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Abstract—Mobile crowdsensing with increasing pervasiveness
of smartphones has enabled a myriad of applications, including
urban-scale signal map monitoring and revision. Despite the
importance of its quality, due to the large size of a site to cover,
dense crowdsourcing is neither cost-effective nor convenient for
crowdsourcing participants, making it critical and challenging to
balance between signal quality and crowdsourcing cost.

To address this problem, we propose a novel incentive
mechanism, BCCS, based on Bayesian Compressive Crowdsensing
(BCS). BCCS iteratively determines the spatial grids for crowd-
sourcing quality and predicts the remaining unexplored grids
for deployment efficiency. BCS returns not only the predicted
signal values, but also the confidence intervals for convergence
and incentive control. A probabilistic user participation and
measurement model is applied for incentive design, which is
flexible for crowdsensing deployment. Our extensive evaluation
based on two different data sets shows that BCCS achieves much
higher prediction accuracy (often by more than 20%) with lower
payments to the participants and fewer iterations (often by 30%)
than existing solutions.

I. INTRODUCTION

The prevalence of smartphones, equipped with various ra-
dio and environmental sensors, has enabled various interesting
mobile applications of which crowdsensing has recently be-
come very popular, especially for urban-scale signal map mon-
itoring and revision with the emergence of smart city [1], [2].
To enable large-scale monitoring, a commensurate incentive
mechanism is essential to motivate layman users/participants
for various sensing tasks [3].

Signal quality and sensing cost are two inherently conflict-
ing goals when designing a signal map crowdsensing platform.
An important question arises: is it possible to minimize the
sensing error while still maintaining a low level of sensing
cost? Three critical challenges need to be addressed before a
crowdsourced signal map can be successfully constructed:

∙ Missing value inference: Traditional urban-scale or large-
area crowdsensing is often costly, especially for metropoli-
tan areas or large shopping malls. On the other hand, the
distribution of crowdsourcing participants over spatial and
temporal spaces is uneven, leading to sparse coverage. In
order to reduce the total data-collection cost, one may
need to conduct sparse crowdsourcing and also infer the
missing/unexplored signal values.

∙ Crowdsourcing quality estimation: Quality of the crowd-
sourced signals is critical for the platform. Thus, besides the
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cost concern, one should estimate and maintain data quality.
Furthermore, such quality estimation also determines the cy-
cles of crowdsourcing, preventing over- and under-sampling.

∙ Incentive map determination: In the platform design, one
may need to decide on the spatial distribution of monetary
rewards to incentivize the participation in crowdsourcing for
better signal coverage and quality.

We design several approaches to jointly address the above
challenges. In order to reduce the sensing area (cost) needed
for task allocation, we propose using Bayesian compressive
sensing (BCS) [4] to estimate the unexplored/missing values.
Unlike previous compressive sensing approaches, BCS not
only predicts the signals, but also provides a confidence
interval for quality estimation. Thus, BCS provides flexibility
in signal inference and incentive design. Based on the BCS
framework, we can also estimate the crowdsensing quality, and
determine the incentive distribution map at a lower cost.

Specifically, we propose a signal map crowdsensing frame-
work called BCCS (Bayesian Compressive CrowdSensing),
which iteratively determines signal map, task and incentive
distribution. This paper makes three main contributions:

∙ Joint Bayesian Compressive Crowdsensing Framework: We
formulate the signal map sensing mechanism into a BCS
framework. We leverage the inherent correlation between
different measurement points in terms of spatial, signal
and temporal dimensions, hence accurately recovering the
signals and significantly reducing the data-collection cost.

∙ Probabilistic Incentive Design: In order to address the
unknown relationship between monetary reward and crowd-
sensing process, we characterize the user participation prob-
abilistically without explicit user cost information. This
way, BCCS adapts to the participation dynamics with better
flexibility.

∙ Comprehensive Evaluation: We conduct extensive evalua-
tion based on urban mesh and indoor WLAN datasets. The
results have further shown the effectiveness and applicability
of BCCS. Compared to the state-of-the-art algorithms, BCCS
significantly reduces the payment and iteration costs (often
reducing more than 30%), while with higher missing value
estimation accuracy (reducing at least 20% of errors).

Although for the concreteness of evaluation we only uti-
lize RF signals in our data analysis, BCCS is an incentive
framework general enough to be applied in various emerging
crowdsourced signal map construction scenarios [2], [5], [6].

The remainder of this paper is organized as follows. After
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discussing the related work in Section II, we present the system
model and preliminaries in Section III. Based on the model, we
discuss the signal map crowdsensing framework in Section IV,
followed by the probabilistic incentive design in Section V.
Then, we present the performance evaluation in Section VI,
and finally conclude the paper in Section VII.

II. RELATED WORK

Mobile crowdsensing has been attracting considerable at-
tention in recent years [7], [8]. Pioneered by the authors of [3],
[9], smartphone-based crowdsourcing has been studied exten-
sively due mainly to pervasive proliferation of smartphones [7].
Based on the well-studied game theory framework, different
auction-based incentive designs have been proposed [10]. By
considering diverse properties of bidding, Tang et al. proposed
a multi-dimensional auction mechanism [11] for crowdsourced
mobile video streaming. In order to stimulate both requesters
and workers, Jin et al. proposed an incentive design based
on double auction [12]. These studies of auction usually
considered that the thus-determined payments guarantee or
ensure users to participate in crowdsourcing. Different from
their auction process, we consider more opportunistic and
dynamic crowdsensing workers in our formulation, which is
important for platform deployment [13].

