
Maximizing Quality of Aggregation in WSNs
Under Deadline and Interference Constraints

Hamed Yousefi1, Masoud Mehrabi Koushki2, Bahram Alinia3, and Kang G. Shin1
1Department of Electrical Engineering and Computer Science, University of Michigan
2Department of Electrical and Computer Engineering, University of British Columbia

3Department RS2M, Institut Mines-Telecom, Telecom SudParis

Abstract—Maximizing quality of aggregation (QoA) is an
essential requirement for real-time wireless sensor networks
(WSNs) where the participation of all sensor nodes in data
aggregation is hampered by the underlying sink deadline and in-
terference constraints. This problem, however, remains unsolved
under the physical interference model that captures the reality
more accurately than the widely used graph-based models.

In this paper, we formulate an optimization problem of
maximizing QoA under deadline and interference constraints
in commonly seen tree-based WSNs. We prove the problem
to be NP-complete, and then propose a suboptimal scheduling
algorithm which relies on a Markov approximation framework
and modifies the matching graphs in order to handle the
globally-imposed interference constraints. The problem and its
solution are then coupled with successive interference cancellation
(SIC) to improve QoA by increasing the number of concurrent
transmissions. Our evaluation has shown the proposed solution
to be effective under the physical interference model, both with
and without SIC.

I. INTRODUCTION

Data aggregation has been used widely to save energy
by reducing the number of packet transmissions in wireless
sensor networks (WSNs). It is a key, but time-consuming
function in tree-based WSNs, where packets are held for
long enough at intermediate nodes to maximize aggregation
efficiency at the expense of their delivery latency. However,
real-time communications in WSNs are becoming important
in emerging applications, such as target tracking, disaster and
environmental monitoring, health monitoring, and battlefield
surveillance. Obsolete information may be irrelevant and even
harmful to the system monitoring and control, thus making
real-time data aggregation essential.

Limiting the number of concurrent transmissions in the
network to reduce interference is the main culprit for long
aggregation latency at the data sink. Unfortunately, the inter-
ference problem is usually left to the MAC layer, incurring
a significant amount of energy consumption and time latency
for data aggregation. Hence, real-time data aggregation relies
on the TDMA scheduling above the MAC layer to ensure
interference-free transmissions [4], [13], [14], [19]. Most of
the promising results thus far assume graph-based (i.e., hop-
and range-based, and protocol) interference models), where
the interference relationships can be represented by a conflict
graph. However, this is an oversimplification of reality, where
interference among concurrent transmissions are neither local
nor pairwise, but global and additive [10], [13], [14], [21].
Thus, a signal is received successfully depending on the ratio

of the received signal strength to the cumulative interferences
caused by all concurrent transmissions plus ambient noise.
This, known as the Signal-to-Interference-plus-Noise Ratio
(SINR) model or the physical interference model, makes
the previous approaches based on conflict graphs trivial or
inapplicable.

In general, real-time data aggregation classifies the un-
derlying optimization problems in two different categories
according to the specific application needs.
• Minimum Latency Aggregation Scheduling (MLAS):

While all sensor nodes need to report data periodically to the
sink, the fundamental question is how fast information can
be aggregated/gathered from a WSN rooted at the sink of
aggregation [13], [14], [19]. However, some delay-sensitive
applications may not even tolerate the latency obtained under
MLAS. Therefore, a more important problem—as described
next as the main focus of this paper—in the context of real-
time data aggregation is to gather as much information as
possible from the sensors within the maximum tolerable delay
(a.k.a. deadline) of the application. Note that this problem
is fundamentally different from MLAS in both the objective
function and the constraint set, which calls for a new solution
design.
• Deadline-Constrained Aggregation Scheduling: As

an immediate consequence of real-time aggregation in delay-
constrained WSNs, the imposed deadline prevents participa-
tion of all sensor nodes in interference-free data aggregation.
It is therefore important to maximize Quality of Aggregation
(QoA), defined as the number of nodes whose packets have
been accounted for at the sink of aggregation [1], [8]. The
fundamental question is then how to schedule transmissions
(and which nodes to participate) under deadline and interfer-
ence constraints. A few existing related approaches [2], [8],
[9] tackled this problem only under the assumption of the
simplest (i.e., one-hop1) interference model. To the best of
our knowledge, there is no prior work on deadline-constrained
aggregation scheduling problem under the SINR model, which
is much harder due to the global and additive nature of the
interference model. This is an important step forward, from the
simplest to a very accurate interference model, for real-time
data aggregation in WSNs.

1By the definition of the one-hop interference model, it only prevents the
concurrent transmissions of children of the same parent in an aggregation tree.



This paper makes three main contributions:
(1) Maximizing QoA under the SINR model: We develop

a framework that maximizes QoA under deadline and interfer-
ence constraints. The problem is proved to be NP-complete,
and a suboptimal solution for interference-free scheduling
of packets in tree-based WSNs is proposed. We rely on a
recently proposed Markov approximation framework [3] and
modify the matching graphs to resolve the interferences under
SINR while the participating nodes contribute to the optimal
scheduling.

(2) Maximizing QoA under the SIC model: With the
SINR model, a parent in the aggregation tree can successfully
recover the signal from at most one child in each time slot. To
overcome this limitation and improve the QoA by maximizing
the number of concurrent transmissions, our problem is then
coupled with successive interference cancellation (SIC), which
is shown to be practical by experimental studies of WSNs [7].
It breaks the rule of one-time slot-one-sender barrier in each
parent and lets it recover multiple individual signals received
from multiple concurrently transmitting children, referred to
as meta-node. In this new setting, dynamic formation and
resolution of interfering group of concurrent meta-nodes are
the major components of our solution.

