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A Case Study on Improving Capacity Delivery of Battery Packs
via Reconfiguration

LIANG HE, EUGENE KIM, and KANG G. SHIN, University of Michigan at Ann Arbor

Cell imbalance in large battery packs degrades their capacity delivery, especially for cells connected in series
where the weakest cell dominates their overall capacity. In this article, we present a case study of exploiting
system reconfigurations to mitigate the cell imbalance in battery packs. Specifically, instead of using all
the cells in a battery pack to support the load, selectively skipping cells to be discharged may actually
enhance the pack’s capacity delivery. Based on this observation, we propose CSR, a Cell Skipping-assisted
Reconfiguration algorithm that identifies the system configuration with (near)-optimal capacity delivery. We
evaluate CSR using large-scale emulation based on empirically collected discharge traces of 40 lithium-ion
cells. CSR achieves close-to-optimal capacity delivery when the cell imbalance in the battery pack is low and
improves the capacity delivery by about 20% and up to 1x in the case of a high imbalance.
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1. INTRODUCTION

The ability to provide a high and reliable power supply has made large battery packs
widely used in systems such as power grids [Chandra et al. 2014] and electric vehicles
(EVs) [Vatanparvar and Faruque 2015]. For example, 7,104 cells are used in Tesla
Model S to power the vehicle with 85kWh capacity. However, this large number of
cells in the battery pack creates a severe cell imbalance, a notorious but commonly
found problem in battery packs. Cell imbalance represents the fact that the strength of
cells in accepting/delivering capacity diverges over time and usage, caused by various
uncontrollable factors such as manufacturing variability and operational thermal con-
ditions [Barsukov and Qian 2013]. The unbalanced cells degrade their overall capacity
delivery, especially for those connected in series (i.e., cell strings)—the cell string is only
as strong as its weakest cell [Kim and Shin 2009]. Also, cell imbalance easily leads to
their over-charge/discharge, accelerating their capacity fading [Belov and Yang 2008]
and causing safety risks such as thermal runaway.

Recently, reconfigurable battery packs, with their ability to dynamically alter the
cell connectivity and thus offering a new dimension for system improvement, have
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been receiving considerable attention [Badam et al. 2015; He et al. 2014; Kim et al.
2012; Ci et al. 2012a, 2012b]. For example, the physical design of low-complexity re-
configurable battery packs has been explored in Kim et al. [2012], and the tradeoff
between cycle efficiency and capacity utilization has been explored in Kim et al. [2011].
System reconfigurability can also be exploited to mitigate the cell imbalance. In this
article, we present such a case study of leveraging the JPL-type reconfigurable battery
packs [Alahmad et al. 2008] to mitigate the cell imbalance and thus enhance the bat-
tery pack’s capacity delivery. We abstract this problem to optimally selecting cells in the
pack with the observation that selectively skipping cells to be discharged—thus resting
certain cells—may actually improve the battery pack’s capacity delivery over the com-
mon approach of using all cells to power the load. Based on this problem abstraction,
we propose a cell skipping-assisted reconfiguration (CSR) algorithm that identifies a
(near)-optimal system configuration based on cells’ real-time deliverable capacity via
dynamic programming (DP), and then further improves it with a genetic algorithm (GA)
implementation, if necessary. We also show that CSR reduces the cell imbalance in the
long run and is not confined to Jet Propulsion Laboratory (JPL)-type battery packs.

This article makes the following contributions.

—We present the first case study of exploiting system reconfiguration to mitigate cell
imbalance in battery packs.

—With two empirically observed sequential properties of cells in the battery pack—
one is imposed by the physical direction of discharge current and the other is to
avoid the physical short of cells—we abstract the problem of identifying the system
configuration with the maximum capacity delivery to a cell-selection problem in the
battery pack.

—We design CSR, a two-step reconfiguration algorithm which (i) first assumes ideal
cells in the battery pack and identifies the system configuration with near-optimal
capacity delivery using DP; (ii) then relaxes the ideal cell assumption and uses a GA
implementation to further improve the thus-identified configuration.

—We evaluate CSR with emulation based on the discharge traces of 40 lithium-ion
cells, demonstrating about 20% improvement in capacity delivery (up to >100%
when facing high cell imbalance).

A preliminary version of this work has been presented in He et al. [2016], and the new
materials reported here include: new results on cell imbalance and rate-capacity effect
(Section 2.1), new insights on CSR’s near-optimality (Section 5.1.3), a new GA-based
design and thus an improved CSR (Section 5.2), new/updated trace-driven emulations
(Section 6), and a few further discussions (Section 7).

2. BACKGROUND AND SYSTEM MODEL

In the following text, we introduce the necessary background on battery configuration
and the system model.

2.1. Cell Basics

2.1.1. C-Rate of Cells. The discharge current of cells is often expressed as the C-rate.
Specifically, the C-rate is a measure of the rate at which the cell is discharged relative to
its rated capacity—a 1C rate means the discharge current will drain the cell completely
in 1 hour. For example, the 1C rate for a cell with 2,900mAh rated capacity equates to
a discharge current of 2,900mA, and a 2C rate would be 5, 800mA.

2.1.2. Cell Connectivity and Cell Imbalance. Cells are the basic units of a battery pack.
The connectivity among cells determines the battery pack’s output voltage and its
capacity delivery. In general, cells in a battery pack can be connected in series or in
parallel. The series connection of cells (i.e., a cell string) supplies a voltage that is the
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Fig. 1. Capacity delivery of cell string is dominated
by the weakest cell.

Fig. 2. Parallel connection (denoted by the operator
||) delivers the sum of string capacities.

sum of individual cells. Cells connected in series have the same discharge current,
and thus the weakest cell dominates their overall capacity delivery—a fundamental
physical property inspiring this work. To show this, we collect a set of measurements
with four 2,300mAh cells, two of which have been in use over one year (and thus are
weaker), and the other two are new (and thus are stronger). Figure 1 plots the delivered
capacity when discharging these cells with 1C rate. The new cells deliver 2,171.3mAh
capacity on average, while the old cells deliver only 1,605.6mAh. Then, we form three
2-cell strings (i.e., new-and-old, old-and-old, and new-and-new) and again discharge
them with 1C rate. A clear observation is that the new-and-old string delivers similar
capacity as the old cells, validating the string capacity is dominated by the weakest cell.
This means not all the capacity of series connected cells can be effectively delivered,
and more diverse cell strength leads to more insufficient capacity delivery.