Signal map construction has also been attracting much
attention due to its importance in site spectrum monitoring [1],
[14], [15], location-based service (LBS) [13], [16], [17] and
network construction [2]. For LBS deployment [18], gamifica-
tion and online learning were proposed in [13] to motivate the
users in crowdsourcing Wi-Fi signals. However, their studies
did not consider inference of the missing signals to reduce the
overall sensing accuracy and cost. Besides, the game design in
their mobility may be oversimplified. Our framework jointly
considers the crowdsourcing payment, coverage and signal
quality, thus achieving better crowdsensing performance. The
incentive design in BCCS is also amendable to those emerging
solutions in RF signal map construction to further improve
their crowdsourcing quality and deployability [2], [19].

Some more recent studies consider compressive sens-
ing [20] for the allocation of crowdsourcing tasks [21]. Aware-
ness of cost and density has also been incorporated in [22]
and [23], respectively. However, they did not consider the
corresponding incentive design to improve performance [3],
[15]. Compressive sensing was proposed in [24] for air quality
monitoring. However, it did not consider the correlations
among sample points to refine the quality. In contrast, we
leverage the inherent correlations and hence achieve better
accuracy.

Furthermore, compared to these traditional compressive
sensing techniques [21]–[23], [25], [26] which provide only a
single point estimate, our BCCS framework augments it with
a full posterior probability density, showing the confidence
level. We further utilize these error estimates to improve
crowdsensing and steer the sensing cycles. BCCS is also
experimentally compared with state-of-the-art algorithms [21],
[27]–[29] in missing value inference, and validated with its
accuracy and deployment efficiency.

III. SYSTEM MODELS & PRELIMINARIES

Table I lists the symbols used in the formulation of BCCS.
Presented below is the primer of system model and formulation

TABLE I: Major symbols in BCCS formulation.
Notations Definitions
! Number of sparsely crowdsourced samples
" Number of grids to be crowdsourced
# Time stamp of the #-th cycle for crowdsensing
$! Selection indicator variable of grid %
!" Entire signal map in the site at time #
Δ!" Set of signal-map differences at time #
&# Crowdsourced signals at the '-th location
(! Signal measurement at the %-th location/grid
Φ Projection matrix between sparse and entire maps
()$# , )

%
# ) 2-D (+, ,)-coordinates of location '

-&(', %) Spatial correlation between locations ' and %
-'(', %) Signal-space correlation between locations ' and %
[", .] Hyperparameters for BCS learning
-( Crowdsensing cost of user /
# Ratio of signal differences Δ! vs. the rewards R
0 Confidence level for error estimation
$" Selected grid for incentive update at time #

of BCCS. We first discuss the model of crowdsensing tasks,
signal and incentive maps in Section III-A. and then the pre-
liminaries of Bayesian compressive sensing in Section III-B.

A. Signal Crowdsensing & Incentive Map

We consider the spatial crowdsourcing, given the incentives
and tasks distributed, as well as a crowd of rational smartphone
users. The crowdsourcing tasks are distributed over a spatial
map. Suppose at each sensing cycle, a total of ! crowdsourced
signals are uploaded, forming an ! -dimensional vector ! ≜
["1, . . . , "! ]" . Also, each "# (1 ≤ % ≤ ! ) is tagged with a
location coordinate "# = (&$# , &

%
# ).

As the site usually covers a large area, we discretize it
into finite (say, ' ) grids of an equal size. We consider the
measurements inside each grid as uniformly distributed while
varying over different grids. Note that the actual grid size can
be customized based on specific applications and signal quality
requirement. For example, one may set a mile-level grid size
for city-scale air quality monitoring while a smaller size for
street noise monitoring. In indoor RF spectrum monitoring,
meter-level grids can be sufficient. We assume that the grid
granularity is given beforehand.

Given discretization into ' sensing grids, each grid (
(1 ≤ ( ≤ ' ) of 2-D coordinate "& =

(
&$& , &

%
&

)
is tagged with

a certain signal value )& . The entire signal map is modeled
as # ≜ [)1, . . . , )' ]" , and the estimated one as #̂. Given
estimation #̂ and ground-truth #, we define an error function
Ξ ≜ ℰ(#̂, #) between the predicted and the actual signal map in
order to estimate the prediction quality. As ground-truth # may
not always be available, one may need to consider use of subset
samples #′ as a replacement and for cross validation [26].

During the crowdsensing in BCCS, we consider a sufficient
number of crowdsourcing workers within the site, and a worker
can easily finish an allocated task without leaving a grid.
The incentive distribution for the users is characterized by an
incentive map.

Definition 1: Incentive map: R ≜ [*1, . . . , *' ] which
characterizes the spatial distribution of monetary rewards cor-
responding to ' grids in #. Each grid ( (1 ≤ ( ≤ ' ) of 2-D
coordinate "& =

(
&$& , &

%
&

)
is associated with a certain amount of
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monetary reward *& . It describes the corresponding payment
for the signal-collection task.

B. Primer of Bayesian Compressive Sensing (BCS)

Compressive sensing (CS) is a novel signal reconstruction
method which has been widely used in image processing,
networking, traffic monitoring and sensor networks [30]–[33].
For ease of applying CS to crowdsensing, we use the concept
of projection matrix.

