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ABSTRACT
Insu�cient support of electric current sensing on commodity mo-
bile devices leads to inaccurate estimation of their ba�ery’s state-
of-health (SoH), which, in turn, shuts them o� unexpectedly and
accelerates their ba�ery fading. In this paper, we design V-BASH, a
new ba�ery SoH estimation method based only on their voltages
and is compatible to commodity mobile devices. V-BASH is inspired
by the physical phenomenon that the relaxing ba�ery voltages
correlate to ba�ery SoH. Moreover, it is enabled on mobile devices
with a common usage pa�ern of most users frequently taking a
long time to charge their devices. �e design of V-BASH is guided
by 2, 781 empirically collected relaxing voltage traces with 19 mo-
bile device ba�eries. We evaluate V-BASH using both laboratory
experiments and �eld tests on mobile devices, showing a <6% error
in SoH estimation.
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1 INTRODUCTION
Ba�eries have been widely used to power mobile devices, such as
phones, tablets, and smartwatches, whose capacity fades over usage
and time [18, 19, 27, 40], shortening device operation time [11].
�e state-of-health (SoH) of ba�eries is a metric quantifying their
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capacity fading, commonly de�ned as the ratio of ba�eries’ full
charge capacity to their originally rated levels [40, 45].

However, ba�ery SoH is missing on many commodity mobile
devices. For example, Android only speci�es ba�ery health as good
or dead, without any quanti�ed information [3]. �is is because
most existing SoH estimation methods require complex ba�ery
parameters (e.g., impedance [22] and resistance [31]) and speci�c
operating conditions (e.g., small current of 0.05C to fully charge
and discharge the ba�eries [39, 42]) to be applied, preventing their
implementation on mobile devices due to hardware limitation and
dynamic usage pa�ern. Moreover, even Coulomb counting — the
most widely deployed SoH estimation method in practice via cur-
rent integration [32, 42] — is not supported well on mobile devices.
�is is because (i) not all power management ICs (PMICs) of mobile
devices support electric current sensing [41], thus making Coulomb
counting infeasible; (ii) the PMIC-provided current information,
even when available, su�ers from poor accuracy and lacks real-time
capability.

�e absence of ba�ery SoH information degrades the estimation
accuracy of their real-time state-of-charge (SoCs) [12, 30] and thus
devices’ remaining operation time [42], shu�ing o� the device un-
expectedly [11, 34]. For example, users have reported their devices
shut o� when the devices are still shown to have 10–30% remaining
power [5, 7, 9]. Apple has announced a free ba�ery-replacement
program for iPhone 6S in Nov. 2016 due to such unexpected de-
vice shuto�s [2]. Moreover, inaccurate SoC easily leads to ba�ery
over-charging/discharging [45], accelerating SoH degradation and
causing even more inaccurate SoC estimation — forming a positive
feedback loop between SoH degradation and SoC error. Last but not
the least, the absence of ba�ery SoH information confuses users
about whether the shortened device operation is due to system
updates and APP installation (e.g., Android 6.0 Marshmallow is
reported to reduce device operation when �rst launched [17]), or
because of hardware module failure [4], or a result of ba�ery fading.

In this paper, we design V-BASH, a new ba�ery SoH estimation
method based only on their voltages, and is thus compatible to
commodity mobile devices. V-BASH is inspired by a physical ba�ery
characteristic and enabled on mobile devices by a common usage
pa�ern. Speci�cally, V-BASH is based on an empirical observation
that the relaxing voltages of ba�eries — a time series of voltages
when resting the ba�eries a�er either charging or discharging
— correlate to their SoH. We construct a mathematical model to
describe such relaxing voltages, based on which a voltage-based
SoH �ngerprint is proposed. V-BASH is guided by 2, 781 relaxing
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Table 1: Needed battery information for SoH estimation.

Ref. Vol. Curr. OCV SoC Resis. Imped.
[30] X X X
[31] X X X X
[39] X
[44] X
[22] X
[16] X X

[12, 29, 45] X X X X
[11, 21, 33, 35] X X
[14, 20, 25] X

voltage traces collected during 26 cycling tests with 19 ba�eries,
each consisting of 48–298 discharging/charging/resting cycles. In
total, about 1.1G data samples are collected during the accumulated
22-month tests.

Collecting the relaxing voltages on mobile devices, however, is
challenging because their continuous operation and dynamic usage
pa�erns prevent their ba�eries to rest. V-BASH mitigates this using
the fact that most users charge their devices for a long time and
frequently (e.g., over-night charging) [23, 38], during which the
charger is connected even a�er the device is fully charged. �is,
in turn, relaxes the ba�ery because of charger’s separate power
paths — commodity chargers use two power �ows to charge the
ba�ery and power the device, respectively, thus resting the ba�ery
once fully charged. We collect 976 charging cases from real-life
device usage of 7 users over 1–3 months, showing 34% of them
last over 6 hours and are long enough to allow the ba�ery to relax
a�er fully charged. �ese collected relaxing voltage traces are then
used to extract the SoH �ngerprints, based on which the SoH is
estimated. We evaluate V-BASH using both laboratory experiments
and �eld-tests on multiple mobile devices, showing a less than 6%
error in SoH estimation.

