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Memory disaggregation can expose remote memory across a clus-
ter to local applications. However, existing proposals call for new 
architectures and/or new programming models, making them 

infeasible. We have developed a practical memory disaggregation solution, 
Infiniswap, which is a remote memory paging system for clusters with low-
latency, kernel-bypass networks such as RDMA. Infiniswap opportunisti-
cally harvests and transparently exposes unused memory across the cluster 
to unmodified applications by dividing the swap space of each machine into 
many chunks and distributing them to unused memory of many remote 
machines. For scalability, it leverages the power of many choices to perform 
decentralized memory chunk placements and evictions. Applications using 
Infiniswap receive large performance boosts when their working sets are 
larger than their physical memory allocations. 

Motivation
Modern operating systems (OSes) provide each application with a virtual memory address 
space that is much larger than its physical memory allocation. Whenever an application 
addresses a virtual address whose corresponding virtual page does not reside in the physical 
memory, a page fault is raised. If there is not enough space in the physical memory for that 
virtual page, the virtual memory manager (VMM) may need to page out one or more in-mem-
ory pages to a block device, which is known as the swap space. Subsequently, the VMM brings 
the missing page into the physical memory from the swap space; this is known as paging in.

Performance Degradation from Paging
Due to the limited performance of traditional swap spaces—typically, rotational hard disks—
paging in and out can significantly affect application performance. To illustrate this issue, 
we select four memory-intensive applications: (1) a standard TPC-C benchmark running on 
the VoltDB in-memory database; (2) two Facebook-like workloads running on the Mem-
cached key-value store; (3) the TunkRank algorithm running on PowerGraph with a Twitter 
data set; and (4) GraphX running the PageRank algorithm in Apache Spark using the same 
Twitter data set.

We run each application in its own container with different memory constraints. x% in the 
X-axes of Figure 1 refers to a run inside a container that can hold at most x% of the applica-
tion’s working set in memory, and ×< 100 forces paging in from/out to the machine’s swap 
space.

Figure 1 shows significant, non-linear impact on application performance due to paging. For 
example, a 25% reduction of memory results in a 5.5× and 2.1× throughput loss for VoltDB 
and Memcached, respectively; PowerGraph and GraphX worsen marginally. However, 
another 25% reduction makes VoltDB, Memcached, PowerGraph, and GraphX up to 24×, 17×, 
8×, and 23× worse, respectively. These gigantic performance degradations reflect the poten-
tial benefits that an efficient memory disaggregation system can deliver.
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Characteristics of Memory Imbalance
Memory utilization is imbalanced across machines in a cluster. Although some machines 
are under heavy memory pressure, others in the same cluster can still have unused memory. 
Causes of imbalance include placement and scheduling constraints [3, 4] and resource frag-
mentation during packing [8]. To understand the presence of memory imbalance in clusters 
and corresponding opportunities, we analyzed traces from two production clusters: (1) a 
3000-machine data analytics cluster (Facebook) and (2) a 12,500-machine cluster (Google) 
running a mix of diverse short- and long-running applications. 

Presence of Imbalance. We measured memory utilization imbalance by calculating the 
99th-percentile to the median usage ratio over 10-second intervals (Figure 2). With a perfect 
balance, these values would be 1. However, we found this ratio to be 2.40 in Facebook and 
3.35 in Google more than half the time; meaning, most of the time, more than half of the clus-
ter aggregate memory remains unutilized.

Temporal Variabilities. Although skewed, memory utilizations remained stable over short 
intervals, which is useful for predictable decision-making when selecting remote machines. 
We observed that average memory utilizations of a machine remained stable for smaller 
durations with very high probabilities. For the most unpredictable machine in the Facebook 
cluster, the probabilities that its current memory utilization from any instant will not change 
by more than 10% for the next 10, 20, and 40 seconds were 0.74, 0.58, and 0.42, respectively. 
For Google, the corresponding numbers were 0.97, 0.94, and 0.89, respectively.

The presence of memory imbalance and its temporal variabilities suggest opportunities for 
harvesting unused memory across a cluster by memory disaggregation.

Infiniswap Overview
Infiniswap is a decentralized memory disaggregation solution for clusters with low-latency, 
kernel-bypass networks such as RDMA. The main goal of it is to efficiently expose all of a 
cluster’s memory to user applications. To avoid modifying existing applications or OSes, 
Infiniswap provides remote memory to local applications through the already-existing pag-
ing mechanism.

Infiniswap has two primary components—Infiniswap block device and Infiniswap  daemon—
that are present in every machine and work together without any central coordination 
(Figure 3).