Definition 2: Projection matrix: For a spatial crowdsens-
ing task with ! sparse measurements and ' grids to be
reconstructed (! ≪ ' ), the sensing projection matrix of
correlations, or projection matrix, is denoted as Φ ∈ ℝ!×' .
The entry at the %-th row and the (-th column of Φ, denoted
as +(%, (), represents the inherent correlation between the %-th
crowdsourced signal with the one in grid ( of the entire map.

The objective of traditional CS problem formulation is to
find a sparse solution # ∈ ℝ' in the under-determined linear
equation ! = Φ#, given the measurement vector ! ∈ ℝ! and
! × ' projection matrix Φ (! ≪ ' ). Specifically, the CS
framework can be formulated as

argmin
!∈ℝ!

∥#∥0, s.t. (!)!×1 = (Φ)!×' (#)'×1. (1)

Directly solving the above &0 optimization problem in Eq. (1)
is NP-complete [4]. Alternatively, the CS theory reveals that
a computationally tractable optimization problem based on
&1 norm yields an equivalent solution [4]. Considering the
potential signal noise and Gaussian likelihood [15], we further
model the sensing process as

! = Φ#+$, *(!∣#, ,2) =
1

(2-,2)
"
2

exp

(
−∥! −Φ#∥2

2,2

)
,

(2)
where , represents the inherent unknown noise variance of $.
Therefore, Bayesian compressive sensing (BCS) can be formu-
lated. For each estimation of #, we infer not only the value but
also the confidence level (in terms of variance). Based on the
above, we define the entire signal-map construction algorithm
for the problem formulation.

Definition 3: Entire signal-map reconstruction algorithm:
A reconstruction algorithm ℱ(!,Φ) returns the entire signal
map estimate #̂ which is close to original #, given the sparsely
crowdsourced signals ! and the projection matrix Φ, i.e.,

ℱ(!,Φ) = #̂ ≅ #. (3)

IV. SIGNAL MAP CROWDSENSING VIA BCS FRAMEWORK

We present the basic problem formulation and propose
the signal-map crowdsourcing based on Bayesian Compressive
Sensing (BCS). We first present the crowdsensing problem in
Section IV-A. Then, we discuss how to infer the missing values
via BCS in Section IV-B, followed by a solution to the problem
in Section IV-C.

A. Basic Problem Formulation

The basic crowdsourcing problem in BCCS can be for-
mulated as a fine-grained grid selection problem. Let .& be
the indicator variable (.& ∈ {0, 1}) at grid (, i.e., .& = 0
if grid ( is not selected, and .& = 1 otherwise. Also, let
*& be the crowdsourcing cost (payment) at grid (, while

Start

Select a Grid for 
Crowdsensing

Crowdsourcing

Crowdsourced 
Data Quality 

Check

Quality 
onverges

?

Missing Value
Inference via BCS

Incentive Map 
Update

Yes

No

Cycle 
nds

Fig. 1: The basic system workflow illustration of BCCS.

Ξ = [/1, . . . , /' ] and Γ be the signal map error estimate (i.e.,
at each grid ( we infer the error as /&) and the corresponding
required error constraint, respectively.

In order to balance between signal map quality and bud-
getary concerns, we dynamically choose the grids to minimize
the signal difference while meeting the budgetary constraints.
In other words, we steer workers towards those grids with the
minimum total crowdsensing cost (.& in the budget objective),
subject to sensing recovery results #̂ (i.e., missing value
inference) and the estimated signal difference requirement Γ
(i.e., quality constraint), i.e.,

argmin
{(#}

'∑

&=1

*&.& , (4)

s.t. #̂ = ℱ(!,Φ), .& ∈ {0, 1}, ∀( ∈ {1, . . . , '},

Ξ = ℰ(#̂, #′),
'∑

&=1

/&.& ≤ Γ.

In fact, the problem in Eq. (4) is non-trivial to solve for the
following reasons. 1) Unknown sensing cost for each user: The
crowdsensing cost incurred by each participant may not always
be available in practice, making a decision on *& difficult.
2) Confidence in terms of estimation: In order to stop the
crowdsensing cycles properly, one may need to estimate the
confidence level of the constructed signal map.

To perform the above optimization and address these two
issues, we design an iterative and interactive scheme based on
BCS, as illustrated in Fig. 1. The basic idea consists of three
steps as follows.

1) Incentive map publication & crowdsensing: We first publish
the spatial incentive map for crowdsourcing users. Given
the monetary rewards, users collect the signal measure-
ments and upload them to the platform.

2) Missing value inference: Given the sparsely-crowdsourced
signals, the platform infers the missing values based on
Bayesian compressive sensing. This way we reduce the
number of grids to be crowdsourced.

3) Confidence estimation & stopping: Via the confidence mea-
surements, the crowdsensing platform estimates the level of
quality satisfaction and determines ongoing crowdsourcing
towards 1), or a stop.

B. Missing Value Inference & Signal Reconstruction

Signal map crowdsourcing is generally sparse and dynamic
in nature. Therefore, we leverage BCCS to address the sparse-
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ness, while BCCS dynamically constructs the entire signal map
based on the signal revision.

Missing value inference can be formulated as a sparse BCS
problem. The crowdsourced signal map is generally and inher-
ently sparse. Due to the latent spatial-temporal correlations in-
side the map, each observation can be considered as the linear
weighted average of many other sparsely distributed samples.
Formally, the main problem of missing value inference is how
to decompose the known signals (!) to derive those of other
grids which are not sampled (#) based on certain projection
of correlations (Φ), i.e.,

! = Φ#. (5)
According to some recent studies, #’s are generally sparse
for many important signal map inference problems (including
RF [18] and air quality signals [26]). Further discussions on
other signals’ sparsity will be part of our future work. Via
the BCS formulation we then recover those missing values
(probabilistically) in the signal map.