On the other hand, connecting multiple cell strings in parallel does not in-
crease the supplied voltage but splits the discharge current among the strings.
The deliverable capacity of parallel strings is the sum of their respective capacities. As
a validation, we connect two fully charged cells in parallel—that is, form two parallel
1-cell strings, and discharge them with 500mA current until a cut-off voltage of 3.0V is
reached. Figure 2 plots the voltage trace during discharging, together with those when
discharging the two cells individually with the same current for comparison. The paral-
lel connection delivers 3,270.5mAh capacity, which is roughly the sum of the two cells’
individual capacity but a little larger (i.e., 3,270.5 − (2,232.2 + 871.3) = 167.0mAh).
This slightly increased capacity delivery can be explained with the rate-capacity effect
because the discharge current of individual cells is reduced when connecting them in
parallel, as we elaborate later.

Moreover, the diverse cell strength, known as the cell imbalance issue, widely exists
in battery packs. We disassembled a 6-cell battery pack used in a laptop and discharged
them individually with a constant current. Figure 3(a) shows the capacity delivery of
these cells varies from 1,233mAh to 1,482mAh, a difference as large as 20%. Even
worse, conventional wisdom says the cell imbalance increases as cells age—their ca-
pacity delivery could vary as much as 10x for 5-year cells [Goldberg 2011], as shown
in Figure 3(b). To examine this pronounced cell imbalance over time, we discharge
another set of lithium-ion cells (same model and purchased in the same batch), which
has been in experimental usage for over 3 years, and record their delivered capacity.
Figure 3(c) summarizes the experiment results—the strongest cell (i.e., cell-4) delivers
2.54x capacity of the weakest one (i.e., cell-2).

2.1.3. Rate-Capacity Effect and Peukert’s Law. The rate-capacity effect—cells’ capacity de-
livery decreases with larger discharge rates—is a unique property of batteries. Figure 4
plots our measurements when discharging four fully charged lithium-ion cells with
currents of 0.5C, 1C, and 2C, respectively—smaller discharge currents lead to larger
capacity delivery. Cells’ rate-capacity effect pronounces with their ages.
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Fig. 3. Cell imbalance: (a) capacity delivery of six cells in a laptop battery pack; (b) cell imbalance increases
as aging [Goldberg 2011]; (c) capacity delivery of nine cells in use for over 3 years.

Fig. 4. High discharge rates decrease cell’s capacity
delivery.

Fig. 5. JPL-type reconfigurable battery packs
[Alahmad et al. 2008].

The rate-capacity effect can be mathematically captured by Peukert’s Law [Omar
et al. 2013] with the basic form of

C = Iαt, (1)

where C is the cell’s rated capacity, I is the discharge rate, t is the actual discharge time,
and α (α ≥ 1) is the Peukert coefficient capturing the cell’s nonlinear property—an α
of 1 reflects the ideal cells whose capacity delivery is independent to discharge rate
(and thus the rate-capacity effect is negligible) and a larger α indicates a pronounced
rate-capacity effect. Given rated capacity C and the corresponding discharge rate I,
Peukert’s law can be extended to estimate a cell’s capacity delivery when discharged
with I′ as

C ′ = C(I/I′)α−1. (2)

This also allows the estimation of the cells’ Peukert coefficient. For example, Figure 4
indicates the Peukert coefficient of Cell-3 is 1.067 at the time of measurement.

2.2. JPL-Type Reconfigurable Battery Packs

In contrast to traditional battery packs with fixed cell connectivity, reconfigurable bat-
tery packs offer a new dimension for system optimization with the ability to alter the
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Fig. 6. Adjusting cell connectivity by controlling the open/close states of switches.

connectivity among cells. In this work, we present a case study of exploiting reconfig-
uration to improve the battery pack’s capacity delivery. Specifically, we focus on the
reconfigurable battery pack shown in Figure 5 [Alahmad et al. 2008], a classic design
by JPL whose similar variations also appearedin Ci et al. [2012b] and Kim and Shin
[2010]. By controlling the close/open states of these switches, we can skip cells from
discharge, connect cells in series, and connect multiple cell strings in parallel, as illus-
trated in Figure 6. We refer reconfigurable battery packs designed according to Figure 5
as JPL-type battery packs for presentation convenience.

2.3. System Model

We consider the system model in Figure 7, mainly consisting of the following
components.

—Battery pack and load. A JPL-type battery pack consisting of n cells is used
to support load <V, P>, where V and P are the load required voltage and power,
respectively. Each cell in the pack has a nominal voltage v, and thus cell strings
consisting of m = � V

v
� cells need to be formed to support the load.

—Diodes and regulators. Each cell string is connected with a diode to regulate
the current direction, eliminating the potential safety issues (e.g., reverse charging)
caused by the voltage imbalance among multiple strings. Moreover, DC/DC convert-
ers are added between the battery pack and the load to ensure a stable voltage
supply.1

—Battery management system (BMS). During individual charge/discharge cycles
as shown in Figure 8, the BMS monitors the real-time cell states, estimates their
respective deliverable capacities, and identifies the proper system configuration to
support the load. The thus-identified configuration is applied after charging the
battery pack, which is then connected to the load and discharged (i.e., the battery
pack is reconfigured offline).

Our goal is to design a reconfiguration algorithm for the BMS to identify the system
configuration with the maximum capacity delivery, thus prolonging the load operation
(e.g., extending the driving range of EVs).

1Supplying V with cell strings of different sizes via DC/DC conversion is possible but is of lower efficiency
due to the larger difference between the supplied and required voltages [Visairo and Kumar 2008].

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 11, Publication date: February 2017.



11:6 L. He et al.

Fig. 7. System model. Fig. 8. Application scenario.

Note that altering the system configuration during discharge (i.e., online reconfig-
uration) is possible in theory, but in practice, the BMS should only reconfigure the
system when the load is disconnected and proper safety protections are provided, lead-
ing to limited reconfiguration opportunities. This is because the online reconfiguration
causes safety risks such as arc flash due to voltage transients or loose connections,
and the resultant inrush current could be 50x of the normal current, jeopardizing sys-
tem safety. Actually, a rule-of-thumb when reconfiguring electricity systems is to de-
energize [WPSAC 2007]. The online reconfiguration also incurs non-negligible energy
overhead especially for high-load systems such as EVs. As a result, we only consider the
scenario of offline reconfiguration in this article, where the safety protections can be
provided and reliable external power supply exists. A real-life example for this scenario
is to reconfigure the battery pack after charging an EV during night time at home, and
then drive it to work the next day.

In the following, we summarize the notations used in this article for the ease of
reference.

