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Automatic ldentification of Driver's Smartphone
Exploiting Common Vehicle-Riding Actions
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Abstract—Texting or browsing the web on a smartphone while driving, called distracted driving, significantly increases the risk of car
accidents. There have been a number of proposals for the prevention of distracted driving, but none of them has addressed its
important challenges completely and effectively. To remedy this deficiency, we present an event-driven solution, called Automatic
Identification of Driver’s Smartphone (AIDS), which identifies a driver's smartphone by analyzing and fusing the phone’s sensory
information related to common vehicle-riding activities, such as walking toward the vehicle, standing near the vehicle while opening a
vehicle door, entering the vehicle, closing the door, and starting the engine. AIDS extracts features useful for identification of the driver’s
phone from diverse sensors available in commodity smartphones. It identifies the driver’s phone before the vehicle leaves its parked
spot, and differentiates seated (front or rear) rows in a vehicle by analyzing the subtle electromagnetic field spikes caused by the
starting of the engine. To evaluate the feasibility and adaptability of AIDS, we have conducted extensive experiments: a prototype of
AIDS was distributed to 12 participants, both males and females in their 20 and 30s, who have driven seven different vehicles for three
days in real-world environments. Our evaluation results show that AIDS identified the driver's phone with an 83.3-93.3 percent true
positive rate while achieving a 90.1-91.2 percent true negative rate at a marginal increase of the phone’s energy consumption.

Index Terms—Identification of driver’s phone, distracted driving, passenger and vehicle safety, smartphones

1 INTRODUCTION

NY activities that could divert drivers’ attention away

from the road endanger the safety of the driver and
others. Of the various activities known to distract drivers,
texting is by far the most problematic since it requires visual,
manual, and cognitive attentions from the driver. According
to the experiments conducted at Virginia Tech Transportation
Institute, texting takes drivers’” eyes off from the road for an
average of 4.6 seconds, which is equivalent to driving blindly
across an entire football field [1]. Statistics indicate that 15-25
percent of crashes, or approximately 1.3 million crashes lead-
ing to 400,000 injuries, in the United States are caused by dis-
tracted driving [2].

The menace of distracted driving to public safety has drawn
increasing attention from governments as well as mobile and
insurance industries. The US National Transportation Safety
Board legislated a nationwide ban on texting while driving [3],
and almost all US states followed the same. Mobile service pro-
viders and device manufacturers have also introduced various
services to reduce/prevent distracted driving [4], [5], [6].
Despite the significant amount of efforts and resources invested
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and legislation, however, accidents related to distracted driving
have not decreased thus far [7].

This lack of progress is due to the fact that conventional
distracted driving prevention services require users to manu-
ally identify themselves as the driver in order to activate neces-
sary restrictions on use of the driver’s smartphone (DS). Such
an approach suffers two practical problems. First, users cannot
always be trusted to voluntarily update their status because of
their reluctance in restricting use of their favorite mobile serv-
ices, such as texting and social networking. Second, users may
simply forget to set themselves (on their phones) as drivers.
Therefore, manual status updates have not been effective
in reducing distracted driving. To automatically identify the
DS, there have been many proposals that require additional
dedicated devices and/or modification of in-vehicle compo-
nents [8], [9]. However, these incur additional costs to pur-
chase, install, and modify devices, making them unattractive/
impractical to the users and the car-makers.

While considering the above deficiencies (e.g., manual inter-
ventions and additional devices), several event-driven solutions
have been proposed in recent years [10], [11], [12], [13], [14].
They autonomously identify the DS by analyzing the sensory
information acquired from specific driving-related events, such
as wearing seat belts, pedal pressing, turn signal audio, turning
around the corners, and driving over the speed bumps, using
a variety of sensors in commodity smartphones. While con-
ventional event-driven solutions successfully automated the DS
identification, there are four additional challenges that have not
yet been addressed effectively.

First, we do not know if and when driving events of interest
will occur. In the worst case, the DS will not be identified, thus
failing to protect passengers, pedestrians and vehicles. Even
if we assume these events will take place at some time while
driving, drivers are in danger for an uncertain period of time
until the events are monitored and analyzed. Considering
the fact that incidents can happen at any time, we must rely on
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the events that occur before the vehicle leaves its parked spot
(i.e., before making the first movement) to ensure the ultimate
level of safety for the driver and others.

Second, there are no guarantees that all passengers will
have a smartphone equipped with the DS identification sys-
tem. Thus, despite the benefits of having a cooperative system
design, we should not expect any assistance from the others
in the vehicle. Third, smartphones might not have the com-
munication capabilities to connect to the central server for
various reasons, such as parked underground. In fact, all fea-
ture extractions and decision-making processes must be com-
pleted separately.

Finally, smartphones’ positions (or poses) may change during
daily routines based on the users’ need and habit. In fact, no
matter how accurate the end results are, a DS identification sys-
tem would be impractical /unuseful if it is designed to operate
only in a particular pose. To accurately identify the DS without
pose restrictions, we must first define a feasible set of sensors
for each smartphone pose, and construct the corresponding fea-
ture analyzers. To date, we have not been aware of any solutions
that are able to accurately identify DS before the vehicle starts
moving without imposing the above system restrictions and
constraints.

In this paper, we propose a novel event-driven DS identifica-
tion system, called Automatic Identification of Driver’s Smartphone
(AIDS). Its core is to fuse heterogeneous sensory information
extracted from the common vehicle-riding actions—approach-
ing the vehicle, standing still while opening the door, entering
the vehicle, closing the vehicle door, and starting the engine—
to identify the driver’s phone.

The use of heterogeneous sensors can be divided into three
parts. First, entering a vehicle is detected by analyzing electro-
magnetic field (EMF) fluctuations, significant vertical accelera-
tions caused by sitting-down motion, and vehicle door closing
sounds (VDCSs). While each of these can be found in other daily
activities, a sequence of these events takes place only when
entering the vehicle. Second, vehicle entering directions (left or
right) are differentiated by analyzing the body rotations moni-
tored when entering the vehicle. We observed that users turn
counter-clockwise (clockwise) when entering from the left
(right). Finally, seated (front or rear) rows are differentiated by
analyzing subtle EMF changes monitored when starting the
engine. The magnitude of such an EMF spike at the front row is
likely to be much greater than that of the rear row because elec-
tronic devices are densely populated in front of the driver’s seat.

For comprehensive evaluation of AIDS, we have imple-
mented a prototype on Android, and distributed it to 12 par-
ticipants, both males and females in their 20 and 30s. Our
experimental results using 7 different vehicles show that
entering a vehicle is detected with a 90.0-93.7 percent True
Positive Rate (TPR) and a 91.3-93.2 percent True Negative
Rate (TNR), while entering directions are identified with an
87.2-95.6 percent TPR and an 84.2-90.4 percent TNR. More-
over TPR and TNR of seated row classification results are
found to be 82.8-99.5 and 79.3-95.8 percent, respectively.
Finally, AIDS identifies the DS with an 83.3-93.3 percent TPR
while the TNR is 90.1-91.2 percent.

This paper makes three main contributions: we

e propose an event-driven DS identification system
that achieves accurate results before the vehicle
leaves its parked spot with neither smartphone pose
restrictions nor external assistance;

e reinforce the proposed system with a unique solu-
tion to differentiate the seated (front or rear) rows by

System Initiators

>
Walking and Standing Smartphone Position
Detector (WSD) Classifier (SPC)
Sec2.2 Sec2.3
: /__,_,_7' V)

Standing for ~1s

/ Smartphone

Core System Modules o
i position

False or
after ~10s

EnTrance
Detector (ETD)
Sec2.4

Entrance Direction
Classifier (EDC)
Sec 2.5

Seated Row
Classifier (SRC)
Sec 2.6

Front?

