
Prevention of Information Mis-translation by a
Malicious Gateway in Connected Vehicles

Kyusuk Han and Kang G. Shin

Real-Time Computing Laboratory
EECS/CSE, The University of Michigan

Ann Arbor, MI 48109-2121, U.S.A.
{kyusuk,kgshin}@umich.edu

Abstract—As connectivity is becoming a norm for modern ve-
hicles, data exchange between in-vehicle components and external
entities is becoming common. However, car makers is concerned
about a third-party’s extraction of their proprietary vehicle data.
To address this concern, an intermediate ECU (or a gateway) is
introduced in between internal and external networks to translate
proprietary in-vehicle data to rich type data, thus preventing the
exposure of raw in-vehicle data. However, the translation relies
solely on the gateway which can be a direct target of cyber
attacks, making it difficult to trust the data passed through the
gateway. This, in turn, requires authentication of the translated
data. We present a new, effective protocol that provides secure
communications between the vehicle’s internal components and
external entities against a compromised gateway.

I. INTRODUCTION

Recent advances of in-vehicle technology have paved the
way to connect vehicles to the external world. Car makers
are adding various connectivity and telematics solutions for
passenger and fleet vehicles. They have also introduced in-
tegrated solutions that either use an embedded modem or
connect to the Internet via the driver/passenger’s cellphone
(e.g., GM OnStar, Ford Sync). Besides, fleet-solution providers
offer solutions attachable to the vehicle’s on-board diagnostics
(OBD2) port (e.g., Delphi Connect and Zubie). As a result,
in-vehicle components/subsystems are being connected to an
external communication channel for remote diagnostics and
triggering on-board functions from a remote site.

Externally-connected devices (e.g., cellphones/tablets) col-
lect in-vehicle data from, and inject messages into, in-vehicle
networks. A controller area network (CAN)—the de facto in-
vehicle network—is connected to commonly available external
networks, such as 3G/4G, WiFi, and Bluetooth. The device
between internal and external networks is called an external
interface ECU, or simply a gateway as shown in Fig. 1.

Car manufacturers do not want to expose their intellectual
assets via vehicle connectivity since their in-vehicle message
semantics are usually proprietary. Thus, the gateway translates
in-vehicle data to rich type data (e.g., JSON, XML), conceal-
ing their proprietary data inside the vehicle.

However, the gateway may be compromised and then be-
come a potential threat to vehicle safety and security. That is,
since the transmission from and to an external entity relies

Fig. 1. In-vehicle components are connected to external entities through a
gateway which is nothing but an ECU with external interfaces

entirely on the gateway, the communicated data becomes
untrustworthy once the gateway is compromised. For example,
the compromised gateway can make incorrect translation of,
or drop/delay messages; we call this the bogus interpreter
problem.

Existing communication models only consider the com-
munication security between the vehicle’s gateway and an
external entity by applying a network security layer, such as
TLS. There have also been various efforts to provide cyber-
vehicle security [2]–[4], [6], [7], [9], but they are still unable
to secure data exchange between internal ECUs and external
networks.

To remedy this deficiency, we propose a secure communica-
tion protocol between internal ECUs and external devices, and,
in particular, provide data security against the compromised
gateway. It includes the translation and security of end-to-
end communication between an external entity (e.g., the car
maker’s server) and in-vehicle components that cannot be
achieved with a naive approach such as TLS, mainly because
the in-vehicle bus (e.g., CAN) and ECUs are severely resource-
limited. Our protocol is shown to be resilient against the
message forgery and drop by a compromised gateway.

The rest of this paper is organized as follows. Section II
provides a brief overview of automotive system’s character-
istics and connectivity issues. Section III first introduces the
bogus interpreter problem caused by a compromised gateway,
and then specifies the security and design requirements. The
drawbacks of state-of-the-art approaches are also discussed
there. Section IV details our protocol for secure communica-

tion between internal ECUs and external devices. The security
and performance of the proposed protocol are evaluated in
Sections V and VI, respectively. Finally, the paper concludes
with Section VII.

II. DATA EXCHANGE BETWEEN INTERNAL AND
EXTERNAL ENTITIES

We first briefly describe the characteristics of in-vehicle
systems, and then discuss in-vehicle data exchange models
and issues.

