
RT-OPEX: Flexible Scheduling for Cloud-RAN
Processing

Krishna C. Garikipati Kassem Fawaz Kang G. Shin

University of Michigan

ABSTRACT

It is cost-effective to process wireless frames on general-
purpose processors (GPPs) in place of dedicated hardware.
Wireless operators are decoupling signal processing from
basestations and implementing it in a cloud of compute re-
sources, also known as a cloud-RAN (C-RAN). A C-RAN
must meet the deadlines of processing wireless frames; for
example, 3ms to transport, decode and respond to an LTE
uplink frame. The design of baseband processing on these
platforms is thus a major challenge for which various pro-
cessing and real-time scheduling techniques have been pro-
posed.

In this paper, we implement a medium-scale C-RAN-type
platform and conduct an in-depth analysis of its real-time
performance. We find that the commonly used (e.g., par-
titioned) scheduling techniques for wireless frame process-
ing are inefficient as they either over-provision resources or
suffer from deadline misses. This inefficiency stems from
the large variations in processing times due to fluctuations
in wireless traffic. We present a new framework called RT-
OPEX, that leverages these variations and proposes a flex-
ible approach for scheduling. RT-OPEX dynamically mi-
grates parallelizable tasks to idle compute resources at run-
time, reducing processing times and hence deadline misses
at no additional cost. We implement and evaluate RT-OPEX
on a commodity GPP platform using realistic cellular work-
load traces. Our results show that RT-OPEX achieves an
order-of-magnitude improvement over existing C-RAN sched-
ulers in meeting frame processing deadlines.

Keywords

Cellular networks; Cloud-RAN; Real-time scheduling

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’16, December 12-15, 2016, Irvine, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4292-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2999572.2999591

1. INTRODUCTION

The baseband architecture of today’s wireless networks is
highly inefficient. Basestations use hardware that is usually
proprietary, expensive, and difficult to upgrade. More impor-
tantly, the hardware resources (such as CPUs, DSPs, etc.) at
each basestation are provisioned for their peak usage. This
often results in severe resource-underutilization, as wireless
traffic is known to exhibit significant spatial and temporal
fluctuations within a network [19]. Moreover, as network
density increases with deployment of small cells, the oper-
ating costs for the maintenance of the hardware (cooling,
site visits, etc.) increases rapidly. Consequently, wireless
operators are decoupling baseband processing from bases-
tations and implementing it in a centralized pool of com-
pute resources. The idea is to perform radio access network
(RAN) functions in a cloud or a datacenter, where resources
can be managed more efficiently. This approach, also known
as Cloud-RAN (C-RAN), has received considerable attention
from the industry as a way to reduce network costs [2, 19].

C-RAN attributes most of its advantages to resource pool-
ing in which the aggregate workload of a group of basesta-
tions is processed collectively. Resource pooling has been
shown to achieve 22% reduction in compute resources [15].
However, the biggest challenge in a C-RAN comes from
the timing constraints of frame processing. For example, in
LTE, a basestation must process a received subframe within
a hard deadline of 3ms before sending an acknowledgment.

Meeting deadlines is inherently tied to the design of the
wireless frame processing, particularly the scheduling of fra-
mes on available processors and the degree of parallel pro-
cessing. A scheduler must handle wireless frames that arrive
periodically at a fixed rate (every 1ms in LTE) by assign-
ing each frame to a computing resource, where each frame
has a hard processing deadline. On the other hand, par-
allelism is another design dimension that enables real-time
frame processing. A typical baseband chain consists of sig-
nal processing blocks, such as FFT, equalizer, and decoder;
each of these blocks can be broken down into independent
(sub)tasks that can execute concurrently. For instance, FFT
operations can run in parallel across different antennas or
symbols while well-known parallel algorithms can be ap-
plied to Turbo decoding [24].
State-of-the-Art. Existing solutions utilize different schedul-
ing schemes to meet the C-RAN’s timing constraints; these

fall under partitioned scheduling [15, 31, 36]. Partitioned
schedulers employ an upper bound on the frames’ process-
ing time (a.k.a. the worst-case execution time (WCET)) as
the fixed processing time, which enables the design of opti-
mal scheduling of basestations on multiple processors — a
problem known to be NP-complete [11–13, 18, 22, 26, 28].

On the other hand, one could also use a global scheduler
which maintains a shared queue and assigns each incoming
frame to the next available processor according to a prior-
ity mechanism, such as first-in-first-out (FIFO) or earliest-
deadline-first (EDF). Global schedulers are flexible in that
they adapt to the available number of cores and the process-
ing time variations [11, 22, 28].

Other existing systems [32,35] exploit parallelism by split-
ting the baseband processing into parallel subtasks that can
be executed on a large number of CPU cores. By achieving
fined-grained parallelism and thus reduced processing times,
scheduling incoming frames becomes straightforward as an
incoming frame can finish processing before the next frame
arrives.
Shortcomings. The assumption of fixed processing time, al-
beit being simple, does not hold in practice. Both basestation
traffic and wireless channel state exhibit significant tempo-
ral and spatial variations that result in varying subframe pro-
cessing times. For example, Fig. 1 shows the workload vari-
ations of Band-13 and Band-17 LTE basestations (in down-
link) measured over a 50ms interval in a metropolitan re-
gion. As shown in the figure, the workload varies consid-
erably between two consecutive subframes of a basestation,
that are transmitted every 1ms, in addition to variations across
the two basestations. Therefore, a partitioned scheduler that
relies on WCET (corresponding to peak load), will over-
provision compute resources [27]. A global scheduler avoids
the pitfalls of the partitioned scheduler by adapting to the
variable processing time and available compute resources.
Nevertheless, such schedulers are known to suffer from high
runtime overhead (due to cache thrashing) [14].
Problem Statement. The compute resources in a typical C-
RAN are made up of interconnected physical or virtual ma-
chines running on general-purpose processors (GPPs) and
optionally, dedicated hardware accelerators. Similar to exist-
ing studies on C-RAN scheduling [15], we adopt the separa-
tion principle and decouple the problem of assigning bases-
tations to computing nodes of a C-RAN from the problem
of scheduling a subset of basestations on a single comput-
ing node. In this paper, we focus on the latter problem
of scheduling tasks on a multiprocessor host, where each
task represents a subframe decoding process of a basestation.
In a C-RAN, the deadline misses result from the compute
node not being able to decode a subframe within a deadline.
In particular, we address the problem of reducing deadline
misses at the node level by improving the performance of
C-RAN schedulers.
Proposed Approach. To address the shortcomings of exist-
ing schedulers, we propose RT-OPEX (Real-Time OPpor-

tunistic EXecution), a new framework that combines offline
scheduling with runtime parallelism. It minimizes deadline-
misses of wireless frame processing by utilizing free CPU

10 20 30 40 50
0

0.5

1

time (ms)

n
o

rm
a

liz
e

d
 l
o

a
d

BS 1
BS 2

Fig. 1: Variations in cellular load traces.

cycles at runtime to migrate parallelizable tasks to idle cores.
The design of RT-OPEX is based on the premise that parti-
tioned scheduling is unable to exploit free CPU cycles, while
designing an offline scheduling algorithm with parallel pro-
cessing is highly intractable. RT-OPEX treads the middle
path and adapts offline partitioned scheduling at runtime to
utilize the idle CPU cycles.
RT-OPEX vs. Resource Pooling. Existing C-RAN litera-
ture [15, 19] has suggested resource pooling in which the
statistical information of basestation loads is utilized to ag-
gregate processing. We highlight that RT-OPEX is another
variant of resource pooling, except that it consolidates pro-
cessing at much finer time scales. Specifically, it utilizes the
load variations of the order of subframes (1ms) to migrate
processing on the compute platform. As a result, it max-
imizes the utilization of the available resources. However,
unlike resource pooling, it has the advantage of making no
assumptions about the prior knowledge of the load and traf-
fic variations.