Fig. 1. Decision-making processes and the corresponding system mod-
ules in AIDS.

analyzing the subtle EMF changes monitored when
the vehicle is started; and

e implement and evaluate a prototype of AIDS on

Android smartphones.

The rest of this paper is organized as follows. Section 2 first
provides an overview of system operation with an introduc-
tion of key system modules using natural actions taken when
riding the vehicle. Each system module is then detailed by
describing the algorithms used to analyze monitored sensory
data. Section 3 evaluates the performance of AIDS using real
sensory data. Section 4 discusses the related work, and the
paper concludes with Section 5.

2 SyYSTEM DESIGN

Our main objective is to accurately identify the driver’s smart-
phone without restricting the phone’s poses nor requiring addi-
tional dedicated devices. Considering limited battery capacity,
we also want to minimize energy consumption. To design
AIDS with these objectives and constraints, we make the fol-
lowing three assumptions: A1) smartphones would not make
significant movements when starting the vehicle; A2) vehicles
are running on petrol engines; and A3) remote vehicle door
openers are not available. These assumptions can be easily met
since the market share of hybrid vehicles in the US is only about
2.75 percent, and remote vehicle door openers are rarely
used [15]. The key building blocks of AIDS are detailed next.

2.1 Design Overview

As shown in Fig. 1, AIDS includes 5 system modules that are
classified into two groups according to their functions. System
initiators include Walking and Standing Detector (WSD) and
Smartphone Position Classifier (SPC). Their role is to trigger
core system modules only when needed with a set of sensors
that produce clean data. Considering the importance of the
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Fig. 2. Sensor use-cases based on common vehicle-riding actions and
events. Different sets of sensors are used depending on detected smart-
phone positions.

energy-efficiency, activated sensors (excluding accelerometers)
are put back to sleep after some time if no vehicle-riding actions
are detected. The rest—namely, EnTrance Detector (ETD),
Entering Direction Classifier (EDC), and Seated Row Classifier
(SRC)—are grouped as core system modules with an objective
to identify the DS. After AIDS concludes whether the smart-
phone is the driver’s or not, all sensors but accelerometers are
deactivated to save the battery energy. Fig. 2 shows the relation-
ships between the common vehicle-riding actions/events and
the sensors.

There are two major benefits of this system design. First,
energy-efficiency is one of the most important requirements
when designing mobile apps. We save as much energy
as possible by solely using accelerometer readings for the sys-
tem initiators while keeping other in sleep. Inactive sensors
will be awakened only when the initiators determine that the
user is about to enter the vehicle. Second, we improve the accu-
racy of ETD by using a subset of sensors, determined by SPC
results, that are likely to return clean data. For example, micro-
phones cannot accurately detect VDCS when smartphones are
placed in a trouser pocket or a bag due to excessive fricative
noises caused by surrounding materials. In such a case, ETD
only leverages magnetometer and accelerometer readings.

2.2 Walking and Standing Detector (WSD)

WSD aims to detect a sequence of actions—walking and stand-
ing—that must be taken before entering the vehicles. Upon
detection of standing, the core system modules are initiated by
activating a subset of sleeping sensors to confirm whether the
user is entering a vehicle or not.

To accurately detect walking and standing states, we use two
acceleration features that can always be detected when users
are walking. The first feature is a gait cycle. As indicated in [16],
walking is a cyclic action where its motion characteristics can be
traced by analyzing the frequency components. Based on the
observations shown in Fig. 3, the gait cycle is found to be within
1~10 Hz, depending on the smartphone’s position.

The second feature is the presence of significant accelerations
toward the horizontal plane. Such a feature is particularly
important because it is physically impossible to enter a vehicle
if we do not walk toward it. Considering the fact that our body
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Fig. 3. Frequency spectrum representation of walking with different
smartphone positions. Our observations show that walking is a cyclic
action where the strongest energy is found in between 1 and 10 Hz.

cannot make zero accelerations for various reasons, including
heartbeat and intentional body movements, WSD assumes
that the user is making significant movements only when the
horizontal accelerations exceed 0.5 m/s?. In conclusion, co-
occurrence of these two features strongly indicates that the user
is walking, while the absence indicates standing.

To extract the gait cycle, WSD divides incoming triaxial
accelerometer readings within a sliding time window into n seg-
ments. For each segment W{"C("e’, where 1 <i<n, let a;; =
(xij, vij, #ij) represent the jth acceleration vector within the win-
dow. The acceleration magnitude a;; is then computed by taking
the euclidean norm of a;;. In order to represent the frequency
spectrum of these magnitude signals, we take the Discrete Four-
ier Transform (DFT) after applying a low-pass-filter with cutoff
frequency of 20 Hz to remove the noises that may exist in the
higher-frequency bands. Finally, the gait cycle is identified by
locating a frequency with the strongest energy.

The second feature, the magnitude of horizontal accelera-
tion, is computed as follows. Let g = (g.,9,,9.) represent
a unit gravity vector. The magnitude of the vertical accelera-
tion v;; of the acceleration vector a;; is then computed by tak-
ing the dot product of a;; and g

vy = ag; - g. (1)

This vertical acceleration can also be used to compute the ver-
tical projection by multiplying the gravity vector

vy, = ijg. (2)
Then, the magnitude of the horizontal acceleration h;;, which is

the magnitude of the horizontal projection hfjr, is computed as

= i) ®
hij = 1B 1l @
With the above sensory features, WSD concludes that the
user is currently walking if the strongest frequency is found
in between 1 and 10 Hz, and an average of h;; within W}
exceeds 0.5 m/s’.

2.3 Smartphone Position Classifier (SPC)

SPC differentiates three most frequent positions for holding
smartphones, such as including trouser pockets, bags, and
hands [17]. The classified positions are then used by ETD to
activate a subset of sensors that are most suitable for acquiring
clean data for accurate DS identification results. A number of
smartphone position classifiers have been proposed, satisfy-
ing our needs [16], [18], [19]. Of these, we adopt a method
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proposed in [16], which utilizes supervised learning through
regularized kernel methods [20], [21].

The feature vector used for SPC consists of: 1) DFTs of the
horizontal and vertical acceleration magnitudes, and 2) smart-
phone orientations. For each time window W?““, the horizon-
tal and vertical DFTs, denoted by f{ and f;, are computed.
According to our observations, different smartphone posi-
tions generate different oscillation patterns along the horizon-
tal and vertical axes.

For example, smartphones placed in a pocket or a bag exhibit
stronger acceleration magnitude toward the horizontal axis
than that of vertical axis. In contrast, smartphones held in a
hand show different oscillation patterns depending on the ges-
tures taken while walking around. Swinging-like motions are
one of the most frequently observed gestures which portray sig-
nificant accelerations toward both horizontal and vertical axes.
On the other hand, smartphone manipulation is another fre-
quently seen gesture which exhibits stronger accelerations
toward the horizontal axis than the vertical axis (similar to that
of pocket and bag).