A. Characteristics of In-vehicle systems

Automotive systems are hard real-time systems, equipped
with various electronic control units (ECUs) which are in-
terconnected via wireline networks, such as Controller Area
Networks (CAN), Local interconnect network (LIN), and
Flexray. CAN has become the de facto standard for in-
vehicle communications due to its low cost and widespread
deployment.

1) In-vehicle network model: In-vehicle networks use the
multi-master model. Every frame is broadcast on the bus, and
every ECU listens to it and grabs only relevant frames by
comparing their IDs (i.e., the arbitration field in each frame
in Fig. 2) with those stored in the message/frame filter.

2) In-vehicle data format: CAN allows only up to 64 bits
for data and provides a 16-bit CRC field (with a 1-bit CRC
delimiter) to check the integrity of each received frame as
shown in Fig. 2. Since the bus speed is only up to 1 Mbps,
30–40% of which is commonly utilized, it is important to use
less bits of data in each frame.

Fig. 2. CAN frame format
3) Proprietary in-vehicle data: CAN is the de facto stan-

dard and in-vehicle data is treated as the car-maker’s pro-
prietary information. Each car manufacturer uses its own
semantic for the CAN ID and payload, hence concealing its
proprietary information.

B. Data exchange between in-vehicle and external networks

The vehicle connectivity requires knowledge of CAN data
for its intended use, forcing car makers to seek ways to make
the data available without exposing its proprietary information
to unauthorized entities. In addition, there is a large gap
between in-vehicle and external networks, such as IP-based
networks. So, car makers deploy ECUs with external interfaces
as a gateway (GW) to communicate with the external world
as shown in Fig. 1.

1) On-board diagnostics: Car makers have already have
been extracting in-vehicle information for diagnostic purposes.
Every car manufactured since 1996 is mandated to have an on-
board diagnostic (OBD) port for emission control, enabling
connection of a diagnostic device (OBD-II scanner).

Instead of revealing the actual data, car makers defined
publicly accessible special types of messages for diagnostics

purposes (i.e., diagnostic trouble codes (DTC)). As depicted
in Fig. 3, the OBD-II scanner sends parameter IDs (PID) to
ECUs through the OBD-II port. Recipient ECUs then respond
with DTC on PID.

Fig. 3. System model 1: External entity requests data from an internal ECU.

2) Exchanging real in-vehicle data: While the diagnostics
messages are limited to providing the information service,
more advanced applications such as remote control, intrusion
detection, and autonomous driving, will eventually require
utilization of actual data by authorized external entities as
shown in Fig. 4. Thus, car makers are trying to allow exposure
of real in-vehicle messages without revealing their proprietary
asset.

Fig. 4. System model 2: External entity reads data from the bus.

3) In-vehicle data translation: Two ways of utilizing the
internal vehicle data while concealing the original format are
encapsulation and translation.

Encapsulation is commonly used in computer networks. The
original data is masked until the authorized entity receives it.
Message encryption is an example of encapsulation. However,
encapsulation is difficult to use for the case when an entity
wanting to use the data is not authorized to know the original
CAN raw data. Usually, a large number of cars from various
car makers are on the road. Thus, data translation is considered
as a practical solution, converting the original data format
to another. For example, Ford has recently introduced a new
vehicular interface model, called OpenXC, that GW translates
the proprietary CAN raw data to the readable JavaScript Object
Notation (JSON) format data, enabling external devices to
know the vehicle data without knowing actual raw in-vehicle
data. Fig. 5 shows an example data translator converting raw
CAN data to JSON format. (Section VI-A will provide more
details of this.)

However, there is a serious security risk in data translation
which we call “bogus interpreter problem,” as we we discuss
next.

Fig. 5. The data translator in the gateway ECU (GW) enables the exchange
of data in different formats

III. BOGUS INTERPRETER PROBLEM AND COUNTERPART

Since the gateway is the conduit to external networks, it
can be the primary target by the cyber attackers [1], [8], [11].
A compromised gateway can turn into an attacker injecting
messages into in-vehicle networks which we call the “bogus
interpreter” problem. The design requirements for combating
this problem are specified in in Section III-B.