�is paper makes the following major contributions:
• Revealing the correlation between relaxing ba�ery voltages

and their SoH (Sec. 4);
• Designing V-BASH, an SoH estimation method for mobile

devices based only on their voltages (Sec. 5);
• Evaluating V-BASH using both laboratory experiments and

�eld tests on mobile devices, showing a <6% error in SoH
estimation (Secs. 6 and 7);

2 RELATEDWORK
SoH estimation is the core of ba�ery management. Researchers
have been using various techniques, such as Kalman �lter and
its variations [45], support vector machine [12], fuzzy logic sys-
tems [44], non-linear observers [30], Coulomb counting [29], ul-
trasonic inspection [36], etc., to estimate ba�ery SoH based on
a wide range of mathematic/circuit/empirical models [12, 25, 45].
�ese existing methods require ba�ery voltage, current, SoC, open-
circuit-voltage (OCV), internal resistance and even impedance, as
summarized in Table 1.

However, none of these SoH estimation methods can be applied
to mobile devices due to limited sensing hardware support and
dynamic operating conditions.

Mobile devices o�er limited hardware sensing support, making
some of the needed ba�ery information unavailable. For exam-
ple, the ba�ery impedance needed in [22] requires a specialized
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Figure 1: Voltage curve during CC-Chg is a�ected by device
operation.

impedance meter to collect, costing as much as $5,000 apiece. Ac-
tually, even the relatively easy-to-measure electric current is not
always available on mobile devices [41], and su�er from low accu-
racy and lacks timeliness when available. We will elaborate more
on the insu�cient current sensing on mobile devices in Sec. 3.

Also, existing SoH estimation methods require ba�ery informa-
tion measured under speci�c conditions. However, the operation
of mobile devices is dynamic due to human interactions and back-
ground activities, making it di�cult to control ba�ery condition.
For example, information such as OCV and SOC is measurable only
when the ba�ery has been charged/discharged with small current
(e.g., less than 0.05C) for a long period (e.g., 30 minutes) [39, 42],
which does not always hold due to devices’ dynamic usage pa�ern
and thus su�ers from low accuracy, e.g., a SoC estimation error of
±25% is speci�ed in the datasheet of �alcomm’s PM8916. Simi-
larly, the voltage curve during CC-Chg is used in [25] to estimate
SoH, which is not reliable on mobile devices due to their dynamic
operation. Fig. 1 plots the voltage curves during two consecutive
charging of a Galaxy S6 Edge phone — the phone is le� idle dur-
ing the �rst charging and operates intensively during the second,
showing clear dependency of voltage curve on device operation.
�e authors of [14] estimate SoH based on the voltage a�er resting
a ba�ery for 30 minutes, which is not feasible on mobile devices be-
cause of the trickle charging, as we will explain in Sec. 7. Moreover,
the proposed method therein requires beginning-of-life ba�ery in-
formation for calibration, which is usually not available on mobile
devices. �e SoH estimation in [44] is not applicable on mobile
devices either as it requires to rest ba�ery a�er discharging it to a
�xed SoC.

In summary, existing SoH estimation methods are not applicable
on mobile devices because (i) the needed ba�ery information is
usually unavailable, and (ii) the needed measuring conditions may
not be satis�ed. To overcome this de�ciency, we propose V-BASH
which estimates SoC based only on voltage information and is
enabled on mobile devices with a common usage pa�ern.

3 MOTIVATION
Discussed below is our motivation behind V-BASH.

3.1 Battery State-of-Health
Ba�eries fade over time and usage, shortening device operation.
�e state-of-health (SoH) of ba�eries quanti�es their fading, com-
monly de�ned as the ratio of ba�eries’ full charge capacity to their
originally rated levels, i.e.,

SoH = Cfull/Crated × 100%. (1)
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Table 2: Availability of current information on mobile devices and observations when implementing Coulomb counting.

Devices Android V. PMIC Curr. Sens. Observations when Implementing Coulomb Counting
Nexus 6P 6.0 PM8994 X concluding a 3, 769mAh full charge capacity; reasonable for the equipped 3, 450mAh ba�ery
Nexus 6 5.0 PMA8084 X low updating rate of about once per 20 seconds
Nexus 5X 6.0 PM8994 X concluding a 6, 150mAh full charge capacity, which is 2.8x of the equipped 2, 700mAh ba�ery
Nexus 5 5.0.1 PM8941 X current information is not always available
Nexus S 4.2.1 MAX8998 X N.A.

Galaxy S6 Edge 5.0.2 MAX77843 X current information is not always available, and low updating rate of about twice per minute when available
Galaxy S5 6.0.1 QFE1100 X provided current �xes at 450mA when discharging
Galaxy S4 4.4.2 S2MPS11 X N.A.
Galaxy W 4.1.2 MAX17043 X N.A.
Note 3 5.0 PM8941 X provided current �xes at 450mA when discharging
Note 2 4.4.2 PM8941 X provided current �xes at 0mA when discharging
Note 8.0 4.4.2 MAX77686 X provided current �xes at 0mA when discharging
Xperia Z 4.4.4 PM8921 X concluding a 2, 287mAh full charge capacity; reasonable for the equipped 2, 330mAh ba�ery

Zenfone Sel�e 5.0.2 PS63020 X low updating rate of about once per 20 seconds
P8 6.0 Hi6561 X N.A.