—n: the number of cells in the battery pack;
—v: the nominal voltage of cells;
—α: Peukert’s coefficient capturing the strength of the rate-capacity effect;
—<V, P>: the load required voltage and power, indicating a required current of P

V and
a required cell string size of m = � V

v
�;

—ci (i = 1, 2, . . . , n): the deliverable capacity of the ith cell under 1C discharge rate;
—Ci (i = 1, 2, . . . , k): the deliverable capacity of the ith cell string under 1C discharge

rate;
—Cideal: the deliverable capacity of the battery pack with idealized cells, that is, when

α = 1;
—Crc: the actual deliverable capacity of the battery pack when considering the rate-

capacity effect, that is, when α > 1.

3. PROBLEM ABSTRACTION

In general, the problem of identifying the system configuration with maximum capacity
consisting of two parts is: (i) which cells should be used to support the load; (ii) how
these cells should be connected. However, with the physical design of JPL-type battery
packs, only the first question needs to be addressed and the answer to the second one
follows straightforwardly, because of the sequential properties of cells therein.

Ascendingly indexing cells according to their physical distances to the output termi-
nals as in Figure 5, we observe the following two sequential properties shared by all
legal system configurations of JPL-type battery packs. By legal system configuration,
we mean (i) it is feasible for the battery pack to achieve such configuration, and (ii) the
battery pack can safely support the load with that configuration.
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—Intra-String Sequential Property: for any legal cell string, the indexes of its cells are
monotonically increasing. This is because the discharge current is directional and
can only pass through cells with smaller indexes before those with larger indexes.
Take the 4-cell battery pack in Figure 6 as an example. The cell string {1 → 3 → 2}
is not legal, as the current cannot flow reversely from cell-3 to cell-2, indicating this
string is not physically achievable.

—Inter-String Sequential Property: for any legal configuration with parallel cell strings,
the indexes of cells in these strings are also monotonic increasing—it is always
feasible to index these strings as the 1st string, the 2nd string, and so on, such that
for any i < j, the indexes of cells in the ith string are smaller than those in the jth
string. This inter-string sequential property is to avoid shorting cells in the pack.
Again, for the battery pack in Figure 6, the configuration of {1 → 3} || {2 → 4} is
not legal, as cells in these two strings do not demonstrate a monotonic increasing
relationship—using these two strings simultaneously will short cell-2, albeit both of
them are physically achievable.

These sequential properties, in turn, lead to the following two observations:

(1) if a cell is skipped when forming the current string, it cannot be used to form other
strings later, and thus its capacity cannot be used to support the load;

(2) the strings can only be formed sequentially with selected cells according to the
increasing order of their indexes—the first m selected cells form the first string,
the second m selected cells form the second string, and so on, where m = � V

v
� is the

number of series cells required by the load.

These further lead to the following problem abstraction: for JPL-type battery packs,
the problem of identifying the configuration with maximum capacity delivery is equiv-
alent to optimally determining which cells should be used to support the load, after
which the question of how to connect these selected cells can be answered accord-
ingly. Figure 9 shows an example on the problem abstraction with a JPL-type battery
pack consisting of the nine cells in Figure 3(c) and the load requires 3-cell strings—if
we decide to skip cell-2, cell-6, and cell-7 from discharge, the system configuration is
also determined by sequentially forming the strings with the remaining cells, that is,
{1 → 3 → 4} || {5 → 8 → 9}.

4. WHY TO SKIP CELLS?

Intuitively, we want to use all the cells in the battery pack (thus forming the maximum
number of cell strings) to support the load, especially in view of the rate-capacity
effect—more parallel strings reduce the discharge rate of individual cells and thus
improve their capacity delivery.

However, the widely existing cell imbalance, together with the fact that the weakest
cell dominates the string’s capacity delivery, lead to the observation that sometimes
selectively skipping cells to be discharged may improve the battery pack’s capacity
delivery. Let us again consider the JPL-type battery pack in Figure 9, in which the
deliverable capacities of cells under 1C discharge rate are listed. When all these nine
cells are used, we can form three 3-cell strings to support the load in parallel: {1 →
2 → 3} || {4 → 5 → 6}||{7 → 8 → 9} (Figure 10). The deliverable capacity of these
strings are 202mAh (dominated by cell-2), 268mAh (dominated by cell-6), and 265mAh
(dominated by cell-7), respectively. However, if we skip cell-2, cell-6, and cell-7 from
discharge, we can form two cell strings {1 → 3 → 4} and {5 → 8 → 9} with a total
deliverable capacity of 505 + 491 = 996mAh, which is 35% more when compared with
using all the cells (i.e., 202 + 268 + 265 = 735mAh).

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 11, Publication date: February 2017.
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Fig. 9. Illustrative example on abstracting the problem of identifying the optimal configuration to determine
which cells to skip.

Fig. 10. Illustrative example: skipping cells from discharge may improve the battery pack’s capacity delivery.

The problem becomes trickier when considering the rate-capacity effect. Two strings
are formed in the aforementioned example when cells are skipped, meaning each re-
maining cell needs to supply a current of P

2V to the load. On the other hand, three strings
are formed when all cells are used, and thus each cell only needs to supply a current of

P
3V . By Peukert’s law (Equation (2)), we know the actual capacity delivery of the battery
pack is 996 × (2V · IC/P)α−1 when skipping cells and 735 × (3V · IC/P)α−1 when using
all the cells, where IC is the 1C discharge rate in Amps—there is no one-for-all answer
to which one is larger without the knowledge on V , P, and α.

The aforementioned example reveals a dilemma when selecting cells to support the
load: selectively skipping cells may increase the capacity delivery with ideal cells but
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Fig. 11. Flow chart of CSR.

forms fewer parallel strings, which, on the other hand, increases cells’ discharge rate
and thus degrades their capacity delivery due to the rate-capacity effect.2

5. CELL SKIPPING-ASSISTED RECONFIGURATION

Denote cells’ deliverable capacity under 1C rate as <c1, c2, . . . , cn>(ci > 0), which can
be measured from their previous discharge cycle.3CSR identifies the battery pack con-
figuration with two steps: it first uses a DP-based method to determine which, if any,
cells should be skipped from discharge, identifying the configuration with the maxi-
mum capacity delivery under certain conditions (e.g., when the rate-capacity effect is
negligible); CSR then uses a GA implementation to further improve the thus-identified
configuration if needed. Figure 11 shows the flow chart of CSR.

5.1. Step I: DP-Based Cell Skipping

For the ease of description, let us first assume ideal cells (i.e., α = 1 and the rate-
capacity effect is negligible) in the battery pack.

5.1.1. The DP Design. Define a cell skipping vector S1×n = {si} (i = 1, 2, . . . , n) as

si =
{

1 if the ith cell is skipped from discharge,
0 otherwise.