Specifically, we model the missing value inference function
ℱ(!,Φ) as a dynamic signal inference problem with respect
to time 0 (the corresponding crowdsourced sample and signal
map are thus attached with a time stamp). Given the sparsely-
measured signal and the projection matrix, we recover the
entire signal map accompanied with a certain confidence
interval. We then find the difference of signal maps at time
0 and 0− 1 to monitor the crowdsourcing process.

The projection matrix characterizes the inherent relation-
ships between the sparsely-sampled signals, "#’s, and those in
the entire signal map, )&’s. We consider a general framework
design for signal map crowdsourcing, including the projection
matrix customization. Given the spatial complexity and tem-
poral dynamics of signal map, different designs and metrics
can be embedded into our BCCS framework in a hybrid way.

We present three important correlations considered within
our projection matrix Φ:

∙ Temporal correlation: At each sensing cycle or time 0, BCCS
compares crowdsourced !) against the previously available
signal map #)−1 for each correlation element in Φ. This
way, we embed within Φ the temporal correlation between
two consecutive sensing cycles, which is essential for large-
scale dynamic signal map construction [21], especially for
RF, air pollution and noise map.

∙ Spatial correlation: The closer two locations (of "# and )&),
the more correlated two samples are. We characterize the
spatial correlation using the Euclidean distance, i.e., ∥"# −
"&∥2 =

√
(&$# − &$& )

2 + (&%# − &%& )
2, and then have

1d(%, () ≜ exp

(
−∥"# − "&∥2

,2
*

)
, (6)

between the geographic locations in the map. We normalize
all 1*(%, ()’s into the range of [0, 1].
Note that other spatial geographic metrics, including Man-
hattan distance (∥"# − "&∥1 = ∣&$# − &$& ∣ + ∣&%# − &%& ∣) for a
metropolitan area, can be easily applied within framework
of BCCS. Then, we may have

1d(%, () ≜ exp

(
−∥"# − "&∥1

,2
*

)
, (7)

∙ Signal correlation: The more similar two measurements in
the signal space, the more correlated two samples. We can

either characterize the spatial correlation based on kernel-
based [5] signal value difference of "# and )& , given by

1s(%, () ≜ exp

(
−∥"# − )&∥2

,2
+

)
, (8)

or the cosine similarity between two high-dimensional signal
vectors (say, of 2 dimensions), i.e.,

1s(%, () ≜ !⃗# ⋅ #⃗&
∥!⃗#∥ ⋅ ∥#⃗&∥

, !⃗# ∈ ℝ, , #⃗& ∈ ℝ, , (9)

depending on the input form of collected data. Similar to
1*(%, (), all 1+(%, ()’s are later normalized. For deployment,
we suggest use of Eq. (8) for signal maps with 1-D value
measurements, including air quality and noise level. If the
signal map consists of multi-dimensional measurements (for
example, each grid ( may receive an RF signal vector #⃗&
from 2 transceivers), we suggest use of Eq. (9) for more
comprehensive correlation characterization.

In order to jointly consider the latter two correlation metrics,
we further calculate each of the items inside our projection
matrix Φ, denoted as +(%, (), by their weighted average, i.e.,

+(%, () ≜ 3 ⋅ 1*(%, () + (1− 3) ⋅ 1+(%, (), (10)
where 3 (0 ≤ 3 ≤ 1) represents a weighted trade-off between
the aforementioned spatial and signal correlations. In summary,
jointly considering the inherent temporal (0), spatial (1d(%, ())
and signal (1+(%, ()) correlations makes BCCS more robust to
the environmental dynamics in the signal map.

Note that our scheme provides a generic framework for
crowdsensing and missing value inference. Therefore, other
metrics characterizing correlations [34] can be easily ap-
plied inside matrix Φ. We also experimentally evaluate the
correlation setting of 3 in Section VI. After calculation of
Eq. (10), we normalize +(%, () w.r.t. each row % in Φ, i.e.,∑'

&=1 +(%, () = 1, ∀% ∈ {1, . . . ,!}.

Based on the BCS framework, at sensing cycle or time 0,
the linear relationship between the %-th sparsely crowdsourced
sample, ")# , and those inside the entire signal map, #), is
considered as

")# = &##
) + 4#, % ∈ {1, . . . ,!} (11)

where &# is the %-th row (vector) of (Φ)!×' . Let $ =
[41, . . . , 4! ]" be a 1-D vector consisting of ! noise elements
4#’s. Then, the entire relationship is given by(

!)
)
!×1

= (Φ)!×'

(
#)
)
'×1

+ ($)!×1, (12)
where the projection matrix is

(Φ)!×' =

⎡

⎢⎣
&1
...
&!

⎤

⎥⎦ =

⎡

⎢⎣
+(1, 1) . . . +(1, ')

...
. . .