SYSTEMS
Decentralized Memory Disaggregation Over Low-Latency Networks

Kang G. Shin is the Kevin & 
Nancy O’Connor Professor 
of Computer Science in the 
Department of Electrical 
Engineering and Computer 

Science, University of Michigan. His current 
research focuses on QoS-sensitive computing 
and networking as well as on embedded 
real-time and cyber-physical systems. He has 
supervised the completion of 80 PhDs and 
has authored/co-authored more than 900 
technical articles, a textbook, and more than 
30 patents or invention disclosures; he has 
received numerous best paper awards. He was 
a co-founder of a couple of startups and also 
licensed some of his technologies to industry. 
kgshin@umich.edu

Figure 1: For modern in-memory applications, a decrease in the percentage of the working set that fits in memory often results in a disproportionately larger 
loss of performance. This effect is further amplified for tail latencies. All plots show single-machine performance and the median value of five runs. Lower 
is better for the latency-related plots (lines), and the opposite holds for the ones (bars). Note the logarithmic Y-axes in the throughout-related latency/
completion time plots.
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The Infiniswap block device exposes a conventional block device 
I/O interface to the virtual memory manager (VMM), which 
treats it as a fixed-size swap partition. The entire storage space 
of this device is logically partitioned into fixed-size chunks 
(“ChunkSize”). A chunk represents a contiguous region, and it 
is the unit of remote mapping and load balancing in Infiniswap. 
Chunks from the same block device can be mapped to multiple 
remote machines’ memory for load balancing. The VMM stores 
and retrieves data from the Infiniswap block device at page 
granularity. All pages belonging to the same chunk are mapped 
to the same remote machine. On the Infiniswap daemon side, a 
chunk is a physical memory region of ChunkSize that is mapped 
to and used by an Infiniswap block device as remote memory.

Infiniswap consults the status of remote memory mapping to 
handle paging requests. If a chunk is mapped to remote memory, 
Infiniswap synchronously writes a page-out request for that 
chunk to remote memory using RDMA WRITE, while writing it 
asynchronously to the local disk. If it is not mapped, Infiniswap 
synchronously writes the page only to the local disk. For page-in 
requests, Infiniswap reads data from the appropriate source; it 
uses RDMA READ for remote memory. 

The Infiniswap daemon only participates in control plane activi-
ties. It (1) responds to chunk-mapping requests from Infiniswap 
block devices; (2) pre-allocates its local memory when possible 
to minimize time overheads in chunk-mapping initialization; 
and (3) proactively evicts chunks, when necessary, to ensure 
minimal impact on local applications. All control plane commu-
nications take place using RDMA SEND/RECV.

Scalability. Infiniswap leverages the well-known power of 
choices techniques [6, 7] during both chunk placement and 
eviction. The reliance on decentralized techniques makes 
Infiniswap more scalable by avoiding the need for constant coor-
dination, while still achieving low-latency mapping and eviction.

Fault Tolerance. With the decentralized approach, Infiniswap 
does not have a single point of failure. It considers unreach-
ability of remote daemons (e.g., due to machine failures, daemon 
process crashes, etc.) as the primary failure scenario. If a remote 
daemon becomes unreachable, the Infiniswap block device relies 
on the remaining remote memory and the local backup disk. If 
the local disk also fails, Infiniswap provides the same failure 
semantic as of today.

Efficient Memory Disaggregation via Infiniswap 
Block Device
An Infiniswap block device logically divides its entire storage 
space into multiple chunks of fixed size (ChunkSize). Using a 
fixed size throughout the cluster simplifies chunk placement and 
eviction algorithms and their analyses. 

Figure 3: Infiniswap architecture. Each machine loads a block device as a 
kernel module (set as swap device) and runs an Infiniswap daemon. The 
block device divides its storage space into chunks and transparently maps 
them across many machines’ remote memory; paging happens at page 
granularity via RDMA.

Figure 4: Infiniswap block device uses power of two choices to select 
machines with the most available memory. It prefers machines without 
any of its chunks over those that have chunks. In this way, its chunks can 
be distributed across as many machines as possible.

Figure 2: Imbalance in 10s-averaged memory usage in two large produc-
tion clusters at Facebook and Google
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Remote Chunk Placement
Each chunk starts in the unmapped state. Infiniswap monitors 
the paging activity rates of each chunk using an exponentially 
weighted moving average (EWMA). When the paging activ-
ity of an unmapped chunk crosses the HotChunk threshold, 
Infiniswap attempts to map that chunk to a remote machine’s 
memory.

The chunk placement algorithm has the following goals. First, 
it should distribute chunks from the same block device across 
as many remote machines as possible in order to minimize 
the impacts of future evictions from (or failures of) remote 
machines. Second, it attempts to balance memory utilization 
across all the machines to minimize the probability of future 
evictions. Finally, it must be decentralized to provide low-latency 
mapping without central coordination.