(3) Theoretical analysis and experimental evaluation: We
derive theoretical upper bounds on QoA under the SINR and
SIC models. We also conduct several experiments to demon-
strate the performance of our proposed algorithms. Applying
globally-imposed interferences is shown to significantly reduce
the optimal QoA given by [8] under the one-hop interference
model. Moreover, by using multi-packet reception in our SIC
algorithm, the proposed solution not only outperforms the
SINR algorithm by an average of 44% but also exceeds the
performance of [8] under various deadlines and network sizes.

The rest of this paper is organized as follows. Section II
presents the system model and problem definition, and also
studies the theoretical upper bounds on QoA. Our proposed
solutions under SINR and SIC models are detailed in Section
III and IV, respectively. Section V analyzes the complexities
of the solutions. Our evaluation results are presented and
analyzed in Section VI. The related work is summarized
in Section VII. Section VIII discusses the limitations and
extensions of our proposed approaches and finally, Section IX
concludes the paper.

II. PROBLEM FORMULATION

A. System Model

As in the state-of-the-art [2], [8], we model a WSN as a
tree G = (V ∪ {s}, E), where s is the sink node and also the
root of the tree. V is the set of N randomly distributed sensor
nodes and E is the set of inter-communication links. A node
may or may not be a source for a particular event. The system
is time-slotted and the transmission of a packet takes exactly
one time slot.

In a delay-constrained application, data needs to be aggre-
gated at the sink before the imposed deadline of D time slots.

However, an immediate consequence of deadline and interfer-
ence constraints is that all sensor nodes cannot participate in
the aggregation process. For each node i ∈ V , let X[i,Wi]
denote the maximum number of its source successors (i.e., all
the source nodes in its subtree) that can be accounted for at
node i if it is assigned a waiting of Wi ∈ {D − 1, . . . , 1, 0}
time slots for aggregation. Let P(i) and C(i) be the parent and
the set of node i’s children, respectively, and V leaf ⊆ V be the
set of all leaf nodes. Moreover, PATH(i) ⊆ V is the set of
node i and all its predecessors toward the sink of aggregation.
Ti is a binary decision variable such that Ti = 1 if node i is
a source and Ti = 0 otherwise. We define n⃗ = [ni, i ∈ V ],
where ni = 1 if i is a participant (i.e., a source or relay
node selected to participate in data aggregation). Let V src-par ⊆
V be the set of participating sources, formally defined by
V src-par =

{
i ∈ V | Ti = 1 and

∏
j∈PATH(i) nj = 1

}
, where

i is a participating source if Ti = 1 and i as well as its
predecessors participate in the aggregation.

B. Optimization Problem

1) Maximizing QoA under SINR: The cumulative interfer-
ence from all concurrent transmissions is taken into consid-
eration at each receiver. A transmission on link (i, j) ∈ E
is successful if the SINR at the receiver is above a certain
threshold β [5], [6], [14]:

Pi/d
α
ij

N0 +
∑

k∈Ui
Pk/dαkj

≥ β, (1)

where Ui denotes the set of nodes transmitting concurrently
with i, dij is the Euclidean distance between nodes i and j, and
Pi is the transmission power of node i. Note that our problem
does not involve power control, i.e., the nodes’ transmission
power is fixed and given as part of the input. Moreover, N0

is the ambient noise power, α is the path loss ratio which
typically ranges between 2 and 6, and the positive constant
β ≥ 1 is the SINR threshold for a successful transmission.

The objective is to maximize the number of participating
sources (i.e., |V src-par|) subject to deadline and interference
constraints. This problem is formally expressed as:

ZSINR : maximizen⃗,W⃗
∑
i∈V

Ti

∏
j∈PATH(i)

nj . (2)

s.t. Wi < Wj ,∀(i, j) ∈ E, j ∈ {s} ∪ V \V leaf, (3)
Ws = D , Wi ∈ {D − 1, . . . , 1, 0}, ∀i ∈ V, (4)

n⃗ ∈ {0, 1}N , (5)
Pi/d

α
ij

N0 +
∑

k∈Ui
Pk/dαkj

≥ β.ni, ∀(i, j) ∈ E, (6)

where decision variables are n⃗ and W⃗ . Constraint (3) implies
that in a feasible scheduling, no children can transmit before
its parent; instead, a parent is required to wait for data from
its participating children. It is straightforward to interpret
constraints (4–6) based on our definitions. Constraint (6) also
guarantees that no two children of the same parent can transmit



concurrently because it causes interference, i.e., “at least” one
transmission is not received successfully.

2) Maximizing QoA under SIC: When coupled with SIC,
a receiver may recover multiple individual signals received
from multiple concurrently transmitting children. Thus, SIC
changes the definition of a successful transmission in which a
parent can receive more than one packet transmission in the
same time slot. The basic idea is to repeatedly decode the
strongest signal received in a collision and remove it from
the collided (mixed) signal [18]. To this end, an interference
cancellation sequence needs to be identified, such that the
following criterion will be met to cancel the i-th signal [7],
[12]:

Pi/d
α
ij

N0 +
∑

k∈Ui−Ki
Pk/dαkj +

∑
l∈Ki,l≻i Pl/dαlj

≥ β, (7)

where Ki = {l ∈ C(j) | Wl = Wi} denotes the set of node j’s
children transmitting concurrently with node i (we call i∪Ki

concurrent children), and l ≻ i means that transmission of i
is canceled at j before that of l.