We evaluate the performance of RT-OPEX with other
well-known schedulers: partitioned and global. For accurate
evaluation, we implement a medium-scale testbed compris-
ing 16 radios (frontends), off-the-shelf GPP platform, and
Ethernet infrastructure. We profile our implementation to
develop an end-to-end (e2e) model for processing that in-
cludes transport and processing latency of a wireless frame.
Further, we evaluate the merits and demerits of each schedul-
ing scheme under different system configurations, traffic loads,
and channel conditions. Our implementation is available as
an open-source package [9] that allows comparison of the
performance of different C-RAN schedulers. Our results
show that RT-OPEX, compared to existing partitioned and
global scheduling schemes, reduces the deadline-miss rate
by more than orders-of-magnitude.
Contributions. This paper makes the following contribu-
tions:

• development of an e2e model for characterizing the
wireless frame processing times and the deadline-miss
event;

• design, implementation, and evaluation of a flexible
scheduling algorithm, RT-OPEX, which reduces dead-
line misses; and

• comparison of RT-OPEX with different schedulers for
a medium-scale testbed under realistic workloads and
scenarios.

Fig. 2: C-RAN model for processing.

Organization of the paper. The rest of the paper is orga-
nized as follows. We present an end-to-end model of C-
RAN, including frame processing and transport in Section 2.
Section 3 describes the design and implementation of possi-
ble schedulers including our proposed RT-OPEX scheduler.
Section 4 presents the evaluation results of our implemen-
tation. Section 5 discusses the features of the implemented
schedulers. Finally, we discuss the related work in Section 6
and conclude the paper in Section 7.

2. END-TO-END MODEL

We assume a pure software-based C-RAN where the en-
tire baseband processing (or L1) is carried out on general-
purpose processors (GPPs) or virtual machines (VMs). Fig. 2
shows the main elements in a C-RAN deployment where
baseband (or IQ) samples from the radios are transported
back and forth over a fronthaul network. We first present
a model to calculate the uplink processing time that allows
us to characterize the deadline-miss event from an end-to-
end perspective. This model is then used to develop C-RAN
scheduling algorithms. We restrict our attention to uplink
processing as it is significantly more time-consuming and
varying than downlink [15, 25].

2.1 Uplink processing

A basestation, in the uplink, processes wireless signals
from multiple antennas to decode user information. The
basic unit of processing in LTE is a subframe (1ms long).
Each subframe can be viewed as a precoded sequence of
14 OFDM (Orthogonal Frequency-Division Multiplexing)
symbols, which is divided into multiple physical resource
blocks (PRBs). The PRBs are then assigned to one or more
users; each user encodes information using a modulation
and coding scheme (MCS) and transmits it in the allocated
PRBs.

The computational load, and therefore, the time to process
a subframe, is determined by the number of users, number
of antennas, allocation of PRBs to users, MCS assignment,
and the number of decoder iterations required to decode user
information. To capture this relationship, we present a linear
model that accurately approximates the processing time. We
first establish the mapping between the MCS and the number
of data bits.

Let us consider the transmission of a single user and let
the subcarrier load, D, denote the ratio of the number of
data bits (packet size) in a subframe to the number of re-
source elements (REs) available in a subframe, where RE is
the basic data carrier unit in an LTE subframe. The packet

size as a function of number of PRBs and MCS is deter-
mined by a lookup table specified in the LTE standard [7].
For 10MHz bandwidth, which has 8400 REs, D varies from
0.16 to 3.7 bits per RE (for 50 PRBs), corresponding to MCS
0 and MCS 27, respectively. The theoretical subcarrier load
is 6 bits per RE when using 64-QAM modulation, but the
realized load is much lower due to the overhead of coding,
pilots and CRC bits.

LTE’s uplink chain consists of commonly used signal pro-
cessing blocks. To calculate the total processing time, one
must model the dependence of each block on the number of
antennas, subcarriers, and other block-specific parameters.
In general, this can be daunting as the uplink chain contains
numerous blocks: FFT/IFFT, channel estimator, equalizer,
demapper, descrambler, rate dematcher, and Turbo decoder.
However, we can construct a simple yet accurate model by
making the following observations: (i) processing time of
blocks that operate on the OFDM symbol level (e.g., FFT,
equalization), including the memory copy, varies linearly1

with the number, N , of antennas; (ii) the processing time
of blocks using the constellation symbols (e.g., demapper,
dematcher) is a function of the modulation order; (iii) the
processing time of decoder is determined by the number of
iterations (denoted by L), the subcarrier load D, and the ob-
servation that the decoder processes D bits per subcarrier in
each iteration.

Thus, the total processing time can be written as:

Trxproc = w0 + w1 ·N + w2 ·K + w3 ·D · L+ E, (1)

where w0, w1 and w2 are constants; E is the error term that
includes modeling error and the variability of the execution
environment, and K is the modulation order of the MCS.
The constants in Eq. (1) are largely implementation- and
platform-specific, as they depend on type of optimizations
(e.g., vectorization) as well as the architecture.

The processing time depends indirectly on the wireless
channel condition through the number of iterations, L, that
are required to decode a packet, i.e., pass the CRC check-
sum. To avoid excessive delay, receivers typically limit de-
coding to at most Lm iterations. Therefore, irrespective of
the channel condition, we obtain an WCET bound on pro-
cessing time by substituting L with Lm in Eq. (1). Note that
the number, L, of iterations is in general non-deterministic
(even for fixed SNR) and may take any value in [1, Lm].

To validate our linear model, we collect data (see §4.2) on
the total uplink processing time of a 10MHz LTE system (50
PRBs) for different MCS (0–27), SNR values (0–30dB), and
different number of antennas. The maximum number, Lm,
of Turbo iterations is set to 4. For each measurement, we
note the load, D, and the iteration count, L, and then apply
a linear regression to determine the model parameters.

Table 1 shows the model parameter estimates obtained
from 4 × 106 measurements on a GPP platform. We also
show the goodness-of-fit metric, r2, in each scenario. The
fitness metric is observed to be close to 0.99, indicating the

1Assuming maximum-ratio combining, the equalization
complexity with spatial multiplexing is N2 [32].

(a) vs. Iterations (N = 2) (b) vs. SNR (N = 2) (c) vs. Antennas (d) Error (E) distribution

Fig. 3: Plots showing the variations in processing time.

w0 w1 w2 w3 r2

GPP 31.4 169.1 49.7 93.0 0.992

Table 1: Model parameter estimates (in µs).

high accuracy of our model. Based on the model parameter
estimates, we can observe, for instance, that each additional
antenna adds 169µs while each Turbo iteration at MCS 27
adds 345µs.

Fig. 3 shows the total processing time as we vary the num-
ber of iterations, SNR, and the number of antennas. From
the plots, it is evident that the processing time exhibits high
variability. For instance, it increases by a factor of 2.8 (from
0.5ms to 1.4ms) as MCS changes from 0 to 27 (Fig. 3(a)).
Further, the total time with four Turbo iterations compared
to two iterations increases the total processing time by more
than 0.5ms, which is consistent with observations made in
previous studies [25, 35]. Note that in Fig. 3(b), decreasing
the SNR from 20dB to 10dB increases the processing time
by more than 50% between MCS 13 and 25. Similarly, for a
fixed post-processing SNR, increasing the number of anten-
nas to 2 adds nearly 200µs to processing time.

In summary, we find that wireless processing is a dynamic
workload that varies with data rates, channel conditions and
the number of antennas used.