From Section 3, we know any instance of S1×n also defines a system configuration.
Moreover, the sequential properties of cells allow us to identify the optimal configura-

tion of an n-cell battery pack S∗
1×n based on the optimal configurations when considering

only its first (n − i) (i = 1, 2, . . . , m− 1) cells S∗
1×(n−i)—the optimal substructure of DP.

Define Hm(i, j) ( j − i ≥ m− 2) as the largest (m− 1) elements among {ci, ci+1, . . . , c j}.
Further define gm(i, j) as the deliverable capacity of the string formed by the jth cell
and the cells corresponding to Hm(i, j). Specifically,

gm(i, j) = min{Hm(i, j − 1), c j} (i = 1, 2, · · · n − m+ 1; j = m+ i − 1, m+ i, . . . , n). (3)

Define fm( j) ( j = 1, 2, . . . , n) as the maximum deliverable capacity when only con-
sidering the first j cells in the pack to support the load, and cell- j is not skipped (i.e.,
sj = 0), meaning cell- j is the last cell of an m-cell string. Clearly,

fm(1) = fm(2) = · · · = fm(m− 1) = 0.

2Note that the three weakest cells in the pack are skipped from discharge to facilitate the illustration in the
example shown in Figure 10. In practice, however, greedily skipping the weakest cells is not always the best
solution, as we will see in Section 6.
3CSR does not strictly require cells’ capacity delivery under 1C rate as the input—the capacity delivery of
cells under any unified discharge rate, for example, the load required current P

V , serves the purpose.
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Fig. 12. A walk-through example on CSR (n = 9, m = 3).

Further defining fm(0) = 0, we have the following optimal substructure based on
which the system configuration with maximum deliverable capacity can be identified

fm( j) = max{ fm(i) + gm(i + 1, j)} ( j = m, m+ 1, . . . , n; i = 0, 1, . . . , j − m). (4)

Clearly, the maximum capacity delivery of ideal battery packs is C
dp
ideal = max{ fm( j)},

and the corresponding configuration Sdp
1×n can be identified via reversing the search from

jdp = max j{ fm( j)}. The DP-based cell skipping requires a space complexity of O(n2) and
a computation complexity of O(mn2lgn)—both dominated by the space/computation to
store/calculate gm(i, j)s.

5.1.2. Walk-Through Example. Next, we use a walk-through example, based on the 9-cell
battery pack in Figure 10, to facilitate the understanding of the DP-based cell skipping.
Let us first consider gm=3(i, j). For example, when i = 2 and j = 7, gm=3(2, 7) returns
the capacity of the string formed by the m − 1 = 2 cells from cell-2 to cell-(7−1) = 6
with the maximum deliverable capacity (i.e., Hm=3(2, 6)), and with cell-7 as the last
cell. Specifically,

gm=3(2, 7) = min{Hm=3(2, 6), c7}.
As Hm=3(2, 6) is the largest of the two elements among

{c2, c3, . . . , c6} = {202, 505, 514, 454, 268},
we know Hm=3(2, 6) = {505, 514} and

gm=3(2, 7) = min{505, 514, 265} = 265.

Similarly, we know

gm=3(2, 8) = min{Hm=3(2, 7), c8} = min{505, 514, 498} = 498.

Other gm=3(i, j)s can be calculated similarly, as summarized in Figure 12. Figure 12
also lists the corresponding selected cells for each gm=3(i, j)s. For example,

gm=3(2, 7) = 265 (3, 4, 7)

means cell-3, cell-4, and cell-7 are selected to form the string, delivering 265mAh
capacity. This way, fm=3( j)s can be iteratively calculated according to Equation (4). For
example,

fm=3(3) = fm=3(0) + gm=3(1, 3) = 202,

fm=3(4) = max
{

fm=3(0) + gm=3(1, 4),
fm=3(1) + gm=3(2, 4)

}
= max{202, 505} = 505,

fm=3(5) = max

⎧⎨
⎩

fm=3(0) + gm=3(1, 5),
fm=3(1) + gm=3(2, 5),
fm=3(2) + gm=3(3, 5)

⎫⎬
⎭ = max{454, 454, 454} = 454.
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Other fm=3( j)s, together with how they are obtained, are also summarized in Figure 12.
For example,

fm=3(8) = 773 (4, g(5, 8))

means fm=3(8) is obtained based on fm=3(4) and gm=3(5, 8). As fm=3(9) = 959 is the
maximum of fm=3( j)s, we know the configuration with maximum capacity uses cell-9
as the last cell. This way, we reverse the search from fm=3(9) and find

fm=3(9) = fm=3(4) + gm=3(5, 9) = gm=3(1, 4) + gm=3(5, 9).

From Figure 12, we know cell-1, cell-3, and cell-4 are used to form the string of
gm=3(1, 4), while those for gm=3(5, 9) are cell-5, cell-8, and cell-9, indicating an iden-
tified configuration of

{1 → 3 → 4} || {5 → 8 → 9},
and a skipping vector

Sdp
1×9 = {0, 1, 0, 0, 0, 1, 1, 0, 0}.

5.1.3. (Near)-Optimality Analysis. The DP-based cell skipping identifies the battery pack
configuration with the maximum capacity delivery for ideal cells (i.e., α = 1). In the
following, we prove its bounded near-optimality in capacity delivery even for cells with
α > 1.

First, we have the following lemma on the capacity delivery of a given configuration
when considering the rate-capacity effect. Note that this is also the capacity delivery
for non-reconfigurable battery packs.

LEMMA 5.1. For any configuration with k (1 ≤ k ≤ 	 n
m
) parallel m-cell strings, denote

the deliverable capacity of these k strings (in ascending order) under 1C discharge rate
as

C1 ≤ C2 ≤ · · · ≤ Ck,

and further define Cideal = ∑k
i=1 Ci. When using this configuration to support load

<V, P>, its actual deliverable capacity Crc when considering the rate-capacity effect is

Crc = (V · IC/P)α−1
k∑

i=1

(k − i + 1)α(Ci − Ci−1).

where IC is the 1C discharge current in amps.

PROOF. The entire discharge process can be divided into k phases when these k
strings are connected in parallel to support the load.

—Phase-1: The Phase-1 of the discharge process starts when the discharge begins
and ends when the weakest cell string (i.e., the one with deliverable capacity C1)
depletes. During this phase, the load is supported with k parallel strings, and each of
the strings has a discharge rate of I1 = P

k·V . By Peukert’s law,4 the delivered capacity
during this phase is

k · C1 (IC/I1)α−1
.

