systems experience
a wide range of environmental variations (especially the
ambient temperature) during their operation/life. To confirm
this fact, we measured the ambient temperature of a vehicle
infotainment module embedded in the dashboard over days
and months, and the results are plotted in Fig. 1. When the
car was driven for several days, the change in the ambient
temperature was highly dynamic and fluctuating between 0◦C
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Figure 1: Ambient temperature variations over time and the
corresponding available computation power.

y = 0.435x + 611.23

626.5

627

627.5

628

628.5

629

35 36 37 38 39 40 41

Idle Power

0

500

1000

1500

2000

2500

Angle-Time

Conversion

Bit

Manipulate

Table

Lookup

Edge

Detection

FFT PID

P
o

w
er

  
(m

W
)

Automotive Benchmarks

Figure 2: Average power consumptions for various automotive
applications.

and 23◦C. During a single driving event on Feb. 21, 2018
the ambient temperature was increased by up to 180%. The
seasonal variation of the ambient temperature is also very
wide. A similar phenomenon was also reported in [27] for
car engine and transmission control units.

Under such a varying ambient temperature, real-time
thermal-aware resource management becomes much more
challenging as the processor’s temperature is affected by the
ambient temperature. We can use Eq. (2) to calculate the
maximum processor’s power dissipation without exceeding
Tmax for a given ambient temperature Tamb as Tmax−Tamb

R .
The change in the maximum processor’s computation power
under a varying ambient temperature is then plotted in Fig. 1
(the gray line).1 For example, on Feb. 21, 2018 as the ambient
temperature increased by 14.9◦C from 8.3◦C, the available
processor computation power was decreased by 28.8%.

Task-level power dissipations. We also measured the pro-
cessor’s average power consumption to run various automotive
benchmarks [29], and plotted the results in Fig. 2. Each app is
shown to consume a different amount of power. For example, a
table lookup task consumes 1726mW, while a bit manipulation
task does 2348mW at the maximum processor frequency.2

In summary, the available processor’s computation power
varies with the ambient temperature. In addition, the execu-
tion of each task imposes a different power demand on the
processor. So, we need to consider different task-level power
dissipations and make adaptive parameter assignments and job
schedules according to the varying ambient temperature so as
to meet both thermal and timing requirements.

1We set Tmax = 60◦C and R = 22◦C/W based on the specification of
an automotive microcontroller [28].

2A table lookup operation is used by an engine control module to find
an output value corresponding to an input value (e.g., the ignition angle). A
bit-manipulation operation is used by a display module where the pixels are
moved into a display buffer until the entire buffer is displayed.
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C. Overview of the Proposed Approach

To solve the real-time thermal-aware resource management
problem while considering the varying ambient temperature
and diverse task-level power dissipations, we address the
following questions:
Q1. How to model power dissipations of different tasks and

analyze the impact of their execution on the thermal
behavior?

Q2. How to make adaptive parameter assignments under dy-
namically changing ambient temperature while meeting
both thermal and timing constraints?

Q3. How to derive a job schedule meeting both thermal and
timing constraints based on parameter assignment?

To answer Q1, we develop a task-level dynamic power
model by using a simple task-level parameter called the
activity factor. Based on this task-level dynamic power model,
we analyze the effect of task execution on the processor’s
temperature, i.e., whether it increases or decreases the pro-
cessor’s temperature. Moreover, we empirically determine the
activity factors for several automotive apps and verify our
model in various environments, i.e., under different processor-
frequency/task-utilization settings, varying ambient tempera-
ture, and executing multiple tasks (§IV).

To address Q2, we define a dynamic power demand of a
task set τ that represents the total dynamic power demand
by τ at the processor’s steady temperature. We also define a
dynamic power bound function of Tamb that represents the
maximum processor’s dynamic power Pdyn at Tamb without
violating the thermal constraint. Based on these concepts,
we derive the feasibility conditions of a task set and formu-
late an optimization problem that finds a feasible parameter
assignment for a given Tamb. We also develop a runtime
adaptive strategy that can preserve feasibility by adapting the
parameter assignment to ambient temperature changes. We
determine a tolerable ambient temperature range for parameter
adaptation by considering the trade-off between adaptation
overhead and resource efficiency. With our adaptive parameter
assignment, the steady temperature is guaranteed not to exceed
the peak temperature limit without missing any deadlines in
the presence of ambient temperature variations (§V).

To answer Q3, building on a feasible parameter assignment
derived by answering Q2, we develop an online scheduling
policy. A task schedule may affect the transient temperature,
potentially violating the thermal constraint before reaching the
steady temperature. To avoid this, we calculate the minimum
idle-time required for the execution of each job with respect to
the thermal constraint. We then develop an idle-time schedul-
ing algorithm that can reclaim unused resources at runtime
and utilize them to allocate idle-time efficiently while meeting
all deadlines with the minimum idle-time for each task. As a
result, our algorithm can guarantee both thermal and timing
constraints with much fewer preemptions (§VI).