HONOR 7i 5.1.1 PM8916 X low updating rate of about once per minute
Mi 2S 5.0.2 PM8018 X low updating rate of about once per 10 seconds
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Figure 2: Insu�cient sampling rate
causes up to 47% errors in Coulomb
counting.
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�e full charge capacity is the foundation of SoH estimation,
which is traditionally estimated via Coulomb counting [42, 43],
i.e., integrating the current when discharging/charging the bat-
tery between two SoCs (state-of-charge) to calculate the dis-
charged/charged capacity as

∆C =

∫ t (SoC2 )

t (SoC1 )
i (t )dt ,

where i (t ) is the current at time t , and estimating the full charge
capacity as

Cfull = ∆C/|SoC1 − SoC2 |.

3.2 De�ciency in Coulomb Counting Support
Commodity mobile devices do not support Coulomb counting well,
thus making it di�cult to estimate their ba�ery SoH. First of all, not
all the power management ICs (PMICs) of mobile devices support
current sensing. Table 2 lists the PMICs of several devices, showing
their lack of current sensing support and thus making it infeasible
to use Coulomb counting.

Moreover, the PMIC-provided current information, even when
available, is not accurate. Commodity mobile devices estimate their
current with a series-connected resistor r , measure the voltage v
across the resistor and estimate the current as i = v/r [6].1 �e
resistor incurs the heating overhead (i.e., i2r ), which must be low
and thus require a small r . For example, Maxim requires <0.5mW
heating overhead, indicating r < 50mΩ for devices operating with
1An alternative current sensing approach is via Hall sensors, which requires a large
PCB real estate and su�ers from slow response to current change. As a result, it is not
suitable for mobile devices with strict sizing-requirements and dynamic currents.

100mA current. Such a small resistance, however, reduces the
voltage across it and thus degrades current sensing accuracy. Also,
resistance is temperature-dependent and the temperature of device
ba�eries varies a lot, easily causing 5–10% resistance variations [24].

Last but not the least, the current information may lack of time-
liness. For example, Android’s BatteryManager supports only two
sampling rates of 1 and 10 minutes per sample, which are too slow
for Coulomb counting, especially when devices’ currents are known
to be highly dynamic, i.e., varying from tens to thousands of mil-
liamps in milliseconds. To show the impact of sampling rate on
Coulomb counting, we collected a 12-minute current trace using
the Monsoon power monitor running at 5, 000Hz, during which a
113.9mAh capacity is discharged. �en, based on this trace, we im-
plement Coulomb counting by emulating di�erent sampling rates
of 1Hz, 1/60Hz, and 1/120Hz, achieving a discharged capacity of
114.9mAh, 98.3mAh, and 60.6mAh, respectively — an insu�cient
sampling frequency causes up to 47% counting error (Fig. 2). An al-
ternative facilitating �ne-grained current sensing is to directly read
the system �le containing the current information at a customized
frequency. However, the high-frequency read/write of �les incurs
non-negligible power consumption overhead, thus preventing its
implementation on mobile devices, as shown in Fig. 3 for a Galaxy
S5 phone.

�ese together yield unreliable current information onmobile de-
vices. �e last column of Table 2 summarizes the observations when
implementing Coulomb counting based on the PMIC-provided cur-
rent information on these 17 mobile devices, showing the unreli-
ability of current readings in both value and timeliness. Note the
listed update frequency is for the system �le containing the current
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1) 0.5C CC-Chg until battery 
voltage reaches 4.2V;

2) 0.5C CC-DChg until battery 
voltage decreases to 3.5V;

3) rest the battery for 30 minutes;
4) repeat for 120 cycles;
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Figure 5: A�er-discharging relaxing voltages indicate battery SoH: relaxing voltages become higher over the measurement
while battery SoH declines.

1) 0.5C CC-Chg until battery 
voltage reaches 4.2V;

2) 4.2V CV-Chg until current 
reduces to 0.05C;

3) rest the battery for 30 minutes;
4) 0.5C CC-DChg until battery 

voltage decreases to 3.0V;
5) repeat for 100 cycles;
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Figure 6: A�er-charging relaxing voltages indicate battery SoH: relaxing voltages lower over the measurement while battery
SoH declines.

information, i.e., the highest achievable sampling rate supported by
the PMIC. �e unreliable current information on Galaxy S3, Nexus
4, and Nexus 7 is also reported by Ampere, a current sensing APP
with millions of downloads [1].

3.3 Lack of�anti�ed Battery SoH
�e de�ciency of Coulomb counting support on mobile devices
leads to limited health information on their ba�eries, e.g., Android
only speci�es ba�ery health as good or dead. We use 3 Android
phones whose ba�eries are all tagged to be good to demonstrate
this limitation. We measure the ba�eries’ full charge capacity by
fully charging and then discharging them, based on which their
SoH is estimated. �e measurements are made with the NEWARE
ba�ery tester, with which the charging/discharging processes can
be controlled with error less than 0.5% and logged at up to 10Hz.
Fig. 4 plots the thus-obtained ba�ery SoH, showing up to 45%
capacity fading although all were speci�ed to be good.

Mobile devices’ de�ciency in supporting Coulomb counting and
their limited SoH information are the main motivations for us to
explore the possibility of current-free SoH estimation, developing
V-BASH as presented next.