...
+(!, 1) . . . +(!,')

⎤

⎥⎦ . (13)

Based on the above, taking !) and Φ into account, the signal
map construction is to find #) such that the posterior likelihood
*(#)∣!), ,2) is maximized, i.e.,

argmax
!$

*(#)∣!), ,2), s.t. #) ∼ *(#)). (14)

Our formulation considers the measurement at grid ( as
)& ∼ 1 ()̄& , ,

2). (15)
Note that other probabilistic distributions can be easily applied
within the BCS framework [15], [35]. We also have

*(!)∣#), ,2) =
1

(2-,2)
"
2

exp

(
−∥!) −Φ#)∥2

2,2

)
. (16)

In summary, we denote the estimated mean and covariance of
posterior signal measurements #) as '̄ ∈ ℝ' and Σ ∈ ℝ'×' .
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Then, we consider the posterior distribution of #) as
*(#)∣!), ,2) ∼ 1 ('̄,Σ). (17)

Given the crowdsourced signals and predicted missing
values via BCS, the signal difference between two consec-
utive time-stamps is also calculated and monitored. A large
difference implies that inference errors exist due to insufficient
crowdsourcing or measurement noise, and the signal map has
not yet converged. Specifically, the entire signal map difference
between time-stamps 0 and 0− 1 is modeled linearly as

Δ#) = ∣#) − #)−1∣. (18)
In BCCS, we first find ['̄,Σ], and then Δ#) in Eq. (18) can
be determined. The calculated signal map change Δ#) and the
confidence level Σ are used for later incentive map update (to
be discussed in Section V).

C. Hyperparameter Estimation Solving BCS

We briefly discuss how to solve the formulated BCS
problem. Our basic idea is to introduce some hyperparameters
for ease of transformation, jointly maximize their likelihood
with input data, and finally estimate # and $. In other words,
we model the learning problem of BCS into a hyperparameter
estimation form [4], [15].

Specifically, for each signal )& at grid ( to be estimated,
we introduce the precision Π& of Gaussian density (as prior
knowledge), i.e., the reciprocal or inverse of variance ,2

& , and
5 = ,−2, i.e., the precision of the external measurement noise
$. We also define a vector ( = [Π1, . . . ,Π' ] for ease of
presentation, and have

*(#∣() =
'∏

&=1

1 ()̄& ,Π
−1
& ). (19)

Given !), ( and 5, we denote analytical results of the posterior
mean and covariance [15], [35] for #) as '̄ and Σ (as
Section IV-B), which are given as

'̄ ≜ 5ΣΦ"!), (20)
where the covariance is given by

Σ ≜ (5Φ"Φ+퓓)−1, (21)
and diagonal matrix 퓓 = 6%78(Π1, . . . ,Π' ).

The estimation of BCS hyperparameters is usually achieved
via relevance vector machine [4], which derives parsimonious
solution for the model via Bayesian inference. Specifically,
the hyperparameter [(, 5] can be estimated via the maximum
likelihood of log 9()∣(, 5) [15], [35], which iteratively updates
( and 5 to achieve overall expectation maximization.

At each iteration :, we find new values for each of
hyperparameters [(, 5] (∀( ∈ {1, . . . , '}) by

Π-
& ≜

1−Π-−1
& Σ-

&&(
'̄-
&

)2 , (22)

and
1

5-&
≜

∣∣∣∣!) −Φ'̄-
∣∣∣∣2
2

! −
∑'

&=1(1−Π-−1
& Σ-

&&)
, (23)

where '̄- and Σ- are given by Eqs. (20) and (21), respectively.
In summary, we empirically initialize the values of [(0, 50],
then calculate ['̄-,Σ-] based on Eqs. (20) and (21), and
iteratively update [(-, 5-] until their final convergence. The
number of iterations can be customized according to the
time allowed and expected task granularity. In practice, we

observe that BCCS converges quickly after only a few iterations
(usually less than 10), which is applicable for many large-scale
deployments.

V. PROBABILISTIC INCENTIVE DESIGN

Given the missing value inference, we design the incentive
map update using a probabilistic user measurement model. We
first discuss opportunistic user modeling and reward design of
an incentive map in Section V-A. We then present how to
properly stop crowdsensing cycles in Section V-B, followed
by the overall complexity analysis in Section V-C.

A. User Modeling & Reward Design in Incentive Map

The incentive map and payment distribution consider the
participants’ behavior, given the monetary incentives [24]. In
case of mobile crowdsensing, smartphones or other hand-held
devices are resource-constrained due to limited battery, device
capacity or communication bandwidth. Thus, the participation
level of a user ; is correlated with his/her sensing cost 1. [24].

Given an estimated signal map, we determine the incentive
map in order to further trigger the crowdsourcing process.
Specifically, the payment update is to determine the incentive
within each grid such that the expected signal quality can be
maximized. A user ;’s decision on participating data collection
in a grid ( is considered as a random indicator variable <.. We
consider <. = 1 if *& is less than 1. of user ;, and <. = 0
otherwise. Clearly, a user won’t be steered if his sensing cost
exceeds payment. Let *& = *(<. = 1) be the probability
distribution that user ; participates in sensing in grid (, and
we further consider the user participation probabilistically.

Due to privacy concerns [26], it is usually difficult to
obtain the cost information from each user [21], [24]. So, we
model the user’s participation probabilistically. In particular,
the probability of <. given payment *& is modeled as

*(<.∣*&) =
{
1− exp(−=*&), if <. = 1;
exp(−=*&), if <. = 0,

(24)

where = > 0 characterizes the user sensitivity towards a
reward. Note that the distribution function in Eq. (24) is
an increasing concave probabilistic function in range [0, 1],
showing a diminishing or saturating return towards a given
amount of reward [36]. In other words, it strictly monotonically
increases with the payments at a lower rate. Suppose there are
?& users in grid (. We consider the obtained number of samples
at grid ( is equal to '& =

∑/#

.=1 <..