IV. TASK-LEVEL POWER MODEL

We present a task-level power-consumption model that
captures different dynamic power dissipations by individual
tasks. In particular, we use a simple task-level activity factor

to capture each task’s dynamic power dissipation (§IV-A) and
empirically validate the model using a automotive platform
and workloads (§IV-B).

A. Task-Level Dynamic Power Model
For automotive workloads, power dissipation is found to

vary significantly with the executing task (Fig. 2). Since
individual tasks programmed with distinct sets of instructions
generate different switching activities and dynamic power
dissipations, we used a task-level activity factor αi to capture
such different dynamic power Pi consumed by each task τi as
Pi = V 2 · f · αi. Using this task-level dynamic power model,
we can analyze how the processor’s temperature changes with
the execution of each job/task. Let T (t) (Ti(t+ei(f))) be the
temperature at the beginning (end) of the execution of a job
of τi. Using Eqs. (1) and (2), Ti(t+ ei(f)) can be written as:

Ti(t+ ei(f)) = T (t) · e−
ei(f)
R·C + T∞i (Tamb) · (1− e−

ei(f)
R·C ), (3)

where T∞i (Tamb) is the steady temperature associated with
the execution of τi that would be reached if the processor
executes τi continuously. T∞i (Tamb) can be expressed as:

T∞i (Tamb) = Tamb + (Pi + Pleak) ·R. (4)

We observe from Eqs. (3) and (4) that (i) if T (t) <
T∞i (Tamb) then the temperature increases towards T∞i (Tamb),
and (ii) if T (t) ≥ T∞i (Tamb) then the temperature decreases
towards T∞i (Tamb). A task τi is said to be hot if T∞i (Tamb) >
Tmax, or cold otherwise. Depending on Tamb, τi can become
hot or cold.

To consider the effect of idling the processor on its temper-
ature, we let T0(t+ l) denote the temperature at the end of an
idle period of length l. Similarly to Eq. (3), T0(t+ l) can be
written as:

T0(t+ l) = T (t) · e−
l

R·C + T∞0 (Tamb) · (1− e−
l

R·C ), (5)

where T∞0 (Tamb) = Tamb+Pleak ·R is the processor’s steady
temperature in idle state.

So far, we have discussed the thermal effect of continuous
execution (idling) of a single job (a processor). Now, let’s
consider the impact of a schedule of periodic tasks and idle-
times. Let T (t,W (t)) denote the temperature at the end of a
schedule W (t) = {wi(t)}, where wi(t) is the total workload
scheduled in (0, t]. Then, T (t,W (t)) can be written as:

T (t,W (t)) = T (0) · e−
t

R·C

+ (Tamb + (
∑
τi

Pi ·
wi(t)

t
+ Pleak) ·R) · (1− e−

t
R·C ), (6)

where
∑
τi
Pi · wi(t)

t is the average dynamic power consumed
by W (t). Note that every task τi generates a sequence of jobs
executing ei(f) every pi time-units, consuming an average
dynamic power of Pi · ei(f)pi

. We can then define the steady
temperature T (∞, τ) of a task set τ as:

T (∞, τ) = Tamb + (
∑
τi

Pi ·
ei(f)

pi
+ Pleak) ·R. (7)
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Table I: Identifying activity factors and maximum errors
Task Angle Bit Table Edge FFT PID

T∞i (◦C) 66.1 73.6 59.9 61.6 69.5 67.8
αi 0.355 0.446 0.284 0.304 0.435 0.377

Note that the steady temperature of a task set is independent
of its schedule, which serves as a basis for the feasibility
condition presented in §V.

Identifying task-level activity factors. To identify the
activity factor of each task, we ran automotive benchmarks,
one at a time, with 100% resource utilization at the maximum
frequency under the room temperature. We then measured the
steady temperature and determined each task’s activity factor
by using Eq. (4), and presented them in Table I.3 The activity
factor varies greatly with tasks by up to 65%. For example, a
table-lookup task with a large number of conditional switches
and I/O accesses shows a low activity factor, while a bit-
manipulation task with a high instruction-per-cycle rate shows
a high activity factor.4

B. Model Validation

To confirm that the task-level dynamic power model and its
thermal effect represent real hardware behaviors, we measured
the steady temperature of the processor and compared it
with our model’s estimation under various settings. In par-
ticular, we validated our model under (i) different processor-
frequency/task-utilization settings, (ii) running multiple tasks
together, and (iii) different ambient temperatures.

First, as shown in Fig. 3, we varied the task period to achieve
the processor utilization ranging from 10% to 90% with a
10% increment as well as the frequency level from 0.4GHz
to 1GHz for each task and measured the steady temperature.5

Fig. 3 shows the measured steady temperature as dotted points
while the estimations with our model are plotted as lines with
an error up to 0.65◦C.