Finally, the problem under SIC can be formulated as:

ZSIC : maximizen⃗,W⃗
∑
i∈V

Ti

∏
j∈PATH(i)

nj . (8)

s.t. Constraints (3), (4), (5),

Pi/d
α
ij

N0 +
∑

k∈Ui−Ki
Pk/dαkj +

∑
l∈Ki,l≻i Pl/dαlj

≥ β.ni,

∀(i, j) ∈ E, (9)

where n⃗ and W⃗ are decision variables. Note that with SIC,
an extra decoding delay is incurred to cancel a signal, but we
will ignore this negligible effect ( 3

4096 time units in ZigBee,
which is a common physical layer standard for WSNs [7]) in
our analysis and evaluation.

C. QoA Upper Bound

Theorem 1: For an imposed deadline D, the QoA under
SIC is upper bounded by (M + 1)D − 1, where M is the
maximum number of children concurrently transmitting to the
same parent.2

Proof: Considering the deadline and interference con-
straints, the maximum QoA is attained if all nodes are sources
and scheduling packet transmissions under one-hop interfer-
ence model does not cause any global interference. Thus, in
the best case, at most M concurrent transmissions can be
scheduled in every group of M+1 nodes (M children and their
parent). In a network with n participating nodes, each of which
needs to transmit exactly once, at most n M

M+1 nodes take the
first slot, while n

M+1 nodes remain. This process continues in
slot t (1 ≤ t ≤ D), where at most n M

M+1 (
1

M+1 )
t−1 nodes

are scheduled for transmission and n( 1
M+1 )

t nodes remain.
Finally, after deadline D, only the sink node remains. We

2According to [12], M ≤ ⌊log1+β
PMd−α

N0β
+ 1⌋, where PM is the

maximum transmission power and d is the minimum length of the links in
the aggregation tree.

thus have n( 1
M+1 )

D ≤ 1, which gives n ≤ (M + 1)D. By
removing the sink from the set of participants, the maximum
QoA is bounded by (M + 1)D − 1, proving the theorem.

SINR is a special case of SIC, where no two children of the
same parent can concurrently transmit [12]. Thus, by setting
M to 1 in the SIC bound, the maximum QoA under the SINR
model is equal to 2D-1. This bound has already been proved
in [2] under the one-hop interference model, thus verifying
our general QoA bound under SIC.

Example: Fig. 1 gives an example of a data aggregation tree
where the sink deadline is D = 2 and all nodes are source.
We want to demonstrate the impact of scheduling on QoA.
Fig. 1(a) shows a possible assignment of waits (W2 = 1 and
W3 = 0) which cannot maximize the number of participating
sources in the aggregation. Instead, Fig. 1(b) shows one of
the optimal choices which attains the highest QoA with 3
participating sources (indicated by gray nodes), where nodes
2 and 5 send their packets to separate parents in the first time
slot concurrently (i.e., W2 = W5 = 0); then, in the second
time slot, node 3 aggregates its own packet with that of node
5 and sends the result to the sink.

Fig. 1(c) shows the optimal choice under SIC with M = 2.
For each parent under SIC, its children are partitioned into the
groups of two concurrent children (referred to as meta-nodes
and indicated by dashed ovals in the figure). Finally, under this
optimal scheduling, 8 nodes participate in aggregation, which
shows how using SIC can significantly improve QoA.

Next, we present our solutions for two problems ZSINR and
ZSIC in Sections III and IV, respectively.

III. SINR SOLUTION

The problem is first proved to be NP-complete, and
then a heuristic solution is proposed to provide suboptimal
interference-free scheduling.

Theorem 2: ZSINR is NP-complete.
Proof: We first show that ZSINR is in NP. Given an

aggregation tree with N nodes and assigned waiting times
from the set {0, 1, . . . , D− 1}, one can use the SINR Eq. (1)
to verify whether or not the nodes with equal waiting can
transmit concurrently. As there are less than N transmissions
in each time slot, the verification costs O(N2D).

The minimum latency aggregation scheduling for arbitrary
aggregation trees is studied in [17]. This problem (a.k.a.
MLAT) is a special case of MLAS, where the tree topology is
given a priori instead of first constructing a tree in MLAS. A
polynomial time algorithm is developed in [17] that reduces
the Partition problem—which is known to be NP-hard—
to MLAT (see [17] for a detailed proof of NP-hardness of
MLAT). In the rest of our proof, we show that MLAT can
be reduced to ZSINR in polynomial time, proving that the
reduction from the Partition problem to ZSINR can also be
done in polynomial time.

Consider MLAT for a given aggregation tree GMLAT with N
sensor nodes. Clearly, an upper bound of the minimum latency
in MLAT is N . To reduce MLAT to ZSINR, we construct
the same tree in MLAT (with the same position of nodes)
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QoA = 2; (b) QoA upper bound under SINR, QoA = 3; and (c) QoA upper bound under SIC
with M = 2, QoA = 8
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Fig. 2: Matching Graph

named GZ and set all nodes as source. Let A be an optimal
scheduling for ZSINR, i.e., given an arbitrary tree, A maximizes
the number of participating nodes in data aggregation (i.e.,
QoA) under the sink deadline D and the SINR model. We run
algorithm A on GZ for different deadline values starting from
1 to N until finding the least value of deadline (say Dmin) that
results in the participation of “all” nodes in the aggregation.
Clearly, Dmin is the answer (i.e., minimum latency) for MLAT
in GMLAT, and the scheduling returned by A in GZ is also
the optimal scheduling for MLAT in GMLAT (note that finding
Dmin by running A can be done in O(logN) using binary
search). Therefore, A solved MLAT (and hence, the Partition
problem) in polynomial time which is a contradiction unless
P = NP , thus completing the proof.