4 DESIGN PRINCIPLE
V-BASH is inspired by a key physical ba�ery characteristic (Sec. 4.1)
and enabled by a common usage pa�ern of mobile devices (Sec. 4.2).

4.1 Relaxing Voltages Indicate SoH
V-BASH is based on the fact that the relaxing ba�ery voltages indi-
cate their SoH, as shown in the following two measurements.

_

+

+

_

V

r
1

O
C
V r

2

c

Figure 7: �evenin’s battery circuit model, consisting of a
series resistor and a parallel resistor-capacitor.

In the �rst measurement, we charge and discharge a Li-ion bat-
tery for 120 cycles according to the pro�le speci�ed in Fig. 5(a),
in which a 30-minute rest period is inserted a�er each discharg-
ing. Fig. 5(b) plots the ba�ery voltage during one of such cycles,
and highlights the relaxing voltages during the a�er-discharging
rest — the ba�ery voltage increases instantly to a certain degree
when resting and then rises gradually until it converges. Fig. 5(c)
compares the thus-collected 120 relaxing voltage traces, where the
curves get higher as the measurement continues. Also, the ba�ery
weakens during the measurement, observed as its reduced capacity
delivery in each discharging, i.e., from 1, 583mAh in the �rst cycle
to 1, 359mAh in the last one. All of these together reveal a mono-
tonic relationship between the ba�ery’s relaxing voltages and its
capacity delivery (or SoH).

In the second measurement, we charge and discharge another
ba�ery for 100 cycles according to Fig. 6(a). Unlike the �rst measure-
ment, a 30-minute rest period is inserted a�er each ba�ery charging.
Fig. 6(b) plots the ba�ery voltage during one of such cycles, and
Fig. 6(c) shows the collected 100 relaxing voltage traces, each of
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which drops instantly to a certain degree upon resting, and then
decreases further until it converges. Again, certain monotonicity
between the relaxing voltages and SoH is observed — the relaxing
voltage lowers over the measurements while the capacity delivery
degrades.

�is relationship between ba�ery’s relaxing voltages and its SoH
can be explained by �evenin’s ba�ery circuit model [25, 26, 28],
which describes the ba�ery with an ideal voltage source, a series
resistor r1, and a parallel capacitor c , as shown in Fig. 7, and both
r1 and c increase as ba�ery fades [13, 29, 30]. �e ba�ery voltage
is modeled as

v (t ) = OCV (t ) − i (t )r1 −vc (t ),

where OCV (t ) is the ba�ery’s open-circuit-voltage at time t . Rest-
ing the ba�ery at time t to start its relaxation, the ba�ery OCV will
not change at time t + 1 as it is not charged/discharged. However,
an instantaneous voltage response of i (t )r1 occurs because the volt-
age across r1 vanishes instantly, which is followed by a gradual
change due to the parallel capacitor (i.e., vc (t ) changes gradually
a�er resting). �ese lead to an instant change in v (t ) upon resting
and then followed by a graduate change until converged, as ob-
served in Figs. 5 and 6. �is way, we expect larger voltage change
a�er resting the ba�ery as its SoH degrades (and thus r and c be-
come larger) — the relaxing voltage curve rises/lowers more as the
measurement continues.

4.2 Long-Time Charging Allows Relaxation
Ba�ery’s relaxing voltages, albeit re�ecting its SoH, are not always
obtainable on mobile devices for the following reasons. First, re-
laxing voltages require idle ba�eries, e.g., the 30-minute resting
period in the above measurements.2 Mobile devices, however, have
a continuous and dynamic discharge current of 40–300mA due
to device monitoring and background activities even le� idle, as
illustrated in Fig. 8 with a Xperia Z phone. Also, ba�ery voltage is
temperature-dependent (e.g., Trojan Ba�ery uses a 0.28V voltage
compensation for every 10oF change in ba�ery temperature [10]),
requiring a stable thermal environment to collect the relaxing volt-
ages. �is is challenging because of the notorious heating issue of
mobile devices [37].

Wemitigate these di�culties with the fact that users o�en charge
their devices for a long time — the charging duration is so long (e.g.,
during over-night charging) that the charger is kept connected
even a�er the ba�ery is fully charged [23, 38]. Fig. 9 plots the

2Relaxation occurs so long as ba�ery current decreases and keeps low, but non-zero
current a�ects the relaxing voltage curves, thus introducing noises in SoH estimation.

Figure 11: Laboratory settings for cycling tests.

charging time (i.e., the time since the charger is connected to its
disconnection) distribution of 976 charging cases collected from 7
users over 1–3 months,3 showing 34% of them lasted over 6 hours
and are long enough to keep the charger connected a�er fully
charging the device. �is, in turn, relaxes the ba�ery and thus
facilitates collection of its relaxing voltages.