Second, as shown in Fig. 4, we ran two tasks — bit
manipulation and angle-time conversion — together on a
single core at 1GHz by varying their utilizations. The result
shows that the steady temperature of the processor is linearly
increased with each task’s utilization (plotted as a linear
surface) as formulated in Eq. (7). We also confirmed that the
same tendency is observed for different numbers of tasks (i.e.,
4 and 8 tasks) with an error up to 1.2◦C.

Finally, we validated our model for different ambient tem-
peratures from 20◦C to 35◦C. For each configuration, we
repeated this 10 times with sufficient intervals, showing an
error of up to 0.98◦C.

V. ADAPTIVE PARAMETER ASSIGNMENT

We now present how to adjust a voltage/frequency level
and task period assignment according to the varying ambient
temperature, called Adaptive Parameter Assignment Frame-
work (APAF). Specifically, we derive feasibility conditions for

3The detailed experimental setup will be given in §VII.
4The activity factor α is normalized by the maximum power, i.e., α = 1

means the maximum power dissipation.
5See §VII for more details of the experimental setup.
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Figure 3: Model validation with varying utilizations.
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a parameter assignment, formulate a parameter optimization
problem, and introduce a runtime strategy for adapting to the
varying ambient temperature.

A. Parameter Assignment

We first consider the feasible parameter assignment problem
for a given ambient temperature.

Definition 2 (Feasible parameter assignment): Given a task
set τ and the ambient temperature Tamb, determine V , f and
pi for every τi ∈ τ such that if τ is feasible (i.e., meeting the
thermal and timing constraints), it remains feasible even with
the new parameter assignment.

To solve this problem, we introduce two conditions for a
parameter assignment to be feasible with respect to thermal
and timing constraints for a given ambient temperature and
formulate an optimization problem to find a feasible parameter
assignment.

Feasibility condition. Recall that for a given task set τ ,
the processor temperature will eventually reach the steady
temperature T (∞, τ) of τ (defined in Eq. (7)) regardless of its
schedule. Therefore, to meet the thermal constraint, the steady
temperature T (∞, τ) should be lower than or equal to the peak
temperature limit Tmax,

C1: T (∞, τ) ≤ Tmax. (8)

We define a dynamic power demand PD(τ) of τ as the
total dynamic power demand by τ at the steady temperature,
which is:
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PD(τ) =
∑
τi

Pi ·
ei(f)

pi
= V 2 · f ·

∑
τi

αi ·
ei(f)

pi
. (9)

We also define a dynamic power bound PB(Tamb) of Tamb
as the maximum processor’s dynamic power at Tamb with-
out exceeding Tmax. We can derive PB(Tamb) by solving
T (∞, τ) = Tmax:

PB(Tamb) =
Tmax − Tamb

R
− V · (β1 · Tmax + β0). (10)

Using these, the feasibility condition C1 with respect to the
thermal constraint can be re-written as

C1: PD(τ) ≤ PB(Tamb). (11)

To meet the timing constraint, we use a well-known exact
feasibility analysis by Liu and Layland [30]:

C2:
∑
τi

ei(f)

pi
≤ 1. (12)

If a parameter assignment satisfies both C1 and C2, the
steady temperature of τ is guaranteed not to exceed Tmax
without missing any task deadline when a task set is scheduled
by an optimal scheduling algorithm. However, as can be seen
from Eq. (6), a job schedule may affect a transient temperature
T (t,W (t)), potentially violating the thermal constraint before
reaching the steady temperature. To avoid this situation, we
define the minimum idle-time Imini (Tamb) required for the
execution of each job without violating the thermal constraint
and include the term in C2 (to be detailed in §VI). Then, the
feasibility condition C2 can be extended to:

C2:
∑
τi

ei(f) + Imini (Tamb)

pi
≤ 1. (13)

So, if there exists a parameter assignment satisfying both
C1 and C2, we can guarantee that a task set τ is feasible with
respect to both thermal and timing constraints.

Parameter optimization. We formulate the parameter as-
signment problem as an optimization problem subject to the
feasibility conditions (C1 and C2):

maximize
f,pi

∑
τi

wi ·
1

pi
(14)

s.t. C1: PD(τ) = V 2 · f ·
∑
τi

αi ·
ei(f)

pi
≤ PB(Tamb)

(15)

C2:
∑
τi

ei(f) + Imini (Tamb)

pi
≤ 1 (16)

f ∈ [fmin, ..., fmax]. (17)

∀τi pmin
i ≤ pi ≤ pmax

i (18)

As an optimization goal, a QoS function associated with
resource usage can be used as in [23], [24]. Our objective
in Eq. (14) is to maximize the weighted sum of each task-rate
1
pi

.6 Eq. (17) specifies the discrete frequency scaling levels
available on the processor. Eq. (18) specifies the minimum

6The value of wi can be determined by the importance of each task.
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and maximum bounds of an allowable task period within
[pmin
i , pmax

i ]. We use linear programming to determine a task
period assignment for a given voltage/frequency level starting
from the maximum level. If there is no solution, we lower the
voltage/frequency level until a feasible solution is found. The
computational complexity is O(m · n3.5) for n tasks and m
frequency scaling levels [31].