Note that although a solution for ZSINR can also solve
the MLAT problem under SINR, the reverse is not true. In
other words, the solutions for MLAT—and generally MLAS—
cannot be employed to solve ZSINR.

General Idea: Our strategy is to derive the solution of
BASIC [8]—which is under the one-hop interference model
and gives an upper bound to our problem—and then resolve
the globally-imposed interferences under the SINR model iter-
atively, on a slot-by-slot basis. In each iteration (corresponding
to a specific time slot), the resolution process yields a new
configuration of participating nodes and their schedules which
are fed as inputs to the next iteration. This implies a complex
dependent scheduling, as described later, for maximizing QoA
in delay-constrained WSNs. Algorithm 1 shows an abstract
view of our solution running in two steps: (1) BASIC, and (2)
Resolution taking the global interference into account.

Algorithm 1: Our Algorithm
Input: Tree G, deadline D
Output: n⃗, W⃗

//BASIC
(n⃗, W⃗ ) = BASIC (G,D)
//Resolution
for i = D − 1, . . . , 0 do

(n⃗, W⃗ ) = Resolution (G, i, n⃗, W⃗ )

A. Solution Details

Before detailing the algorithm, we describe how to construct
a matching graph which is a core part of the solution in both
BASIC and Resolution steps.

Maximum Weighted Matching (MWM): The problem of
finding X[i,Wi] is a maximum weighted matching prob-
lem in a bipartite graph, called matching graph, with two

disjoint sets A and B as shown in Fig. 2. Here, A =
C(i) = {c1, . . . , c|C(i)|} is the set of children of node i
and B = {Wi − 1,Wi − 2, . . . , 0} represents their possible
waiting times. The edge connecting a child node a ∈ A to
a waiting time b ∈ B has a weight X[a, b]—which is the
QoA provided by node a under deadline b. The set of edges
and their weights in the bipartite graph are represented by
M = {(a, b) : a ∈ A, b ∈ B} and X , respectively. In each
parent, MWM assigns the waiting times to its children nodes
such that 1) no two children have the same waiting time, 2)
each child can be allotted at most one waiting time, and 3)
the sum of weights on all selected edges is maximized. More
formally, MWM can be represented as:

MWM(A,B,M, X) : max
matchingO⊂M

∑
(a,b)∈O

X[a, b].

Algorithm 2: BASIC
Input: Tree G, deadline D
Output: n⃗, W⃗
//Bottom-Up Procedure (leaves → root)
for all l ∈ V leaf and Wl = 0, . . . , D − 1 do

X[l,Wl] = Tl

for all i ∈ V \V leaf do
for Wi = 0, . . . , D − 1 do

Find X[i,Wi] by solving
MWM(C(i), {Wi − 1,Wi − 2, . . . , 0},M, X)

Find X[s,D] by solving MWM(C(s), {D − 1, D − 2, . . . , 0},M, X)

//Top-Down Procedure (root → leaves)
for all i ∈ {s} ∪ V \V leaf do

Use the solution of MWM(C(i), {Wi− 1,Wi− 2, . . . , 0},M, X)
to select the participating children and assign them waiting times

1) BASIC: BASIC runs in two phases as shown in Al-
gorithm 2. The first is a bottom-up procedure that calcu-
lates X[i,Wi] for each node i and waiting time Wi ∈
{D − 1, . . . , 1, 0}. Unlike the original BASIC [8] in which
B = {Wi − 1,Wi − 2, . . . ,Wi − min(Wi, |C(i)|)}, we also
include {Wi−|C(i)|+1, . . . , 1, 0} in the matching graph even
if |C(i)| < Wi. This is because the related information is nec-
essary in our resolution approach which modifies the matching
graphs and replaces some wait assignments to improve QoA
(see Section III-A2). After X[i,Wi] is recursively calculated
by solving MWM, the second phase is launched from the sink
towards the leaves. In this top-down procedure, each parent i
uses the MWM solutions to assign its children the final optimal
waiting times under one-hop interference model such that the
maximum number of sources in their corresponding subtrees
can participate in data aggregation.



2) Resolution: The BASIC algorithm outputs a sequence of
transmitter sets S0,S1, . . . ,SD−1 such that data packets are
concurrently transmitted from the nodes in Si after waiting i
time slots. Similarly, each solution S in our problem can be
represented as S = S0 ∪S1 ∪ · · · ∪SD−1. However, the initial
Si may not be a feasible solution under SINR, where globally-
imposed interferences must be taken into consideration. Thus,
as mentioned earlier, we need to develop an interference
resolution algorithm to modify currently assigned waitings and
make interference-free schedules while maximizing QoA.

We employ a top-down approach with D iterations (imple-
mented by a “for” loop in Algorithm 1) starting from D − 1
to 0. At each iteration i, we construct an interference-free
set of concurrent transmitters Ŝi from Si. Therefore, after D
iterations, all participating nodes are identified, resulting in a
new set Ŝ = Ŝ0 ∪ Ŝ1 ∪ · · · ∪ ŜD−1. It is important to note
that (i) final set Ŝi may have no relation to Si, so Ŝi ⊆ Si

does not hold in general, (the process to construct Ŝi will be
described later in this section), and (ii) resolution of Si can
affect Sj , ∀j ≤ i, so n⃗ and W⃗ are updated after resolution
in each time slot. With this dependent scheduling, almost
from the initial rounds, we face entirely different input sets
of transmitters from BASIC initial output sets for resolution in
all time slots.