A. Bogus interpreter’s behavior

A compromised gateway may forge the original message,
delay or even drop it. Since the original message format is
not preserved, recipients cannot know whether the received
messages are genuine, and the senders cannot know whether
the messages are delivered to their intended receivers. We do

Fig. 6. Bogus gateway will change the original content.

not consider how to compromise the gateway itself and the
privacy issues when the bogus gateway transmits the raw and
translated messages to external attackers.

B. Design requirements

To prevent the bogus interpreter problem, the security
architecture needs to meet the following design requirements.

• In-vehicle Message Authentication: The receiver ECUs
must be able to determine if messages in in-vehicle
networks are from a valid sender ECU.

• Translated Message Authentication: When messages
are transmitted through the gateway, the receivers, ex-
ternal entities or ECUs should be able to determine their
validity.

• Proof of Delivery: Either ECUs or external entities
should be able to determine if messages are properly com-
municated to the intended receivers through the gateway.

C. State-of-art Approaches

In-vehicle networks had originally been designed to oper-
ate in an isolated environment, and hence security was not
accounted for in their design. Although security is becoming
important in automotive systems, it is difficult to modify the
existing communication standard for cost and compatibility
reasons, and hence security solutions have to be devised within
the existing standards.

Several research efforts introduced the solutions to meet this
requirement [3], [4], [6], [7], [9], [10], [12], [13], but they only
considered communications within in-vehicle networks.

While attacks by compromising ECUs through an external
gateway are demonstrated in [1], [8], [11], most of these
efforts only considered communications between an external
device and the infotainment component in the vehicle through
wireless communications, e.g., Bluetooth and Wi-Fi; few con-
sidered security for communications between external devices
and internal ECUs.

In a previous study [5] we proposed a three-step authenti-
cation protocol to establish a secure channel between external
devices and internal ECUs through an intermediate gateway.
They defined a key pre-distribution model among entities with
different lifetimes, but did not consider the data exchange that
conceals the original in-vehicle raw data and the attack by a
compromised gateway.

None of the existing approaches considered the important
case in which a compromised gateway mounts attacks on in-
vehicle systems by using the secret key it has acquired.

IV. PROPOSED DESIGN

We now present a novel way of securing information
exchanged between internal and external components against
the bogus (gateway) interpreter.

A. System model

We use two types of data as shown in Fig. 7 and list their
notations in Table I.

a) Assumptions:
• ECUs and the gateway are equipped with cryptographic

computation capabilities, as specified in the AUTOSAR
standards.1

• Internal ECUs are trusted, as they are located inside of
the vehicle, and are seldom changed and their access
is limited during the vehicle’s operation life. Physical
hardware modifications are not considered in this paper.

1Automotive open system architecture, http://www.autosar.org/.

Fig. 7. Information flow between internal ECU U and external entity E

TABLE I
NOTATIONS

Type Description
idIi Message ID i in the in-vehicle network. e.g., CAN frame

ID defined by automotive manufacturers
idEi Message ID i in the external network, associated with idIi .
DI Data in the in-vehicle network. e.g., CAN raw data
DE Common type data. We use JSON in this paper.
Ui Internal ECU i, only connected to the in-vehicle network.
G Gateway, connected to both in-vehicle and external net-

works
E External entity
T F Translation function. DI ! DE

T F�1 Inverse translation function: DE ! DI

• A trusted third party issues keys and has the knowledge of
both in-vehicle data and common types, e.g., car makers
know raw CAN data and its JSON translation.

B. Pre-phase: Secure channel setup

We follow the secure channel setup model of [5]. This phase
consists of key pre-distribution and secure channel setup (see
[5] for more details).

1) Pre-distribution of keys: The trusted third party (TTP)
issues keys with different life times to each entity.

a) Key pre-distribution for internal ECUs: Suppose ECU
U

i

is designed to communicate with ECU U
j

in the in-vehicle
network, where 1  i, j  n, i 6= j, and n is the number
of ECUs with a security function. First, the TTP randomly
selects two long-term secret keys lk

i,j

and lk

I

i

, where lk

i,j

is a shared key between U
i

and U
j

, and lk

I

i

is a seed key
for secure communication with the gateway. The TTP then
deploys lk

i,j

and lk

I

i

in U
i

during vehicle manufacturing. We
assume this stage is secure, which is easy to satisfy.

b) Key distribution for the gateway: For the gateway
G to communicate U1, TTP first randomly selects r

g

and
generates a timestamp TS

g

, a mid-term secret key mk

I

1

and certificate cert

g

1, where mk

I

1 = KDF (lkI

1 |r
g

) and
cert

g

1 = h{lkI

1 , rg

|TS
g

}, KDF is the key derivation function,
and h{k,m} is a MAC for message m with key k. For
the other ECU U

i

, the TTP generates mk

I

i

and cert

g

i

and
also randomly selects mk

E for communications with external
entities.