4Note that both Peukert’s law and Peukert’s coefficient are only used to analytically track the (near)-
optimality, but are not required when implementing.
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—Phase-2: This discharge phase starts from the depletion of the weakest string and
ends when the second weakest string (i.e., the one with deliverable capacity C2)
is drained. Only (k − 1) parallel strings are available to support the load during
this phase, leading to a discharge rate of I2 = P

(k−1)·V for each string. This way, the
delivered capacity during Phase-2 is

(k − 1) · (C2 − C1) (IC/I2)α−1
.

—· · · · · ·
—Phase-k: The last discharge phase is when only the strongest cell string (i.e., the one

with deliverable capacity Ck) is available to support the load. During this phase, the
strongest string has a discharge rate of Ik = P

1·V and the delivered capacity is

1 · (Ck − Ck−1) (IC/Ik)α−1
.

Further defining C0 = 0, the deliverable capacity of the configuration when consid-
ering the rate-capacity is

Crc =
k∑

i=1

(k − i + 1)(Ci − Ci−1) (IC/Ii)α−1 = (V · IC/P)α−1
k∑

i=1

(k − i + 1)α(Ci − Ci−1).

Lemma 5.1, in turn, leads to the following lemma on the maximum deliverable
capacity Crc of any configuration with given Cideal.

LEMMA 5.2. For any configuration with given Cideal,

Crc ≤ Cideal (k · V · IC/P)α−1
.

Furthermore, when α > 1, the equality holds if an only if

C1 = C2 = · · · = Ck = Cideal/k.

PROOF. It is clear that Crc = Cideal (k · V · IC/P)α−1 when C1 = C2 = · · · = Ck =
Cideal/k. To show Cideal (k · V · IC/P)α−1 is also the maximum capacity delivery with
given Cideal, we define

δi = Ci − Ci−1 (i = 1, 2, . . . , k),

and thus

kδ1 + (k − 1)δ2 + · · · + δk = Cideal.

Denote C
1
rc as the capacity delivery of the configuration with C1 = C2 = · · · = Ck =

Cideal/k, and C
2
rc as the capacity delivery of any other configurations with Cideal, we

have

C
1
rc − C

2
rc = (V · IC/P)α−1 kα−1

Cideal − (V · IC/P)α−1
k∑

i=1

(k − i + 1)α(Ci − Ci−1)

= (V · IC/P)α−1 [kα−1(kδ1 + (k − 1)δ2 + · · · + δk) − (kαδ1 + (k − 1)αδ2 + · · · + δk)]

= (V · IC/P)α−1 [(k − 1)(kα−1 − (k − 1)α−1)δ2 + (k − 2)(kα−1 − (k − 2)α−1)δ3 + · · · + (kα−1 − 1)δk]
≥ 0,

and thus the theorem follows.

Lemma 5.2 indicates that with a given Cideal, the battery pack’s actual capacity
delivery is maximized when the parallel cell strings are of similar strength. We have
the following theorem on the upper bound of the battery pack’s capacity delivery based
on Lemma 5.2.
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THEOREM 5.3. Denote C
∗
rc as the maximum capacity delivery of the battery pack, then

C
∗
rc ≤ (V · IC/P)α−1 	n/m
α−1

C
dp
ideal,

where C
dp
ideal is the idealized capacity delivery identified by the DP-based cell skipping.

PROOF. From Lemma 5.2, we know the battery pack’s capacity delivery is maximized
when (i) its idealized capacity delivery Cideal is maximized; and (ii) the maximum
number of cell strings are formed (i.e., k is maximized) and they deliver the same
capacity. As the DP-based cell skipping identifies the configuration with maximum
capacity delivery when the cells are ideal, we know

Cideal ≤ C
dp
ideal.

Furthermore, it is clear that

k ≤ 	n/m
.
The theorem follows by combining these with Lemma 5.2.

Next, we consider the lower bound of the actual capacity delivery of the configuration
identified by the DP-based method, consisting of kdp parallel strings. Intuitively, its
capacity delivery is minimized when we sequentially use the kdp strings to support the
load instead of discharging them in parallel, resulting in the largest possible discharge
current of individual cells (i.e., P

V ).

THEOREM 5.4. For the configuration identified by the DP-based skipping, its deliv-
erable capacity C

dp
rc is minimized when the cell strings are used to support the load

sequentially, specifically,

C
dp
rc ≥ (V · IC/P)α−1

kdp∑
i=1

Ci = (V · IC/P)α−1
C

dp
ideal.

Finally, combining Theorem 5.3 and 5.4 leads to the following theorem on the near-
optimality of the DP-based cell skipping in capacity delivery.

THEOREM 5.5. The DP-based skipping achieves near-optimal capacity delivery of the
battery pack, specifically,

C
dp
rc

C∗
rc

≥ (V · IC/P)α−1
C

dp
ideal

(V · IC/P)α−1 	 n
m
α−1 C

dp
ideal

= 1
	 n

m
α−1 .

Furthermore, we observe that (i) Theorem 5.5 is tight, as the equality establishes
when the configuration identified by the DP-based method skips no cells and all
the strings have the same capacity delivery; (ii) the configuration identified by the
DP-based method approaches the optimal case with a smaller Peukert coefficient α.
Figures 13 and 14 illustrate the near-optimality ratios according to Theorem 5.5 with
regard to n, m, and α.

The fact that the DP-based cell skipping identifies the configuration with the
maximum capacity delivery for ideal cells also implies a few cases in which the
maximum capacity delivery can be guaranteed even when rate-capacity effect is
considered.
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Fig. 13. Illustration of Theorem 5.5 with respect to
n and m.

Fig. 14. Illustration of Theorem 5.5 with respect to
α.

THEOREM 5.6. Even when considering rate-capacity effect, the DP-based cell skipping
achieves optimal capacity delivery of the battery pack when

n − ∑
Sdp

1×n

m
=

⌊ n
m

⌋
, (5)

or

n − ∑
Sdp

1×n

m
<

⌊ n
m

⌋
and

(
n − ∑

Sdp
1×n

m

)α−1

C
dp
rc ≥

⌊ n
m

⌋α−1 n∑
i=1

ci. (6)

Condition (5) captures the cases that Sdp
1×n forms the maximum number of parallel

strings, thus reducing the discharge current as much as possible. Condition (6) captures
the cases that, although fewer parallel strings are formed with Sdp

1×n, its advantage in
capacity delivery with ideal cells are strong enough to compensate the loss caused by
rate-capacity effect (e.g., when the skipped cells are very weak). This way, the GA-based
improvement only needs to be run when neither Condition (5) nor Condition (6) holds,
reducing CSR’s average computation complexity, especially in view of the fact that the
GA-based improvement contributes a larger part to its overall execution time, as will
be seen in Section 6.