To achieve a near-optimal solution for this complex prob-
lem, we use the log-sum-exp approximation method. What
follows shows how we apply a recent Markov approximation
framework [3] and modify matching graphs to resolve the
interferences under SINR in each time slot while the partici-
pating nodes contribute towards the optimal scheduling.

Markov Approximation: Markov approximation [3] is a
general technique to approximately solve a wide range of
combinatorial optimization problems. Its idea is to consider
the solution space of the combinatorial problem as state space
of the Markov chain. Then, finding the approximate solution
requires random walks on the Markov chain while assuring a
state with better result (higher QoA in our case) has higher
chance to be visited.

Consider a scheduling problem of ZSINR with a set of
feasible solutions F . Each solution S ∈ F indicates the set
of participants and their waiting times (i.e., the vectors n⃗ and
W⃗ ). Let ΠS denote the obtained QoA when the system relies
on scheduling S. Then, the problem of maximizing QoA has
the same optimal value of the following problem:

Zeq
SINR : max

pS≥0,S∈F

∑
S∈F

pSΠS , s.t.
∑
S∈F

pS = 1 ,

where pS denotes the percentage of time that the system relies
on solution S. This maximization can be approximated by the
log-sum-exp function [3] with a positive constant coefficient
βm (which controls the approximation accuracy) as:

Zβm

SINR : max
pS≥0,S∈F

∑
S∈F

pSΠS − 1

βm

∑
S∈F

pS log pS ,

s.t.
∑
S∈F

pS = 1 .

Thus, we implicitly solve an approximated version of the
main problem, off by an entropy term − 1

βm

∑
S∈F pS log pS .

The optimal value for pS can be obtained by solving KKT
conditions as:

p∗S =
exp (βmΠS)∑

Ŝ∈F exp
(
βmΠŜ

) , S ∈ F . (10)

We remark that the optimality gap is bounded by 1
βm

log |F|
(we refer to [3] for details). The gap is clearly lower for a
higher value of βm, implying a more accurate approximation.
It converges to zero as βm → ∞.

Markov Chain Design: The key step to leverage the Markov
approximation is to design an application-specific Markov
chain with state space being F and stationary distribution p∗S .
This way, we find an exact solution for Zβm

SINR which yields an
approximate solution for the main problem Zeq

SINR.
Each state S of the Markov chain is in the form of

S = S0 ∪ · · · ∪ SD−1. Running the algorithm at time slot
i, a next potential state is Ŝ = S0 ∪ · · · ∪ Ŝi ∪ · · · ∪ SD−1,
where Ŝi is a permutation of Si. In other words, for a set
of nodes concurrently transmitting after waiting i time slots,
each Markov state S corresponds to a possible permutation
of the nodes. Each permutation provides us with an order of
resolving interferences among concurrent transmitters, so it
can change the set of participating nodes in the aggregation
and result in different QoA. Therefore, walking on different
permutations is equal to hopping over different states. Now, by
appropriately setting the transition rates among different states,
the stationary distribution in (10) can be achieved. By the
theoretical framework, and as in [1], [20], we set the transition
rate from S to Ŝ as:

qS,Ŝ =
1

exp (αm)

exp
(
βmΠŜ

)
exp (βmΠS) + exp

(
βmΠŜ

) , (11)

where αm is a positive constant and qŜ,S is defined symmet-
rically. Finally, we need to ensure that the designed Markov
chain has the stationary distribution in (10). According to
[20], the following two conditions are sufficient to achieve this
goal: (a) the state space should be connected and each state
should be reachable (with a sequence of hops) from any other
state, and (b) the detailed balance equation, p⋆SqS,Ŝ = p⋆SqŜ,S ,
is satisfied. In our designed Markov chain, any possible
permutation of nodes is considered to build the next state of the
Markov chain with a non-zero transition probability. Moreover,
it can be verified that using (11), the balance equation is
satisfied. We refer readers to [3] for detailed information on
the Markov approximation.

Resolution Algorithm: Our interference resolution proceeds
in two sequential phases for each time slot i as summarized
in Algorithm 3:

(1) The first phase is a random walk on the Markov chain
starting from an initial state towards those resulting better
QoA. Each time, we temporarily move to a new state Ŝ
and estimate how this change affects QoA in our aggregation
scheduling (Alg. 3, Lines 4 and 5, respectively). We keep new
state with a probability of qS,Ŝ and switch back the previous



Algorithm 3: Resolution in each time slot i
Input: Tree G, Slot i, n⃗, W⃗ , Constant T
Output: n⃗, W⃗
//Phase 1: Random Walk on Markov Chain

1 Si ← {k ϵ V |Wk = i}
2 t = 1
3 repeat
4 Ŝi ← perm(Si) //A Possible Permutation

5 qS,Ŝ = 1
exp(αm)

exp(βmΠŜ(.))

exp(βmΠS(.))+exp(βmΠŜ(.))
//Using Alg.4

6 r = rand(0, 1)
7 if r < qS,Ŝ then
8 S ← Ŝ
9 t = t+ 1

until t ≤ T

//Phase 2: Update (Participants and Waitings)
10 for all j ∈ Si = {i1, i2, . . . , i|Si|} do
11 if matching graph of P(j) is modified in Alg. 4 then
12 Run BASIC on P(j)’s subtree to update its participating

successors and assign their waiting times

Algorithm 4: QoA estimation in each state S and match-
ing graph modification in Si

