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Abstract—File I/O buffer caching plays an important role to narrow the wide speed gap between main memory and secondary storage.

However, data loss or inconsistency may occur if the system crashes before updated data in the buffer cache is flushed to storage.

Thus, most operating systems adopt a daemon that periodically flushes dirty data to secondary storage. This periodic flush degrades

the caching efficiency seriously because most write requests lead to direct storage accesses. We show that periodic flush accounts for

30-70 percent of the total write traffic to storage. To remove this inefficiency, this paper presents a new buffer cache architecture that

adopts a small amount of non-volatile memory to maintain modified data. This novel buffer cache architecture removes almost all stor-

age accesses due to periodic flush operations without any loss of reliability. It also improves the buffer cache performance through

space-efficient management techniques, such as delta-write and fragment-grouping. Our experimental results show that the proposed

buffer cache reduces the storage write traffic by 44.3 percent and also improves the throughput by 23.6 percent on average.

Index Terms—Non-volatile memory, buffer cache, file system, pdflush, reliability
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1 INTRODUCTION

DUE to the widening speed gap between main memory
and hard disks, I/O operations are becoming the per-

formance bottleneck of modern computer systems. In order
to improve the performance of file I/O, operating systems
use a buffer cache that stores requested file blocks in a cer-
tain portion of main memory, thereby servicing subsequent
requests directly without accessing slow storage media.

As traditional buffer cache uses volatile media such as
DRAM, the file system may enter an inconsistent and/or
out-of-date state when the system crashes before the
change is reflected to permanent storage. To relieve this
problem, modern file systems perform journaling or peri-
odic flush operations that transfer the updated data to
non-volatile storage within a short time period [1]. The
flush operation reflects the modified data directly to its
original location in the file system, while the journaling
operation writes the changes to separate storage area called
the journal area and then reflects them to the original loca-
tion later. Though journaling guarantees more reliable file
system states because it withstands system crashes during
storage updates, it generates a large number of additional
storage writes. Thus, most systems adopt journaling only
for metadata and flush regular data. Though journaling
and flush improve the reliability of file systems, they
degrade the effectiveness of buffer caching significantly

due to frequent storage accesses even when the cache
space is not exhausted [2], [3].

In this paper, we analyze the source of write I/Os in file
system workloads and show that periodic flush operations
account for 30-70 percent of total write traffic to storage. In
order to eliminate these excessive flush operations, we pro-
pose a new buffer cache architecture that only adds a small
amount of non-volatile memory to the buffer cache and stores
modifications to this non-volatile buffer cache.When non-vol-
atilememory is used as buffer cache, periodic flush operations
are not needed since the contents of the buffer cache are
retained even when the power failure occurs. This novel
buffer cache architecture removes almost all storage accesses
for periodic flush operationswithout any loss of reliability via
judiciousmanagement of the non-volatile buffer cache.

Due to recent advances in non-volatile memory technolo-
gies such as phase-change memory (PCM) or spin torque
transfer magnetic RAM (STT-MRAM), non-volatile memory
is expected to be used as main memory of computer sys-
tems in the near future [4], [5], [6], [7]. However, as non-vol-
atile memory will not completely replace DRAM due to
cost, it is considered only as an add-on component to
enhance performance [8]. In this paper, we show that only a
small amount of non-volatile buffer cache suffices to elimi-
nate most flush operations by space-efficient management
techniques, such as delta write and fragment-grouping.

By replaying representative file system workloads, we
show that the proposed buffer cache reduces the write traffic
to storage by 44.3 percent on average and up to 73.0 percent.
A prototype of this buffer cache has also been implemented
on Linux 2.6.38. Our measurement with the Filebench and
IOzone benchmarks show that the buffer cache improves
throughput by 23.6 percent on average and up to 43.3 per-
cent over the existing Linux buffer cache with pdflush.

A number of researchers have attempted to relieve the
journaling overhead by making use of non-volatile memory
technologies [9], [10], [11], [12]. Our work is different from
theirs in that we reduce the flush overhead incurred by
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regular data rather than journaling overhead for metadata.
Furthermore, we use only a small amount of non-volatile
buffer cache.

The main contributions of this paper can be summarized
as follows.

� We quantify the overhead of periodic flush in real
world file I/O traces, and show that it accounts for
30-70 percent of storage writes.

� To eliminate such overhead, we design a novel
buffer cache architecture that adopts a small amount
of non-volatile memory.