Since horizontal and vertical oscillations represented with
DFTs are insufficient to clearly distinguish different smartphone
positions, an orientation o; is added to the feature vector. In our
daily activities, smartphones held in hands are highly unlikely
to stay in the upright position for a long period of time. On the
other hand, when smartphones are held in pockets or bags, its
screen is rarely facing up or down. Such differences in orienta-
tion can be captured by analyzing the combinations of gravity
magnitude vectors in one- and two-dimensional spaces

0= (I9:1: ) l9:1. |2 + B[ 32+ 2\ 2+ ) ©)

where |g,|, |g,|, and |g.| are one-dimensional projection of grav-
ity vector in x, y, and z axis, while the rest represents two-dimen-
sional projects on x-y, x-z, and y-z plane. The combination |g.|

and /g% + g2 represents the degree of a smartphone tilted along
the x-y plane invariant from rotation angle along the z-axis.
With two other combinations, namely |g,| and /g2 + ¢2, and
|9:| and
smartphones. Finally, the feature vector used for position classi-
fication in the time window i is defined as (f, £}, 0;).

g?/ + ¢2, we are able to infer current orientation of

2.4 Entrance Detector (ETD)

When WSD detects the user standing still for some time, ETD is
triggered to determine whether the user actually enters the vehi-
cle or not. To make an accurate decision, ETD looks for three
specific features of entering the vehicle: 1) the variance of EMF
fluctuations, 2) the magnitude of positive vertical accelerations
(heading down toward the ground) caused by sitting motions,
and 3) Vehicle Door Closing Sound (VDSC).

However, the accuracy of these components depends on
the smartphone’s position. For example, a sitting motion
feature cannot make accurate decisions when the phone is
held in a hand because of random swinging of the arm. On
the other hand, VDCS cannot be reliable when the phone is
placed in a pocket/bag due to the excessive fricative noises
generated when the phone’s microphone and the surrounding
objects are rubbed against each other.

Considering the constraints imposed by different phone
positions, ETD selects a subset of components that are likely
to yield correct results as follows.

e  When phones are placed in a pocket/bag, EMF and sit-
ting motion features are used, while VDCS is not.

e  When the phone is held in a hand, EMF and VDCS are

utilized while sitting motion feature is not.

Unlike other features, EMF is always trusted to yield rea-
sonably accurate results since the magnitude of EMF variance
monitored during entry of the vehicle is stable, and is not
affected much by the phone’s position.

Despite the high performance of EMF feature, ETD per-
forms an AND operation between selected features to draw
accurate conclusions for the following reasons. First, individ-
ual sensory features can sometimes be found from other daily
activities. For example, significant EMF fluctuations can be
observed if the user—albeit unlikely—swings or shakes the
phone wildly, walking by heavy or electrified metallic objects,
or placing the phone right next to other electronic devices in a
bag. Furthermore, similar sitting-down acceleration magni-
tudes can be found when users sit on a chair, and VDCS can
be monitored even when the user is near another user who is
closing the vehicle door. However, simultaneous occurrence
of specified features can be found only when the user is enter-
ing the vehicle. In what follows, we detail each of these com-
ponents by illustrating how the sensory features are extracted.

2.4.1 EMF Variance When Entering the Vehicles

An EMF is a physical field produced by electrically charged
objects. Motorized vehicles typically consist of magnetic materi-
als and electronic devices which create a magnetic moment
induced by the earth’s magnetic field. According to [22], [23],
[24], the presence of motorized ground vehicles can be detected
by using specially-tuned magnetometers. According to the reg-
ulations of International Standardization Organization, every
vehicle must pass the electromagnetic compatibility tests which
strictly limit the EMF emissions below a certain small level [25].
The EMF emitted from the vehicles can only be detected in close
proximity when the magnetometer from commodity smart-
phones is used.

The main objective is to monitor and analyze the presence of
significant EMF fluctuations to verify whether the user has
entered the vehicle or not. According to the magnetometer read-
ings shown in Fig. 4a, entering the vehicle generates significant
changes in EMF dynamics. To quantify such changes, we use a
sliding time window of length m to segment incoming magne-
tometer readings. For each window mef Jlete;, 1<j<m,
represent the jth EMF magnitude within the window . With
these magnitudes, we take the variance

m

1
var{™ = _Z(%‘ - &), (6)
m =

emf

where ¢; is the average of EMF magnitudes in W;"".

The result shown in Fig. 4 illustrates that the variance
spikes when the user enters the vehicle and converges to a
low level once seated. While other sitting motions also gener-
ate similar EMF patterns due to the shifts of smartphone ori-
entation, the magnitude of the EMF variance monitored when
entering the vehicle is much greater than the others. Note that
walking in between densely parked vehicles also causes sig-
nificant EMF variance spikes as shown in Fig. 4b, but they are
not captured by AIDS since magnetometers are turned on
once the user is detected standing. In addition, they do not
incorporate simultaneous sitting-down motions. The average
variance of entering the vehicle is found to be approximately
300 while other ADLs show the average variance under 100.
With an appropriately-chosen variance cut-off threshold, ETD
assumes that the user has entered the vehicle if the variance
exceeds the threshold.
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2.4.2 Positive Vertical Acceleration of the Sitting
Motions

Sitting-down motions cause our body to accelerate toward the
ground without cyclic actions. In fact, ETD preliminarily
assumes that the user has entered the vehicle if the following
two acceleration features are detected: 1) significant Positive
Vertical Acceleration (PVA), and 2) acyclic acceleration patterns.

To compute the vertical accelerations v; at time ¢, we take
the dot product of acceleration and gravity vectors

)

(af,a},a’) is the acceleration vector at time ¢,

v = at 9

where a; =
and g, = (¢., gy, g’ ) is the unit gravity vector. Once v;’s are calcu-
lated, we take the magnitude of PVA to represent the down-
ward movements. The results in Fig. 5—where the top row
represents the raw acceleration magnitude, the middle row
shows the PVA only, and the bottom row illustrates the acceler-
ation cycles after thresholding—indicate that sitting-down
motions produce an acyclic acceleration patterns unlike walk-
ing. Furthermore, PVA magnitudes of sitting-down motions are
found to be greater than 4 m/s”. Note that our participants were
in late 20s” and early 30s’, and hence we did not consider accel-
eration magnitudes found in elderly and disabled individuals.

Based on thousands of experiments, we have designed
ETD to think that a significant vertical movement is present
when PVA exceeds 4 m/s? while verifying the presence of
acyclic acceleration patterns by using the time difference of
PVA peaks after applying the threshold. As Fig. 5a shows,
PVA peaks for the sitting-down motions are detected within a
time window of a second or less (50 samples or less) while
others, Figs. 5b and 5c, show larger time differences.

Note that above two features can be manipulated if some-
one intentionally swings or drops his/her phone down
toward the ground, but ETD would not be tricked since EMF
features discussed earlier are highly likely to be detected
when the user actually enters the vehicle.

2.4.3 Vehicle Door Closing Sounds

To verify whether the user has entered the vehicle or not, we
exploit the fact that VDCSs are designed by the manufacturers
to have distinct impulsive acoustic features as described in
[26]. The presence of VDCSs are detected as follows. First, we
use sliding time windows of length b each to segment incoming
acoustic signals. For each window W, let s;;, 1 < j < b, rep-
resent the jth acoustic amplitude within the window . With
these amplitudes, we verify the presence of impulsive sounds
by measuring the maximum amplitude level and the amount
of energy enclosed within the window. Enclosed energy is
obtained by computing the Short-Term Energy (STE) as

®)

en; =

-

8%’[1)(2)7

J=1
where b is the total number of samples in W, and w(7) is the
wmdowmg function used. After conductmg extensive experi-
ments with different types of vehicles, we have found that
VDCSs generate a maximum amplitude of 0.89 with standard
deviation of +0.03, and STE above 500. Furthermore, a fre-
quency spectrum analysis using DFT has shown the average
duration of VDCSs to be approximately 0.5 second with stan-
dard deviation of £0.04. An example analysis of VDCS is pro-
vided in Fig. 6.