B. Runtime Parameter Adaptation

We propose a runtime parameter adaptation strategy that
samples ambient temperature variations and dynamically ad-
justs the voltage/frequency level and period assignment. For
this, we need to determine when and how to adjust the
parameter assignment. We set fixed points of the ambient
temperature threshold {TSamb(k)}, which are determined by

TSamb(k + 1) = TSamb(k) + ∆T, (19)

where ∆T is a tolerable ambient temperature range.
Our runtime adaptation strategy periodically estimates the

ambient temperature and adjusts the parameter assignment
whenever the sampled ambient temperature is out of the
range (TSamb(k), TSamb(k + 1)] for any k. The parameter
assignment in each range is determined by solving the opti-
mization problem in Eq. (14) with the ambient temperature
of TSamb(k + 1). The challenge is how to choose ∆T and
estimate the ambient temperature.

Determining a tolerable ambient temperature range.
There exists a trade-off between resource utilization and adap-
tation overhead in choosing ∆T . A smaller ∆T can achieve
efficient resource utilization with prompt response upon small
ambient temperature changes at the expense of high adaptation
overhead. If the adaptation interval ∆T is too large, coarse-
grained parameter adaptation incurs resource utilization loss.

To determine the optimal value of ∆T , we analyze the
ambient temperature trace in Fig. 1a and compare the runtime
overhead and resource efficiency depending on ∆T . Fig. 5a
illustrates how our parameter adaptation responds to the vary-
ing ambient temperature for different values of ∆T . From
the trace, we obtain the adaptation overhead and resource
utilization loss for each value of ∆T .

Fig. 5b shows the trade-off between resource efficiency and
adaptation overhead, where the adaptation overhead (dotted
line) decreases, but the resource utilization loss (grey line)
increases as ∆T increases. The adaptation overhead in our
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experimental setup (§VII) was about 27ms. When adapting
every sampling period (∆T = 0), processor utilization over-
head incurred is 2.7%. (Fig. 5b). We set the optimal value of
∆T to the point where the sum of the adaptation overhead
and resource utilization loss (solid line) is minimized, which
is ∆T = 1◦C.

VI. ONLINE IDLE-TIME SCHEDULING

So far, we have discussed how to adaptively adjust the
processor’s voltage/frequency and the task periods under the
varying ambient temperature. We now consider how to sched-
ule task/job executions and idle-times in order to meet both
thermal and timing requirements. Specifically, we want to
address the following problem, which we call the schedule-
generation problem.

Definition 3 (Schedule generation): Given the assignment
of V , f , and {pi} (with APAF), determine a schedule of job
executions and idle-times such that the processor temperature
T (t) does not exceed Tmax at any time t while all jobs of all
tasks τi ∈ τ meet their deadlines.

To solve this problem, we must consider two key issues:
1) transient temperature T (t) varies with the task running at
any given time, and 2) ambient temperature Tamb also affects
T (t). Suppose that the processor has reached Tmax (i.e.,
T (t) = Tmax) and two tasks — a cold task τ1 and a hot task
τ2 — are ready to run at time t. If a cold task τ1 is scheduled,
the temperature will decrease since T∞1 (Tamb) ≤ Tmax. On
the other hand, if a hot task τ2 starts to run immediately, the
temperature will increase (since T∞2 (Tamb) > Tmax), and the
thermal constraint will be violated. To avoid the processor
temperature exceeding Tmax, we must idle the processor to
drop its temperature to a safe temperature before executing
τ2. With this safe temperature, continued execution of τ2 will
not violate the thermal constraint. The main challenge is then
how to derive a safe temperature and schedule idle-times to
reach the temperature before executing each hot task. Note
that each task has a different power dissipation, so the safe
temperature may vary with task. Moreover, the amount of
idle time required to reach a safe temperature varies with the
ambient temperature. Without a proper idle-time scheduling
decision, it may end up with some undesirable situations, such
as those where (a) the temperature exceeds Tmax and/or (b) a
task/job deadline miss occurs.

To resolve such issues, we develop a thermal-aware on-
line idle-time scheduling policy that determines idle-times
between the execution of tasks to meet both thermal and
timing constraints. We assume that tasks is priority-ordered
according to the earliest deadline first (EDF) policy. We
calculate the minimum idle-time required for the execution of
each task to avoid the situation (a) and take the minimum
idle-time into account in our adaptive parameter assignment
to avoid the situation (b). Our proposed online scheduling
algorithm then makes the trade-off between the total amount
of required idle-time and preemption overhead. In particular,
it updates available slack at runtime and effectively utilizes it
to allocate more idle-time with much fewer preemptions while
guaranteeing both thermal and timing constraints.