G receives r

g

, TS

g

, a key set MK

I , a certificate set
CERT

g , and a key mk

E from TTP during the installation

stage, where MK

I = {mk

I

i

|0  i  n}, CERT

g =
{certg

i

|0  i  n}. This stage is also assumed to be secure.

c) Key distribution for external entities: Suppose an ex-
ternal entity E wants connection to the vehicle, thus requesting
keys from the TTP. Upon receiving the request from E , the
TTP first randomly selects r

e

and a timestamp TS

e

. Then, it
generates a key set SKI and a certificate set CERT

I , where
SK

I = {skI

i

|1  i  n}, CERT

I = {certI
i

|1  i  n},
sk

I

i

= KDF (mk

I

i

|r
e

), cert

I

i

= h{lkI

i

, r

e

|TS
e

}. The TTP
also generates a secret key sk

E and a certificate cert

E , where
sk

E = KDF (mk

E

, r

e

), and cert

E = h{mk

E

, E|r
e

|TS
e

}.

2) Secure channel setup: This phase secures communica-
tions between internal ECUs and the external entity, secure
channels between internal ECUs and the gateway over the in-
vehicle network, and between the gateway and the external
entity over an external network.

a) Authenticated key agreement between the gateway and
internal ECUs: Let each U

i

only accept id

I

i

and also id

I

o

.
When the gateway G is attached to the vehicle for the first
time, G broadcasts authentication requests to the in-vehicle
network as follows.

First, G broadcasts 64-bit r

g

and 32-bit TS

g

with id

I

o

to
CAN bus. Then, G broadcasts n 64-bit certificates cert

g

i

with
each id

I

i

to CAN bus. Since a modern vehicle is equipped with
70–100 ECUs, and G may broadcast 72 to 102 CAN frames on
the bus, each U

i

may receive three values: r
g

, TS
g

and cert

g

i

.
After verifying r

g

and TS

g

with cert

g

i

, each U
i

generates
mk

⇤
i

, where mk

⇤
i

= KDF{lkI

i

, r

g

} and mk

⇤
i

⌘ mk

I

i

. Note
that mk

⇤
i

is valid until TS
g

expires.

b) Authenticated key agreement between the gateway and
external entities: Unlike the in-vehicle network, we assume
external networks support two-way communications. Let an
external entity E attempt connection to the gateway G. Then,
E randomly selects a nonce r1 and generates a challenge chal,
where chal = enc(skE

, r1|h{r1}), and enc(k,m) denotes a
function enc that encrypts a message m with key k. E then
sends chal with r

e

, TS

e

and cert

E to G.

After verifying cert

E , G generates sk

⇤ and decrypts chal

with sk

⇤. G then randomly selects r2 and generates the
response res, where res = h{sk⇤, G|E|r

e

|r1|r2}. G sends
r2 and res to E .

After verifying res, E generates a session key sk

e, where
sk

e = KDF{skE

, r

e

|r⇤}. E also generates the confirmation
con = h{ske

, E|G|r⇤|r
e

}, and sends con to G. G also gen-
erates sk

e, and verifies con. If con is verified, then G stores
sk

E until TS
e

expires, and uses sk

e as a session key.

c) Authenticated key agreement between an external en-
tity and internal ECUs: Upon receiving CERT

I from E , G
broadcasts CERT

I as follows: First, G broadcasts 64-bit r
e

and 32-bit TS
e

with id

I

o

to CAN bus. Then, it broadcasts n

64-bit certI
i

to each U
i

. Optionally, G also broadcasts n 64-bit
proof

i

to each U
i

, where proof

i

= h{mk

i

, r

e

|TS
e

|certI
i

}.

U
i

checks proof

i

and cert

I

i

, and then derives sk

I

i

.

C. Secure exchange of translated data via gateway

We present a secure translated data exchange protocol and
two models: reading information from the bus, and request
data from the ECU.