� We present space-efficient buffer cache management
techniques such as delta-write and fragment group-
ing that can be utilized as soon as the limited capac-
ity of the first generation non-volatile memory
product becomes available.

� A Linux-based prototype has been implemented and
measurements thereon show that our buffer cache
improves the file system performance significantly
by eliminating excessive write traffic to storage.

� Our approach would be preferred from the compati-
bility perspective since it can be implemented as an
add-on design that does not influence the functional-
ity of the existing DRAM buffer cache.

The remainder of this paper is organized as follows.
Section 2 analyzes the overhead of periodic flush in the write
traffic to storage. Section 3 details our buffer cache architec-
ture and algorithm. Section 4 presents a brief description of
the experimental conditions and discusses the performance
evaluation results. Section 5 summarizes the work relevant
to this paper, and finally, Section 6 concludes the paper.

2 ANALYSIS OF PERIODIC FLUSH OVERHEAD IN

FILE I/O

In this section, we analyze the overhead of periodic flush
operations (which we will henceforth call pdflush) by show-
ing the amount of write traffic from the buffer cache to stor-
age. We used the system-call traces collected in the NOW
project at UC Berkeley, a representative file I/O workload
trace [13]. Each request in the trace consists of a file ID, an
offset, a request length in bytes, a requested time, and an
operation type.

The total amount of data written to storage is measured
while varying the buffer cache size from 3 to 100 percent of
the total footprint. The LRU (Least Recently Used) algo-
rithm is used as the buffer cache replacement policy. The
cache size of 100 percent implies the infinite cache capacity

where all blocks referenced in the trace can be cached simul-
taneously, and thus replacement is not needed. This is an
unrealistic condition but presented to show the complete
write traffic trend while varying the cache size.

When we use pdflush, there are two different cases of
causing storage writes. The first case occurs when the cache
is full and a dirty block is selected as a victim to make room
for caching a new block. In this case, the block needs to be
written to storage first before being removed from the cache.
This kind of writes can be reduced when the cache capacity
becomes large since a large cache lowers the frequency of
cache replacement. The second case occurs when pdflush-–
which writes the updated data periodically to permanent
file system locations-–occurs. For example, in the default
Linux configuration, the pdflush daemon wakes up every
5 seconds and flushes all dirty blocks that were updated
more than 30 seconds ago. This periodic flush is necessary
since the buffer cache consists of volatile memory, and thus
the file system may enter an inconsistent and/or out-of-date
state when the system crashes before the change is reflected
to permanent storage.

Fig. 1 shows the source of write traffic as the cache size
is varied. We use two representative workload traces col-
lected in NOW projects, INS and RES. (The characteristics
of these workloads will be detailed in Section 4.) In Fig. 1,
we categorize the write traffic to replace, pdflush_essential,
and pdflush_eliminable. Replace represents the write traffic
that occurs when dirty blocks are evicted from the cache.
As shown in the figure, except for the small amount of
writing that occurs with the 3 percent size cache of RES,
the write traffic by replace almost did not happen. This is
because most of the dirty blocks were already written to
storage by pdflush before replaced from the cache, remain
in the clean state.

We subdivide the write traffic by pdflush as pdflush_es-
sential and pdflush_eliminable. Pdflush_essential refers to the
write I/O that occurs even when pdflush is not used. That
is, the write I/O of pdflush_essential will eventually occur by
cache replacement if pdflush is turned off. A write I/O by
an explicit sync operation is also included to pdflush_essen-
tial. In contrast, pdflush_eliminable is a write I/O that does
not occur if we do not use pdflush. This implies that an
additional write request for the same block is certain to
occur before that block is replaced from the cache. For
example, in Fig. 2, a write request for block A occurs at
60 seconds and it is flushed to storage at 90 seconds. Then,
another write request occurs at 100 seconds and block A is
evicted from the cache at 120 seconds. In this case, pdflush

Fig. 1. Source of write I/O as the size of buffer cache is varied. Fig. 2. An example of write I/O from the buffer cache.
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at 90 seconds is pdflush_eliminable as there is a write request
before it is evicted from the cache. In contrast, a write
request for block B is at 40 seconds and there is no more
writes on block B before it is evicted at 110 seconds. In this
case, pdflush that occurs at 70 seconds is pdflush_essential as
the write I/O will eventually happen upon replacement
even though we do not use pdflush. Thus, pdflush_essential
should be excluded when assessing the pure overhead of
pdflush. As shown in Fig. 1, pdflush_eliminable accounts for
30-40 percent and 70-75 percent of the total write traffic in
INS and RES, respectively, which can be eliminated with
our non-volatile buffer cache. As the cache size increases,
the ratio of pdflush_eliminable also increases. This is because
the ratio of pdflush_essential decreases with a large cache
capacity as cache replacement happens less frequently.