Platform Error. Fig. 3(d) shows the distribution of the
error between the model and the actual processing time. In
99.9% of observations, the error is less than 0.15ms. How-
ever, for a few measurements, the error can be as high as
0.7ms. Since the processing runs on a soft real-time system,
the processing could be disrupted due to kernel tasks such
as interrupt handling. The error term could thus be signif-
icant for some observations. Nevertheless, this could also
be attributed to a large model error. To confirm otherwise,
we perform a separate stress test on the processing platform.
We ran the cyclictest [5] latency measurement tool along-
side a benchmark load generated using hackbench [6]. The
cyclictest was run with the highest system priority and was
expected to show a near-constant latency. Fig. 3(d) shows
the latency distribution from the benchmark. The mean la-
tency is 0.2ms, but some of the measurements have a latency
above 0.4ms. We also observe that the order statistics of the
modeling error is roughly similar to the benchmark latency.
For example, 1 in 105 measurements had a latency of more

than few hundred microseconds. This confirms that the dis-
tribution of error term in Eq. (1) is mostly influenced by the
platform and not by the model error.

2.2 Parallelism

While our model provides the total processing time, it
does not show the processing times of individual blocks.
For simplicity, we assume the processing chain comprises of
three sequential tasks: FFT, demod, and decode, where the
demod task comprises channel estimation, channel equal-
izer and constellation-demapper; and decode task includes
rate-dematcher, de-scrambler, and Turbo decoder. Similar to
Eq. (1), one can obtain a model for the processing time of
each block.

Thus far, we have modeled processing time for a single
thread running on a single core. However, it is possible
to exploit different levels of parallelism, e.g., antenna-level,
symbol-level and subcarrier-level parallelism, by making use
of multiple CPU cores [35]. The FFT task that runs on each
of the 14 OFDM symbols of each antenna is easy to par-
allelize. Similarly, channel equalization that runs on each
OFDM symbol can be parallelized. Turbo decoding which is
the most time-consuming operation can be parallelized over
code-blocks, where decoding and CRC check can be done
independently on each code-block [7]. For instance, at MCS
27, LTE utilizes 6 code-blocks all of which can be decoded
concurrently.

Fig. 4 shows the processing times of FFT and decode tasks
when it is parallelized over two cores. We can run FFT on 7
OFDM symbols on each core, and nearly halve the process-
ing time (note the maximum overhead of 6µs). In the decode
block, as seen in Fig. 4(b), parallelizing the Turbo decoding
reduces the processing time by almost 310µs, from 980µs to
670µs.

Based on these observations, Fig. 5 shows a general break-
down of the processing of a subframe into tasks, and further
into subtasks. For clarity, each task is shown to be com-
pletely parallelizable. For example, the FFT task can be par-
allelized by executing the FFT operation of each antenna’s
samples (an FFT subtask) on a different core. Another ex-
ample is the equalization task, which can be performed in-
dependently (thus parallelized) for each group of subcarri-
ers (an equalization subtask). Although a certain task might
be parallelized, all of its subtasks must complete execution
before moving on to the next stage. This establishes a de-

(a) FFT (b) Decode

Fig. 4: Task execution times on multiple cores.

Subtask 1

Subtask 2

Subtask k

Task j (e.g., Decode)

.

.

.

Subtask 1

Subtask 2

Subtask n

Task i (e.g., FFT)

.

.

.

...

tp

. . .P

subtasks

Fig. 5: Breakdown of subframe processing into tasks and
subtasks.

pendency/precedence constraint between the different tasks
involved in the subframe decoding. So, tasks have to execute
in order to ensure correct decoding results. For the rest of the
paper, we assume that the execution time of tasks (subtasks),
except for the decoder, is deterministic.

2.3 Transport Latency

The transport of IQ samples from the radio front-ends to
the cloud involves two separate networks as shown in Fig. 2.
The fronthaul network, deployed using an optical fiber net-
work, connects the radios to an optical switch located in the
cloud. Various standards such as CPRI [4] have been pro-
posed for transport over fronthaul networks. Also, a cloud
network connects the optical switch to the pool of GPPs and
VMs. The architecture of the cloud network is similar to a
datacenter network (e.g., fat-tree topology) and includes ag-
gregation and top-of-rack switches [19].

A wireless subframe incurs both fronthaul and cloud la-
tencies. The fronthaul latency is a function of the length of
the fiber (propagation time of light in fiber is approximately
5µs/Km) and the overhead of optical switching. While the
exact fronthaul specifications are still under consideration,
it is expected that the distance between remote radios and
the cloud can be up to 20–40Km [2], resulting in a one-way
propagation delay of 0.1–0.2ms excluding the overheads of
(de)-packetization and cloud transport delay. While the fron-
thaul network has a fixed delay and almost negligible jit-
ter [19], the cloud transport latency is less deterministic as it
involves a mix of hardware, software and virtualized inter-
faces. To see the impact of the cloud network, we measure
the one-way latency (measured from the round-trip time) be-
tween an external host and cloud resource. The host and
the cloud resource are connected over 1/10 GbE Ethernet

Fig. 6: Distribution of cloud network delay.

Fig. 7: One-way transport latency for GPP vs. number of
antennas for 10GbE.

through a switch. We obtain the measurements by sending
1000 packets per second (LTE processes 1000 subframes per
second) between the host and the cloud resource.

Fig. 6 shows the distribution of one-way cloud latency for
GPP platform with 1 and 10Gbps Ethernet network, respec-
tively. The mean transport latency is around 0.15ms. How-
ever, this latency has a long tail distribution where around
one in 104 packets, for both 1GbE and 10GbE connections,
has a latency more than 0.25ms. These observations imply
that using the mean statistic of the transport latency is not
good enough to provide latency guarantees.

To emulate C-RAN’s transport network, we build a medium-
size testbed of 16 WARPv3 radios that are connected using
Ethernet to an off-the-shelf GPP. The radios are connected
via 1 GbE port and then aggregated using a 1/10 GbE switch
into GPP’s 10GbE port. We use the CWARP transport li-
brary [20] to implement the read and write operations. Fig. 7
shows the one-way transport latency as we vary the number
of antennas/radios and the bandwidth. In the 5 MHz case,
we observe that the maximum latency is 620µs while it ex-
ceeds 1000µs (or 1ms) for 10MHz bandwidth. Since LTE
frames arrive every 1ms, to prevent queuing delay, at most 8
antennas at 10 MHz can be supported on the GPP.

2.4 Deadline-miss

Once an uplink subframe is received at the radio fron-
tends, an ACK or NACK response must be included in the
downlink subframe that is transmitted exactly 3ms later. How-
ever, as illustrated in Fig. 8, not all of 3msis available for Rx
processing. For example, subframe N received by the bases-
tation (after acquisition) in the uplink needs to acknowledged
by subframe N + 4 in the downlink. The Tx processing that
encodes the response subframe cannot wait indefinitely for
the Rx to finish. We assume the Tx processing starts 1ms be-

Fig. 8: Example sequence of subframes in LTE showing the
Rx and Tx processing timelines.

fore the actual over-the-air transmission of downlink frame2.
As a result, only 2ms is effectively available for Rx process-
ing, which includes the transport delay from radios to the
cloud.

Formally, we can express the end-to-end timing require-
ments as:

Trxproc +

RTT/2
︷ ︸︸ ︷

Tfronthaul + Tcloud ≤ 2ms (2)

where Tfronthaul is the fixed fronthaul latency and Tcloud

is the cloud network latency. For ease of notation, the com-
bined transport latency is denoted by RTT/2. One can rewrite
Eq. (2) using the model given in Eq. (1). Furthermore, we
can use the resulting equation to calculate the probability
of a deadline-miss event. Assuming the fronthaul latency
is fixed, the calculation requires the underlying distribution
of the network latency and platform error. Since the exact
distribution is difficult to model, we can use the empirical
distribution obtained from separate network and stress tests.

3. C-RAN SCHEDULING

In what follows, we discuss the different approaches to
scheduling subframes in C-RAN. We also present the design
and implementation of RT-OPEX, a novel scheduling ap-
proach that reduces the deadline-miss rate in wireless frame
processing.