The probability of getting @& measurements at grid ( is
modeled by a Binomial distribution '& ∼ ℬ(?& ,*&), i.e.,

*('& = @&) =
?& !

@& !(?& − @&)!
*0#

&

(
1− *0#

&

)/#−0#

. (25)

Using this distribution, we can steer the participation of users
in the crowdsensing based on *& . We consider for each grid (
sufficient measurements as @̃, and let total probability of ob-
taining fewer than @̃ signals as *('& < @̃) =

∑0̃−1
0#=0 *('& =

@&). To ensure the acquisition of minimum @̃ measurements,
the rewards distributed at each grid are steered via the follow-
ing probability bound B, i.e.,

1− *('& < @̃) ≥ B. (26)
Based on this as well as Eqs. (24) and (25), we can directly find
the reward value *& that steers crowdsensing in grid (. Then,
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Algorithm 1: BCCS: Incentive design for signal
map construction based on Bayesian Compressive
CrowdSensing.

Input: ! crowdsourced samples, spatial distribution of
rewards R, previous signal map !" at time # with "
grids.

Output: Reconstructed grids $"+1 to be selected for next
crowdsensing cycle.

1 $"+1 ← $"; /* Grid selection */
2 for 1 ← 1 to 2 do

/* Ratio of differences vs rewards */
3 # ← 34((Δ!)/R;
4 6) ← argmax 7!

! /∈!$+1

;/* Maximum ratio */

5 $"+1 ← $"+1
∪

6); /* Selected grid */
6 solve the BCS problem in Equation (14);

/* Estimate signal map difference */
7 Δ!← !"+1 − !";

/* Cross validation & error estimate) */
8 if iscrossval(!") then
9 break; /* Satisfy Eq.(27) in Sec.V-B */

10 end
11 end
12 return $"+1;

the system displays the corresponding monetary incentives R
on the spatial or geographic map.

Finally, we dynamically update the monetary incentive map
by selecting the grid ) , based on the absolute signal map
difference Δ#) vs. the reward *& in order to balance between
these two critical factors [24]. In other words, the grid with
more signal difference and less cost is critical for the platform,
and is more likely to be selected. Therefore, at each time 0,
the grid with the maximum ratio of absolute signal difference
to reward (platform cost) is selected for another crowdsensing
cycle and further incentive update. This way, we can balance
between signal map quality and crowdsourcing cost.

B. Crowdsourcing Cycle Stopping Criterion

Determining the stop condition of iterative cycles is critical
for a crowdsensing platform [26]. An early stop may lead to
insufficient data collection for a signal map of quality, while a
late stop wastes resources and money. In practice, the platform
has no knowledge of the ground truth estimation, and hence it
is challenging to design the error function for the determination
of convergence.

As mentioned earlier, BCS not only provides the estimated
values, but also the corresponding estimation variance. We may
further utilize this as the confidence interval to decide on the
termination of the task-allocation process (i.e., error estimate
Ξ = ℰ(#̂, #), and requirement Γ in Eq. (4)). We integrate this
with :-fold cross-validation [37] to evaluate the trained model.

Specifically, at each iteration, BCCS picks C samples as
the target data from all (! ) samples for cross validation.
The remaining (! −C) samples are used for training. Then,
BCS returns the confidence levels at different locations over
the target confidence level. BCCS repeats the above process.
We then compute the average and standard deviation of the
prediction variances in the entire signal map, and check
whether it is within a certain confidence interval. In particular,
BCCS checks if the average signal difference between the C

(C < ! ) re-sampled values and the predicted ones by BCS
is within a predefined range:

1

C

1∑

&=1

∣)& − )̂& ∣ < D ⋅ ,, (27)

where D is a certain tunable parameter controlling the confi-
dence level, and , is the average standard deviation of signal
map estimate obtained from the BCS framework (i.e., Σ).
If Eq. (27) is satisfied, we terminate the entire signal map
construction, else we continue the crowdsourcing iteration.
Via the :-fold cross validation, BCCS also prevents the over-
fitting in terms of model estimation [26], and also estimates
the confidence level to determine iteration stop.

C. Summary & Overall Complexity Analysis

We summarize BCCS in Alg. 1. Given monetary incentives,
crowdsourcing users first collect signals, and then, via com-
pressive sensing BCCS infers the missing values at unexplored
locations. Based on cross validation and estimated confidence
inference, BCCS then infers the potential error and signal
differences. It also updates the incentive maps and triggers
another cycle of crowdsensing, if needed. Note that the entire
sensing can be also initialized by some random sampling,
sparse sensor uploads or simple model regression [21]. The
signal map is then iteratively constructed by BCCS.

We briefly analyze the computation complexity of BCCS as
follows. According to the variational Bayesian algorithm [38],
finding Δ#) for the signal map recovery takes 4(!3). In-
centive map update takes 4(:!3), which is dominated by
the :-fold cross-validation of signal error estimation. Note
that the cross-validation can be conducted concurrently and
independently, and therefore the overall computation time
becomes small, enabling its practical deployment.

VI. PERFORMANCE EVALUATION

We now evaluate the performance of BCCS using two sig-
nal map data sets. Specifically, we first present the comparison
metrics and evaluation setups in Section VI-A, and then the
illustrative results based on the data sets in Section VI-B.