5.2. Step II: GA-Based Improvement

We have shown the DP-based cell skipping identifies the configuration (i.e., Sdp
1×n) with

near-optimal capacity delivery and, indeed, achieves the optimal capacity delivery
in certain cases. Next, we further improve Sdp

1×n heuristically with GA (if needed).
Mimicking the natural selection process, GA is widely used to generate promising
solutions to optimization and search problems—a population of candidate solutions,
referred to as individuals, is evolved toward better solutions, and the initial populations
greatly affect how fast the evolving process converges [Banzhaf et al. 1998].

We use GA to improve Sdp
1×n because (i) the fact that any system configuration can

be represented by a bit vector S1×n—similar to the individual representation in GA—
facilitates to formulate the problem under the GA framework; (ii) with the near-optimal
Sdp

1×n, we can generate competitive initial populations to make the evolving process
converge quickly. Figure 15 summarizes the logic flow of the GA implementation.

—Population Pool. A population pool with N individuals is adopted, including Sdp
1×n and

the configuration when no cells are skipped—Sall
1×n = {0}1×n. The remaining (N − 2)

individuals are randomly generated conforming to

mod

(
n∑

i=1

S1×n(i), m

)
= 0.
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Fig. 15. Logic flow of the GA improvement. Fig. 16. Crossover and mutation.

—Fitness Function. The fitness of individuals is defined as their respective deliverable
capacity.

— Selection, Crossover, and Mutation. M pairs of parents are selected randomly from
the population pool for each generation, with which crossover is performed at a
random crossover site (Figure 16(a)). Note, if mod (

∑n
i=1 S1×n(i), m) = x �= 0 for an

offspring, its weakest x cells with S1×n(i) = 1 are further skipped. The offspring are
mutated by flipping a randomly selected {i | S1×n(i) = 0} to S1×n(i) = 1 and another
randomly selected { j | S1×n( j) = 1} to S1×n( j) = 0 (Figure 16(b)).

—Survival. The offspring in each generation are added to the pool and the N individuals
with the best fitness survive to the next generation. The evolving process terminates
when reaching a pre-defined number of generations.

As both Sdp
1×n and Sall

1×n are included in the initial population, we know the capacity
delivery of the configuration identified by the GA implementation C

CSR
rc satisfies

C
CSR
rc ≥ max

{
C

dp
rc , C

all
rc

}
.

5.3. Salient Properties of CSR

5.3.1. CSR Rebalances Cells in the Long Run. CSR is motivated by the cell imbalance
issue in battery packs. Besides improving the battery pack’s capacity delivery during
individual discharge cycles, CSR also reduces the cell imbalance in the pack over
extended operation cycles. This is because (i) cells’ capacity decreases over cycling and
(ii) CSR rests weaker cells and thus slows down their capacity fading, allowing cells to
rebalance. We will elaborate more on this in Section 6.2.

5.3.2. CSR is not Confined to JPL-Type Battery Packs. The core operation of CSR is the
DP-based cell skipping, which is based on the sequential properties of cells in JPL-
type battery packs. Here, we would emphasize that the sequential properties of cells
are not only confined to JPL-type battery packs, but are shared by, to the best of our
knowledge, all reconfigurable battery packs with a single pair of power buses (e.g.,
Kim and Shin [2009], Ci et al. [2012a], and Jin and Shin [2012]). This is because
these sequential properties are imposed by the physical laws—the physical direction
of discharge current leads to the intra-string sequential property and the physical
protection of cells from short leads to the inter-string sequential property. For example,
Figure 17 shows our reconfigurable battery board prototype, with which four battery
cells, conforming to the intra-string sequential property, can be selectively used to form
a string. Another example where both the intra- and inter-sequential properties hold
is Kim and Shin [2009].
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Fig. 17. Reconfigur-
able battery board
prototype.

Fig. 18. Experiments
lab settings.

Fig. 19. Exemplary discharge traces.

Fig. 20. Deliverable capacity of 40 lithium-ion cells when discharged with 1C rate.

5.3.3. CSR Goes Beyond Peukert’s Law. Peukert’s law is classic for representing the rela-
tionship between the discharge rate and cells’ capacity delivery, especially for a constant
discharge rate as in the system model shown in Figure 7. However, it is known that the
accuracy of Peukert’s law degrades when the discharge rate varies over time [Omar
et al. 2013]. Fortunately, CSR still applies to such variable discharge rates’ scenarios
because (i) the DP-based cell skipping does not consider the rate-capacity effect and
thus is not affected by variable discharge rates; (ii) instead of using Peukert’s law, we
can re-define the GA’s fitness function based on more advanced analytical/circuit bat-
tery models (e.g., Kim [2012] and Bergveld et al. [2002]), and the other parts of the GA
implementation remain identical. The accuracy of Peukert’s law, however, does affect
the performance analysis presented in Section 5.1.3.

6. EVALUATION

We have evaluated CSR by emulating battery packs with empirically collected cell
discharge traces. We have also investigated the sensitivity of CSR over cell imbalance
degree via Monte Carlo simulations.

6.1. Trace-Driven Emulation

We collect 40 rechargeable lithium-ion cells, and then fully charge and discharge them
individually with 1C rate with the NEWARE battery tester as shown in Figure 18,
which allows not only high accuracy charge/discharge control (with errors <0.2%),
but also fine-grained logging of the experiments (up to 10Hz). Figure 19 shows two
exemplary thus-collected discharge traces. Figure 20 summarizes the capacity delivery
of these cells ascendingly.

We emulate JPL-type battery packs with these traces—each cell in the pack is ran-
domly emulated to be one of these 40 cells in Figure 20. Table I lists the default settings
unless specified otherwise. For the GA-implementation, a population of 2,000 individu-
als is used and the evolving process terminates after 1,000 generations. The emulator
is implemented with Matlab. The reported results are averaged over 500 runs.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 11, Publication date: February 2017.



A Case Study on Improving Capacity Delivery of Battery Packs via Reconfiguration 11:17

Table I. Default Emulation Settings

Pack Scale Peukert Coeff. String Size Load Current

1,000 1.2 15 5C

Fig. 21. Capacity delivery with various battery pack
scales.

Fig. 22. Capacity delivery with various Peukert
coefficients.

We also emulate non-reconfigurable battery packs in which no cells could be
skipped—the first m cells in the pack form the first string, the second m cells form
the second string, and so on. The Oracle capacity delivery calculated according to
Theorem 5.3 is also explored for comparison.