First, such long-time charging of devices rests their ba�eries.
Commodity chargers use separate power paths to charge the ba�ery
and power the device [15]. �is allows the ba�ery to rest a�er being
fully charged if the charger stays connected to the device. Also, the
long-time charging o�ers a relatively stable thermal environment
to collect its relaxing voltages. �is is because most mobile de-
vices adopt the 2-phase Constant-Current Constant-Voltage (CCCV)
charging method, described by triple < Icc,Vmax, Icuto� >cccv —
charging the ba�ery with constant current Icc until its voltage
reaches Vmax (i.e., CC-Chg), and then charging it further with con-
stant voltage until the charging current decreases to Icuto� (i.e.,
CV-Chg). �e completion of CV-Chg concludes the device’s full
charging and starts the ba�ery relaxation if the charger is kept con-
nected. As CV-Chg is long and has a small charging rate, it heats
the ba�ery li�le and allows for its thermal equilibration, making a
stable thermal environment for the relaxing period a�erwards. To
verify this, we monitor the ba�ery temperature of a Galaxy S6 Edge
phone during 8-day real-life usage. Fig. 10 compares the temper-
ature distributions during the relaxing and non-relaxing periods,
showing clearly reduced thermal diversity, e.g., the temperature
range is narrowed from 21.4–39.7oC (and with a STD of 2.6oC)
for non-relaxing periods to 25.8–35.4oC (and with a STD of 1.5oC)
when relaxing.

5 VOLTAGE-BASED SOH ESTIMATION
�is section details the design of V-BASH, guided by a set of empiri-
cally collected relaxing voltage traces.
3One of the user-traces was collected from our data-collection campaign and the other
six traces were obtained from the device analyzer dataset of Cambridge University [38].
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Table 3: V-BASH is guided by 2, 781 empirically collected relaxing voltage traces via 26 cycling tests with 19 phone batteries.

Cycle Test Battery Rated Capacity Initial SoH # of Cycles Per-Cycle Pro�le
#1 Nexus 6P (1) 3,450mAh 79% 48 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#2 Nexus 6P (2) 3,450mAh 84% 48 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#3 Nexus 5X (1) 2,700mAh 84% 217 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#4 Nexus 5X (2) 2,700mAh 71% 136 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#5 Nexus S (1) 1,500mAh 53% 48 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.2V;
#6 Nexus S (1) 1,500mAh 52% 98 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.2V;
#7 Xperia Z5 (1) 2,900mAh 64% 98 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.2V;
#8 Xperia Z5 (2) 2,900mAh 62% 99 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.2V;
#9 Galaxy S5 (1) 2,800mAh 86% 49 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#10 Galaxy S5 (1) 2,800mAh 84% 49 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#11 Galaxy S4 (1) 2,600mAh 92% 53 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.0V;
#12 Galaxy S4 (1) 2,600mAh 91% 48 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.0V;
#13 Galaxy S4 (2) 2,600mAh 93% 53 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.0V;
#14 Galaxy S4 (2) 2,600mAh 91% 48 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.0V;
#15 Galaxy S4 (3) 2,600mAh 92% 52 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.0V;
#16 Galaxy S4 (3) 2,600mAh 92% 48 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.0V;
#17 Galaxy S4 (4) 2,600mAh 90% 54 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.0V;
#18 Galaxy S4 (4) 2,600mAh 88% 48 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.0V;
#19 Galaxy S3 (1) 2,200mAh 92% 298 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#20 Galaxy S3 (2) 2,200mAh 92% 298 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#21 Galaxy S3 (3) 2,200mAh 93% 298 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#22 Galaxy S3 (4) 2,200mAh 93% 298 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#23 Note 2 (1) 3,100mAh 31% 48 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.2V;
#24 Note 2 (1) 3,100mAh 27% 48 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.2V;
#25 iPhone 6 Plus (1) 2,900mAh 79% 50 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
#26 iPhone 6 Plus (2) 2,900mAh 62% 50 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg toVcuto� = 3.3V;
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5.1 Trace Collection
We empirically identify the relationship between relaxing ba�ery
voltages and their SoH. Speci�cally, we conduct 26 cycling tests
with 19 ba�eries used to power devices such as Nexus 6P, Xperia
Z5, iPhone 6 Plus etc, each consisting of 48–298 discharging/charg-
ing/resting cycles. Ba�ery information such as voltage and current
are logged at 1Hz, and about 1.1G data points are collected in total.
Fig. 11 shows our laboratory se�ings for these tests. �is way, a
total number of 2, 781 relaxing voltage traces are collected, each
lasting 30 minutes. �e discharged capacity during each cycle

also allows to collect the SoH ground truth based on Eq. (1). Ta-
ble 3 summarizes the details of these cycling tests. �e se�ings
of <0.5C, 4.2V , 0.05C>cccv and Vcuto� = 3.0V for discharging are
commonly used to specify ba�ery properties in industry data sheets
and in the literature of ba�ery testing [25], and Vmax = 4.35V and
a Vcuto� of 3.2–3.3V capture more device characteristics: mobile
devices are normally charged to a maximum voltage of 4.3–4.4V
and shut o� when their ba�ery voltage reduces to 3.2–3.3V.
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5.2 Relaxing Voltages Fit as Power Function
Directly inferring ba�ery SoH with the time series of relaxing volt-
ages would be computationally expensive (and unnecessary as we
will see), demanding a simple and accurate relaxing voltage descrip-
tor. Unlike the traditional wisdom that the relaxing voltages change
exponentially [20, 29], our examination of the collected relaxing
traces reveals their conformance to a 2-term power function:

v (t ) = a · tb + c (t ≥ 0), (2)

where t is the time since the relaxation began. �is power ��ing is
visually illustrated in Fig. 12(a) by ��ing one particular relaxing
voltage trace to such a power function.