If the monitored sound is found to be impulsive, ETD then
computes a feature vector composed of Mel-Frequency Ceps-
tral Coefficient and the duration of the sound. With this feature
vector, we use a binary classifier with two sound groups,
VDCS and non-VDCS. ETD can, of course, utilize other classi-
fiers, e.g., one might use one-class Support Vector Machine [27],
which uses outlier-detection mechanisms when the number of
observations are quiet small to clearly define non-VDCSs.

2.5 Entrance Direction Classifier (EDC)

Once ETD confirms that the user has entered the vehicle, AIDS
asks EDC to verify the entry directions, left or right. In general,
drivers are seated at the left-front (right-front for United
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Fig. 6. Vehicle door-closing sound analysis.

Kingdom and Japan) while passengers are occupying the other
seats. For accurate identification of the driver’s phone, AIDS
must identify different entry directions (left or right) and seated
rows (front or rear). Considering the fact that entering from the
right-hand side eliminates the chance of being the driver, SRC is
initiated only if EDC concludes that the user has entered the
vehicle from the left (driver-side).

To identify the entry directions, we leverage the body rota-
tions taken when entering the vehicles as shown in Fig. 7. Thus,
entering from the left side of the vehicle causes our body to turn
counter-clockwise while entering from the right turns clock-
wise. However, after experimenting thousands of vehicle riding
actions with different smartphone poses, we found that the
smartphones could experience and detect angular rotations
independent of the body rotation generated when entering a
vehicle if the user 1) swings his phone, and 2) takes the bag off
from his shoulder. For instance, users entering the vehicle from
the left-side while taking the bag off from their right-shoulder
could be classified as entering from the right-side due to the
counter-clock-wise rotations observed when taking their bag
off. To handle this problem, EDC is designed to analyze the sig-
nificant angular rotations, around the global z-axis (yaw), moni-
tored when the user is entering the vehicle by identifying the
exact moment when the vehicle entering EMF fluctuation is
detected, and cropping the collected sensory data to have clean
rotation features.

When computing the angles, one must note that local gyro-
scope readings cannot correctly infer the global yawing due
to the difference between global and local sensor axes as
shown in Fig. 8. For example, imagine there are two smart-
phones floating in the air, one facing the sky (local axes per-
fectly aligned with global axes) and other facing the ground
(local z-axis facing the opposite direction from that of global
while the other axes are aligned). When we physically rotate
them clock-wise, the former will portray an increasing yaw
indicating a clock-wise rotation while the latter produces a
decreasing yaw indicating a counter clock-wise rotation. As a
result, one could draw inaccurate conclusions that the user
has sat on the right side of the vehicle when s/he entered the
vehicle from the left.

One way to solve this problem is to physically fix the phone’s
orientation so that the local sensor axes are always aligned with
the global sensor axes where y-axis pointing toward the mag-
netic North Pole. Such an approach will generate accurate sit-
ting trajectories while being highly impractical since handheld
devices must be movable without any physical restriction. Since
physical constraints are not imposed, we instead use the Qua-
ternion algorithm [28], [29] to virtually rotate the local sensor

Clockwise
Right

Counter clockwise
Left

Fig. 7. Different rotations taken when entering a vehicle from driver and
passenger sides.

yglobal
N

Fig. 8. Difference between local and global sensor axes.

axes by utilizing gyroscope and magenetometer readings. There
are two advantages of using Quaternion over others, such as
Euler’s [30] and orthogonal matrix-based approaches [31]. First,
it offers a better chance of avoiding the gimbal lock phenome-
non [30] than that of Euler’s. Second, it provides a simpler repre-
sentation of a rotation matrix than that of orthogonal matrices,
since Quaternion has 4 numbers while matrix-based approaches
have9.

According to [32], [33], [34], the current smartphone orien-
tation ¢ in a Quaternion 3-dimensional space is defined by the
combination of a unit vector u and a scalar 0 as

) 0 0
=e = cos —+ usin —, 9
q 5t 5 )
where u = (uy,uy, u.) = Uyt + uyj + uk, and w,,u,,u, are
euclidean vector components over three Cartesian axes 4, j, k.
The extension of Eq. (9) is

ugituyjtuzk) _

0 0

q= e cos 5 + (ugt + uyj + u-k) sin 7 (10)
The desired virtual rotations p can be applied to the current
smartphone orientation ¢ by taking the conjugation of p by ¢

P =apq ", 11
where p = (py,py,p:) = pst + pyj + p.k, and p’ is the global
axes that we aim to be aligned with. For every sensor reading,
we compute the current smartphone orientation along the
global z-axis by taking the difference between the local axes ¢
and the global axes ¢'.
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Fig. 9. An EMF spike monitored when a vehicle is starting.

2.6 Seated Row Classifier (SRC)

After AIDS concludes that the user has entered the vehicle
from left, SRC is initiated to classify the seated (front or rear)
row. The salient aspect of SRC is that the seated rows are dif-
ferentiated using the subtle EMF fluctuations caused by start-
ing the vehicle, which motorizes the engine, and powers the
electronic devices. Such fluctuations are likely to be detectable
only at the front row since electronic devices are densely pop-
ulated in front of the driver’s seat while most vehicles have
their engines at the front.

Assuming that the phones won’t move much, such as relo-
cating the phone to another seat or shaking, while starting the
vehicle, EMF features shown in Fig. 9 can be detected. Consid-
ering the fact that a user has started the vehicle in between
sample index 300 and 400, one can see that there is a subtle
EMF fluctuation that peaks at sample index 310, and slowly
converges to a normal state.

To achieve accurate classification, we designed SRC to incor-
porate data-cropping mechanisms to filter out EMF fluctuations
caused by the human activities, such as relocating the phone or
shaking, before the vehicle is started. While we assumed that
the users would not make significant movements when starting
the vehicle, there could be an action that causes EMF to fluctuate
like starting the car. To handle such a problem, we crop col-
lected sensory data where 1) no significant acceleration is
detected, and 2) prediction error of monitored EMF readings is
higher than a threshold as shown in Fig. 9, which is computed
by using a Recursive Least Squares (RLS) filter [35]. Once the
subtle changes are detected, SRC quantifies the phenomena
using the variance with Eq. (6).

The RLS filter can be described as follows. At time k, SRC

has gathered & x 1 magnetometer readings, e; = (e, ..., e1).
With e;,, we formulate a least squares prediction problem
ér=hle (M),M < t <k, (12)

where k > M + 1 and hy, are the M x 1 filter-weight vector at
time k defined as

hi = (his o hiar)' (13)
and e;_1 (M) is the M x 1 past readings as
er1(M) = (e-1,...,e-n)” (14)

Our objective is to find an estimator h;, at time % that mini-
mizes the Sum of Squared Errors (SSE)

k
SSE = > N'e, — hle, (M), (15)

t=M+1

where X (< 1) is an exponential forgetting factor, which needs
careful tuning for accurate results. A smaller A places a higher
weight toward the most recent information. For the above least
squares prediction problem, we develop a recursive algorithm
that updates the filter-weight vector upon reception of new
magnetometer readings, given the previous filter weights up to
k — 1. The RLS algorithm first calculates a priori prediction error
based on old filter-weight estimates at iteration &

o = Cp, — ilg,lek—l(M)- (16)
The filter-weight vector is then updated as
hii = by + argvy, (17

where h u = 0and an M x 1 gain vector gv,, is computed by

P (M)
= . (18)
I = N (M)P e 1 (M)
P;is an M x M inverse correlation matrix, initialized as
Py =p1, (19)
with a small positive p, and recursively updated by
PL=)\"'P, — X lguecl [(M)P . (20)

A priori prediction error «;, computed with Eq. (16) is used to
quantify the prediction errors as

|y 1)

Pr ’ITL(JJJ{CJW cmin} ’
where £ < M + 1. The changes of prediction errors are plotted
in Fig. 9.