Instead of randomly selecting an Infiniswap daemon without 
central coordination, we leverage the power of two choices [6] to 
minimize memory imbalance across machines (Figure 4). First, 
Infiniswap divides all the machines (M) into two sets: those 
that already have any chunk of this block device (Mold) and those 
that do not (Mnew).  Next, it contacts two Infiniswap daemons 
and selects the one with the lowest memory usage. It first selects 
from Mnew and then, if necessary, from Mold. The two-step combi-
nation distributes chunks across many machines while decreas-
ing load imbalance in a decentralized manner. 

Handling Chunk Evictions and Remote Failures
Upon receiving an eviction message from the Infiniswap dae-
mon, the Infiniswap block device marks the chunk as unmapped. 
All future requests of the unmapped chunk will go to disk. The 
Infiniswap block device cannot send the eviction response back 
to the Infiniswap daemon until all the in-flight requests of that 
chunk are completed. The workflow of handling remote failures 

is similar to that of chunk eviction: mark the affected chunk(s) 
as unmapped, and forward future requests to disk.

Transparent Remote Memory Reclamation via 
Infiniswap Daemon
The core functionality of each Infiniswap daemon is to claim 
memory on behalf of remote block devices as well as reclaiming 
them on behalf of the applications on its host.

Memory Management
The Infiniswap daemon periodically monitors the total memory 
usage of everything else running on its host. In order to be 
transparent to applications on the same machine, it focuses 
on maintaining a “HeadRoom” amount of free memory in the 
machine by controlling its own total memory allocation. The 
optimal value of “HeadRoom” should be dynamically determined 
based on the amount of memory and the applications running in 
each machine. Our current implementation does not include this 
optimization and uses 8-GB “HeadRoom” by default on 64-GB 
machines.

When the amount of free memory grows above “HeadRoom,” 
the Infiniswap daemon proactively allocates chunks of size 
ChunkSize and marks them as unmapped. Proactive alloca-
tion of chunks makes the initialization process faster when 
an Infiniswap block device attempts to map to that chunk; the 
chunk is marked mapped at that point.

When free memory shrinks below “HeadRoom,” the Infiniswap 
daemon proactively releases chunks in two stages. It starts 
by releasing unmapped chunks. Then, if necessary, it evicts E 
mapped chunks.

Decentralized Chunk Eviction
To minimize the performance impact on the Infiniswap block 
devices that are remotely mapped, the Infiniswap daemon 
should select the least-active mapped chunks for eviction. 
The key challenge arises from the one-sided RDMA (READ/

WRITE) operations used in the data plane of Infiniswap. While 
this avoids CPU involvements, it also prevents the Infiniswap 

Figure 5: The Infiniswap daemon periodically monitors available free 
memory to pre-allocate chunks and to perform fast evictions. Each ma-
chine runs one daemon.

Figure 6: The Infiniswap daemon employs batch eviction (i.e., contact-
ing E´ more chunks to evict E chunks) for fast eviction of E lightly active 
chunks.
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 daemon from gathering any paging activities of the mapped 
chunks without first communicating with the corresponding 
block devices.

Consider a scenario where a daemon needs to release E mapped 
chunks. At one extreme, the solution is to collect global knowl-
edge by contacting all related block devices to determine the 
least-used E chunks. This is prohibitive when E is significantly 
smaller than the total number of mapped chunks. Having a 
centralized controller would not have helped either, because this 
would require all Infiniswap block devices to frequently report 
their chunk activities.

At the other extreme, one can randomly pick one chunk at a time 
without any communication. However, in this case, the likeli-
hood of evicting a busy chunk is very high. Consider a parameter 
pb ∈ [0, 1], and assume that a chunk is busy (i.e., it is experienc-
ing paging activities beyond a fixed threshold) with probability 
pb. The probability of finding E lightly active chunks would be (1 
− pb !)E. As the cluster becomes busier (pb increases), this probabil-
ity plummets (Figure 7).

Batch Eviction. Instead of randomly evicting chunks without 
any communication, we perform bounded communication to 
leverage generalized power of choices [7].

For E chunks to evict, the Infiniswap daemon considers E + E’ 
chunks, where E’ ≤ E. Upon communicating with the Infiniswap 
block devices of those E + E’ chunks, it evicts E least-active ones. 
The probability of finding E lightly active chunks in this case is 

Figure 7 plots the effectiveness of batch eviction for different 
values of E’ for E = 10. Even for moderate cluster load, the prob-
ability of evicting lightly active chunks is significantly higher 
using batch eviction.