A typical C-RAN compute resource consists of two main
components: transport and processing. The transport com-
ponent makes an LTE subframe available every 1ms for pro-
cessing. The processing component, on the other hand, re-
ceives these subframes and attempts to decode each of them
within the available processing time budget. Specifically, the
processing time of each subframe, Trxproc, should be less
than the processing budget Tmax, such that

Trxproc ≤ Tmax := 2ms− (RTT/2). (3)

The compute resource in a C-RAN can be viewed as a
multiprocessor host executing a set of processing threads,
with each thread continuously running on a single core. The
role of a scheduler is then to assign tasks for each processing
thread, where a task represents a subframe processing event.
Its design takes as inputs the number of available processing
cores along with the number of assigned basestations.

2Consistent with OpenAirInterface [8] implementation

(0,0)core 0 (0,2)

New subframe

proc. deadline proc. deadline

core 1 (0,1) (0,3)

proc. deadline proc. deadline

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms

missed proc. deadline

(0,4)

proc. deadline

6 ms

RTT/2

Fig. 9: An example of a partitioned schedule on two cores.
Notation (i,j) refer to processing the jth subframe of the ith

basestation.

3.1 Conventional Scheduling Approaches

There are two types of schedulers: partitioned and global.
Described below are their design and implementation.

3.1.1 Partitioned Scheduler

Partitioned schedules are usually determined offline; each
incoming subframe is assigned to a core based on a pre-
determined schedule. Such schedules have the advantages
of providing statistical real-time processing guarantees and
generating deterministic schedules.

To design the partitioned schedule, we utilize the process-
ing budget Tmax (note that Tmax < 2ms) as the execution
time of each subtask. If the actual execution time exceeds
Tmax, then a deadline-miss will occur. The scheduler as-
signs ⌈Tmax⌉ cores for each basestation. Assuming there are
M basestations to schedule the processing of subframes, for
a basestation of id i (0 ≤ i ≤M − 1), it maps the subframe
of index j to core i ∗ ⌈Tmax⌉+ j mod ⌈Tmax⌉.

As a basestation receives a new subframe each 1ms, the
partitioned scheduler schedules two subframes on the same
core each ⌈Tmax⌉ ms. This guarantees each subframe to
have ⌈Tmax⌉ ms of available processing time on the core it
is assigned to, which is larger than its upper bound of Tmax

ms. Fig. 9 shows an example partitioned schedule on a 2-
core host (the deadline-miss event in the figure will be dis-
cussed in Section 3.2). In this example, ⌈Tmax⌉ = 2, so the
partitioned scheduler assigns the subframes in a round-robin
fashion on the two cores each 1ms.

3.1.2 Global Scheduler

We utilize a single queue shared across basestations to im-
plement the global scheduling of subframes on a single com-
puting node. The queue is realized with a fixed-size ring-
buffer that holds the incoming subframes from the bases-
tations. A scheduling thread runs on a separate core and
dispatches subframes from the queue to the available cores
(each running a processing thread) for processing accord-
ing to EDF schedule. Note that EDF is equivalent to FIFO
scheduling when all basestations have the same transport de-
lay, since all subframes have the same deadline Tmax.

Each core will process at most one subframe at a time. If
the processing does not end before the deadline, the process-
ing thread terminates the ongoing task and goes to an idle
state. It then waits for the next dispatched subframe. Fig. 10
shows an example global schedule of 2 basestations on a
2-core host. In this example, when the processing finishes

(0,0)core 0 (0,1)

core 1 (1,0) (0,3)

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms

missed proc. deadline

(1,2)

(0,2)

6 ms

(1,1)

(1,3)

(1,4)

(0,4)

(1,5)

Fig. 10: An example of a global schedule of two basesta-
tions on two cores.

before the next subframe arrives, no queuing takes place, as
seen at t = 1ms. On the other hand, at t = 4ms, the 4th

subframe of basestation 0, is queued and only dispatched at
t = 5ms, so that it misses its processing deadline (at 6ms).

Next, we present RT-OPEX, which builds on top of a par-
titioned scheduler and utilizes idle processor cycles to reduce
deadline-misses.

3.2 RT-OPEX

Three characteristics define the subframe processing tasks
— they are periodic, have non-deterministic execution times,
and require real-time constraints to be met. Due to the non-
deterministic nature of wireless frame processing, a parti-
tioned scheduler cannot account for deadline-misses or idle
times of the cores at design time. Moreover, subtasks com-
prising a task (e.g., Turbo decoding) exhibit highly dynamic
execution times. A partitioned scheduler considering each
subtask as an independent execution unit still suffers from
the same issues of potentially missing deadline and idle cores
(in addition to the complex scheduler design from prece-
dence constraints).

For example, as shown in Fig. 9, the processing time,
Trxproc, of a frame might take time less than ⌈Tmax⌉, so
that the core will be idle for the amount of time equal to
⌈Tmax⌉ − Trxproc. On the other hand, in extreme cases,
Trxproc will be larger than Tmax. This event will force a
scheduler to drop the subframe to ensure the schedulability
of incoming subframes, causing a deadline-miss. Thus, the
processing thread (running at each core) alternates between
two states: active and waiting. The active state corresponds
to the case when it is processing a subframe (darkened por-
tions of Fig. 9). The waiting state, on the other hand, cor-
responds to the case when it is not performing any active
processing (empty portions of Fig. 9).

3.2.1 RT-OPEX Design

The design of RT-OPEX is inspired by an intuitive obser-
vation: if the processing thread of core 1 in Fig. 9 were able
to utilize the idle cycles of core 0, then it would not have
missed its deadline.

RT-OPEX opportunistically executes a portion of a pro-
cessing task on another idle core, which we refer to in the
rest of this paper as “migration”. RT-OPEX is independent
of any partitioned scheduler employed underneath. As long
as multiple processing threads are running on different cores,
there will be time intervals during which the active and wait-
ing states of these threads will overlap. RT-OPEX exploits

(0,1)core 0

core 1 (0,2)

1 ms 2 ms

Migrate

task

Result

ready

Process migrated task

3 ms

(0,0)

Waiting state

Fig. 11: An example scenario of RT-OPEX showing migra-
tion between two cores.

No avail.

 cores
1. Wait

migrated

task

2. Perform

migrated

task

3. Received

subframe

7.

ACK/NACK
4. process

5. Migrate

task
6. Recovery

available

cores

preempted

Migrated

task arrives

Preempt –

result

 not ready

Done –
result ready

Result

ready

Result

not ready

Deadline

check

Waiting State Active State

Fig. 12: The state diagram of the processing thread in RT-
OPEX.

this phenomenon to decrease processing time, reduce the
deadline-miss probability, and improve performance.

A. High-Level Description: At a high level, RT-OPEX
migrates a subtask from a processing thread in its active state
to another processing thread (running on a different core) in
the waiting state. In the rest of this paper, we refer to the
subframe processing task assigned to a processing thread by
the scheduler as the processing task, and the subtask (part of
the processing task) migrated by RT-OPEX to another core
as the migrated subtask.

Fig. 11 shows an example of migration. At 2.3ms, RT-
OPEX finds that the processing thread on core 0 is in its
waiting state. So, it migrates a subtask from the processing
task of core 1 to run on core 0. At that point of time, the
processing task will be executing in parallel on both cores
(with independent subtasks executing on both cores). After
the migrated subtask finishes execution, it makes its result
ready for the processing thread to consume it. The process-
ing task then completes execution on core 1 and the process-
ing thread on core 0 returns to its waiting state.

B. Migration Mechanism: Fig. 12 shows the state dia-
gram of RT-OPEX. A processing thread alternates between
two states, active and waiting. In its active state, it executes
the processing task, and might execute migrated subtask(s)
in its waiting state.

1. Waiting State: When the processing thread is in its
waiting state, it waits for a migrated subtask for execution
(from another processing thread — state 1). When such a
subtask arrives, the processing thread starts executing the
migrated subtask immediately (state 2), where two of the
following events might happen.

1. The migrated task completes before a new processing
task is available, i.e., before it gets preempted. RT-

Algorithm 1 The Migration Algorithm in RT-OPEX.