A. Comparison Metrics & Evaluation Setups

We utilize the following two typical crowdsourced data sets
for the evaluation of BCCS.

∙ Urban mesh signal map [39]: which characterizes spatial
distribution of RSSI (received signal strength indicator) in
an urban environment. It can be utilized for mesh access
point (AP) localization and urban location-based service [2].
For evaluation, we split the 7 km2 urban area into grids of
100 m × 100 m.

∙ Indoor Wi-Fi signal map [40]: which characterizes the
spatial distribution of indoor Wi-Fi WLAN RSSIs. It can be
utilized for indoor site monitoring and localization service.
For evaluation, we, by default, split the approximately
40, 000 m2 site into grids of 3 m × 3 m.

Unless stated otherwise, we use the following parameters
by default: B = 0.95 in Eq. (26). E = log⌊

√
'⌋ in Alg. 1.

,* = ,+ = 1.25 in Eqs. (6) and (8). @̃ = 15 in Eq. (26).
We consider sensing cost linearly proportional to sample size.
For urban-scale signal map construction, we utilize Eq. (8)
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Fig. 2: CDF of signal map missing
value inference error (dB, indoor).

(a) (b)
Fig. 3: (a) Mean RSSI prediction error (dB, indoor) vs. correlation
weight 8; (b) RSSI error and total payment units vs. parameter 0.
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Fig. 4: Total payment evaluation
for indoor signal map crowdsourc-
ing.

to characterize signal correlation. In terms of indoor signal
map construction, we calculate the correlation 1+(%, () with
Eq. (9) due to its high dimensions. We simulate 18 users
in the crowdsourcing. The spatial coordinates of the samples
are labeled via GPS or manual inputs. We conduct the data
analytics and system evaluation on a PC with 3.4GHz i7-6700
CPU and 16.0GB RAM. At each iteration, : = 5 and 20%
(i.e., C = 0.2! ) of the crowdsourced samples are used for
:-fold cross-validation (Eq. (27)).

In terms of missing value inference, we compare the perfor-
mance of BCCS with the following state-of-the-art algorithms:

∙ K-NN [21], which estimates the missing values based on
the weighted average of the F nearest neighbors. In our
evaluation, we empirically set F = 5 for estimation.

∙ Gaussian process (GP) [27], [28], which models the spatial
distribution of signals into Gaussian processes. Based on the
kernel functions, GP computes the missing signals.

∙ Matrix completion (MC) [29], which fills in or recovers the
missing entries of a partially observed matrix.

Besides the above approaches, we also compare BCCS with
the basic linear interpolation (based on log-distance path loss
model or LDPL). In terms of grid selection, task allocation and
payment determination, we compare BCCS with the following
mechanisms:

∙ Random, which randomly selects the sensing grid at each
iteration of crowdsourcing until convergence.

∙ G-Payment, which greedily selects the grid with the lowest
reward (payment cost) until convergence.

∙ G-Difference, which greedily selects the grid with the largest
signal difference/change for crowdsourcing.

We compare the schemes using the following metrics:

1) Mean prediction accuracy: We calculate the mean RSSI
error (difference between ground-truth and prediction) of a
signal map, i.e., ∥!−!̂∥

' (dB) among all the grids in a site.
2) Total crowdsourcing payment units: We calculate the total

amount of rewards in all the grids, which simulates the cost
for the crowdsourcing platform.

3) Number of crowdsourcing iterations: which characterizes
the time consumed for the entire crowdsourcing until
convergence. The fewer crowdsourcing cycles, the more
efficient the platform in signal map construction.

We leverage the walking traces of the users for evaluation
(more sophisticated user mobility modeling is part of our
future work). We emulate the crowdsensing process based on
these random and sparse traces. As the users walk, RSSIs
are collected. We will later visualize the RSSI distribution to
illustrate the dynamic signal map construction.

B. Evaluation Results

We first illustrate the quality of indoor signal map con-
struction in terms of missing value inferencing errors. Fig. 2
shows the CDF of signal prediction error at all grids. K-NN
and MC only consider the spatial correlation, which may not
really reflect the inherently sophisticated signal distribution.
LDPL and GP assume a certain path loss model during signal
regression. They do not consider the inherent prior correlation
between signals, thus leading to low inference accuracy in
complex environments. In contrast, BCCS utilizes the adaptive
formulation without assuming any signal propagation models,
hence adapting to the signal map dynamics. We can observe
that BCCS outperforms the other schemes (often by more
than 25%) thanks to the probabilistic formulation of BCS
signal inference, which is more robust to the inherently noisy
measurements.

We also evaluate the effect of the important parameters for
BCCS. We first evaluate the mean missing value inference per-
formance vs. the correlation weights in Section IV-B. Fig. 3(a)
shows the missing value inferencing accuracy vs. the parameter
3 in Eq. (10). We can observe that as the parameter grows,
the inferencing accuracy first increases and then decreases.
Clearly, a performance tradeoff between the spatial and signal
correlations accounts for such a trend. As the figure shows, the
sensing correlation in terms of geographical space indicates a
stronger influence over the missing value inference, implying
the first law of geography. We balance these two important
factors based on the above observations.

Fig. 3(b) shows mean RSSI errors and crowdsourcing pay-
ment units vs. the parameter D (Eq. (27)) which determines the
termination of crowdsensing process. Note that the stricter the
criterion (i.e., smaller D), the more the measurements collected,
leading to smaller errors but higher payments. Clearly, there is
a tradeoff between sensing cost and accuracy. In our evaluation,
we choose D = 0.75 by default.

