
SUPPLEMENT OF “CLOSING THE GAP BETWEEN
STABILITY AND SCHEDULABILITY: A NEW TASK

MODEL FOR CYBER-PHYSICAL SYSTEMS”

Hoon Sung Chwa1, Kang G. Shin1, and Jinkyu Lee2

1Electrical Engineering and Computer Science, The University of Michigan, Ann

Arbor, Michigan, U.S.A.

2Department of Computer Science and Engineering, Sungkyunkwan University

(SKKU), Republic of Korea.

APPENDIX

A. The dynamics of a physical plant and stability analysis

In feedback control, the control task samples the state of
the plant, computes a control input, and applies it to the plant;
this entire process is repeated periodically. Then, the dynamics
of a physical plant under such feedback control is described
as

x(k + 1) = Ax(k) +Bu(k) (6)
y(k) = Cx(k) (7)

where x is a vector of state variables, u is the control input,
y is the control output. For sampling period T , the coefficient
matrices A, B, and C describe the evolution of the state in
[tk, tk+1) where tk+1 = tk + T , and it is defined as

A = eAcT , B =

∫ T

0

eAcsdsBc, C = Cc (8)

where Ac, Bc, and Cc are the corresponding coefficient
matrices of the continuous-time model [2]. For simplicity, we
assume that the update is made at every sampling instant. The
state representation for a situation where the update is applied
as soon as the control signal is computed can be found in [2].
Note that our proposed task model and scheduling techniques
can be applied to both cases.

Incorporating control update misses into the plant dynam-
ics, let us consider two cases. If the control signal is computed
within [tk, tk+1), it is updated at time tk+1 (see Fig. 7). On
the other hand, if the computation of the control signal is
not completed by tk+1, the controller uses the last updated
control signal, and this input is kept constant until the next
control update according to zero-order hold. Let m(k) − 1
denote the number of consecutive control update misses at tk
where m(k) ∈ {1, 2, 3, ..}. Then, the evolution of m(k) can
be formulated as

m(k + 1) =

1, if a control signal is updated

during [tk, tk+1]

m(k) + 1, otherwise.
(9)

With control update misses, the dynamics presented in Eq.
(6) is changed to

x(k + 1) = Ax(k) +Bu(k −m(k)). (10)

Note that the plant dynamics depends on both sampling period
and deadline misses. In order to maintain plant stability, the
control task generates a state feedback control signal, that is,
u(k) = −Kx(k), where K is the state feedback gain matrix.

𝑇

Sample
state 1

X X

Update
miss

Update
miss

Update
Input 3

state 2 state 3 state 4 state 5 state 6 state 7

X X

Update
miss

Update
miss

Update
Input 6

𝑡𝑘 𝑡𝑘+1

(a) Control task with period T, the number of consecutive misses 2

3𝑇

state 1

Update
Input 1

state 4 state 7

Update
Input 4

𝑡𝑘 𝑡𝑘+1

(b) Control task with period 3T, the number of consecutive misses 0

Fig. 7. Examples of periodic control task behavior with control update misses

For stability analysis, we need to consider the worst-
case situation where the control inputs are not updated for
N consecutive sampling intervals, where N is the maximum
value of m(k). Let the control input have been updated at tk.
Then, we define the augmented state vector for the N sampling
intervals as X(k) = [x(k), x(k−1), ..., x(k−N)]T. Then, Eq.
(10) can be written as

X(k + 1) = Am(k)X(k) (11)

where

Am(k) =

A −δ1BK −δ2BK . . . −δNBK
I 0 0 . . . 0
0 I 0 . . . 0
...

...
...

...
0 . . . 0 I 0

 (12)

Here, δi denotes the indicator function such that

δi =

{
0, m(k) 6= i

1, m(k) = i.
(13)

The state equations under the worst-case situation become

X(k + 1) = A1X(k)

X(k + 2) = A2X(k + 1)

= A2A1X(k)

...

X(k +N) =

N∏
i=1

AiX(k)

, GX(k). (14)

Then, we can use the following well-known stability anal-
ysis [2].

Lemma 5 ([2]): A discrete-time linear time-invariant sys-
tem is asymptotically stable if and only if all eigenvalues of
the corresponding system matrix G are strictly inside the unit
circle in the complex plane.

The control performance of a physical plant can be ex-
pressed by a standard quadratic performance index [31]:

J =

N∑
k=0

1

T

∫ (k+1)T

kT

y(t)2dt. (15)

Substituting the control output y(t) in Eq. (15) by expressions
in Eqs. (7), (10), and (11), we obtain:

J =

N∑
k=0

1

T

∫ (k+1)T

kT

y(t)2dt

=

N∑
k=0

1

T

∫ (k+1)T

kT

(CAm(t)X(t))2dt. (16)

B. State-space representation of a case study

This subsection describes the state-space model for each physical
plant considered in our case study.