1: Input: P subtasks, each subtask has tp proc. time.
2: Input: R cores, each core has fck > 0 of free time.
3: Input: δ, cost of migrating a subtask to another core.
4: S ← P ⊲ S is # of left subtasks (not migrated)
5: maxoff ← 0 ⊲ max # of migrated subtasks per core
6: while S > 1 and k ≤ R do

7: limoff = ⌊ fck
tp+δ
⌋ ⊲ # of subtasks can be migrated

8: noff ← min(S −maxoff , limoff , ⌊
S
2
⌋)

9: maxoff ← max(noff ,maxoff)
10: Migrate noff subtasks to kth core
11: S ← S − noff

12: k ← k + 1
13: end while

OPEX sets a result ready flag for the “remote” pro-
cessing thread (the one migrating a subtask) to con-
sume the result. The thread then returns to waiting for
a migrated subtask (state 2→ state 1).

2. The migrated subtask is preempted at the deadline be-
fore it is completed. This indicates that a new pro-
cessing task is available for the processing thread. RT-
OPEX sets a result not ready flag and switches the pro-
cessing thread to the active state (state 2→ state 3).

While waiting for a migrated subtask (at state 1), the trans-
port component can preempt the processing thread to indi-
cate that a new processing task is available (state 1→ state
3).

2. Active State: When the processing thread receives a
new processing task, it switches to the active state, and starts
processing the subframe (state 4).

The processing thread starts processing the subframe un-
til it reaches a parallelizable task which offers an opportunity
for migration to idle cores (such as FFT or decoder). As the
arrival of subframes is deterministic, the underlying sched-
uler should be able to inform when each idle core will be
preempted and switched to active processing. As such, the
scheduler can compute the potentially available time budget
for migration on each idle core.

RT-OPEX uses this knowledge along with the model of
the subtask execution time to decide how many subtasks to
migrate to each core (state 4→ state 5) by applying Alg. 1.
RT-OPEX follows a greedy approach; it tries to migrate
subtasks as much as possible with one caveat. The time
to execute local subtasks (i.e., those that are not migrated)
should be larger than the maximum time of executing mi-
grated subtasks at each idle core (including the migration
overhead). This serves to satisfy one important requirement
of RT-OPEX. The performance of RT-OPEX must be equal
to or strictly better than the case without use of migration.
By the time the processing thread finishes executing the lo-
cal subtasks, all the migrated subtasks must have finished
execution so that it can combine their results without any
delay. It is worth noting that, in our model, we associate
each subtask (comprising a parallelizable task) with a fixed

and deterministic execution time. So, we can treat each sub-
task as a single execution unit. In particular, the number of
migrated subtasks to a core k, noff , should satisfy the fol-
lowing requirements.

R1. It must be less than the maximum number, k. of sub-
tasks core can accommodate (given in line 7 as limoff),
such that noff ≤ limoff . limoff includes the subtask
execution time as well as the subtask migration cost:
δ, such that: noff ≤ ⌊

fck
tp+δ
⌋, where fck is the avail-

able time budget at core k, and tp is the subtask ex-
ecution time (computed from our model). δ includes
costs incurred during subtask migration such as cache
thrashing and accessing the CPU states.

R2. The number of subtasks left after migrating S − noff

should be larger than the maximum number of sub-
tasks already allocated to any other core such that S −
noff ≥ maxoff . It follows that noff ≤ S−maxoff .

R3. The number of un-migrated subtasks, S−noff , should
be larger than the number of subtasks migrated to core
k. We need this condition as the previous step doesn’t
count in the subtasks to be migrated to core k. We then
have S − noff ≥ noff so that noff ≤ S/2.

In line 8, Alg. 1 combines the three requirements so that
noff = min(S −maxoff , limoff , ⌊

S
2
⌋). After calculating

noff , RT-OPEX migrates noff subtasks to core k. It re-
peats the same process until either the number of subtasks
for migration or the number of cores is exhausted.

Thanks to Alg. 1, the processing thread does not wait for
any migrated subtask for completion. By the time the pro-
cessing thread finishes the local subtasks, all migrated sub-
tasks are completed in the ideal case. Each migrated subtask
is associated with a flag that indicates its completion status
(result ready vs. result not ready). The processing thread
checks this value to decide whether to engage the recovery
procedure or not. If all migrated subtasks have completed
execution, the processing thread can use their results and
move on with the execution (state 5→ state 4). On the other
hand, if the local processing is complete and at least one mi-
grated subtask is not completed (has its flag set to result not

ready), the processing thread goes to recovery state (state 5
→ state 6).

Execution of the migrated subtask can be incomplete be-
cause its execution can take longer than anticipated due to
background and other kernel processes. The recovery state
handles the case of such inaccurate migration decisions by
RT-OPEX. It involves computing the results for those in-
complete migrated subtasks. This ensures that the perfor-
mance of RT-OPEX will be no worse than the baseline case.
In the baseline case, all subtasks are executed serially which
corresponds to the worst-case scenario of RT-OPEX (no mi-
grated subtask completed execution).

After all subtasks corresponding to a single processing
task are completed, the processing thread continues execut-
ing the rest of the decoding tasks. It repeats the same proce-
dure for any task that can be parallelized. RT-OPEX always

monitors whether the processing thread violated the task’s
processing deadline (Trxproc > Tmax). Depending on the
deadline check status, the processing might result in either
an “ACK” or “NACK” message to the radio (state 7) after
execution has completed. RT-OPEX then switches the pro-
cessing thread back to the waiting state.

4. IMPLEMENTATION AND EVALUA-
TION

We implement RT-OPEX and rest of the schedulers on a
testbed of software radios, Ethernet, and commodity server
hardware. In this section, we give the details of the imple-
mentation, the evaluation platform, and performance evalu-
ation of the schedulers.

4.1 Implementation

We have built a multiprocessor scheduler for a single com-
puting resource of a C-RAN from the ground up. Our sched-
uler utilizes the low-level pthread library to implement
the processing and transport components. Each thread is
mapped to a single kernel-level thread (1:1 mapping), and
is bound to a single processing core (overrides OS thread-
scheduling). The transport threads run on a dedicated set of
cores that are separate from processing cores. The transport
and the processing threads are synchronized using semaphores.
As the transport threads are critical to maintaining synchro-
nization between the radios and the GPP (triggered every
1ms), we use a one-way locking mechanism where process-
ing threads wait for the transport threads (not the other way
around). The processing threads are signaled on two occa-
sions: (1) when the transport threads finish writing to the
sample IQ buffer indicating the arrival of a new subframe,
and/or (2) when a migrated subtask is available from an-
other processing thread. We implement a common watchdog
timer that maintains a global reference time that allows de-
tecting deadline-misses across the cores. We also implement
a shared data structure, indexed by each core ID, to main-
tain the CPU states (active, idle — with remaining time) that
each processing thread (of each core) updates and polls.

Our scheduler integrates with the OpenAirInterface (OAI)
PHY library [8]. OAI is an open-source software implemen-
tation of LTE that includes both RAN and Evolved Packet
Core, and implements all the PHY-layer functions of LTE
Rel 10. OAI implements its out-of-the-box partitioned sched-
uler for uplink and downlink processing, but it is not amenable
to PHY-layer migration. Therefore, we modularize the OAI
processing and write an abstraction layer that abstracts the
PHY functions at task level, labeled as taskX, and sub-
task level, labeled as subtaskX, where X ∈ {FFT, demod,
decode}. Each of the subtasks can be executed indepen-
dently, and thus, provides the basis for parallelism. Since
OAI implements a complete baseband chain, our abstraction
code is tested using traces from OAI simulators to make sure
that the processing is reproducible. This step was essential
to ensure the correct functioning of the scheduler when the
OAI data structures are duplicated for multiple basestations.