6.1.1. Impact of Battery Pack Scale. Figure 21 plots the capacity delivery of battery packs
consisting of 200–1,000 cells. The JPL-type battery pack with CSR delivers more ca-
pacity than the non-reconfigurable packs for all explored cases, especially for large
battery packs. For example, CSR delivers 25, 788mAh more capacity than the non-
reconfigurable case for 1,000-cell battery packs. This indicates CSR is particularly
desirable for large battery systems such as EVs. Also, CSR achieves close capacity
delivery to the Oracle solution—although the gap between CSR and Oracle increases
with larger battery pack scales, a performance ratio of 98.6% is achieved even for the
1,000-cell battery packs.

6.1.2. Impact of Peukert Coefficient. Figure 22 shows the capacity delivery with various
Peukert coefficients, from which two observations can be made. First, compared to
the non-reconfigurable case, the advantage of CSR pronounces for cells with small
Peukert coefficients. For example, the capacity delivery is improved by 20% with an
α of 1.00, which reduces to ≈17% with α = 1.30. Second, CSR achieves the Oracle
capacity delivery when cells are ideal (i.e., when α = 1), and its gap to the Oracle
solution increases as α increases. However, even with α = 1.30, CSR still achieves a
performance ratio of 97.9% when compared to Oracle. Both these observations indicate
that CSR works better for cells with a smaller Peukert coefficient, which is also the
direction of battery development as cells with smaller α indicate good efficiency and
less loss.

6.1.3. Impact of Load Required Discharge Rate. Figure 23 plots the capacity delivery with
various load required current. CSR outperforms the non-reconfigurable battery packs,
especially with smaller load required discharge rates. For example, about 22,577mAh
more capacity is delivered with a 10C load current, which increases to 31,053mAh
when the load current reduces to 2C. This is because larger load currents pronounce
the rate-capacity effect, which is ignored by the DP-based cell skipping. This way, the
advantage of CSR diminishes as the load current increases. However, CSR improves
the capacity delivery by ≈19% even with 10C load current. CSR achieves a performance
ratio of ≈98% when compared to the Oracle, agreeing with Figure 21.
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Table II. Number of Parallel Strings

String Size (m) 5 10 15 20 25

CSR 192.35 93.83 61.62 45.71 36.27
Maximum (� n

m�) 200 100 66.67 50 40

Skipped Cells 38.25 61.70 75.70 85.80 93.25

Fig. 23. Capacity delivery with various load required discharge rates.

Fig. 24. CSR skips weak cells but not necessarily the weakest ones.

6.1.4. Number of Formed Strings. Clearly, skipping cells from discharge leads to fewer
cell strings when compared to using all the cells to support the load. Table II lists
the average number of parallel strings formed by CSR with various load required
string sizes. We also list the maximum number of parallel strings for comparison (i.e.,
	 n

m
). Not surprisingly, fewer strings are formed with CSR. Multiplying the reduction
in the number of formed strings and the corresponding required string size, we can
see more cells are skipped when the load requires longer strings. For example, (40 −
36.27) × 25 = 93.25 cells are skipped on average when 25-cell strings are required,
while only (200 − 192.35) × 5 = 38.25 cells are skipped for the 5-cell string case. Again,
this indicates the selective cell skipping is especially important for high voltage load
applications (i.e., requiring longer cell strings) such as EVs.

6.1.5. Skipped Cells Distribution. CSR is inspired by the observation that selectively skip-
ping weak cells from discharge may improve the battery pack’s capacity delivery; how-
ever, CSR does not simply skip the weakest cells. To demonstrate the difference between
CSR and the greedy cell skipping, Figure 24 plots the skipped cells in an emulated
100-cell battery pack.5 By ascendingly sorting the cells according to their respective
deliverable capacity, we find, although the skipped cells by CSR are clustered at the low
capacity spectrum, they are not simply the weakest ones. Specifically, for this particu-
lar battery pack, CSR identifies a configuration with 9, 849mAh deliverable capacity,
while that with the greedy approach delivers only 9, 509mAh.

5The relatively small battery pack scale is to ease the observation in Figure 24.
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Fig. 25. Cells’ fading over cycling. Fig. 26. Execution time of CSR.

Fig. 27. CSR rebalances cells over usage. Fig. 28. Sensitivity of CSR over cell imbalance.

6.1.6. Execution Time. Figure 26 plots the execution time of CSR with a 2.5GHz Intel
Core i5 processor. The execution time is contributed more by the GA implementation,
especially when the battery pack size is relatively small. This shows another advantage
of CSR , as the GA method is used only when the configuration identified by DP is not
optimal (as illustrated in Figure 11).

6.2. CSR Rebalances Cells

Next, we verify the fact that CSR rebalances cells in the long run, as explained in
Section 5.3. Figure 25 plots our 15-day measurements on the capacity fading of a
lithium-ion cell over 100 charge/discharge cycles, showing (i) a cell’s capacity fades
linearly, agreeing with the reported findings in the literature [Lam and Bauer 2013],
and (ii) a total fading of 5% over these 100 cycles, or 0.05% fading per cycle. With this
per-cycle fading rate, and assuming a load required string size of 20 and current of 5C,
we emulate a 500-cycle charging/discharging test of a 600-cell JPL-type battery pack,
during which CSR is used to determine the desired configuration. Figure 27 compares
the cell imbalance when the emulation begins with that after the cycling test, in terms
of both the standard deviation of cell capacities and their ranges (i.e., the difference
between the maximum and minimum capacity of cells), showing that by allowing the
weak cells to rest, CSR reduces the differences among cell capacities by over 30%.

6.3. Sensitivity Analysis over Cell Imbalance

CSR is inspired by the wide existence of cell imbalance in battery packs. Next, we
investigate the sensitivity of CSR over cell imbalance degree. To capture the cell im-
balance degree, we introduce a control parameter φ (φ ∈ [0, 1]) and randomly generate
the cell capacity under 1C rate in the range of [φ, 1] × c0, where c0 is the rated capac-
ity of cells and specifically, 2,300mAh in our settings. This way, a smaller φ indicates
higher cell imbalance in the battery pack. We apply CSR to JPL-type battery packs,
and again, compare it to the non-reconfigurable battery packs and the Oracle solu-
tion. Figure 28 plots the collected results averaged over 500 runs. Not surprisingly,
the advantage of CSR over the non-reconfigurable case is pronounced with larger cell
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imbalance degree (e.g., about > 100% improvement with a φ of 0.1). Note, this small
φ can be interpreted as the case that certain cells fail over usage, which is commonly
found in practice [Berman 2012; AA1Car 2016]. CSR approaches the Oracle as cells
become more balanced.

7. FURTHER DISCUSSION

7.1. Skip or Not?—A Necessary Condition

Next, we present a necessary condition that helps to determine whether cell skipping
should be performed to enhance the capacity delivery of the battery pack.