From thousands of experiments, we have found that start-
ing the vehicle causes prediction errors to spike up by more
than 0.5 for most of the trials. Once such a prediction error
peak is detected, SRC measures the variance of magnetometer
readings, and takes the maximum. At last, if both prediction
error peak and maximum variance satisfy specific cut-off
thresholds, then SRC concludes that the user is seated at the
front row, or not.

2.7 Designing Distracted Driving Prevention
Services

When designing Distracted Driving Prevention Services
(DDPSs), one must carefully consider the following three
issues for usability. First, driver detection systems, such as
AIDS, sometimes make inaccurate decisions regarding identi-
fication of DS. One may thus incorporate additional checking
mechanisms, which use sensory features detectible while
driving, introduced in [10], [12], [14] for correct determination
of the user status.

Second, DDPSs must disable distractive apps and services
only when the vehicle is in motion. According to AT&T Drive-
Mode [4], DDPSs are activated when the speed of vehicle esti-
mated by Global Positioning System (GPS) exceeds 25 miles
per hour. While GPS provides accurate speed estimation, there
are two technical shortcomings we must overcome. First, GPS
does not work when the line of sight between the phone and the
satellite is blocked, i.e., in-door parking lot, tunnel, and urban
area. Second, GPS is energy-expensive due to the communica-
tion mechanism requiring the antenna to be powered at all
times, preventing the smartphone from moving to sleep state.
In order to resolve these issues, one should consider the use of
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Fig. 10. Snapshot of an experiment conducted with an AIDS prototype
application.

accelerometer features generated when the vehicle starts to
accelerate from stop state to activate DDPSs. On the other hand,
the presence of deceleration can be used to deactivate DDPSs,
temporarily allowing the driver to use the smartphone. More-
over, AT&T DriveMode must be activated manually by the
phone owner, whereas AIDS allows DDPSs to stop distractive
activities automatically.

Third, DDPSs must be designed to handle the case when
the driver asks a passenger to send a text on his/her behalf. In
such a case, DDPSs may ask the passenger to simultaneously
place two thumbs on the screen for a few seconds to deacti-
vate the proposed solution, which can be detected by using
the touch sensors embedded in commodity smartphones.
Considering how dangerous it is to take both hands off the
steering wheel, unless the vehicle is completely stopped, driv-
ers will not attempt to unlock the device while driving,.

3 EVALUATION
3.1 Experimental Setup

To comprehensively evaluate the feasibility of AIDS, we have
conducted two separate experiments where 1) thousands of
vehicle-riding actions are performed with different vehicle
types in order to obtain appropriate cut-off thresholds for the
prototype application based on the sensory features moni-
tored, and 2) a fine-tuned prototype is deployed in our daily
lives to extensively test the AIDS’s performance. Throughout
this section, we call the former controlled experiments and the
latter normal experiments.

The prototype of AIDS is implemented on multiple Sam-
sung Galaxy S5s running on Android [36] platfrom as shown
in Fig. 10. In addition, we evaluated the impact of varying sen-
sor qualities in other smartphones by employing Apple
iPhone 6S plus running on iOS platforms [37]. According to
our measurements, the EMF readings from iPhone 6S plus
show relatively greater magnitudes than those from Galaxy
S5 even when both devices are placed at the exact same loca-
tion. However, the magnitude of EMF variances monitored
when the user enters the vehicle and starts the vehicle does
not differ much from each other.

These smartphones are equipped with accelerometer, gyro-
scope, microphone, and magnetometer sensors. The sampling
rates of kinematic (accelerometer and gyroscope) sensors and
magnetometer are set to 50 Hz (50 samples per second), while
microphones are sampled at 44,100 Hz. Note that increasing
the sampling rate does not lead to proportional enhancements
of the accuracy of the proposed system modules and compo-
nents due to unstable sampling precisions at higher rates (i.e.,
the highest sampling rate provided by Android API has a
wider range, 100~120 Hz, than that of a lower one, 48~52 Hz).

We conducted experiments with 12 male and female par-
ticipants within their 20 and 30s, and used 7 different vehicles
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Fig. 11. CDF of the standing duration before entering a vehicle.

that fall under four different segments all running on petrol
engines as follows:

Kia Pride (B-segment small cars)
Hyundai Accent (B-segment small cars)
Hyundai Avante (C-segment medium cars)
Hyundai Sonata (D-segment large cars)
Kia K5 (D-segment large cars)
Hyundai Genesis (E-segment executive cars)
BMW 520D (E-segment executive cars)
While trucks and sport utility vehicles are not considered in
these experiments, the vertical acceleration feature used for
ETD can be slightly adjusted to accept the upward magnitudes.

3.2 Evaluation Criteria

Our evaluations use three different performance criteria based
on 1) histograms, 2) Receiver Operating Characteristic (ROC)
and Area Under the Curve (AUC), and 3) system TPR and
TNR. While histograms show the difference between the sen-
sory features extracted from vehicle riding actions and other
daily activities with visual illustrations, ROC, AUC, TPR and
TNR portray the accuracy of the proposed system modules
and its corresponding features.

AnROC curveis used widely in statistics to illustrate the per-
formance of a binary classifier where the curve is generated with
the TPR against the False Positive Rate (FPR) under various
threshold settings. The TPR infers the ratio of true positive for
the true case while FPR infers the ratio of false positive for the
false case. With an ROC curve, one can evaluate the perfor-
mance of a classifier by computing the AUC, where AUC close
to 1 indicates that the system is able to differentiate the target
phenomena perfectly from the others while AUC < 0.5 indicates
that the classifier is meaningless.

3.3 Evaluation Results
3.3.1 Performance of WSD and SPC

Since the performances of WSD and SPC have already been
evaluated in [16], showing higher than 94 percent accuracy, we
will focus on the duration of the standing state monitored prior
to entering a vehicle. We found that generating hundreds of
standing events throughout a day and initiating the core system
modules on all events consume lots of energy on a smartphone.
Considering the phone’s limited battery capacity, we must
therefore carefully set the duration threshold in order to prevent
excessive sensor activations.

The cumulative distribution function shown in Fig. 11,
generated using data collected from controlled and normal
experiments, infers that people stand by vehicles for an average
of 2.58 +1.23 seconds before entering them. The minimum
duration is approximately 0.04 second while the maximum is
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Fig. 12. Feasibility of ETD under controlled vehicle riding actions and environments.

6.6 seconds. Furthermore, the 5th and 50th percentiles are
observed to be 0.66 and 2.58 seconds, respectively. According to
these findings, we designed WSD to initiate ETD only when the
user is detected standing for more than a second. This cutoff
time is approximately the 12th percentile of the observed data.
Such a duration threshold initiated ETD 97 times, on average,
throughout a day while the total number of standing motions
monitored is approximately 250, i.e., filtering out almost 60 per-
cent of unnecessary ETD initiations.

While the actual number of vehicle riding events is much
smaller than that of ETD initiations, indicating a high FPR, we
are only using accelerometer readings to capture entering-a-
vehicle-like events without wasting battery energy on all
events. If the accuracy is a primary concern, then we can
achieve better TPR and TNR by adjusting the cut-off threshold
or using the magnetometer readings to detect the presence of
the vehicles at the expense of energy-efficiency.