Using our system design, partitioned scheduling is real-

Fig. 13: Implementation frame-
work for RT-OPEX.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

normalized load

C
D

F

BS 1

BS 2

BS 3

BS 4

Fig. 14: Basestation
load distribution.

ized by fixing the threads on which basestation’s subframes
are processed, i.e., when a particular subframe is received
from the transport, only the corresponding processing thread
is notified. In case of global scheduling, there is no binding
of a basestation to threads, and any idle processing thread
can process an arriving subframe. In RT-OPEX, the mi-
gration of subtasks implies that the some of the subtaskX
routines from the current processing thread are migrated to
a different processing thread. As the global OAI variables
and the baseband samples are held in a shared memory (L3
or main), migration of data is realized by passing the refer-
ences to the memory contents.
Enforcing deadlines. For correct operation of a real-time
system, we must ensure that a frame processing task must
be completed before, or terminated at its deadline. Imple-
menting this in our system is challenging since we abstract
away the low-level PHY routines. One possible solution is
to pass a timer to each OAI function, and constantly check
on the timer. This approach, however, is not practical. In-
stead, we check on the slack time (defined as the available
time before the task’s deadline) before we execute each task;
using our task model, we check if the execution time is less
than the slack time, else we drop the task and the subframe.
The resulting gaps are, however, not used for migration.

Our implementation code is packaged as an open-source
tool that evaluates the performance of different schedulers.
Fig. 13 depicts the implementation framework used in our
evaluation. The tool enables evaluations on different op-
erating systems, including thread scheduling models (e.g.,
Round-Robin and FIFO), real-time kernel, virtualization, etc.
Ultimately, the tool can be used to profile the system per-
formance (deadline-miss rate, load, memory usage) which
can, in turn, help operators design and provision compute
resources for C-RAN.

4.2 Evaluation Platform

We use different state-of-the-art computing and network-
ing platforms in our evaluations. For computing, we use
a general commodity server (i.e.,GPP), a 32-core (hyper-
threading enabled) machine with Intel Xeon E5-2660 2.2
GHz x86 CPUs (SandyBridge architecture), 128GB RAM,
15MB L3 cache, and 1/10 GbE Ethernet ports. The evalu-
ation with virtualization platforms such as containers is left
to future work. To closely match the performance of data-
center networks, we consider 1 GbE and 10 GbE Ethernet
links that are connected to the GPP through an HP 6600 se-
ries Ethernet switch using standard Intel network drivers.

Optimizations. Several optimizations are applied to get the
best computing performance. The OAI workload runs on
an Ubuntu 14.04 low-latency kernel. Considered as a soft
real-time system, the low-latency version is a stable kernel
compared to other hard real-time kernels like RTLinux [10]
which require custom patches. Various optimization fea-
tures, such as SSE3/SSE4 instruction set, O3 flags, etc., are
enabled. Further, the power-saving features and sleep states
available on Intel processors are disabled. This ensures the
CPU cores run at a constant maximum frequency. To mini-
mize disruptions from interrupts, the processing threads are
pinned to dedicated cores and use FIFO scheduling. We use
the OAI timestamps to calculate the processing time.
Data collection. Since publicly available basestation traces
are difficult to obtain, we devise a measurement setup to get
the variations of cellular traffic. We use USRP software ra-
dios and log RF samples off the air on Band-13 and Band-17
LTE downlink channels in a city environment. Specifically,
we log the signal of 4 cellular towers and estimate the load
by correlating with the average signal energy every 1ms.
Fig. 14 shows the distribution of the load variations for the 4
basestations. We then ran the scheduler with IQ traces from
OAI, where the MCS of each subframe is determined by our
basestation load trace. For each experimental setting, we use
an AWGN channel model with a fixed SNR of 30dB (and
varying MCS according to load) and collect the processing
logs of 30000 LTE subframes from each basestation.
Experimental setup. We consider a 4-basestation setup,
each with two antennas (N = 2), running on a GPP plat-
form. We specify the OAI LTE bandwidth to 10MHz, which
corresponds to a sampling rate of 15.36MHz, i.e., each sub-
frame contains 15360 samples. We consider a single user
uplink transmission and assume 100% PRB utilization. It is
worth noting that 100% PRB utilization constitutes a con-
servative scenario of a single user for all subframes. This re-
duces, on average, the opportunities of migrations (resulting
in lower performance gains) as compared to a realistic sce-
nario with multiple users and varying PRB utilization. As
we were not able to locate decodable real-world BS traces
for multiple users, we opted to emulate the BS uplink traf-
fic load through MCS variations and assumed a single user
generates that load. Under this configuration, the nominal
PHY throughput can vary from 1.3 to 31.7Mbps, depending
on the MCS used. Further, we choose ⌈Tmax⌉ = 2, i.e.,
each basestation is assigned 2 CPU cores under partitioned
scheduling.

We first run the processing with our C-RAN testbed with
radios and the Ethernet transport. As mentioned earlier, the
radios in our testbed are WARPv3 SDR boards. From Fig. 7(a),
observe that the one-way latency from radios to the GPP
at 10MHz bandwidth is as high as 0.9ms. This effectively
leaves 1.1ms to process each subframe (which is much less
than the processing time of nearly 1.5ms at MCS 27), re-
sulting in a very high deadline-miss rate. Therefore, to ac-
curately emulate real C-RAN deployments, we replace the
WARP transport with a fixed transport delay (RTT/2) value
ranging from 0.4ms to 0.7ms, that represents various off-
and on-site deployment scenarios. In what follows, we de-

Fig. 15: Deadline-miss comparison of schedulers.

Fig. 16: Gaps and migrations in RT-OPEX.

scribe the C-RAN performance of a GPP platform made up
of a single physical machine.

4.3 Performance comparison

For each transport delay setting, we evaluate the deadline-
miss rate for the four basestations and for each scheduler.
Fig. 15 shows the deadline-miss performance of the differ-
ent schedulers. The main takeaways from the figure are as
follows.
RT-OPEX Performance: RT-OPEX exhibits virtually zero
deadline-miss rate when latency is less than 500µs. To un-
derstand this further, let’s look at Fig. 16. For RTT/2 less
than 500µs, the partitioned scheduler has gaps (only due to
processing time variation) larger than 500µs for 60% of the
processed subframes. RT-OPEX utilizes these gaps to mi-
grate FFT and decoding subtasks as evident from the right
plot of Fig. 16, where 20% of the decode subtasks are mi-
grated. These migrated decode subtasks belong to subframes
with high MCS that are responsible for the deadline misses
in the original partitioned scheduler. By migrating these
tasks, the processing time drops well below 1500µs, which
is less than the processing budget.

As latency increases beyond 500µs, the gaps get narrower,
thus reducing the chances for migrating the decode subtasks.
Nevertheless, RT-OPEX keeps on migrating the smaller size
FFT subtasks, resulting in the deadline-miss rate significantly
lower than that of the partitioned and global schedulers. As
evident from Fig. 15, the deadline-miss rate of RT-OPEX is
one order-of-magnitude better (10−2 → 10−3) than that of
both partitioned and global schedulers.
Partitioned Scheduler: Unlike RT-OPEX, a partitioned
scheduler can’t exploit gaps available because of the pro-
cessing time variations. This is evident from the sudden rise
of the deadline-miss rate when RTT/2 exceeds 400µs. The
available time budget of processing falls below 1600µs. Re-
ferring to Fig. 3(a), the processing time can exceed 1.5ms
for higher MCS values.

Fig. 17: Deadline-misses vs. load (RTT/2=500µs).

Fig. 18: Comparison of processing times of local and mi-
grated tasks.

As a result, most subframes with MCS larger than 20 will
miss their processing deadlines. As RTT further increases
above 400µs, the deadline-miss rate increases, albeit at a
slower rate. Subframes with lower MCS values can be suc-
cessfully decoded within 1.3ms (corresponding to RTT/2 =
700µs).
Global Scheduler: The global scheduler exhibits the most
surprising behavior. We evaluate two global schedulers, one
running with 8 cores while the other utilizes 16 cores. The-
oretically, this scheduler should perform as good as a parti-
tioned scheduler. Both schedulers provide a subframe with
all the time needed to finish decoding before its deadline.