1) Data reading from the bus: Algorithm 1 shows the
general in-vehicle communication between ECUs. When valid

Algorithm 1 General in-vehicle communication
1: procedure IN-VEHICLE COMMUNICATION
2: for U

i

, 1  i  n, at frame count � do
3: Generate DI

�

for idI

j

, 1  j  n, i 6= j

4: AI

�

 h{lk
i,j

,DI

�

}
5: Broadcast idI

j

, DI

�

, AI

�

to CAN bus
6: end for
7: for U

j

do
8: if Read messages with id

I

j

then
9: if AI

�

is valid then Accepts D

I

�

10: end if
11: end if
12: end for
13: end procedure

E requests CAN data (let the count is �), G reads the data from
the CAN bus as described in Algorithm 2.

Algorithm 2 Data extraction from Bus
1: procedure DATA EXTRACTION FROM THE BUS
2: for G do
3: if read messages with id

I

j

then
4: {idE

j

,DE

�

} TF (idI

j

,DI

�

)
5: m

�

= {idE

j

|DE

�

|AI

�

}
6: while the number of m

�

¡ K do
7: Put m

�

into ME , ME = {m
�

|1  � 
K}

8: end while
9: C

E enc(ske

,ME) (Encryption)
10: AE h{ske

,G|E|CE} (MAC)
11: Send G, E , CE

,AE to E
12: end if
13: end for
14: end procedure

Receiving C

E and AE from G, E proceed as described in
Algorithm 3.

2) Data request from the ECU: Let E extract data from U1.
Unlike the previous case, E needs to issue the data request to
U1. It first sends the request to G as shown in Algorithm 4.
G then relays the request to U as shown in Algorithm 5. Upon
receiving a valid request, U sends the data to the gateway
as described in Algorithm 6. G transmits the data to E as
algorithm 3.

V. SECURITY EVALUATION

We now evaluate the security of the proposed protocol that
combats a compromised gateway, or the bogus interpreter.

Algorithm 3 Translated data verification
1: procedure TRANSLATED DATA VERIFICATION
2: for E do
3: A⇤ h{ske

,G|E|CE}
4: if AE ⌘ A⇤ then
5: Retrieve ME by decrypting C

E

6: Send ME to TTP
7: end if
8: end for
9: for TTP do

10: if Receive ME from E then
11: DI

�

 TF

�1(DE

�

)
12: A⇤

�

 h{lk
i,j

,DI

�

}.
13: if A⇤

�

⌘ AI

�

, where 1  �  K then
14: Return VALID.
15: end if
16: end if
17: end for
18: end procedure

Algorithm 4 Sending data request to gateway
1: procedure SENDING DATA REQUEST TO THE GATEWAY
2: for E do Contact TTP
3: Get authorization of DE for idE

i

4: end for
5: for TTP do
6: Find id

I

1 relevant to id

E

i

7: DI TF

�1(DE)
8: cert

t

i

 h{lkI

i

|DI}
9: Send cert

t

i

to E
10: end for
11: for E do
12: C

e enc(ske

, id

E

i

|DE |certt
i

)
13: Ae h{ske

, E|Ce}
14: Send C

e

,Ae to G
15: end for
16: end procedure

Suppose the compromised gateway Adv

g attempts to forge
the communication messages between U

i

and U
j

and sends
a bogus message to an external entity or to an internal
ECU, or issues unauthorized/garbage messages to U

i

, or even
drop/delay messages.

We do not consider the key update in this paper.

A. Forging translation of messages to an external entity

Adv

g can proceed with fake translation of the in-vehicle
data DI to DF,E .

To succeed in this attack, Adv

g generates AF,I ,
AF,I ⌘ A⇤,I without knowledge of lk

i,j

, where A⇤,I =
h{lk

i,j

,DF,E}.
While Adv

g sends a set of messages ME and a set of
MACs AE , Adv

g has to generate K AF,Is. For example,
compromising 64 different 3-bit AF,I ’s is difficult to break
160 bit SHA-1, making the attack infeasible.