In summary, pdflush accounts for a considerable portion
of storage writes, and is thus a potential source of perfor-
mance degradation. Specifically, in the INS and RES work-
loads, the data written by pdflush amounts to 30-75 percent
for all range of cache sizes, which can be eliminated with
our novel buffer cache architecture.

3 BUFFER CACHE WITH NON-VOLATILE MEMORY

We now describe an efficient buffer cache management
scheme that adopts non-volatile memory in conjunction
with DRAM as buffer cache.

3.1 System Architecture

Fig. 3 shows the basic architecture of the proposed buffer
cache that consists of DRAM (referred to as volatile-buffer
cache) and a small amount of non-volatile memory (referred
to as non-volatile buffer cache). Our non-volatile buffer cache
is placed in standard DIMM slots to access it through a
byte-addressable interface. There exist several types of non-
volatile memory media, such as PCM, FeRAM, and STT-
MRAM. Recently, PCM and STT-MRAM have been draw-
ing considerable interest from the research community due
to their rapid improvement in micro-fabrication processes
[6], [14]. However, PCM has critical weaknesses to absorb
write I/Os in our buffer cache as it has limited write
endurance and slow write performance compared to
DRAM. For this reason, PCM is usually adopted to absorb
read-intensive workloads in memory systems [4], [7]. We
use STT-MRAM as our non-volatile buffer cache because it
does not have such limitations in write operations.

Volatile buffer cache manages cached data by the block
(as a unit), while non-volatile buffer cache does this by the
byte. In our buffer cache, the volatile buffer cache behaves
exactly the same as the existing buffer cache upon all read
and write requests. In contrast, the non-volatile buffer cache
maintains only the modified part of a block (which we call
fragment) upon a write request. Thus, modifications are
reflected to both the volatile and the non-volatile buffer
cache. Data reflected to the volatile buffer cache is used to
service normal requests. For example, read requests for
dirty blocks are serviced through the volatile buffer cache.
Data in the non-volatile buffer cache is used only when a
system crash occurs to restore the recent image of the file
system. This eliminates the large storage write traffic caused
by traditional pdflush operations.

As our buffer cache stores modified data in both volatile
and non-volatile buffer cache, space-efficiency can be deteri-
orated. However, as our non-volatile buffer cache maintains
only the modified part of a block, this inefficiency can be
minimized. File access characterization studies reported
that the size of a modified part within a block is very small
for most write requests and a large proportion of updates
are at most 10 percent different from the previous content of
the block [39]. We will discuss this further in Section 3.4.

3.2 The Proposed Algorithm

For now, as the capacity of non-volatile memory is limited, a
space-efficient management for the non-volatile buffer cache
is needed. In this paper, instead of storing an entire block to
the non-volatile buffer cache, we only maintain the modified
part of a block, thereby improving the space-efficiency of the
non-volatile memory. Instead, as the modification is also
reflected to the volatile buffer cache, all read/write and flush
operations can be performed by referencing the volatile
buffer cache. Note that the non-volatile buffer cache is used
onlywhen a power failure occurs.When free space is needed
in the volatile buffer cache, we basically use the LRU

1

algo-
rithm, the most popular replacement algorithm used in the
buffer cache. When a dirty block is selected as the victim
block in the volatile buffer cache, it is first written to storage,
and then discarded. As all modifications of a block are also
maintained in the non-volatile buffer cache, we also remove
the fragments of the victim block from the non-volatile buffer
cache. Note that these fragments have already been reflected
to storage, and do not cause inconsistencies any longer.

When free space is needed in the non-volatile buffer
cache, modified fragments belonging to the same block
should be merged and replaced together. This is because
fragments in the non-volatile buffer cache need to be
flushed to storage before their eviction and the minimum
unit of storage writing is a logical block. Instead of generat-
ing a logical block to be flushed by merging dirty fragments
in our scheme, the corresponding block maintained in the
volatile buffer cache is searched and that block is written to

Fig. 3. System architecture of the proposed buffer cache.