We apply the 2-term power ��ing to the collected 2, 781 traces to
statistically verify the accuracy. Fig. 12(b) summarizes the goodness-
of-�t in terms of root-mean-square error (RMSE) and R-Squared,
where each point represents the goodness-of-�t when ��ing a
particular relaxing trace — with RMSE as y-value and R-Squared
as x-value. As an RMSE close to 0 and an R-Square approaching
1 indicates accurate ��ing, the fact that most ��ing results are
clustered at the right-bo�om corner of Fig. 12(b) veri�es that the
relaxing voltage traces can be accurately described by a 2-term
power function. Also, although the goodness-of-�t of a few traces
have relatively large RMSE (i.e., between 0.01 to 0.02) and small
R-Squared (i.e., between 0.4 to 0.6), counting these outliers reveals
that 145 samples have RMSE larger than 0.0018 and R-Squared
smaller than 0.95. In other words, about 1− 145/2, 781 ≈ 95% of the
collected traces �t as power function with RMSE less than 0.0018
and R-Square larger than 0.95, showing excellent ��ing accuracy.

Guided by these statistics, V-BASH uses a 2-term power function
(or a, b, and c in Eq. (2) more speci�cally) to describe the relaxing
ba�ery voltages.

5.3 Power Factor b as SoH Fingerprint
�e next step is how to map the relaxing voltages to ba�ery SoH —
i.e., de�ning a voltage-based SoH �ngerprint.

V-BASH uses the power factor b as the SoH �ngerprint, among
other choices such as a, c or any combinations thereof. Mathe-
matically, for power functions in the form of Eq. (2), b is the most
descriptive parameter among a, b, and c , which determines the
function’s overall shape and behavior, such as the growth/decay
rate [8]. Also, using b as the SoH �ngerprint is supported further
by its stronger and more reliable correlation with ba�ery SoH. For
each cycling test in Table 3, we obtain (i) a series of relaxing voltage
traces as shown in Fig. 12(a), and thus a series of a, b, and c a�er
applying the 2-term power �t to them, and (ii) a series of capacity
delivery during each full discharge and thus SoH. Fig. 13(a) plots
an example of these series during one 298-cycle test (Test #19 in
Table 3). We can then calculate the correlations of a, b, and c with
the SoH based on the series for each cycling test, whose distribu-
tions are shown in Fig. 13(b). Note that we use the absolute value
of correlations in Fig. 13(b) because c is negatively correlated to
SoH, as observed in Fig. 13(a). Clearly, b’s correlation with SoH is
larger (i.e., with larger mean value) and more reliable (i.e., with a
larger minimum value) than a and c .

Next, we show how b is mapped to ba�ery SoH, again, based
on the collected traces. Fig. 14(a) plots b and ba�ery SoH during
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charging 

extraction of sub-trace 
between consecutive 

trickle charging
v̂(t) = â · tb̂ + ĉ estimated 

SoH
Device fully 

charged
valid?

offline cycling tests 
with after-charging 

relaxation

relaxing 
voltages 

capacity 
delivery 

SoH = l1 · b+ l2

v(t) = a · tb + c

SoH =
Cfull

Crated
× 100%

per cycle

per device modelSoH-Fingerprint Map

updating fingerprint map

+
yes

no

Figure 15: V-BASH overview: the device collects its relaxing
voltages, which are compared with the o�line constructed
�ngerprint map for SoH estimation. �us-estimated SoH is
then used to update the �ngerprint map.

each cycle of Test #19 in Table 3, indicating a linear relationship. As
a further veri�cation, we perform linear regression on the bs and
the SoH during the cycling tests of same-model ba�eries, whose
regression errors are summarized in Fig. 14(b) — the maximum
RMSE of the linear regression is 5.7%, with an average of 2.7%. �is
shows that (i) a clear linearity exists between bs and SoH of a given
ba�ery, i.e.,

SoH = l1 · b + l2 (3)

for certain linear coe�cients l1 and l2; (ii) second and more impor-
tantly, the linearity between b and SoH is similar for ba�eries of
the same model, allowing V-BASH to train the linear model with a
ba�ery and estimate SoH for other ba�eries of the same model.

5.4 V-BASH Summary
Guided by the above statistic analyses, V-BASH estimates ba�ery
SoH according to Eq. (3) with o�ine learned coe�cients l1 and l2.
Fig. 15 provides an overview of V-BASH (the sub-trace extraction
and validation will be explained in Sec. 7). Speci�cally, V-BASH
starts by collecting relaxing ba�ery voltages for various device
models, deriving their corresponding bs, and constructing a per-
device-model SoH �ngerprint map accordingly. At the user side,
the relaxing voltages of users’ device ba�ery are collected during
a long-term charging, and the corresponding b̂s are derived and
compared with the �ngerprint map for SoH estimation. �e thus-
estimated SoH and the corresponding relaxing voltages are then
used to update the �ngerprint map.

6 LABORATORY EXPERIMENTS
We �rst evaluate V-BASH based on our laboratory measurements,
some of which has been summarized in Table 3. Speci�cally, we use
the traces collected during one test to train V-BASH (i.e., construct
the SoH �ngerprint map based on bs derived from the traces), then
use the traces during another test to validate its accuracy in SoH
estimation (i.e., estimate the SoHs with V-BASH and compare them
with the measured ground truth during each discharging of the test).
For comparison, we also implement a baseline method, V-Drop, that
uses the total voltage drop during the 30-minute relaxation as SoH
�ngerprint, which is an enhanced version of [14] as no beginning-
of-life ba�ery information is needed. �ese evaluations consist
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Table 4: Additional cycling tests for the same-battery cross-pro�le validation.