Input: Tree G, Slot i, State S (including Set Si), n⃗, W⃗
Output: Estimated QoA Q

1 R = {}
2 Q = X[s,D]
3 for all j ∈ Si = {i1, i2, . . . , i|Si|} do
4 R = R ∪ {j}
5 while R is a case of interference do
6 Remove link (j, i) from set M of links in matching graph of

parent P(j)
7 Solve MWM(C(P(j)), {WP(j) − 1, . . . , 1, 0},M, X) and

update Q according to the new wait assignments
8 R = R \ {j}
9 if another child k ∈ C(P(j)) takes slot i then

10 R = R ∪ {k}
11 j = k

state S with a probability of 1 − qS,Ŝ (Alg. 3, Lines 6–8).
Calculating the transition rates between two states requires
obtaining their providing QoA while assuring an interference-
free schedule. This is achieved by modifying the matching
graphs of parents of interfering transmitters and estimating
the resulting QoA after modification as described below and
also shown in Algorithm 4.

Let i be the current slot in Algorithm 3. In each Markov
state, we start with an empty set and add the transmitters one
by one according to their priorities (i.e., underlying sequence
of nodes in the permutation) subject to SINR. We also try
to replace an interfering transmitter with a non-interfering
child of the same parent. To achieve this goal, we remove
link (j, i) from set M of links in matching graph of parent
P(j) if node j’s transmission causes interference (Alg. 4,
Line 6). Based on the modified matching graph, which no
longer supports perfect matching shown in Fig. 2, we run
MWM for P(j) and see if another child k can take waiting
i for transmission (Alg. 4, Lines 7–11). We again remove
link (k, i) in case of interference, and continue this process

(referred to as replacement search) until one (or no) child
can successfully take slot i (this child, if any, will be added
to the new set of transmitters (Alg. 4, Line 10)). It is worth
noting that running MWM on the modified matching graphs
in slot i may only affect the assignment of lower slots, i.e.,
slot l, ∀l ≤ i (not the higher ones already assigned to
the nodes providing higher QoAs). This ensures a loop-free
solution. Algorithm 4 ends after finding the maximum number
of possible concurrent transmissions according to the nodes
priorities. The QoA associated with each state is estimated
based on new local wait assignments and the way they affect
the number of participating source successors. The following
example clarifies how we resolve interference in a state while
modifying a matching graph.

Fig. 3(a) shows part of an example aggregation tree in-
cluding concurrent transmitters after waiting 2 time slots
under one-hop interference model. Considering the global
interference under SINR, this scheduling is no longer a
feasible solution to the problem. To resolve interferences,
let {b1, a1, c3} be the current permutation in the underlying
Markov chain. This permutation calls for consideration of a
sequence of nodes, according to which child c3 cannot transmit
along with {b1, a1}. Using only the Markov framework yields
a set S2 = {b1, a1}, where no more nodes take waiting
2 time slots. However, we try not only to find the best
permutation, but also to fully utilize each waiting time by
running a replacement search in the parents of the interfering
transmitters, thus maximizing QoA. Then, to check for best
possible replacement of c3, we simply remove link (2, c3)
from the matching graph of parent C as shown in Fig. 3(b),
where running MWM in the new setting assigns W = 2 to
c1 as a feasible solution for the problem. Finally, as shown in
Fig. 3(c), S2 = {b1, a1, c1} forms the new set of concurrent
transmitters. We can then estimate QoA according to the new
local updates (exchanging waiting in c3 with c1) in the current
state in the underlying Markov chain.

(2) The second phase (Alg. 3, Lines 10–12) is launched after
T rounds, in which the final permutation (say Si) is determined
and the matching graphs are accordingly modified to remove
interferences and possibly add the replacements. Here, each
parent P(j) : ∀ j ∈ Si with a modified matching graph needs
to run the BASIC algorithm on its subtree to update the waiting
times of its participating successors. Note that this procedure
in slot i does not affect schedules in higher time slots l > i,
which ensures a loop-free resolution.

Theorem 3: Algorithm 1 provides an interference-free
scheduling for ZSINR.

Proof: Consider a scheduling problem with the sink
deadline D. The output of Algorithm 1 is a sequence of
sets S0,S2, . . . ,SD−1, where Si identifies the set of nodes
concurrently transmitting after waiting i. Due to transmissions
in different time slots, no transmitter in Si interferes with
one in Sj , i ̸= j. Therefore, it is sufficient to show that
transmissions associated with a set Si are interfere-free. In our
solution, each Si is constructed by Algorithm 4, which adds
the nodes to set Si (denoted by temporary variable R) one by
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one (Alg. 4, Line 4) then checks whether or not the added
node causes interference. In case of interference, the added
node is removed and the algorithm tries to find an alternative
one. Therefore, Si cannot contain the interfering nodes, and
hence, the final solution is interference-free.

IV. SIC SOLUTION

As mentioned earlier, SIC is a subcategory of multi-packet
reception techniques. Thus, for each parent, we partition its
children into a few groups of concurrent transmitters—called
meta-nodes as shown in Fig. 1. By reloading and visualizing
a higher-level hierarchy (in an overlay view), our problem
becomes the scheduling of meta-nodes. In the new setting,
we extend our solution under SINR to wait assignment and
interference resolution of meta-nodes. Note, however, that to
maximize the utilization of transmission capacity in each slot
during a random walk on the Markov chain, a parent may
regroup the set of its children if an interfering meta-node can
partially succeed in concurrent transmissions.