Denote cmin and cmax as the capacity delivery of the weakest and strongest cells in
the pack, respectively. Clearly, a lower bound of the deliverable capacity when all cells
are used C

all
min is

C
all
min ≥ cmin ·

⌊ n
m

⌋
. (7)

Similarly, an upper bound of the deliverable capacity when x cells are skipped from
discharge C

skip
max(x) is

C
skip
max(x) ≤ cmax ·

⌊
n − x

m

⌋
≤ cmax ·

⌊
n − 1

m

⌋
. (8)

Combining Conditions (7) and (8), we know

C
skip
max

Call
min

≤ C0 · cmax · 	n−1
m 


C0 · cmin · 	 n
m
 = cmax · 	n−1

m 

cmin · 	 n

m
 .

As a result, a necessary condition for skipping cells to improve the capacity delivery
(i.e., C

skip
max

Call
min

> 1) is ⌊
n − 1

m

⌋ / ⌊ n
m

⌋
>

cmin

cmax
. (9)

7.2. Module-Level Reconfigurability: Tesla S as an Example

This article is presented assuming the cell-level reconfigurability—the connectivity of
individual cells can be actively adjusted according to the design of JPL. The reconfig-
urability, however, is achieved by equipping cells with switches, increasing system cost
and complexity. A tradeoff between system reconfigurability and cost can be achieved
by exploring the module-level reconfiguration [Alahmad et al. 2008].

Let us consider the 85kWh battery pack of Tesla S. The battery pack consists of 7,104
lithium-ion cells, with which 74 parallel cell strings are formed, each with 96 cells con-
nected in series to supply an operating voltage of around 403V. Again, we randomly
emulate the capacity delivery of these 7,104 cells based on Figure 20, and Figure 29
shows the power capability of this non-reconfigurable battery pack. Next, we emulate
the module-level reconfigurable JPL-type battery pack with the same 7,104 cells with
module size l (l ∈ [1, 96])—each module consists of l cells connected in series. This way,
l = 1 is the case of cell-level reconfiguration as discussed in the article and l = 96 cor-
responds to the case of non-reconfigurable battery packs. The power capability of thus-
emulated JPL-type battery packs with varying l is also shown in Figure 29. As expected,
the advantage of CSR pronounces with smaller module size, and the extreme case of
l = 1 shows a 43% improvement in power capability. This, however, is at the cost of more
switches and higher wiring complexity of the battery pack. Larger module size reduces
the complexity in exchange for the pack’s reconfigurability and thus power capability.
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Fig. 29. Trading off system complexity and capacity delivery via exploring module-level reconfiguration.

8. RELATED WORK

In general, existing studies of reconfigurable battery packs can be classified into two
categories: offering reconfigurability and exploiting reconfigurability.

8.1. Design of Reconfigurable Battery Packs

The system reconfigurability is achieved by adding switches into the battery pack and
thus increases system complexity. Much research effort has been devoted to achieve
high reconfigurability with low system complexity [Ci et al. 2012b]. Kim et al. [2012]
proposed a reconfigurable battery pack design in which each cell is equipped with two
switches—one for connecting the cell to the load and the other for skipping the cell.
With this design, any subset of cells can be sequentially connected in series, but no
parallel strings can be formed. A reconfigurable battery pack where three switches are
equipped for individual cells is designed in Kim and Shin [2010]. The JPL-type battery
pack [Alahmad et al. 2008] considered in this article allows for forming multiple parallel
strings by equipping four switches to each cell. Increasing the per-cell switches to six,
a reconfigurable battery pack supporting multiple outputs was proposed in Kim and
Shin [2009].

8.2. Reconfiguration-Assisted Optimization

The other category of existing work on reconfigurable battery packs focuses on exploita-
tion of the offered reconfigurability to improve the battery performance. For example,
a reconfiguration algorithm by matching the supplied and required voltages, and thus
reducing the energy loss due to voltage regulation, was presented in He et al. [2013].
The tradeoff between cycle efficiency and capacity utilization of the battery pack was
explored in Kim et al. [2011]. A set of discharge management policies for reconfigurable
battery packs is proposed and validated in Raychev et al. [2011]. Molenaar exploited the
battery reconfiguration to achieve the fast charging of vehicles in Modenaar [2010].
The reconfiguration-assisted charging of battery packs was explored in He et al. [2014].
The integration of different kinds of batteries via reconfiguration is explored in Badam
et al. [2015].

8.3. CSR’s Position

CSR belongs to the second category on exploiting reconfiguration for system optimiza-
tion, and differs from existing works by mitigating cell imbalance based on a particular
design of the JPL-type battery packs. Cell imbalance is traditionally mitigated by
top-balancing (i.e., balancing cells in fully charged state), bottom-balancing (i.e., bal-
ancing cells in the discharged state), dissipative balancing (i.e., dissipating energy
from strong cells during discharging), and non-dissipative balancing (i.e., redistribut-
ing energy between strong and weak cells to make them balance) [Barsukov and Qian
2013]. These approaches form two clusters based on the resultant capacity delivery:
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the pack capacity is dominated by the weakest cells in the first three approaches, and
the non-dissipative balancing makes full use of cells’ capacity in the ideal case. CSR
is orthogonal to the first clusters, for example, the cell capacity in Figure 10 can be
treated as the resultant capacity delivery after top-balancing. Also, different from non-
dissipative balancing that redistributes energy among cells, CSR balances cells from
another perspective by redistributing their loads via reconfiguration. To the best of our
knowledge, the most similar works to CSR are Ci et al. [2012a] and He et al. [2015]. Ci
et al. [2012a] uses reconfiguration to enhance the energy utilization of the battery pack
via a Lagrangian relaxation, but without directly considering the rate-capacity effect.
We have presented a general approach to mitigate cell imbalance via reconfiguration
based on a graph model and show its NP-hardness in He et al. [2015]. CSR advances
the state of the art with the JPL-type battery packs, whose cells show two sequential
properties that significantly simplify the reconfiguration algorithm (i.e., facilitating a
DP-based solution).

9. CONCLUSION

In this article, we presented a case study of mitigating cell imbalance in battery packs
via system reconfiguration. We abstracted the problem of identifying the configuration
with maximum capacity delivery to a cell-selection problem based on two sequential
properties of cells in the battery pack. Then, we presented CSR, a two-step reconfigura-
tion algorithm that identifies a near-optimal configuration with DP first and then GA.
Our trace-driven emulation shows CSR achieves the optimal capacity delivery when
the cell imbalance is low and improves the battery pack’s capacity delivery by up to 1x
in case of high imbalance.
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