Cycle Test Battery Rated Capacity Initial SoH Number of Cycles Per-Cycle Pro�le
#27 Galaxy S4 (4) 2,600mAh 86% 48 < 0.25C, 4.20V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg to 3.0V;
#28 Xperia Z5 (2) 2,900mAh 66% 48 < 0.25C, 4.35V , 0.05C >cccv ; 30min rest; 0.5C CC-DChg to 3.3V;
#29 Galaxy S4 (4) 2,600mAh 85% 48 < 0.5C, 4.20V , 0.05C >cccv ; 30min rest; 0.25C CC-DChg to 3.0V;
#30 Xperia Z5 (3) 2,900mAh 66% 48 < 0.5C, 4.35V , 0.05C >cccv ; 30min rest; 0.25C CC-DChg to 3.3V;
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Figure 16: Evaluation of V-BASH with laboratory experi-
ments: (bottom) V-BASH is trained and validated based on
traces collected with the same battery during di�erent tests
with identical pro�les; (middle) V-BASH is trained and vali-
dated based on traces collected with the same battery during
tests with di�erent pro�les; (top) V-BASH is trained and val-
idated based on traces collected with di�erent same-model
batteries.

of three parts: same-ba�ery same-pro�le validation, same-ba�ery
cross-pro�le validation, and same-model cross-ba�ery validation.

6.1 Same-Battery Same-Pro�le Validation
In this set of evaluations, the training and validation traces are
collected with the same ba�ery during di�erent cycling tests with
identical pro�les. �is way, 7 cases with di�erent combinations of
training/validation traces are selected from Table 3, as summarized
in the bo�om of Fig. 16, where the notation < #i, #j > means
using the traces collected in Test #i in Table 3 for training and
those in Test #j for validation. As the ba�ery SoHs di�er between
the training and validation traces due to degradation, these results
verify whether the �ngerprint map trained within a certain SoH
range can be used to estimate SoHs out of its training range. V-BASH

outperforms V-Drop in all the 7 cases explored, with a maximum
error of 1.83% (Case #6) and mean error of 0.83% in SoH estimation.

6.2 Same-Battery Cross-Pro�le Validation
Next, we evaluate V-BASH based on training and validation traces
collected with the same ba�ery but during cycling tests with di�er-
ent pro�les. �ese results reveal whether the voltage-based SoH
�ngerprint relies on particular charging/discharging pro�les, in
which case V-BASH’s accuracy in SoH estimation may degrade in
practice due to dynamic user behaviors. We perform additional cy-
cling tests for these validations as summarized in Table 4, based on
which 4 validation cases are explored as summarized in the middle
of Fig. 16. Speci�cally, Cases #8 and #9 use the traces with di�er-
ent charging currents for training and validation (e.g., a real-life
analogy when users use non-standard chargers to charge their de-
vices), and Cases #10 and #11 use traces with di�erent discharging
currents (e.g., users with heavy or light usage pa�erns). Compar-
ison between the bo�om and middle parts of Fig. 16 shows the
estimation errors for cross-pro�le validation, albeit larger than
the same-ba�ery same-pro�le case, are still within 5.6%, verifying
V-BASH’s tolerance to dynamic user’s real-life behaviors.

6.3 Same-Model Cross-Battery Validation
Last but not the least, we evaluate V-BASH based on training and
validation traces collected with di�erent ba�eries of the samemodel.
�ese evaluations are similar to V-BASH’s real-life implementation
— training it with ba�eries for particular device models o�ine, and
then estimate the ba�ery SoH of other same-model devices used
by users in real-life. For each device model with multiple ba�eries
in Table 3, we use the testing traces collected with one ba�ery for
training and use those collected with other ba�eries for validation.
�is way, a total number of 16 combinations of training/validation
traces are explored, as summarized in the top of Fig. 16, showing a
maximum error of 4.2% (in Case #27) and a mean of 1.78%.

7 FIELD TEST ON ANDROID DEVICES
We also implemented V-BASH and veri�ed its accuracy in SoH esti-
mation on Android platform with multiple devices.

7.1 Implementation Details
We �rst explain a few challenges when implementing V-BASH and
the corresponding remedies.
• Ground-Truth Collection. �e �rst challenge in V-BASH’s

�eld test is the ground truth collection. �e unreliable PMIC-
provided current readings onmobile devices (as observed in Table 2)
discourage us to estimate the true SoH based on them. A more reli-
able approach is to fully charge and then discharge the ba�ery with
the ba�ery tester, and then derive its full charge capacity based on
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Figure 17: Collecting the relaxing voltage traces of a Galaxy
S6 Edge phone: (a) the collected 8-day traces; (b) extract-
ing valid relaxing patterns from trickle-charging-polluted
traces (zoom-in of the �rst 500 minutes voltage traces of (a),
during which the phone has 100% SoC).

the logged process. �is, however, requires removable device bat-
tery. As a result, we implement V-BASH on three Android devices,
i.e., Galaxy S5, Galaxy Note 2, and Nexus S, all with removable bat-
teries, and verify its SoH estimation accuracy by comparing with
the measured ba�ery SoH.4 We have also implemented V-BASH on
other devices with non-removable ba�eries (e.g., Galaxy S6 Edge
and Nexus 6P) to verify its generality.
• Relaxing Voltage Collection. Device ba�ery starts relax-

ation once fully charged, re�ected by a 100% SoC. �is way, V-BASH
starts logging the ba�ery voltage once observing a 100% ba�ery
SoC, and continuous until (i) the charger is disconnected or (ii) a
long-enough relaxation period has been logged.