Nevertheless, as evident from Fig. 15, the global sched-
uler (1) performs slightly worse than the partitioned sched-
uler, (2) does not improve when the number of cores doubles
from 8 to 16, and (3) does not exhibit a zero deadline-miss
rate even at the lowest RTT value. As explained later, sev-
eral factors related to the design and execution of the global
scheduler contribute to this surprising phenomenon.

In Fig. 17, we set RTT/2 to 500µs and show the deadline-
miss performance for different subframe loads (correspond-
ing to different MCS values). RT-OPEX’s gains are shown
to be prominent at higher loads (30Mbps and above) where
rest of the schedulers miss deadlines for 100% of the frames.
Therefore, assuming a deadline-miss threshold of 10−2 that
is typical of real-time systems, RT-OPEX can support 15%
higher load (31Mbps compared to 27Mbps) than a default
partitioned scheduler.

4.4 Migration Overhead

The major overhead in migration comes from the transfer
of contents from shared memory. The additional overhead
of maintaining CPU states via a shared data structure is neg-
ligible. Given the complex memory hierarchy of modern
processors, providing a detailed cache analysis is outside of

Fig. 19: Global scheduler as cores are varied.

the scope of this paper. However, we use our abstraction to
calculate the overhead of task migration by simply measur-
ing the time it takes to process a local and a migrated task.
Fig. 18 compares the processing times of the tasks that are
performed locally and that are migrated to and executed on
a different core at runtime. Observe that there is always a
non-zero overhead to migrate a task. For example, for FFT,
the median processing time increases from 108µs to 126µs
when it is migrated, i.e., an 18µs increase. For the decode
task, the overhead is nearly the same at 20µs. Thus, the
cost of migration is a fixed across the subtasks, which corre-
sponds to the fetching of global OAI variables from shared
memory to on-chip/local memory. Note that the subframe
buffer and transport block buffer are both referred within the
OAI eNB data-structure, and therefore, both FFT and de-
code migration (including subtask) involve the same amount
of memory transfer.

Global scheduling, while offering increased flexibility, suf-
fers from high overheads. More interestingly, increasing the
number of cores does not mitigate this (and even decreases
performance). To see this, consider Fig. 19, where deadline-
miss performance saturates and even worsens beyond eight
cores. This is attributed to increased cache thrashing. Each
core in global scheduling processes different basestations ev-
ery few subframes, which leads to frequent flushing of its
memory cache and adds to the processing times, as evident
from the right plot in Fig. 19, which shows the processing
time distribution for MCS 27. From the plot, we observe
that global with 16 cores has a considerably larger process-
ing time (80µs) for more than 10% of the subframes.

5. DISCUSSION

Based on our evaluation of the different scheduling ap-
proaches, we now discuss them in the context of operator
deployments.

A. Overhead: The additional scheduling overhead of a
partitioned schedule is minimal; each subframe is assigned
to a predetermined core without the need of locking or mi-
gration across cores. On the other hand, a global scheduler
incurs higher overhead because of frequent cache trashing.
RT-OPEX incurs the overhead of subtask migration, which
we estimated to be in the order of 20µs for both FFT and de-
code subtasks. RT-OPEX takes this overhead into account
while migrating so as to guarantee feasible migration. Even
with the overhead, we show in §4.3 that RT-OPEX achieves
a significant improvement in deadline-miss performance.

Table 2: Qualitative comparison of related scheduling ap-
proaches in C-RAN.

Migration
Compute

Resources
Granularity

PRAN [31] Yes Dynamic Subtask

CloudIQ [15] No Fixed Task

WiBench [34] No Fixed Subtask

BigStation [32] No Fixed Subtask

RT-OPEX Yes Fixed/Dynamic Subtask

B. Flexibility to resources: Available resources in C-RAN
might change over time as storage, memory, and processor
failures are common in a datacenter running on commodity
hardware [30]. As a partitioned schedule is provisioned to a
set of fixed resources, any change in the available resources
results in a significant performance degradation [16]. Alter-
natively, a global schedule, by virtue of its design, adapts to
the underlying resources without the need to design a new
schedule (Fig. 19). RT-OPEX suffers from the same limita-
tion of a partitioned schedule, but can automatically exploit
any added resources to migrate subtasks.

C. Flexibility to load: From our measurements, we ob-
serve that processing times exhibit millisecond-level vari-
ations due to varying traffic loads and channel conditions
(Fig. 1). However, the partitioned schedule fails to adapt to
varying processing times. When the processing time of a
subframe exceeds the deadline, partitioned schedules drop
the subframe resulting in a deadline miss. This occurs even
though processing on another resource might introduce a
gap. RT-OPEX fills the scheduling gaps by migrating sub-
tasks to the available cores. It, therefore, adapts to the vari-
ations in the load. By design, the global scheduler is inher-
ently flexible to the varying processing time.

D. Generality: The applicability of RT-OPEX is more
significant for resource pooling in C-RAN where multiple
basestations are processed together on a common platform.
Particularly, for a heterogeneous set of basestations and stan-
dards (e.g., cellular-IoT [3]) where the traffic and channel
conditions vary widely across the basestations, RT-OPEX
can easily leverage idle cycles to improve performance.

6. RELATED WORK

Real-time wireless frame processing using software ra-
dios has been an active area of research over the past decade
[25, 29]. Today, there are commercial software implemen-
tations of a fully functional LTE basestation [1]. However,
their performance is nowhere close to dedicated hardware
platforms. With the introduction of C-RAN [2], a slightly
different variant — cloud-based processing — has received
considerable attention. Some of the recent work in C-RAN
has focused on its real-time implementation and scheduling.
In Table 2 we summarize the properties of such approaches
and show how RT-OPEX compares to them.

CloudIQ [15] provides a statistical framework to sched-
ule multiple basestations on a multi-core platform in order

to meet their processing requirements. However, it assumes
fixed processing time (equal to the WCET) for each LTE
subframe and does not take into account the idle compute
cycles generated at smaller timescales. Moreover, CloudIQ
treats each subframe processing task as an atomic execution
unit, generates schedules for a fixed set of resources and pro-
vides no provisions for task migration. PRAN [31], a more
flexible approach to resource management, proposes a pool
of shared compute resources based on the dynamics of the
load. PRAN further breaks each processing task into a set
of subtasks, and allows for subtask migration across CPU
cores. Nevertheless, PRAN’s scheduling decisions are made
before wireless frames are received, and thus cannot account
for processing time variations due to channel conditions.

WiBench [34] is an open source framework that allows
benchmarking of the wireless processing tasks. The authors
analyzed the performance of LTE uplink processing to con-
clude that hardware acceleration is required for subtasks such
as Turbo decoding. In a follow-up work [35], the authors
present a system utilizing four GPUs to achieve real-time
LTE subframe processing. The WiBench framework assumes
fixed compute resources and does not support task migra-
tion. Finally, BigStation [32] provides an architecture for
processing MU-MIMO frames in real time. It is based on
parallelizing the processing subtasks of MU-MIMO and run-
ning them on a compute cluster made of commodity hard-
ware. BigStation, similar to WiBench, assumes a fixed num-
ber of resources at runtime and provides no task migration.

RT-OPEX is different from the above solutions in that
it supports migration at the subtask level. As the scheduling
takes place at runtime, it works with both, fixed and dynamic
nature of compute resources. It can be viewed as a specific
application of work-stealing [17], which is a well-studied
dynamic load-balancing technique for scheduling of parallel
tasks.

The role of virtualization in RAN was described in [23,
25, 33]. A container approach to virtualization was shown
to have a slightly better performance than a hypervisor ap-
proach. In [21], the authors adopt a two-tier model to man-
age a RAN where part of the control that requires less fre-
quent changes goes to a central controller. The design of
a remote radio head and its synchronization with the pro-
cessing units was described in [36]. Finally, [19] and the
references therein provide a comprehensive background on
the state of the current C-RAN technology.