Different grouping strategies for construction of meta-nodes
can be employed, although it is beyond the scope of this paper.
Here, for simplicity, we use an ID-based grouping, where we
sort and partition the children of a parent in a descending order
of their IDs while satisfying the SIC constraint in (7). After
grouping the nodes, like in the SINR solution, the heuristic is
executed in two steps: (1) running BASIC on a tree of meta-
nodes, where the weight X[m,Wm] in matching graph of a
meta-node m is given by the sum of QoA of its nodes under
delay constraint Wm, and (2) resolving the globally-imposed
interferences using a random walk on a Markov chain—in
which each state corresponds to a possible permutation of
the interfering meta-nodes—and matching graph modification,
on a slot-by-slot basis. However, as mentioned earlier, we
do not remove the link between an interfering meta-node
and current slot in its associated matching graph if it can
partly succeed in concurrently transmitting its data. Instead,
we launch regrouping in which the nodes (in an ascending
order of their IDs) are removed from the interfering meta-
node until an interference-free solution is found. Then, the
removed nodes are pushed into the other non-scheduled meta-
nodes of the same parent as much as possible while the
remaining ones make a new group (meta-node). Finally, after
interference resolution in each slot, we run BASIC on the

subtree of each parent with a modified matching graph to
update its participating successors and their waiting times.

To give an example, without loss of generality, assume
that c1, c2, and c3 are three possible meta-nodes scheduled
by BASIC without consideration of global interference and
{b1, c3} is the current permutation of meta-nodes in the
underlying Markov state. Here, transmission of c3 along with
set {b1} is a case of interference under SIC model. To fully
utilize waiting 2, Fig. 4 shows how participants of c3 (see
gray nodes in the figure) starts to leave this meta-node, one
by one, in ascending order of their IDs until an interference-
free solution in c3 is obtained. As evident form the figure,
the removed nodes are partly pushed to already existing (c1)
and new (c0) meta-nodes, while those already scheduled meta-
nodes (c2) are left untouched.

V. COMPLEXITY ANALYSIS OF ALGORITHMS

In this section, we analyze the complexity of our proposed
SINR and SIC algorithms. Let h be the height of the ag-
gregation tree, D the deadline imposed by the sink, N the
total number of sensor nodes, and T the number of rounds
walking on the Markov chain. L is the maximum number
of concurrent transmitters in each permutation (note that, in
practice, L << N ) and the in-degree of each node in the tree
is bounded by k. Moreover, k′ < k and L′ < L are the degree
of tree of meta-nodes and the maximum number of concurrent
meta-nodes in each permutation, respectively.

Theorem 4: The complexities of our SINR and SIC
algorithms are O(DTLk(hk2(D + k) log k + L2)) and
O(DTL′k′(hk′2(D + k′) log k′ + L′2k′4)), respectively.

Proof: For SINR, let A and B be the cost of Algorithm
4 and BASIC, respectively. Each iteration of “for” loop (with
total D iterations) in Algorithm 1 includes T rounds of Markov
process in Algorithm 3. Therefore, the total complexity of
Algorithm 1 can be written as O(B + D(TA + B)) =
O(D(TA + B)). In Algorithm 4 and each iteration of the
“while” loop, we need to check the feasibility of set of
concurrent transmitters R and if the check fails, we require
to solve an MWM problem. Solving an MWM problem in
a bipartite graph is also a part of the BASIC algorithm and
therefore in the worst case is of O(B). Thus, Algorithm 1 is
of O(DTA) time complexity. Since |R| ∈ O(L), the cost
of checking is O(L2). Moreover, the “while” loop iterates
at most k rounds. Therefore, we get the cost of the loop as



O(k(B + L2)). By multiplying at the number of iterations
of the “for” loop (which is L), we obtain the total cost of
Algorithm 4 as O(Lk(B+L2)). Finally, as B (cost of BASIC)
is O(hk2(D+ k) log k) [8], the total cost of Algorithm 1 can
be expressed as O(DTLk(hk2(D + k) log k + L2)).

For SIC, before running BASIC, the initial step is the
group formation. Here, the children of each parent in the
tree are sorted in O(k log k) and then partitioned to meta-
nodes under SIC in O(k2). However, the group formation
complexity is dominated by those of the other phases. Thus,
we still follow the same order of complexity as the SINR
solution, i.e., O(DTA), but with a different complexity for
A. Actually, O(Lk(B + L2)) in SINR is here replaced by
O(L′k′(B+(k′+k′2)(L′k′)2)), where term (k′+k′2)(L′k′)2

is the cost of interference checking and resolution while also
regrouping the meta-nodes to maximize the utilization of trans-
mission capacity. Finally, the total cost of Algorithm 1 under
SIC can be expressed as O(DTL′k′(hk′2(D+k′) log k′+(k′+
k′2)(L′k′)2)) = O(DTL′k′(hk′2(D+k′) log k′+L′2k′4)).

VI. EVALUATION

In this section, we evaluate the performance of different
scheduling algorithms in a random tree-based WSN of N
sensor nodes uniformly deployed in a 100m × 100m region.
The sink is located at the top-center of the region and must
meet a deadline of D = 2, 5, 10, 15 time slots for data
aggregation. We let all nodes serve as sources to provide a
better understanding of QoA, i.e., the number of participating
sources in data aggregation. Using the same setting in [14], we
consider a physical interference (SINR) model with ambient
noise power N0 = 0.1, path loss exponent α = 2.5, SINR
threshold β = 1, and identical transmission power of P = 15
for network nodes. Moreover, as in [1], we let αm = 0.2
and βm = 2 in the Markov approximation framework and
report the results after T = 200 rounds. Due to the space
limit, we omit the detailed results on how the above SINR
and Markov parameters affect the number of transmissions.
Instead, our objective is to show how the underlying deadline
and interference constraints hinder participation of all nodes
in data aggregation for different algorithms. Each data point
of the figures corresponds to the average of 50 runs with
different random topologies. The following four algorithms
are compared in terms of their QoA under various deadlines
and network sizes.