On the other hand, we can minimize the amount of energy
wasted by carefully controlling the activation time of trig-
gered sensors. According to our experiments, ~93 percent of
the users with the intention of riding a vehicle completed a set
of actions required to enter the vehicle (opening the vehicle
door, sitting down and being seated) within next 10 seconds
after a standing motion is detected. Considering the impor-
tance of energy-efficiency, we, therefore, designed AIDS
to deactivate triggered sensors (excluding accelerometers) if
no vehicle-riding actions are detected within 10 seconds as
shown in Fig. 1.

3.3.2 Performance of ETD

Once WSD concludes that the user is about to enter a vehicle,
AIDS initiates ETD using different sets of sensory features
based on the SPC result. Boolean values (true or false) returned
from analyzing selected features are ANDed to determine
whether the user has indeed entered a vehicle or not. To dem-
onstrate the feasibility and robustness of ETD under various
conditions, we have instructed the participants to ride the
vehicles under two different settings.

In the controlled setting, participants made clean vehicle-rid-
ing actions for accurate feature extractions. In contrast, the nor-
mal setting allows participants to take common vehicle-riding
actions while satisfying the specified assumptions and restric-
tions, e.g., smartphones do not make significant movements
when vehicles are started. In what follows, we first evaluate the
performance of each system component under controlled set-
tings, and then discuss the feasibility and robustness of ETD
under widely varying normal conditions.

With thousands of EMF variances computed using magne-
tometer readings captured from controlled vehicle-riding
actions and other most commonly found daily activities
involving sitting motions (sitting on a desk chair and a public

transportation vehicle), we have evaluated the performance
of the Entry EMF Variance Detection (EVD) as shown in
Fig. 12. According to the histograms shown in Fig. 12a, the
EMF variances observed from other daily activities are
densely distributed between 0 and 100 while entering the
vehicle shows a wider range of variance. Note that entering a
vehicle parked in between two other vehicles does not deviate
much from the EMF variances monitored from entering a
vehicle parked in an open space with no vehicle around it.
Despite the small overlaps between entering a vehicle and
other ADL distributions, we can differentiate the vehicle-
entering events by carefully selecting a cut-off threshold.
Fig. 12b shows that AUC for each vehicle exceeds 0.95, except
for Hyundai Sonata, indicating that the EMF variance accu-
rately differentiates the action of entering the vehicle from
other daily activities. By setting a cut-off threshold to 50, EVD
achieved an average system TPR of 96.1 percent while TNR
equals 94.6 percent as illustrated in Fig. 12c.

For the performance of Sitting Motion Detection (SMD), we
analyzed the collected sensory data to find AUC approximately
equal to 0.96. Based on the analysis, we specified a PVA thresh-
old to be 4 m/s? as shown in Fig. 5, and set the time difference
threshold to be 50 samples (equivalent to 1 second). The results
indicate that SMD achieves system TPR of 98.3 percent while
TNR is found to be 91.7 percent. Finally, the performance of
Vehicle door closing Sound Detection (VSD) was evaluated in
two different environments, noisy Costco parking lot and quiet
outdoor open space, where different levels of ambient noises
were present. As shown in Table 1, the level of ambient noises
observed from the Costco parking lot was approximately —25
dB (0 to —90 dB relative to the full scale) while quiet open space
showed —42 dB. By entering a vehicle, these ambient noises are
drastically attenuated due to sound absorbing materials embed-
ded in various vehicular components. With ambient noises cap-
tured inside and outside of the vehicle, we then computed the
signal-to-noise ratio (SNR) to illustrate the impact of external
noises on the VSD performance. SNR between VDCSs and
ambient noises captured outside the vehicle is 13.2 dB, which

TABLE 1
Impact of Ambient Noises on VSD Performance

Noisy Costco parking lot ~ Quiet open space

Outside —25dB —42dB
In-vehicle —45dB —47dB

SNR, 13.2dB 29.1dB
Outside (21 times greater) (830 times greater)
SNR, 29.8 dB 30.2dB
In-vehicle (980 times greater) (1,100 times greater)
VSD accuracy 87% 89%
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Fig. 14. Angular rotations when entering a vehicle, and performance of EDC for different smartphone positions.

indicates that VDCSs are approximately 21x stronger than
ambient noises. In the in-vehicle scenario, SNR is 29.8 dB. Such
a ratio indicates that VDCSs are approximately 980x stronger
than the ambient noises observed inside the vehicle. Under dif-
ferent environments with different levels of ambient noises,
VDCSs were detected with an average of 88 percent accuracy.
With a set of sensory features extracted from controlled vehicle
riding actions, ETD achieves, on average, 93.7 percent TPR and
93.2 percent TNR.

Since ETD shows reasonably accurate detection perfor-
mance when specified sensory features are cleanly extracted,
the next step is to evaluate the feasibility of ETD under varying
environmental conditions that might distort the required infor-
mation. As Fig. 13 shows, we have identified 3 different cases
that distorted required sensory features. For Case 1, vehicles
were parked at an indoor parking lot where heavy metallic
objects, such as other vehicles, air ventilation control units,
etc., are present to distort the EMF feature. The user placed his
smartphone inside his pocket, and conducted experiments.
For Case 2, vehicles were parked outside, and smartphones are
recklessly swung in the users” hands. Finally, vehicles were
parked outside for Case 3 while smartphones are kept in a bag
along with other electronic devices, such as laptop, tablet and
external batteries.

Fig. 13a shows that using EVD only achieves approximately
97 percent system TPR while TNR is below 22 percent. Such
low TNR is caused by the fact that even when the user did not
enter the vehicle, significant EMF variance spikes are detected
due to other metallic objects, leading EVD to conclude that the
user has entered the vehicle while s /he has not. To compensate
for such shortcomings of EVD in Case 1, SMD or VSD is used.
While a EVD+SMD combination is shown to yield satisfactory
TPR and TNR results, VSD drops the TPR below 20 percent
due to the excessive fricative noises caused inside the pocket.
While there is a small performance drop for system TPR when
SMD is combined with EVD, it is only a marginal loss for TNR.

For Case 2 shown in Fig. 13b, EVD only achieves 92 and
74 percent system TPR and TNR, respectively. The degrada-
tion in system TNR is due to the fact that reckless swinging
sometimes replicates the EMF variance monitored when enter-
ing the vehicle. To compensate this, a EVD+VSD combination
is used for accurate ETD since SMD is infeasible and PVA fea-
tures can be replicated by swinging the smartphone down
toward the ground. At last, Case 3 shown in Fig. 13c, TNR of
EVD is lower than 20 percent due to the EMF variance spikes
caused by other electronic devices placed right next to the driv-
er’s phone. Our experiments illustrate that VSD cannot be used
to compensate the performance degradation due to the frica-
tive noises, while EVD+SMD combination yields 89 and 87 per-
cent TPR and TNR, respectively.

Under varying environmental settings, we found that ETD
achieves an average of 90 percent TPR and 91 percent TNR.
We observed a slight (about 2 percent) performance degrada-
tion when AIDS was tested under normal experimental set-
tings, demonstrating the feasibility of the specified sensor
features and the proposed ETD design.

3.3.3 Performance of EDC

The performance of EDC was evaluated extensively under
two different behavioral settings. First, participants are
instructed to take the bag off from their shoulder before open-
ing the vehicle’s door, and phone swinging and shaking
motions are avoided, thus enabling clear differentiation of the
associated body rotations from the others. Second, partici-
pants are allowed to enter the vehicle as they would have
done in their daily routines.