7. CONCLUSION

C-RAN is a promising solution to the problem of eco-
nomically managing the scale of wireless processing in cel-
lular networks. However, meeting frame processing dead-
lines without over-provisioning resources remains a major
challenge. We proposed to meet this challenge with a new
scheduling framework that builds on top of partitioned schedul-
ing and opportunistically exploits the idle processing cycles
for parallel processing of frames. Our evaluation results
have demonstrated its potential in reducing deadline-misses
at no additional cost.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their constructive comments. The work reported in this
paper was supported in part by the NSF under Grants CNS-
1160775 and CNS-1317411.

8. REFERENCES

[1] Amarisoft. http://amarisoft.com/. [Online; accessed
29-Jan-2016].

[2] C-RAN: The road towards green RAN.
http://labs.chinamobile.com/cran/wp-content/uploads/
2014/06/20140613-C-RAN-WP-3.0.pdf. [Online;
accessed 29-Nov-2015].

[3] Cellular networks for massive IoT. http:
//www.ericsson.com/res/docs/whitepapers/wp_iot.pdf.
[Online; accessed 10-Oct-2016].

[4] CPRI Specification V6.1. http://www.cpri.info/
downloads/CPRI_v_6_1_2014-07-01.pdf. [Online;
accessed 29-Nov-2015].

[5] Cyclictest.
https://rt.wiki.kernel.org/index.php/Cyclictest.
[Online; accessed 29-Nov-2015].

[6] Hackbench. http://manpages.ubuntu.com/manpages/
trusty/man8/hackbench.8.html. [Online; accessed
29-Nov-2015].

[7] LTE Physical Layer Procedures.
http://www.etsi.org/deliver/etsi_ts/136200_136299/
136213/08.08.00_60/ts_136213v080800p.pdf.
[Online; accessed 29-Nov-2015].

[8] Open Air Interface. http://www.openairinterface.org/.
[Online; accessed 29-Nov-2015].

[9] RT-OPEX. https://github.com/gkchai/RT-OPEX.
[Online; accessed 10-Oct-2016].

[10] RTLinux. http://rt.wiki.kernel.org/. [Online; accessed
29-Jan-2016].

[11] B. Andersson, S. Baruah, and J. Jonsson.
Static-priority scheduling on multiprocessor. In
Proceedings of IEEE Real-Time Systems Symposium,
rtss, pages 193–202, 2001.

[12] T. Baker and S. Baruah. Schedulability analysis of
multiprocessor sporadic task systems. In S. H. Son,
I. Lee, and J. Y.-T. Leung, editors, Handbook of

Real-Time and Embedded Systems. Chapman Hall/
CRC Press, 2007.

[13] J. Baro, F. Boniol, M. Cordovilla, E. Noulard, and
C. Pagetti. Off-line (optimal) multiprocessor
scheduling of dependent periodic tasks. In
Proceedings of the 27th Annual ACM Symposium on

Applied Computing, SAC ’12, pages 1815–1820,
2012.

[14] A. Bastoni, B. Brandenburg, and J. Anderson. Is
semi-partitioned scheduling practical? In Real-Time

Systems (ECRTS), Euromicro Conference on, pages
125–135, 2011.

[15] S. Bhaumik, S. P. Chandrabose, M. K. Jataprolu,
G. Kumar, A. Muralidhar, P. Polakos, V. Srinivasan,

and T. Woo. Cloudiq: A framework for processing
base stations in a data center. In Mobicom, 2012.

[16] S. R. Biyabani, J. A. Stankovic, and K. Ramamritham.
The integration of deadline and criticalness in hard
real-time scheduling. In Real-Time Systems

Symposium, 1988., Proceedings., pages 152–160, Dec
1988.

[17] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. Journal

of ACM, 46(5):720–748, 1999.

[18] J. Carpenter, S. Funk, P. Holman, A. Srinivasan,
J. Anderson, and S. Baruah. A categorization of
real-time multiprocessor scheduling problems and
algorithms. In J. Y.-T. Leung, editor, Handbook of

Scheduling: Algorithms, Models, and Performance

Analysis. CRC Press LLC, 2004.

[19] A. Checko, H. Christiansen, Y. Yan, L. Scolari,
G. Kardaras, M. Berger, and L. Dittmann. Cloud ran
for mobile networks – a technology overview.
Communications Surveys Tutorials, IEEE,
17(1):405–426, 2015.

[20] K. C. Garikipati and K. G. Shin. Improving transport
design for warp sdr deployments. In Proceedings of

the 2014 ACM Workshop on Software Radio

Implementation Forum, SRIF ’14, 2014.

[21] A. Gudipati, D. Perry, L. E. Li, and S. Katti. Softran:
Software defined radio access network. In
Proceedings of the Second ACM SIGCOMM

Workshop on Hot Topics in Software Defined

Networking, HotSDN ’13, 2013.

[22] J. Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, 2(4):237 – 250, 1982.

[23] C. Liang and F. Yu. Wireless network virtualization: A
survey, some research issues and challenges.
Communications Surveys Tutorials, IEEE,
17(1):358–380, Firstquarter 2015.

[24] R. G. Maunder. A fully-parallel turbo decoding
algorithm. IEEE Transactions on Communications,
63(8):2762–2775, Aug 2015.

[25] N. Nikaein. Processing radio access network functions
in the cloud: Critical issues and modeling. In
Proceedings of the 6th International Workshop on

Mobile Cloud Computing and Services, 2015.

[26] Y. Oh and S. H. Son. Allocating fixed-priority periodic
tasks on multiprocessor systems. Real-Time Systems,
9(3):207–239, 1995.

[27] Z. Shi, E. Jeannot, and J. J. Dongarra. Robust task
scheduling in non-deterministic heterogeneous
computing systems. In Cluster Computing, 2006 IEEE

International Conference on, pages 1–10, Sept 2006.

[28] A. Srinivansan and S. K. Baruah. Deadline-based
scheduling of periodic task systems on
multiprocessors. Information Processing Letters,
84:93–98, 2002.

[29] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang,
Y. Zhang, H. Wu, W. Wang, and G. M. Voelker. Sora:

High performance software radio using general
purpose multi-core processors. In Proceedings of the

6th USENIX Symposium on Networked Systems

Design and Implementation, pages 75–90, 2009.

[30] K. V. Vishwanath and N. Nagappan. Characterizing
cloud computing hardware reliability. In Proceedings

of the 1st ACM Symposium on Cloud Computing,
SoCC ’10, pages 193–204, 2010.

[31] W. Wu, L. E. Li, A. Panda, and S. Shenker. PRAN:
Programmable radio access networks. In Proceedings

of the 13th ACM Workshop on Hot Topics in Networks,
HotNets-XIII, pages 6:1–6:7, 2014.

[32] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu,
J. Zhang, and Y. Zhang. Bigstation: Enabling scalable
real-time signal processingin large mu-mimo systems.
In SIGCOMM, 2013.

[33] L. Zhao, M. Li, Y. Zaki, A. Timm-Giel, and C. Gorg.
Lte virtualization: From theoretical gain to practical

solution. In Proc 23rd ITC, 2011.

[34] Q. Zheng, Y. Chen, R. Dreslinski, C. Chakrabarti,
A. Anastasopoulos, S. Mahlke, and T. Mudge.
Wibench: An open source kernel suite for
benchmarking wireless systems. In 2013 IEEE

International Symposium on Workload

Characterization (IISWC), pages 123–132, Sept 2013.

[35] Q. Zheng, Y. Chen, H. Lee, R. Dreslinski,
C. Chakrabarti, A. Anastasopoulos, S. Mahlke, and
T. Mudge. Using graphics processing units in an lte
base station. Journal of Signal Processing Systems,
78(1):35–47, 2015.

[36] Z. Zhu, P. Gupta, Q. Wang, S. Kalyanaraman, Y. Lin,
H. Franke, and S. Sarangi. Virtual base station pool:
Towards a wireless network cloud for radio access
networks. In Proceedings of the 8th ACM

International Conference on Computing Frontiers,
2011.