Calculation on the minimum idle-time. Now, we describe
the relation between the amount of necessary idle-time and the
number of preemptions. We first consider the case of executing
a hot task τi for ei(f) units without any preemption. We define
the safe temperature of τi to execute for ei(f) units at Tamb
(denoted by T safei (ei(f), Tamb)) as the initial temperature at
which the temperature reaches Tmax after the execution of
ei(f) units. The safe temperature can then be derived by
solving the term T (t) in Eq. (3) when Ti(t+ ei(f)) = Tmax:

T safei (ei(f), Tamb) = T∞i (Tamb)−
T∞i (Tamb)− Tmax

e−
ei(f)
R·C

. (20)

Similarly, we can calculate the idle-time necessary to reach
T safei (ei(f), Tamb) (denoted by tidle(ei(f), Tamb) by solving
the term l in Eq. (5) when T0(t + l) = T safei (ei(f), Tamb)
and T (t) = Tmax:

tidle(ei(f), Tamb) = R · C · ln(
Tmax − T∞0 (Tamb)

T safei (ei(f), Tamb)− T∞0 (Tamb)
).

(21)

Now, let’s consider the case where preemption is allowed,
i.e., splitting each task τi into multiple — mi (mi > 1) — sub-
tasks and inserting idle-time in between. Likewise, by using
Eqs. (20) and (21), we can calculate the safe temperature and
idle-time required for executing each sub-task for ei(f)

mi
units.

Then, the cumulative idle-time to execute mi sub-tasks at Tamb
can be calculated as mi · tidle( ei(f)mi

, Tamb).
Fig. 6 shows the cumulative idle-time as mi increases.

It is important to observe that the more sub-tasks, the less
cumulative idle-time required, as was also observed in [19].
In Fig. 6(a), we can see that the amount of required idle-
time also depends the ambient temperature. As shown in
Fig. 6(b), each task requires a different amount of idle-time.
Note that cold tasks — e.g., a table-lookup task — does not
require idle-time. The results shown in Fig. 6 imply that the
cumulative idle-time can be reduced by splitting each task
into more sub-tasks with frequent idling of the processor.
However, the benefit of frequent idling becomes saturated as
mi increases, and the preemption overhead can no longer
be ignored. Considering this, we derive the minimum idle-
time for a task τi (denoted by Imini (Tamb)) as follows. We
calculate a decreasing amount of cumulative idle-time by
taking derivative ∂

∂mi
(mi · tidle( ei(f)mi

, Tamb)), and find the
value of mi (denoted by mmax

i ) where the value of the
derivative becomes closest to the preemption cost for switching
between active and idle states. Then, the minimum idle-time
of τi can be calculated as

Imini (Tamb) = mmax
i · tidle(

ei(f)

mmax
i

, Tamb). (22)

Note that it is sufficient to update the minimum idle-time of
each task only when there exists any parameter change caused
by our adaptive parameter assignment.

Guarantee of thermal and timing constraints. For every
invocation of a task τi, if the minimum idle-time is correctly
scheduled before finishing the execution of τi, we can guaran-
tee that the thermal constraint is never violated. The question
then becomes how to guarantee the timing constraint when
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all tasks are scheduled together with their minimum idle-
time. To address this, we derive a new feasibility condition
by incorporating the minimum idle-time for each task. In
order for a task set τ to be feasible under both thermal and
timing constraints, every job of each task τi should have its
minimum idle-time (for at least Imini (Tamb)) and finish its
execution (for at most its WCET ei(f)) before its deadline.
Then, a new feasibility condition can be derived by extending
the utilization-based exact feasibility analysis by Liu and
Layland [30]: ∑

τi

ei(f) + Imini (Tamb)

pi
≤ 1. (23)

We include the feasibility condition (Eq. (23)) in the opti-
mization formulation for the parameter assignment presented
in §V-A. This way, RT-TRM can guarantee both thermal and
timing constraints.

Online idle-time scheduling. Building upon the parameter
assignment obtained by APAF, if we divide each task τi
into mi(I

min
i (Tamb)) sub-tasks and evenly distribute the idle-

time Imini (Tamb) between the execution of each sub-task,
we can schedule all tasks without violating thermal and
timing constraints. However, such static idle time allocation
under pessimistic assumptions cannot efficiently utilize all
available slack resources at runtime, which may, in turn, incur
unnecessary preemption overheads. Therefore, we develop an
online idle-time scheduling algorithm that reclaims unused
resources and utilize them to allocate dynamic idle-time for
each task in an efficient way. As a result, our algorithm can
meet both thermal and timing requirements with much fewer
preemptions.