Algorithm 5 Inject data request to ECU
1: procedure INJECT REQUEST TO ECU
2: for G do
3: if Receive C

e

,Ae then
4: A⇤ h{ske

, E|Ce}
5: if Ae ⌘ A⇤ then
6: {idE

i

, D

E

, cert

t

i

} dec{ske

, C

e}
7: {idI

i

,DI} TF

�1(idE

i

,DE)
8: Ag

i

 h{mk

I

i

, id

I

i

|certt
i

|DI}
9: Broadcast idI

i

,DI

, cert

t

i

,Ag

i

10: end if
11: end if
12: end for
13: for U1 do
14: if Receive messages with id

I

1 then
15: Verify Ag

1 and cert

t

1

16: if Ag

1 and cert

t

1 are valid then
17: Accept DI .
18: end if
19: end if
20: end for
21: end procedure

Algorithm 6 Data Extraction from ECU
1: procedure DATA EXTRACTION FROM ECU
2: for U1 do
3: if Receive authorized request from E then
4: Generate DI

5: Ae h{lkI |DI}
6: Ag h{mk

I |DI |Ae}
7: Broadcast idI

g

|DI

,Ae

,Ag to CAN bus
8: end if
9: end for

10: for G do
11: if Ag is valid then
12: DE TF (DI)
13: CE enc(ske

, id

E

1 |DE |Ae)
14: AE h{ske

, CE}
15: Send CE

,AE to E
16: end if
17: end for
18: end procedure

B. Forging translation of messages to an internal ECU

Adv

g may forge the information from E and send the fake
translation DF,I to U

i

. To mount this attack, Adv

g has to
generate a 16 or 32-bit cert

F without knowing lk

I

i

, where
cert

F ⌘ cert

t

i

and cert

t

i

= h{lkI

i

|DF,I}. Thus, this attack is
practically infeasible.

C. Inject bogus messages in the in-vehicle network

Adv

g may attempt to generate and send fake information to
U

i

. In this attack, Advg can generate the fake message DF,I

and cert

F . However, as in the previous case, Adv

g also has

to generate cert

F without knowing lk

i,j

, making the attack
practically infeasible.

D. Dropping messages

Adv

g may attempt to drop messages between E and U
i

.
Internal ECUs cannot notice if Adv

g dropped messages, but
E can notice if the attack is mounted. For example, E has a
rule that it receives messages from G periodically, or receives
response upon request within a certain time.

VI. PERFORMANCE EVALUATION

We now evaluate the performance of the proposed protocol.

A. Evaluation setup

Since CAN data are proprietary for car manufacturers
and hence unavailable, we designed our own CAN frame
format, called RTCL-CAN, based on the public information
made available by Ford Motor Company.2 Table II lists the
CAN frame definitions of RTCL-CAN. RTCL-CAN defines
19 types of information including steering wheel angle, torque
at transmission, engine speed, and so on.

Each data in RTCL-CAN can be translated to/from JSON
by the gateway G and TTP using TF and TF

�1. Next, we
present an illustrative example of translation.

1) A CAN translation example: As shown in Table II, a
frame for controlling the transmission gear position has CAN
ID 0x06 and 4-bit data. It has 8 different states as shown
in Table III. Note the translation rule in this table is only
for illustration, and the actual rules are proprietary to vehicle
manufacturers and hence unavailable.

Fig. 8 shows how CAN raw data of the transmission gear
position is set to ‘sixth.’ In the raw CAN data Di, SOF
and EOF fields are fixed, and RTR is also set to ‘0’ for a
data frame. ID ‘00000000110’ indicates that the frame is for
the transmission gear position. Data field contains ‘0110’ and
MAC.

0 00000000110 0 000011 0110 1001011000100110 1101111100000110 00 1111111
CAN
raw
data

Identifier Data A_{GW} CRCSOF RTR CTL ACK EOF

{{transmission_gear_position}, {sixth}, {#9626}}
Translated

data
(JSON)

Di

Do

Fig. 8. Example CAN translation: transmission gear position at ‘sixth’

G converts DI to the translated format DE . G translates the
data with ‘transmission gear position’, ‘sixth’ using Table
III and AI .

When E sends a command {{transmission gear

position}, {neutral}} to G, G translates it to ‘0x006’ and
‘0000’.