1. Actually, commodity operating systems do not use the original
LRU replacement algorithm, but perform reclamation periodically to
reserve a certain number of free blocks. In our implementation, we do
not modify the original reclamation module of the volatile buffer cache
in Linux kernel as we are interested in the management of the non-vola-
tile buffer cache rather than that of the volatile buffer cache.
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storage. This is possible as all modifications were already
reflected to the block maintained in the volatile buffer cache.
By so doing, we need not merge fragments in the non-vola-
tile buffer cache to generate a block to be flushed.

After storage flushing, all fragments belonging to this
block are discarded from the non-volatile buffer cache. The
corresponding block in the volatile buffer cache does not
change its priority but its state is changed from dirty to
clean. Thus, even though a block is evicted from the non-
volatile buffer cache, it is possible that the same block still
has a high caching priority in the volatile buffer cache if it is
a read-intensive data. Accordingly, our buffer cache guaran-
tees the same cache hit ratio of existing buffer cache archi-
tectures, but eliminates the writing overhead of pdflush.

3.3 Implementation Issues of the Algorithm

We now describe how the non-volatile buffer cache works.
Our non-volatile buffer cache maintains only the modified
part of a block (i.e., fragment) for space-efficiency. A fragment
consists of themodified data itself and itsmetadata. Themeta-
data here refers to the pointers to link fragments, the offset
within the block, and the length in bytes. Fragments belong-
ing to the same block are linked by their offset order and the
first fragment of the block is linked to the block header.

Our buffer cache maintains two lists to capture the
recency of references as shown in Fig. 4. One is the LRU list
for the volatile buffer cache, and the other is the least
recently written (LRW) list for the non-volatile buffer cache.
The LRU list keeps track of the recency of references (both
for read and write references) of blocks in the volatile buffer
cache. That is, all blocks in the volatile buffer cache are
sorted by their last reference time regardless of their opera-
tion type (i.e., read or write). On the other hand, the LRW
list keeps track of the recency of write references for frag-
ments in the non-volatile buffer cache. As evicted data from
the non-volatile buffer cache is written to storage by the
block, the LRW list groups fragments from the same block
and manages them together. When a fragment is written,
the block header linked to this fragment moves to the MRW
(Most Recently Written) position, thereby moving all frag-
ments from the same block together.

When a write request occurs and the requested block is
not in the buffer cache, it is retrieved from the storage and
cached in the volatile buffer cache first. Then, the modified
part is reflected to both volatile and non-volatile buffer
caches. Note that the retrieval process can be eliminated

and the write can be performed directly to a free cache block
if a write request is of an entire logical block size. The block
is, then, located at the most recently referenced position in
both LRU and LRW lists. When a write request occurs and
the requested block already exists in the buffer cache, then
the modification is reflected to both caches and the block
moves to the most recently referenced position in the two
lists. Upon a read request, only the volatile buffer cache is
managed by the LRU algorithm.

When a write request occurs, the modification can be par-
tially or fully overlapping with existing fragments in the
non-volatile buffer cache. In this case, it may be merged into
an existing fragment, bridge a gap between two existing
fragments, or create a new large fragment and delete the
existing fragments. This can be performed efficiently as frag-
ments from the same block are linked by their offset order.

As the size of a fragment may not be uniform, allocation
and reclamation of the non-volatile buffer cache possibly
generate variable-size holes. This incurs the dynamic mem-
ory allocation problem that determines the hole to be allo-
cated to a new fragment. There are well-known allocation
policies such as first fit, best fit, and worst fit. However,
these policies have limitations in managing a large number
of variable-size holes. To solve this problem, we use the
buddy system that has been widely used for dynamic mem-
ory management in kernel because it is fast and space-effi-
cient [15]. In the buddy system, free memory space is
managed by the size of power of 2. If a fragment of a certain
size needs to be allocated, the buddy system tries to find the
smallest slot that the fragment fits, whose size is certain to
be a power of 2. The buddy system splits a free space into
halves or merges two adjacent free slots to allocate a best-fit,
if necessary.

Our buffer cache is capable of restoring a file system into
the most recent state without data loss in the event of power
failure. The system recovery consists of two phases. In the
first phase, all blocks whose fragments were maintained in
the non-volatile buffer cache are loaded from storage to the
volatile buffer cache. Then, the blocks in the volatile buffer
cache are updated via replaying the fragments in the non-
volatile buffer cache, thereby enabling users to view the up-
to-date data consistently. We do not need to flush the cache
data during the recovery process as they will be flushed
later when replaced from the cache.