Described below is our online idle-time scheduling al-
gorithm. The scheduler is invoked upon (i) release of
a new job (JOB_RELEASE), (ii) completion of a job
(JOB_COMPLETION), or (iii) update of frequency by APAF
(FREQ_UPDATE). The scheduler keeps track of the worst-
case remaining execution time, e lefti(f) for the active job
of τi. This is set to ei(f) on JOB_RELEASE, decremented as
the job executes, updated according to frequency change on
FREQ_UPDATE, and set to 0 on JOB_COMPLETION. Upon
each invocation (either JOB_RELEASE, JOB_COMPLETION,
or FREQ_UPDATE), the scheduler updates available slack
S(tcur, d1(tcur)) for the interval of [tcur, d1(tcur)), where
tcur is the current time instant and d1(tcur) is the earliest

Algorithm 1 Slack calculation

1: U =
∑
τi

ei(f)+I
min
i (Tamb)
pi

2: p = 0
3: for i = n to 1, τi ∈ {τ1, ..., τn|d1(tcur) ≤ ··· ≤ dn(tcur)}

do
4: . In reverse EDF order of tasks
5: U = U − ei(f)+I

min
i (Tamb)
pi

6: qi = max
(
0, e lefti(f) + Imini (Tamb)− (1−U) · (di(tcur)−

d1(tcur))
)

7: U = min
(
1.0, U +

e lefti(f)+I
min
i (Tamb)−qi

di(tcur)−d1(tcur)

)
8: p = p+ qi
9: end for

10: S(tcur, d1(tcur)) = d1(tcur)− tcur − p

absolute deadline among all released jobs whose deadline is
after tcur. Then, the scheduler assigns slack S(tcur, d1(tcur))
to tasks in proportion to their average power dissipation (i.e.,
Pi · ei(f)pi

). The rationale for such a proportional slack distri-
bution is that a task with higher power dissipation requires
more idle-time. In this way, each task is assigned an amount
of idle-time equal to

Ii(tcur) = Imini (Tamb) + S(tcur, d1(tcur)) ·
Pi · ei(f)pi∑
τi
Pi · ei(f)pi

.

(24)

Based on the assigned idle time Ii(tcur) and the remain-
ing execution time e lefti(f), the scheduler splits τi into
mi(Ii(tcur)) sub-tasks and alternates the processor to be idle
for Ii(tcur)

mi(Ii(tcur))
units and task execution for e lefti(f)

mi(Ii(tcur))
units.

Let’s consider how to calculate slack S(tcur, d1(tcur)). Our
goal is to find the maximum amount of slack time, which
may be available during the interval [tcur, d1(tcur)), while
guaranteeing 1) at least the minimum idle-time for all future
jobs and 2) all future deadlines (≥ tcur) to be met. Algorithm 1
presents our slack calculation method. At time tcur, we look at
the interval until the earliest absolute deadline d1(tcur) among
all tasks and examine all tasks in reverse EDF order, i.e., latest
deadline first (Line 4). Note that tasks are indexed in EDF
order (i.e., for τi and τk where i < k, di(tcur) ≤ dk(tcur)).
We assume that future task invocations require the worst-case
execution and minimum idle- times, and thus their utilization
is

∑
τi

ei(f)+I
min
i (Tamb)
pi

(Line 1). We try to defer as much
execution/idling as possible beyond d1(tcur) and compute
the minimum amount of execution/idling p that must execute
before d1(tcur) in order to meet all future deadlines (Lines
5–8). This step is repeated for all tasks. To calculate p, we
use the similar approach as in [32], [33]. Then, the slack is
set to the remaining time slots except for p over the interval
[tcur, d1(tcur)) (Line 10). The underlying principle behind our
slack calculation is that EDF will determine a feasible schedule
if the utilization in Eq. (23) is ≤1.0 at any time [34].

Runtime complexity. At each invocation (either
JOB_RELEASE, JOB_COMPLETION, or FREQ_UPDATE),
our scheduling algorithm updates the slack by Algorithm 1
with the complexity of O(n), where n is the number of tasks.
Then, our algorithm allocates the slack to a job with the
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Table II: Thermal parameters of i.MX6 processor [22], [28]
R (◦C/W) C (J/◦C) β1 (mA/◦C) β0 (mA) Pmax(mW)

22 0.0454 0.435 611 3860

Table III: WCET and min/maximum periods
(s) Angle Bit Table Edge FFT PID
ei 2.51 1.03 0.919 0.872 0.456 0.151

pmini , pmaxi 15, 30 6, 12 6, 12 5, 10 2.5, 5 1, 2

earliest deadline according to Eq. (24) with the complexity
of O(1). Thus, the total complexity is O(n).

VII. EVALUATION

We have implemented and evaluated RT-TRM on a com-
mercial embedded processor for automotive and infotainment
applications. Our evaluation focuses on how it guarantees
thermal and real-time constraints under various conditions.

Experimental setup. Our evaluation platform is i.MX6 [28]
with ARM A9 supporting 3 discrete frequency levels (1GHz,
0.8GHz, 0.4GHz) and the corresponding voltage levels (1.25V,
1.15V, 0.95V). The chip is equipped with an on-chip thermal
sensor with precision of 0.4◦C. Table II specifies the power
and thermal parameters of our target platform. We set the peak
temperature constraint Tmax to 60◦C.7 For the purpose of
demonstration, we use realistic automotive workloads obtained
from MiBench [29], including Angle-time Conversion, Bit
Manipulation, Table Lookup, Edge Detection, FFT, PID. The
configuration of each workload is provided in Table III.8

We use real-time kernel [36] to periodically execute above
benchmark applications. For idle-time scheduling, we generate
a kernel idle thread to preempt task execution.