2http://www.openxcplatform.com

TABLE II
RTCL-CAN FRAMES

Data type Identifier data T Frame Data type Identifier data T Frame
bits ms bits bits ms bits

steering wheel angle 0x030 11 100 60 torque at transmission 0x035 12 100 60
engine speed 0x055 14 100 60 vehicle speed 0x065 10 100 60

accelerator pedal position 0x020 7 100 52 parking brake status 0x00001 0 1000 44
brake pedal status 0x00010 0 1000 44 transmission gear position 0x006 4 1000 52

odometer 0x10011 34 100 84 ignition status 0x00011 2 1000 52
fuel level 0x01101 7 500 52 fuel consumed since restart 0x10010 36 100 84

door status 0x10001 4 1000 52 headlamp status 0x00100 1 1000 52
high beam status 0x00101 0 1000 44 windshield wiper status 0x00111 1 1000 52

latitude 0x01111 12 1000 60 longitude 0x01110 13 1000 60
button event 0x10000 6 N/A 52

TABLE III
TRANSMISSION GEAR POSITION (4 BITS) ID 0X06, FREQUENCY = 1HZ,
AND IMMEDIATELY AFTER THE DRIVER CHANGES THE GEAR POSITION

Data Status Data Status Data Status Data Status
0000 neutral 0001 first 0010 second 0011 third
0100 fourth 0101 fifth 0110 sixth 0111 seventh
1000 eighth 1001 reserve 1010 reserve 1011 reserve
1100 reserve 1101 reserve 1110 reserve 1111 reverse

Fig. 9. (1) One MAC is used for sniffing case, (2) two MACs are assigned
for data request case. Total size of MAC 1 and MAC 2 in (2) is the same as
MAC in (1).

B. Assigning MAC

Since CAN only provides up to 64 bits of data, it is not
possible to assign a full-size MAC; for example, HMAC
with SHA-1 generates 160-bit hash outputs. Thus, we assign
truncated MACs for CAN, e.g., AI

�

or Ag .
We use two types of MAC as shown in Fig. 9: (1) MAC for

the sniffing case and (2) MAC for the messages on request.
Note that external networks, such as AE , utilize full-size
MACs.

C. Communication overhead

1) In-vehicle communication overhead: We evaluate the in-
vehicle communication overhead of the protocol for different
sizes of MAC 1. The overhead of MAC 2 is the same as other
general models.

Fig. 10 shows the comparison of performance for different
MAC sizes in RTCL-CAN of Table II during a 1-second
period. Assigning 1 bit to MAC 1 with 16-bit MAC 2 yields
98.70% of performance of the original RTCL-CAN with a 16-
bit MAC. Assigning 2, 4, 8, and 16 bits shows 97.43, 94.98,
90.45 and 82.56% of the original RTCL-CAN, respectively.

2) External communication overhead: While the above
results show that assigning 1-bit MAC 1 provides the best

Fig. 10. Performance comparison with different sizes of MAC1 with 16-bit
MAC2

performance, we also have to consider the external communi-
cation overhead.

The size of set ME , is determined based on the size of
MAC 1. The size of MAC is recommended to be more than 64
bits to achieve the practical security strength. Thus, assigning 1
bit for MAC 1 requires 64  n at a time. For example, RTCL-
CAN generates 82 messages per second and approximately an
8.2-Kbyte message can be transmitted at a time over external
networks. The probability of Adv

g’s success in compromising
RTCL-CAN is 1

/282 with 1-bit MAC 1. However, sending
large-size ME could degrade performance, since E discards
the entire set of messages even when one iof many messages
transmitted over the external network is found to have been
compromised.

In contrast, assigning a larger-size MAC 1 (AI

�

) reduces
potential transmission overhead over the external network,

Fig. 11. The minimum size of ME that G transmits to E over external
networks at a time

although it incurs slight performance degradation in CAN.
Fig. 11 shows the data transmission overhead for different

sizes of MAC 1. Although assigning 16 bits to MAC 1
incurs approximately 18% performance degradation in CAN,
it provides not only 16x better efficiency for transmission than
assigning 1 bit, but also enables detection of compromised DE

�

in ME .
3) Tradeoff in a real network environment: The bit assign-

ment depends on the underlying network environment. For
example, implementing CAN-FD or FlexRay allows more bits
for MAC 1. Also, implementing faster technologies such as
LTE, LTE-A as external networks supports larger ME .