• BASIC [8] provides the optimal solution and maximizes
QoA under the one-hop interference model. This result
gives an upper bound of our solution under SINR.

• SINR is our proposed algorithm that maximizes QoA
under the SINR model.

• SINR-Simple is our SINR algorithm, but without the
replacement search phase, thus under-utilizing the power
of our solution approach.

• SIC is our proposed algorithm that maximizes QoA under
the SIC model.

We first study the effect of deadline on QoA. Fig. 5 shows
how QoA improves as the deadline increases. That is, by in-

creasing the sink deadline, more source nodes will have the op-
portunity to participate in the aggregation process. As evident
from the figure, applying globally-imposed interferences can
significantly decrease QoA under the SINR model compared
to the one-hop interference model. However, by using multi-
packet reception in our SIC algorithm, we not only outperform
the SINR algorithm on average by 44% but also go over the
performance of BASIC. Moreover, the figure demonstrates how
using the replacement search policy and careful modification
of matching graphs in our algorithm can improve QoA. In
sparser networks, SINR outperforms SINR-Simple significantly,
e.g., by an average of 31% in a network of 50 sensor nodes as
shown in Fig. 5(a). However, as density increases, the results
show a smaller difference between SINR and SINR-Simple.
The reason is that extra interferences incurred by the new
replacing transmitters reduce the opportunity of concurrent
transmissions in other participants. This is an interesting result
in terms of scalability, meaning that we can remove the
replacement search phase in high density networks and still
achieve the maximum QoA while running a lower complexity
algorithm.

Moreover, Fig. 5 shows the effect of network size
(N = 50, 100, 150) on QoA. As shown in the figure,
increasing network density can improve QoA. However, the
ratio of participation of nodes is observed to decrease (from
almost all nodes in N = 50 to half of nodes in N = 150)
while network density grows. The reason is that interference
limits the number of concurrent transmissions in the network.
Hence, increasing density alone would not always benefit the
QoA in WSNs.

VII. RELATED WORK

The choice of the interference model is of fundamental sig-
nificance to any study of wireless networks. Although a graph-
based (i.e., hop- and range-based, and protocol) interference
model provides a useful abstraction, it is an oversimplifica-
tion of the physical reality. Instead, the physical interference
(a.k.a. SINR) model represents the real interference behavior
more accurately, since the success of a packet reception
depends on all concurrently scheduled transmissions in the
network [6], [21]. The choice is much more challenging when
dealing with real-time data aggregation classified into the two
main categories in WSNs (i) minimum latency aggregation
scheduling (MLAS), and (ii) deadline-constrained aggregation
scheduling. The first category has already been studied exten-
sively under different interference models [13], [14], [19]. The
current study focuses on the second category, where the basic
question is how much information can be aggregated from a
deadline-constrained WSN. As mentioned earlier, no solution
for MLAS can be employed to solve this problem.

Hariharan and Shroff [8] first introduced this problem
and presented an optimal solution that involves a localized
maximum weighted matching problem at each hop. In [9],
this problem was extended to tree-based WSNs with unreliable
links, shown to be NP-hard in the strong sense, and solved
using a dynamic programming framework. Considering the
effect of data redundancy due to spatial correlation, Alinia
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et al. [2] extended the problem to consider both the number
of source participants and their spatial dispersion as the
underlying merit factors for maximizing QoA. However, all
above studies solve the problem under the simplest (i.e.,
one-hop) interference model, because the inclusion of global
interferences—as done in this paper—substantially increases
the difficulty of the problem.

VIII. DISCUSSION AND FUTURE DIRECTION

QoA definition: We defined QoA as the number of source
nodes whose data have been accounted for at the sink within an
imposed deadline [8]. However, our optimization framework
is general enough to consider QoA in a number of different
ways by modifying X[., .] in our formulation. Maximizing
the total priority of packets if each source node is assigned
a priority, maximizing aggregation accuracy if each source’s
observation is associated with a particular confidence index,
and maximizing both the number of participating sources and
their spatial dispersion are examples we can study in future.

Distributed implementation: The current study relies on
centralized interference management. Although our approach
makes an important contribution by maximizing QoA under
SINR/SIC constraints and is promising under emerging archi-
tectures like SDN-based WSNs [11], [15], [16], in future we
would like to develop a fully distributed solution which is
more practical for “large-scale” WSN deployments.

IX. CONCLUSION

To the best of our knowledge, this is the first to ad-
dress the problem of interference-free scheduling under the
physical interference (SINR) model for maximizing quality
of aggregation (QoA) in deadline-constrained WSNs. The
formulated problem was first proved to be NP-complete. We
then proposed a suboptimal scheduling algorithm which uses
a Markov approximation framework and modifies matching
graphs to handle the globally-imposed interferences. The
problem (and solution) was then coupled with successive
interference cancellation (SIC) to improve QoA. We also
derived the theoretical upper bounds on QoA under the SINR
and SIC models. Finally, our evaluation results demonstrated
the effectiveness of the proposed scheduling approaches.
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