Handling ambient temperature variation. To illustrate
how RT-TRM adapts to various environmental conditions to
meet the thermal constraint, we conducted a set of experi-
ments at different ambient temperatures (25, 30, and 35◦C).
Fig. 7a plots the real-time traces of processor temperature,
frequency and task-rate. The task-rate is defined in Eq. (14)
and normalized by the maximum rate. The results show that
RT-TRM effectively regulates the processor temperature below
Tmax. At ambient temperature 25◦C (dotted line), RT-TRM is
shown to be able to maintain the 1GHz processor frequency
and 91.5% of the maximum task-rate. At 30◦C (grey line),
the processor frequency is switched between 1 and 0.8GHz,
and the task-rate is dynamically adjusted, achieving 82.6% of
the maximum task-rate. At 35◦C (solid line), the processor
frequency had to be reduced at time around 150s to meet
the thermal constraint, resulting in 65.6% of the maximum
task-rate. We also look closer the results in Fig. 7a in a
shorter time interval (0, 40] and present the execution behavior
of the hottest task (bit manipulation) and its corresponding
temperature variation under RT-TRM as shown in Fig. 8. In the
figure, we observe that the processor temperature is increased

7According to the mean-time-to-failure (MTTF) model [35], the thermal
constraint of 60◦C can cover a typical vehicle warranty period of 10 years.

8Note that MiBench does not specify task period and execution time. We
thus measure the worst-case execution time of each task in our experimental
setup and synthetically assign a period range of each task proportional to the
WCET as done similarly in [18].

Table IV: The number of preemptions and idle-time per job
Preemption Used idle-time (s)

Static minimum idle-time 8.77 0.221
Online idle-time scheduling 1.18 0.275

whenever the bit manipulation task executes. When the ambi-
ent temperature is 35◦C, a job of the bit manipulation task is
invoked every 12 seconds, while it is invoked every 8 seconds
(6 seconds) when the ambient temperature is 30◦C (25◦C). RT-
TRM can adaptively adjust the processor frequency and task
periods under different ambient temperatures while meeting
both thermal and timing requirements.

Handling different thermal constraints. Fig. 7b shows the
results of RT-TRM under different thermal constraints (55,
60, and 65◦C). Under the thermal constraint of 65◦C, RT-
TRM achieves a higher task-rate of 91% without reducing core
frequency. Under the thermal constraint of 55◦C, it achieves
a lower task-rate of 64.6% by reducing core frequency to
0.8GHz in order to meet the thermal constraint. RT-TRM is
shown to effectively control the processor temperature close to
the thermal constraint and maximize the resource utilization.

Handling different power dissipations. Fig. 7c shows the
results of RT-TRM for different power dissipation workloads
under the thermal constraint of 60◦C. For the low power
dissipation workload, RT-TRM achieves a higher task-rate of
88.9% with the maximum core frequency. For the high power
dissipation workload, it dynamically adjusts task-rate in order
to meet the thermal constraint, achieving a task rate of 79.3%.

Effect of online slack usage. We also analyze the effect of
slack usage on online idle-time scheduling. During the above-
mentioned experiment, we measure the total idle-time and the
number of preemptions per job, as shown in Table IV. Our
online idle-time scheduling algorithm can assign more idle-
time by 0.054s by efficiently utilizing runtime slack, and thus
reduce the number of preemptions by 7.4x, compared to the
static minimum idle-time allocation method. We observe that
a small amount of additional idle-time can dramatically reduce
the number of preemptions. By reclaiming the available slack
at runtime, RT-TRM uses 24.4% more idle-time to reduce
86.5% of preemptions without violating both thermal and
timing constraints.

Performance evaluation. We have demonstrated how RT-
TRM handles the dynamically changing ambient temperature
and uses runtime slack to reduce the number of preemptions
while satisfying thermal and timing constraints. We now
focus on resource-efficiency and compare RT-TRM with two
baseline approaches:
• EDF: static processor frequency and task period assign-

ment under EDF 9

• RT-MTC : dynamic processor frequency scaling using
feedback control under EDF [10]

• RT-TRM: adaptive parameter assignment (§V) and online
idle-time scheduling (§VI)

Under EDF, we consider two static parameter assignments: one
assumes the average ambient temperature of 25◦C (EDF-A);
and the other assumes the worst-case ambient temperature of

9Parameters are assigned by solving the optimization problem Eq. (14)
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Figure 7: Experimental results of RT-TRM showing processor temperature, frequency, task-rate traces under (a) different
ambient temperatures, (b) thermal constraints and (c) power dissipations.
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Figure 8: Job schedule of a task (Bit manipulation) and
corresponding temperature variation by RT-TRM

35◦C (EDF-W). Under RT-MTC, if the processor utilization
exceeds the schedulable utilization by lowering the processor
frequency, task periods are scaled to meet deadlines. We use
two metrics: (1) the percentage of time during the thermal
constraint is violated and (2) the task-rate. Higher task-rate
indicates higher resource-efficiency.