Urban areas generally have better network connectivity, so
assigning a smaller MAC in each CAN frame will preserve
the performance of the in-vehicle network. In contrast, rural
areas may only support poor connectivity, so assigning a larger
MAC could preserve the performance in external networks.

D. Data processing overhead

The computation overhead is a critical issue to powertrain
control systems and SAE specifies 1ms as an allowable delay
for safety-critical control systems. In our protocol, U

i

only
needs 2 hash computations (2H) to authenticate a message.
U

i

generates AI and Ag , and verifies cert and AI . Thus, we
evaluated the overheads on two industry-use processors; 32-bit
MIPS (Chipkit MAX32) and ARM Cortex M3 (LPC1768) as
U

i

by implementing the HMAC-SHA1 function. The time for
2H only takes about 460 µs and 45 µs which is far below the
1-ms requirement.

VII. CONCLUSION

As vehicles and external devices are increasingly connected,
their safety and security have become a serious concern. In
this paper, we have proposed a secure communication protocol
between internal and external components through a gateway.

This protocol is shown to solve the bogus interpreter problem,
securing communications of connected vehicles. This protec-
tion is achieved at the cost of minor performance degradation
on RTCL-CAN, which is designed in compliance with CAN
data format made available by Ford and can thus be used as
a practical reference implementation.

REFERENCES

[1] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehen-
sive experimental analyses of automotive attack surfaces,” in SEC’11:
Proceedings of the 20th USENIX conference on Security. USENIX
Association, Aug. 2011, pp. 1–16.

[2] A. Elouafiq, “Authentication and encryption in GSM and 3G UMTS:
An emphasis on protocols and algorithms,” CoRR, vol. abs/1204.1651,
Apr. 2012.

[3] B. Groza and P.-S. Murvay, “Broadcast authentication in a low speed
controller area network,” E-Business and Telecommunications, Interna-
tional Joint Conference, ICETE 2011, Seville, Spain, July 18-21, 2011,
Revised Selected Papers, vol. 314, pp. 330–344, Feb. 2012.

[4] B. Groza, S. Murvay, A. van Herrewege, and I. Verbauwhede, “LiBrA-
CAN: a lightweight broadcast authentication protocol for controller
area networksan: a lightweight broadcast authentication protocol for
controller area networks,” Proceedings of 11th International Conference,
CANS 2012, Darmstadt, Germany., pp. 185–200, December 2012.

[5] K. Han, S. D. Potluri, and K. G. Shin, “On authentication in a connected
vehicle: Secure integration of mobile devices with vehicular networks,”
Proceeding of ICCPS 2013, pp. 160–169, Apr. 2013.

[6] O. Hartkopp, C. Reuber, and R. Schilling, “MaCAN - message authenti-
cated CAN,” escar 2012, Embedded Security in Cars Conference 2012,
Berlin - Germany, November 2012.

[7] A. V. Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth - a
simple, backward compatible broadcast authentication protocol for CAN
bus,” 10th escar Embedded Security in Cars Conference, November
2011.

[8] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” Security and
Privacy (SP), 2010 IEEE Symposium on, pp. 447–462, 2010.

[9] C. W. Lin and A. Sangiovanni-Vincentelli, “Cyber-security for the
controller area network (CAN) communication protocol,” ASE Science
Journal, vol. 1, no. 2, pp. 80–92, December 2012.

[10] D. Nilsson, U. Larson, and E. Jonsson, “Efficient in-vehicle delayed
data authentication based on compound message authentication codes,”
in Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th,
2008, pp. 1–5.

[11] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and I. Seskar, “Security and privacy vulnerabilities of in-
car wireless networks: a tire pressure monitoring system case study,” in
USENIX Security’10: Proceedings of the 19th USENIX conference on
Security. USENIX Association, Aug. 2010.

[12] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuermann,
“Car2X communication: Securing the last meter,” WIVEC 2011, 4th
IEEE International Symposium on Wireless Vehicular Communications,
5-6 September 2011, San Francisco, CA, United States, pp. 1–5, Jun.
2011.

[13] C. Szilagyi and P. Koopman, “Low cost multicast authentication via va-
lidity voting in time-triggered embedded control networks,” Proceedings
of the 5th Workshop on Embedded Systems Security, pp. 10:1–10:10,
2010. [Online]. Available: http://doi.acm.org/10.1145/1873548.1873558