Implementation
We have implemented Infiniswap as a loadable kernel module 
for Linux 3.13.0 and beyond in about 3500 lines of C code. Our 
block device implementation is based on nbdX [1], a network 
block device over Accelio framework, developed by Mellanox. 
Infiniswap daemons are implemented and run as userspace pro-
grams. More implementation details can be found in our NSDI 
paper [5].

Evaluation
We evaluated Infiniswap on a 32-machine, 56 Gbps Infiniband 
cluster on CloudLab [2] and highlight two key results as follows:

• In comparison to traditional swap spaces such as rotational 
disks, Infiniswap improves throughputs of unmodified VoltDB, 
Memcached, PowerGraph, GraphX, and Apache Spark from 4× 
to up to 15.4× and tail latencies by up to 61×.

• Infiniswap benefits hold in a distributed setting. It increases 
cluster memory utilization by 1.47× using a small amount of 
network bandwidth.

The rest of this section describes how Infiniswap performs in a 
cluster with many applications. Details about our experimental 
setup, workload configurations, and more evaluation results can 
be found in our NSDI paper [5].

Cluster-Wide Performance
Methodology
We used the same application-workload combinations in Figure 
1 to create about 90 containers. Each combination has an equal 
number of containers. About 50% of them had no memory 
constraint, close to 30% used the 75% memory constraint, and 
the rest used the 50% memory constraint. They were placed 
randomly across 32 machines to create a memory imbalance 
scenario similar to those shown in Figure 2. 

Figure 7: Analytical eviction performance for evicting E(= 10) chunks 
for varying values of E .́ Random refers to evicting E chunks one by one 
uniformly randomly.

Figure 8: Using Infiniswap, memory utilization increases and memory 
imbalance decreases significantly. Error bars show the maximum and the 
minimum utilization across machines.
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Cluster Memory Utilization
Infiniswap improves total cluster memory utilization by 1.47× 
by increasing it to 60% on average from 40.8% (Figure 8). 
Moreover, Infiniswap significantly decreases memory imbal-
ance: the maximum-to-median utilization ratio decreased from 
2.36× to 1.60×, and the maximum-to-minimum utilization ratio 
decreased from 22.5× to 2.7×. 

Application-Level Performance
We observe that Infiniswap holds its benefits in the presence 
of cluster dynamics of many applications (Figure 9). Although 
improvements are sometimes lower than those observed in con-
trolled single-instance scenarios [5], Infiniswap still provides 
3×–6× improvements over disk for the 50% memory constraint.

Ongoing Efforts
We are actively extending Infiniswap in two directions:

Fault Tolerance
Infiniswap can tolerate the failures of remote machines with its 
backup disk. However, backing up data on hard disk becomes the 
performance bottleneck of the entire system when many swap 
bursts come together. We are considering trying to achieve the 
fault tolerance feature by distributing data to multiple remote 
machines using erasure coding.

Performance Isolation 
Infiniswap provides remote memory to all the applications 
running on the machine. As such, it cannot distinguish between 
pages from specific applications. Swap requests originating from 
different applications share the same resources in Infiniswap, 
such as dispatch buffers in Infiniswap and cache on RDMA 
NICs. Consequently, Infiniswap cannot guarantee performance 
isolation among multiple applications on the same host.

Conclusion
Infiniswap is a pragmatic solution for memory disaggregation 
without requiring any modifications to applications, OSes, or 
hardware. It bypasses CPU through one-sided RDMA operations 
in the data plane for performance, and it uses scalable, decen-
tralized remote memory placement and eviction schemes in the 
control plane for fault tolerance and scalability. We have demon-
strated Infiniswap’s advantages in substantially improving the 
performance of multiple popular memory-intensive applications. 
Infiniswap also increases the overall memory utilization of a 
cluster, and its benefits hold at scale.

The source code of Infiniswap and more information are avail-
able at https://infiniswap.github.io/infiniswap/.

Acknowledgments
Special thanks go to the entire CloudLab team—especially 
Robert Ricci, Leigh Stoller, and Gary Wong—for pooling together 
enough resources to make Infiniswap experiments possible. We 
would also like to thank the anonymous reviewers and our shep-
herd, Mike Dahlin, for their insightful comments and feedback 
that helped improve the paper. This work was supported in part 
by National Science Foundation grants CCF-1629397, CNS-
1563095, CNS-1617773, by the ONR grant N00014-15-1-2163, 
and by an Intel grant on low-latency storage systems.

Figure 9: Median completion times of containers for different configurations in the cluster experiment. Infiniswap’s benefits translate well to a larger scale 
in the presence of high application concurrency.
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