Fig. 9 compares the processor temperature, frequency and
task-rate for three different thermal management schemes.
EDF-A assigns the processor frequency of 1GHz and the
task-rate of 100% whereas EDF-W assigns the frequency of
0.8GHz and the task-rate of 63.5% (Fig. 9a). Under EDF-
A, the maximum temperature is 71.5◦C, and thus the thermal
constraint is violated for 76.7% of the time. Under EDF-W,
on the other hand, the thermal constraint is satisfied for all the
time with the maximum temperature of 59.1◦C, but resources
are severely under-utilized.

Under RT-MTC in Fig. 9b, when the processor temperature
hits the threshold at time 250s, the processor frequency is
lowered to 0.8GHz. The temperature still exceeds the limit,
so the frequency is lowered again to 0.4GHz at time 750s.
Due to the reduced frequency to the lowest level, the task-
rate for RT-MTC is reduced to 67.2%. While the feedback

controller regulates the temperature close to the set point, it
violates the thermal constraint for 3% of the time with the
maximum temperature of 60.5 ◦C.

Fig. 9c shows that RT-TRM maintains the maximum pro-
cessor frequency for most of the time by adaptively adjusting
the task periods, achieving the task-rate of 79.4% — an 18.2%
improvement over RT-MTC. Note that parameters are adjusted
every 3 seconds on average. By efficiently scheduling idle-
time, RT-TRM can always meet the thermal constraint with
the maximum temperature of 59.6 ◦C. The runtime overheads
of parameter adjustment and idle-time scheduling are 27ms
and 1ms, respectively.

VIII. DISCUSSION

Thus far, we have presented a task-level power/thermal
model and developed RT-TRM that guarantees both thermal
and timing constraints in the presence of dynamic ambient
temperature variations. To demonstrate the importance of
accounting for dynamic ambient temperature and different
power dissipations, we have considered simple model and
platform as an example — a task-level linear power model
and a uniprocessor platform.

We now discuss the applicability of RT-TRM to general
models and multi-core platforms.

Task-level power variations. We have assumed a task-level
dynamic power model where power dissipation is constant
across the jobs of a task and during the execution of a job. To
guarantee the feasibility of RT-TRM without this assumption,
we have used the maximum power dissipation among all jobs
as task-level dynamic power.10

Linear power/thermal model. According to [25], [26],
we have assumed that the leakage power Pleak (the thermal
resistance R) has a linear (no) relation with the processor
temperature. We have validated that such relations hold in a
small temperature range (i.e., 20◦C–35◦C), but this may not
hold in a wider temperature range. For example, the leakage
power is known to increase exponentially as the temperature
increases from 20◦C to 120◦C [37]. To apply RT-TRM in

10Characterization of precise job-level power dissipation is part of our future
work.
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Figure 9: Experimental results of different schemes showing the processor temperature, frequency, and task-rate traces

a wider temperature range, the leakage power and thermal
resistance can be approximated by a piecewise linear model,
i.e., the operating temperature range can be divided into
multiple sub-ranges, each of which can be approximated by a
linear model as shown in [37].

Multi-core platform. To apply RT-TRM for multi-core
platforms, we can consider partitioned or global scheduling.
In the case of partitioned scheduling, RT-TRM can be directly
applied once a task-to-core assignment is made. Since the task-
to-core assignment is known to be NP-hard [38], we can use
well-known heuristics for the assignment. In the case of global
scheduling, we need to extend our slack calculation in Alg. 1
to consider the concurrent execution of multiple tasks on a
multi-core platform (which is part of our future work). Note
that the calculation of the minimum idle-time for each task
has nothing to do with a task schedule, and hence it can be
directly applied for multi-core platforms. Besides, on multi-
core platforms, tasks scheduled on a core could affect the
temperature of its neighboring cores. For this situation, we
need a new thermal model that can capture the thermal effect
between neighboring cores. We also need to calculate the new
idle-time.

IX. CONCLUSION

Emerging embedded real-time systems, such as connected
cars and smartphones, pose new challenges in meeting the
timing constraints under the processors’ thermal constraints.
Such a system should consider a new dynamic computation
power bound in addition to the conventional schedulable
utilization bound. To address this problem, we have developed
a new thermal model that captures individual tasks’ heat
generations as their activity factors. We then developed two
new mechanisms, adaptive parameter assignment and online
idle-time scheduling. By tightly coupling the solutions of these
two mechanisms, we can guarantee both thermal and timing
constraints in the presence of dynamic ambient temperature
variations. Our evaluation of RT-TRM on a realistic micro-
controller using automotive benchmarks has demonstrated the
validity of the proposed thermal model and the effectiveness
of RT-TRM in meeting both real-time and thermal constraints.
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