Fig. 4 shows the total payments of different schemes
assigned to the crowdsourcing workers. The higher accuracy
required, the more payments needed for fine-grained sampling.
Other schemes do not consider this balancing between the
signal map quality and the crowdsensing cost, hence leading
to low utilization of the crowdsourcing budget. Note that G-
Difference greedily recovers signals of grids with large dif-
ferences without cost concerns, thus incurring higher sensing
costs than others. However, BCCS considers how to best utilize
the crowdsourced signals to minimize the RSSI prediction
errors, and a sufficient amount of data for the entire signal
map construction. Thanks to the proposed compressive crowd-
sensing, BCCS maintains the constructed signal map quality,
reduces the unnecessary measurements, and hence lowers the
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Fig. 5: Crowdsourced grid cov-
erage proportion (indoor).
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Fig. 6: Mean RSSI prediction
errors vs. grid size (indoor).

Fig. 7: RSSI visualization of a dynamic signal map construction process
(indoor). We observe the map after 10 cycles resembles the ground truth.
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Fig. 8: Number of sensing cycles in the signal
map crowdsourcing (indoor).

Fig. 9: CDF of missing inference running time
for signal crowdsourcing (indoor).
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Fig. 10: CDF of localization errors with dif-
ferent signal maps (indoor).
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Fig. 11: CDF of mesh signal map missing
value inference error (urban).
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Fig. 12: Total payment evaluation for mesh
signal crowdsourcing (urban).

Fig. 13: CDF of access point localization
errors with different signal maps (urban).

overall crowdsourcing cost by more than 30%.

Similarly, Fig. 5 shows the coverage proportion (i.e., the
ratio of the selected grid number to the total) of selected grids
during the crowdsensing process. The fewer grids selected, the
lower costs incurred. The number of sensing grids of BCCS is
smaller than the other schemes.

Fig. 6 shows the mean missing value inference errors (in
dB) of BCCS w.r.t. the grid sizes. Clearly, the prediction
granularity is highly correlated with the designed grid size.
In other words, the denser the grid size, the more information
available for missing value inference, and hence the better the
constructed signal map. From this figure, we can see that BCCS
is adaptive to various sensing grid sizes.

To visualize the construction process, Fig. 7 shows the
dynamic signal maps of an AP w.r.t. crowdsensing cycles,
where BCCS is shown to dynamically build up the signal map
and the thus-constructed one is very close to the real one.

Fig. 8 shows the number of iterations during the crowd-
sensing. Clearly, the smaller signal prediction error is required,
the more iterations are needed before convergence. Compared
to other state-of-the-art schemes, as BCCS jointly maintains
the signal prediction accuracy and low cost, the number of
iterations during crowdsourcing is significantly reduced, thus
minimizing the overall deployment cost of BCCS. Under dif-
ferent signal prediction criteria, BCCS is shown to outperform

other schemes by a large margin. Besides Fig. 8, we show in
Fig. 9 the CDFs of computation time in each sensing cycle
of BCCS signal map construction. Due to its sparse design,
BCCS is efficient. We have also observed that the most time-
consuming part of BCCS lies in the :-fold cross-validation.
Clearly, as the grid size increases, the computation over-
head decreases. As the sparse reconstruction with correlations
markedly reduces reliance on the data amount, we can observe
that BCCS remains to be computationally efficient even with
dense grids.

To further assess the signal map quality, we make use
of an indoor localization algorithm (say, K-nearest neighbors
estimation [16]) to find the locations of signals. We calculate
the Euclidean distance (as shown inside Eq. (6)) between
the ground-truth and estimated locations. Fig. 10 shows the
localization errors given the constructed signal maps with
different algorithms. Via better signal map construction, the
localization accuracy with BCCS outperforms those of previous
state-of-the-art schemes.

We have also conducted extensive simulation over the wire-
less mesh signals collected in an urban area. Figs. 11 and 12
show the signal prediction accuracy as well as the overall
payment cost, respectively. One can observe from both figures
that BCCS still outperforms the other algorithms by a large
margin. Note that due to less wall partitions outdoor, the GP
and LDPL suffer less from none-line-of-sight measurements.
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Hence, in terms of missing value inference, their performance
gap from that of BCCS is slightly smaller than the indoor case.
Fig. 13 also shows the mesh network AP localization (via
some well-known access point estimation algorithm [2], [40])
given the constructed signal maps. We have also conducted
similar evaluations like those for indoor scenarios. The other
evaluation results are qualitatively similar, and due to page
limit we omit them here.

VII. CONCLUSION

In this paper, we have proposed a novel mechanism, called
BCCS, to incentivize the signal map construction via joint for-
mulation of crowdsourcing and Bayesian compressive sensing.
By novel Bayesian Compressive Sensing (BCS), BCCS infers
the missing values during sparse crowdsensing and reduces
the platform sensing cost. Furthermore, based on the returned
Bayesian confidence level, BCCS dynamically determines the
incentive distribution to steer crowdsourcing users for quality
measurements. Via a more incentivized interaction between
crowdsourcing platform and workers, BCCS predicts the miss-
ing values with much lower signal map prediction error and
construction cost. Our extensive evaluation has validated the
effectiveness and applicability of BCCS. In future, we plan to
further validate our BCCS based on other datasets (including
urban air quality and noise level).
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