For Android devices, ba�ery voltages can be collected via
the BatteryManager: register a BroadcastReceiver to receive
the broadcasted voltage information. However, BatteryManager
broadcasts with a limited frequency to reduce its power consump-
tion. For example, only 158 voltage readings are collected via
the BatteryManager during a 790-minute relaxing period with
a Galaxy S5 phone, which is not enough for V-BASH to collect the
needed information.

As a remedy, instead of using BatteryManager, we im-
plement a voltage collector with customizable sampling fre-
quency, by reading the system �le containing voltage infor-
mation. For example, the ba�ery voltage can be read from
/sys/class/power supply/battery/voltage now for Nexus 6,
Nexus 6P, etc. Also, we implement this voltage collector as a fore-
ground service to avoid being terminated by Android when under
memory pressure, achieved with the startForeground method.
Although this foreground logging service increases power consump-
tion when compared to its background counterpart, it is tolerable
4�e ba�ery SoHs are measured with the same charging/discharge pro�les as when
collecting their training traces, eliminating the noises caused by ba�ery’s rate-capacity
e�ect.

for V-BASH because of the connected charger and thus the existence
of external power supply.
• Trickle Charging Mitigation. Mobile devices uses trickle

charging — charging a fully charged ba�ery under no-load at a
rate equal to its self-discharge rate, to keep their ba�eries remain
fully charged. �is, however, invalids the ba�ery relaxation and
thus pollutes the collected relaxing voltages. Speci�cally, trickle
charging on Android devices is triggered once the voltage of a
fully-charged ba�ery drops for a pre-de�ned value (e.g., 20mV for
Galaxy S6 Edge), and stops once the ba�ery voltage reaches the
fully-charged level again. Fig. 17(a) plots the voltages and SoCs
of a Galaxy S6 Edge phone during 1-week usage. �e ba�ery SoC
reaches and stays at 100% from time to time, re�ecting the long-time
charging. However, zooming-in of Fig. 17(a) (as shown in FIg. 17(b))
shows the ba�ery voltage a�er fully charging �uctuates between
4.37V and 4.35V, as a result of trickle charging. As a result, the
collected relaxing voltages are not of the power-shape as shown in
Fig. 12.

V-BASH mitigates these polluted relaxing voltages with the sub-
traces between consecutively triggered trickle charging, whose
duration increases over the relaxing period as observed in Fig. 17(b).
Speci�cally, V-BASH examines the voltage sub-traces between con-
secutive trickle charging, smoothes them with a moving average
�lter, and concludes these sub-traces are valid for SoH estimation
if (i) they last long enough (e.g., over 5 minutes), and (ii) power
��ing of these traces returns good-enough goodness-of-�t (e.g.,
RMSE < 0.002 and R-Squared > 0.95). Fig. 17(b) also highlights
the thus-extracted sub-traces, based on which the ba�ery SoH is
estimated. �e feasibility of this pa�ern extraction technique is
also veri�ed on devices such as Nexus 5X, Galaxy S5, and Note 2.

7.2 Field Test Results
Fig. 18 shows the estimated SoH of the three devices based on re-
laxing voltages collected during an over-night charging. Extracting
the valid relaxing pa�erns, a total number of 14, 10, and 1 valid
sub-traces are obtained (as highlighted) for the three devices re-
spectively, based on which their ba�ery SoH is estimated. Taking
Fig. 18(a) as an example, the ba�ery SoH of the Nexus S phone
is estimated as 49–56%, with a mean of 52%. Fully charging and
discharging its ba�ery with the ba�ery tester shows a measured
ground truth SoH of 54.9%, indicating a −2.9% error in SoH esti-
mation. �e SoH estimation errors for Galaxy S5 and Note 2 are
69 − 74.2 = −5.2% and 67 − 73 = −6%, respectively.

8 CONCLUSION
In this paper, we have designed V-BASH, an SoH estimation method
for mobile devices based on only their voltage information. V-BASH
is based on an empirically revealed fact that the relaxing ba�ery
voltages indicate their SoH, and is enabled on mobile devices with
a common usage pa�ern that most users charge their devices for a
long time and frequently. �e design of V-BASH is guided by 2, 781
empirically connected voltage relaxing traces with 19 ba�eries. We
have evaluated V-BASH using both laboratory experiments and �eld
tests on multiple mobile devices.
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Figure 18: Field-tests results of V-BASH on Android devices: (a) 14 valid relaxing sub-traces are extracted on Nexus S, concluding
a (estimated) mean SoH of 52%; the measured true SoH is 54.9%; (b) 10 valid relaxing sub-traces are extracted on Galaxy S5,
concluding a (estimated) mean SoH of 69%; the measured true SoH is 74.2%; (c) 1 valid relaxing sub-trace is extracted on Note
2, concluding an estimated SoH of 67%; the measured true SoH is 73%.
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