Under the controlled setting, entering directions are differen-
tiated as Fig. 14a illustrates. Note that entering a vehicle parked
in between two other vehicles, providing narrower entrance
spaces for the users, shows relatively larger overlaps between
two sides. EDC yields the best performance (TPR > 99 percent)
when the phone is placed in the pocket while bag and hand
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TABLE 2
SRC Performance and EMF Feature Statistics Monitored When Vehicle Engine Starts
Hyundai Hyundai Hyundai Hyundai Gen- BMW 520D
Kia Pride Accent Avante Sonata Kia K5 esis

front rear front rear front rear front rear front rear front rear front rear
EMF mean 8.9 0.4 9.4 1.8 33.1 1.3 48.7 15.4 7.1 6.1 334.3 202.6 161.3 32.0
EMF std 11.8 13 21.0 4.3 137.7 4.1 113.1 67.2 33.4 3.3 150.1 239.6 615.8 90.8
EMF min 2.2 0.01 0.03 0.03 2.1 0.02 0.3 0.01 2.7 0.01 114.9 0.1 10.1 0.08
EMF max 26.6 7.8 118.4 22.1 693.5 31.3 785.8 495.7 237.9 10.1 675.9 961.1 3778.2 458.7
AUC 9681 .8358 9248 9414 9597 9876 9090
accu., contr.  99.1%  95.7%  921% 90.3% 95.8% 86.4%  92.6% 93.5% 995% 90.3% 989% 85.3% 97.2% 87.1%
accu., norm. 93.3% 958% 84.6% 84.6% 889% 853% 828% 93.3% 947% 871% 96.7% 79.3% 96.3%  80.2%

positions show relatively lower performance (TPR >91 per-
cent) as shown in Fig. 14b. The average TNR of EDC is found to
be approximately 90.4 percent. While EDC shows reasonably
accurate performance when vehicle riding actions are carefully
controlled, Fig. 14c shows the overall performance degradation
when participants freely enter the vehicle.

EDC yields the worst results when the smartphone is kept in
a bag since the angular rotation monitored when taking the bag
off from his/her shoulder could override the body rotations
taken while entering the vehicle. According to our observations,
taking off the bag from the left-shoulder generates clock-wise
angular rotations while the right-shoulder shows counter-
clock-wise rotations. Since smartphones held in a bag generates
independent angular rotations from that of the body, EDC is
designed to analyze the significant angular rotations monitored
when the user is entering the vehicle by employing the EMF var-
iance fluctuation feature. However, two different angular rota-
tions (one from taking the bag off from the shoulder while the
other from entering the vehicle) tend to overlap with each other,
degrading the EDC performance. In addition, smartphones
held in a hand show relatively lower accuracy than that of
pocket since one might swing his arms in a way that the direc-
tion of angular changes is reversed to infer incorrect states.

Our performance evaluation has revealed that placing smart-
phones in a bag significantly degrades the EDC performance,
causing an around 7 percent drop of overall system TPR and
TNR—the system TPR shifted from 95.6 percent (controlled) to
87.2 percent (normal) while TNR from 90.4 to 84.2 percent.

3.3.4 Performance of SRC

SRC was evaluated by analyzing the magnetometer readings
taken when the vehicle is started after the driver entered the
vehicle. For comprehensive evaluation of SRC, participants
are first instructed to start the engine after placing the phone
on a flat surface (on top of the lap, or seat) to avoid unwanted
EMF spikes caused by orientation shifts. After completing
these controlled experiments, the participants are allowed to
start the engine without worrying about the smartphone posi-
tions and placements.

According to our analysis in Table 2, the EMF variance moni-
tored at the front row has a higher magnitude than that of rear
across different vehicles. Despite the fact that the distributions
of EMF variance monitored from the front and rear rows have
small overlaps, the overall AUC results indicate that the pro-
posed solution achieves reasonably good classification accu-
racy. Note, however, that luxurious automobiles, such as
Hyundai Genesis and BMW 520D generate significantly higher
variance magnitudes, which, in fact, require AIDS to have per-
segment calibration for accurate front and rear row classifica-
tion results. Vehicle segment identification is part of our future
work to extend the practicality of AIDS.

By setting the cut-off EMF variance threshold to 1.2 for Kia
Pride, Hyundai Accent, Hyundai Avante, Hyundai Sonata,
and Kia K5, TPRs of SRC, as shown in Table 2, were found to
be > 92 percent while TNRs were above 90 percent. For Hyun-
dai Genesis and BMW 520D, TPR was > 96 percent while TNR
was > 85.3 percent with the cut-off threshold of 123. The rela-
tively lower TNR was due to electronic devices at the rear seats
in luxurious automobiles, e.g., DVD players and electronically
adjustable seats.

Next, we extended our experiments by taking normal vehicle
riding actions while starting the engine. The participants were
found to have tendency to send a text, browse web, or answer
the phone while starting the vehicle. Such actions override spec-
ified EMF features, degrading system TPR and TNR by approxi-
mately 6 percent, on average, with the collect data. Low-end
vehicles suffer from a greater performance degradation than
that of luxurious vehicles since the EMF variances monitored
from the former are much less than those of latter, making EMF
fluctuations caused by the driver’s motion difficult to override
the EMF feature of starting the vehicle.

3.3.5 Performance of Driver Identification

With sensory features monitored from thousands of vehicle rid-
ing motions, we have analyzed each system module. The last
step is to evaluate the driver identification performance by com-
bining EDC and SRC results monitored under various condi-
tions (as illustrated in ETD, EDC, and SRC evaluations) with the
AND logical operator. According to our system design, a smart-
phone is concluded to belong to the driver if and only if EDC
concludes that the user has entered the vehicle from the left
while SRC results are found to be the front. The results in Fig. 15
indicate that the driver is identified with TPR (drivers are identi-
fied as the driver) of 93.3 percent while TNR (passengers are
identified as a passenger) is 91.2 percent under controlled set-
tings. On the other hand, AIDS achieves 83.3 percent TPR and
90.1 percent TNR, respectively, when participants are allowed
to ride the vehicle freely. Such performance figures also indicate
that 6.7-16.7 percent of drivers will be identified as passengers
while 8.8-9.9 percent of passengers will be identified as the
driver. As noted in Section 2.7, status of the users can be double-
checked by designing DDPSs to employ additional verification
methods.

Considering the accuracy of individual seat position classifi-
cation, the worst performance is identified at the rear-right seat
with the controlled TPR (the rate of correctly identified seated
positions) of 65.9 percent. Such a low classification accuracy is
caused by the subtlety of EMF variances monitored from the
rear seats as discussed in Section 3.3.4. Our experiments show
that the passengers seated at the rear/right position were fre-
quently identified as seated at front/right. Note, however, that
this low classification performance in the rear/right seat position
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Fig. 15. Performance of AIDS for different seat positions.

(passenger) does not decrease the value of AIDS, since it is
designed and tailored to differentiate the driver from the passen-
gers. Nevertheless, in future we plan to improve the accuracy in
identifying exact seated positions.

3.3.6 Energy-Efficiency

The last performance metric we consider is the energy-
efficiency of AIDS, quantified by the total amount of energy
used per day. Energy consumption rate of each sensor is listed
in Table 3 based on the studies conducted by [38]. When AIDS
is active, accelerometers are used by system modules, consum-
ing 12 mA/day by default. The energy usage of other sensors
is determined by the number of times the core system modules
are initiated during daily activities. According to our exp-
eriments, AIDS requires average of 7.8 pA/s when ETD is
initiated. Note that the total energy usage per initiation is deter-
mined by how quickly the user finishes his/her riding actions.
To quantify the actual energy consumption throughout our
daily activities, we have collected the system initiation and bat-
tery level logs for three days. Our logs indicate that core system
modules were triggered 97 times per day, on average, consum-
ing additional ~140 mA /day compared to the case when AIDS
is kept off. Such energy-consumption is equivalent to 10
minutes of GPS navigation, or 5~10 percent of battery life.