Adaptive cruise control system. The continuous-time state-space
model for the adaptive cruise control system [27] is presented as

ẋ(t) = Acx(t) +Bcu(t) (17)

where x(t) = [δ ∆v a]T, δ is the spacing error, ∆v is the
relative velocity between vehicles, a is the acceleration, and

Ac =

0 1 −0.7
0 0 −1
0 0 4

 Bc =

00
4

 . (18)

We set the state feedback gain K as K = −[−15.2 4.4 1.6].
Then, the continuous time model is discretized with sampling
period T according to Eq. (6). For a given number of maximum
consecutive update misses, we can calculate Eq. (14) and then
apply for the stability analysis presented in Lemma 5.

Lane keeping control system. The continuous-time state-
space model for the lane keeping control system [28] is
presented as

ẋ(t) = Acx(t) +Bcu(t) + FΨ̇des (19)

where x(t) = [e1 ė1 e2 ė2]T, e1 is the position error, e2 is the
yaw angle error, and

Ac =

0 1 0 0
0 −7.7585 116.3777 0.8709
0 0 0 1
0 0.4571 −6.8558 −7.0941

 Bc =

 0
69.9628

0
35.2093

 .
(20)

We assume the vehicle is traveling on a straight road, and then
the desired yaw rate Ψ̇des is zero. We set the state feedback
gain K as K = −[0.9258 0.1695 0.0015 0.0454]. Similarly to
the adaptive cruise control system, we can derive a discrete-
time model and apply for the stability analysis.

DC-servo control system. The continuous-time state-space
model for the DC-servo control system [29] is presented as

ẋ(t) = Acx(t) +Bcu(t) (21)

where x(t) = [v p]T, v is the angular velocity, p is the angular
position of the servo, and

Ac =

[
−0.12 0

1 0

]
Bc =

[
22.5
0

]
. (22)

We set the state feedback gain K as K = −[0.2391 1.156].
Similarly to the adaptive cruise control system, we can derive
a discrete-time model and apply for the stability analysis.

C. Proof of Lemma 3

Lemma 3: Suppose Jqj satisfies the following condition at
time t. Then, Jqj are schedulable under fixed-priority schedul-
ing unless any non-critical job is added to Qr after t.

max
(∑
τk∈hp(j)

Ck(t)− (rj(t)− t), 0
)

+
∑

τk∈hp(j)

WCk(max(rj(t) + Tj − rk(t), 0)) + Cj ≤ Tj . (5)

Proof: We will prove that the execution of Jqj will be
completed within its scheduling window if Inequality (5) holds.
By definition, the release time of Jqj is rj(t), and its scheduling
window is [rj(t), rj(t) + Tj). The first term of the left-hand
side (LHS) of Inequality (5) describes an upper-bound of
leftover execution of higher-priority active jobs in Qr(t)∪{Jci }
at time rj(t). The second term of the LHS of Inequality (5)
describes an upper-bound of the execution of critical jobs of τk
in [rk(t), rj(t) + Tj) as shown in Fig. 4(b). There exist three
cases: (a) rk(t) ≤ rj(t), (b) rj(t) < rk(t) < rj(t) + Tj , (c)
otherwise. In case (a), we consider that the job of τk released
before rj(t) is fully executed in [rk(t), rj(t) + Tj), which is
pessimistic but safe. In case (b), no critical job of τk release
after t is executed in [rj(t), rk(t)). In case (c), no critical job
of τk release after t is executed in [rj(t), rj(t) + Tj). This
implies that Jqj will finish its execution within its scheduling
window if Inequality (5) holds, which proves the lemma.

D. Hard real-time task set generation

We generate 91 hard real-time task sets while varying their
total utilization of tasks from 0.1 to 1.0 with an incremental
step of 0.1, resulting in 910 task sets. Given the total utilization
(Uh) for a hard real-time task set, the number of tasks is uni-
formly chosen in [4, 10], and each task is generated as follows.
The utilization Ui of each task τi is randomly generated such
that

∑
Ui = Uh. The period and deadline of τi (Ti = Di) are

uniformly chosen in [10, 1000], and the worst-case execution
time is computed as Ci = UiTi. To generate an integer value
of Ci, we use the floor function and generate a task set whose
total utilization is in [Uh − 0.1, Uh) for a given Uh.