Note that the energy-efficiency of AIDS highly depends on
the number of core system module initiations, while the num-
ber of actual vehicle riding actions does not have much effect.
This phenomenon comes from the fact that activated sensors
are used for some amount of time regardless of the presence/
absence of vehicle riding actions to detect specified sensory
features.

4 RELATED WORK

The latest work on DS detection was reported in [10]. It uses
various sensory features extractable from common vehicle
riding/driving actions, such as entry swing, wearing a seat
belt, pedal-press signature, and turn signal audio, for DS
detection. While these features are novel and interesting, there
are three critical problems when the objectives of AIDS are
considered important. First, sensory features used for front
and rear differentiation, pedal-press signature and turn signal
audio, cannot guarantee their occurrence before the vehicle
enters the traffic. Second, the authors of [10] assumed that all
drivers and passengers will have their algorithm installed in
their smartphones, which is highly unlikely. Finally, some of
the features rely on a cloud server to make accurate decisions.

On the other hand, the authors of [13], [14] proposed sensing
of the vehicle dynamics for driver phone use on the basis of
the fact that centripetal acceleration observed while making
a turn varies with the position in the vehicle. By exploiting the

TABLE 3
Energy Consumption of AIDS
Sensor Energy ETD Energy
type per hour initiation pose per initiation
Accelerometers 0.5mA/h Riding (hand) 7 uA/s
Gyroscopes 32mA/h Riding (bag) 9 nA/s
Magnetometers 0.6 mA/h Riding (pocket) 9 uA/s
Microphones 2mA/h Other activities 6 uA/s

difference between the given smartphone and the reference
point, one can decide whether the device is located left or right
of the reference location. In order to acquire this reference point,
the authors introduced the use of a very small sensory device
that can be plugged in a cigarette light adapter which monitors
the centripetal acceleration at the center of the vehicle. While
incorporating the sensory information observed from a vehi-
cle’s turns is interesting, it has two impractical aspects. First, it
requires an additional infrastructure. Besides the cost and effort
to install the additional devices, the system must be robust
when operated as a standalone system. In fact, an infrastruc-
ture-free system is much more scalable and easier to deploy.
Second, it suffers a long detection latency. Since it requires a
number of good turns for 95 percent or higher DS detection rate,
the time lag between staring the vehicle and making those turns
could be very long. The authors also mentioned this latency
problem. The driver’s safety will be greatly improved if the sys-
tem can detect the DS before the actual driving.

Considering the system constraints on scalability and prac-
ticality, Bo et al. [11], [12] share by far the closest objectives
and results with AIDS, detecting DS without any infrastruc-
ture support. The direction of entering a vehicle is identified
by fusing the horizontal plane accelerations and 3-axis rota-
tional vectors monitored with commodity smartphone sen-
sors. Their approach to identifying the vehicle entrance
direction is very intuitive and limited by the fact that the
smartphone must be placed inside a trouser pocket to detect
the body, or a leg, rotations. Moreover, they identify the front
and rear locations of the device carrier by analyzing the sen-
sory information acquired when a vehicle goes over a bump
or pothole on the road. While the DS detection accuracy is
above 90 percent, identifying the front and rear using this
approach suffers the time lag problem since running over a
speed bump or pothole is unlikely to happen when needed.
As mentioned earlier, detecting DS before the actual driving
is important to the safety of the driver by removing the source
of distractions.

While much resources and efforts are continuously being
invested to develop feasible DS detection systems, IT companies
have also noticed the importance of this problem, and started to
make various investments. For example, Apple acquired a pat-
ent in the late spring of 2014 regarding driver owned smart-
phone shutdown methods [6]. This method requires the device
owner to take the snapshot of the surrounding environments to
go through an image processing phase to conclude the user’s
whereabout. The patent also specifies the use of external devices
which transmit specially forged signals toward the driver’s seat
to shut down any smartphone located within the targeted area
to prevent distracted driving.

While each existing study presents interesting and unique
ideas, AIDS is very different from (or even better than) the
existing approaches for the following reasons. First, AIDS
allows users to carry their smartphones freely while [10] and
[12] have a number of impractical constraints on how the
phones are carried. The side detection mechanisms introduced
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in [10] do not work when the smartphone is held in hand while
[12] works only when the phone is placed inside a trouser
pocket. The authors of [12] justified these restrictions by stating
that 57 percent of male users carry their phone in trouser pock-
ets. However, the referred statistics do not represent the
today’s actual use of smartphones since it was published in
2005, which was several years before the advent of smart-
phones. Considering the fact that how to hold/carry a smart-
phone may change during daily routines based on the user’s
need and habits, a driver identification system would be
less practical/useful if it is designed to operate only in a partic-
ular pose.

Second, the features used in AIDS are always present when
the user rides a vehicle before the vehicle leaves its parking
spot. The side detection mechanisms proposed in [10] cannot
always guarantee accurate results when smartphones are not
placed in a jacket pocket. While the authors might assume all
drivers wear their seat belts, the statistics presented by Cen-
ters for Disease Control and Prevention in 2012 show that mil-
lions do not buckle up on every trip [39]. Furthermore, the
driver detection systems introduced in [12], [14] suffer from
indefinite detection delays since we do not know if and when
driving events of interest—running over speed bumps or pot-
holes, turn signal lever manipulation and the number of good
turning movements—will occur. In the worst case, drivers
will not be identified, thus not protecting passengers, pedes-
trians, and vehicles. Even if we assume that these events will
take place at some time while driving, drivers are in danger
for an indefinite period of time until the events are monitored
and analyzed.

Third, AIDS does not need any external assistance. The
authors of [10] proposed a front and rear differentiation mecha-
nism that achieves reasonable results by comparing recorded
audio with other smartphones. On the other hand, [14] requires
additional dedicated hardware to identify the driver. While
employing external assistance may increase the accuracy of
driver identification, it incurs additional costs to purchase,
install, and modify devices, making it unattractive/impractical
to the users and the vehicle manufacturers.

While the above approaches are far from meeting the
AIDS’s design constraints and goals, they indicate the need
for an efficient solution to distracted driving as smartphones
have become a major source of distraction and thus a serious
concern to driving safety.

Most related work focused on detecting and shutting down
DS. While such objectives can be met with pre-installed devi-
ces, such as blocking the message signal transmitter, the
required infrastructure is not available in every vehicle, thus
making the solutions less practical. So, we need to detect
DS by relying only on commodity smartphone sensors. AIDS
meets this important need.

5 CONCLUSION

Can we accurately identify the DS without external support or
unrealistic physical restrictions? AIDS answers this question by
effectively extracting, analyzing, and fusing the heterogeneous
sensory information on commodity smartphones. Our extensive
evaluation of AIDS shows that the TPR and TNR of DS identifi-
cation are 83.3~93.3 and 90.1~91.2 percent, respectively, at the
cost of 5~10 percent reduction of phone battery operation time
in a day. At this modest energy-consumption cost, the safety
of drivers, passengers and vehicles can be achieved with a high
probability by automatically activating necessary distracted
driving prevention services. This energy consumption of AIDS

can be reduced by smart sensor duty cycling, which is part of
our future research.
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