It is possible that the non-volatile memory itself fails. To
cope with this situation, writing data successfully against
the hardware failure of the non-volatile memory should
also be ensured. However, this would be more like an issue
that needs to be addressed in the device controller layer via
ECC or CRC techniques rather than in system layers such as
operating systems or file systems. Our research focuses on
the software techniques that the operating system layer is
responsible for. Thus, such an issue is beyond the scope of
our research, which can be assumed to be provided as a
built-in feature of commercial STT-MRAM products.

3.4 Analysis of Request Size Distributions in File
Write Operations

The proposed algorithm tries to optimize the space effi-
ciency of the non-volatile buffer cache by caching only the
modified part of a block. To quantify the effectiveness of the

Fig. 4. The LRU and the LRW lists managed for the proposed buffer
cache.
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proposed algorithm with respect to the update size, we plot
the distribution of the request size in each write operation
in real file system traces. Fig. 5 shows the request size distri-
bution for the four workloads listed in Table 1. (Details of
these workloads will be explained in Section 4.) As shown
in the figure, a large proportion of file write operations only
involve a small modification of the previous version. Specif-
ically, we have observed that 38 percent of write requests
are less than 128 bytes on average. TPC-C contains a large
number of small writes and metadata updates, and more
than 80 percent of its updates are less than 128 bytes. Only
0.002 percent of write requests involve a modification of an
entire block (i.e., 4 KB) or larger. This is the evidence of the
space-efficiency by adopting our algorithm.

4 PERFORMANCE EVALUATION

In this section, we present the performance evaluation
results to assess the effectiveness of the proposed buffer
cache. We first show the write traffic of the proposed buffer
cache in Section 4.1 using simulation. In Section 4.2, we show
the recovery overhead of the proposed scheme in compari-
son with other schemes. Then, we compare the throughput
of the proposed buffer cache with existing systems using
measurements in Section 4.3.

4.1 Comparison of Write Traffic

To assess the effectiveness of the proposed buffer cache
with respect to the write traffic to storage, we perform trace-

driven simulations. We developed a hybrid buffer cache
simulator that employs non-volatile memory along with
DRAM as buffer cache. The size of a block in the volatile
buffer cache is set to 4 KB, which is common to most operat-
ing systems including Linux. Though non-volatile memory
such as STT-MRAM or PCM allows byte-addressability,
main memory can be accessed with a unit of word. Thus,
the minimum operation unit of the non-volatile buffer cache
should be at least 4 bytes in 32 bit machines and 8 bytes in
64 bit machines if a memory architecture similar to DRAM
is adopted. Moreover, as writing to our non-volatile buffer
cache occurs when the last-level cache memory flushes its
dirty block to main memory, the fragment size should also
be of this cache block size. We assume a 32 bit architecture
and the 128 byte block of the last-level cache in this paper.

The traces used in the experiments are one of the repre-
sentative file I/O traces collected in the NOW project of UC
Berkeley [13]. They are extracted from the general-purpose
workstations using HP-UX. They consist of undergraduate
instructional workload (denoted as INS) and graduate
research workload (denoted as RES) [16]. We also collected
file I/O traces of Linkbench (a graph generator used in face-
book) and TPC-C (a database application that performs
financial transactions). We traced the system call requests
using the strace utility. Characteristics of the traces are
described in Table 1.

Fig. 6 shows the software architecture of the developed
cache simulator. Our simulator consists of eight modules
implemented in seven source code files. Before the simula-
tion, we preprocess traces in various forms into a uniform
format with six fields, which are the request time, the opera-
tion type, the file id, the block number within a file, the offset
within a block, and the operation size. When the simulation
begins, the volatile cache simulator first runs with the con-
verted traces, and it invokes the NVRAMwrite-buffer simu-
lator or the periodic flush daemon as needed. We also
implemented a system recovery module that measures the
recovery time when a system failure occurs.

Fig. 5. Request size distribution in file write operations.

TABLE 1
Characteristics of the Traces Used in the Experiments

Workload Total # of
references

Total # of
distinct blocks

Ratio of ops.
(read : write)

INS 12,473,845 162,588 17.2 : 1
RES 750,303 46,820 1 : 2.53
TPC-C 1,563,785 57,400 1 : 1.35
Linkbench 2,306,971 205,600 1.41 : 1
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We compare the amount of data written to storage for
our scheme, which we call DF-LRW (Delta write & Frag-
ment-grouping LRW), the legacy buffer cache that uses the
LRU algorithm with pdflush, and the NV-LOG scheme that
adopts non-volatile memory as a logging device to reduce
write traffic to storage [12]. Our scheme differs from NV-
LOG in that we manage non-volatile memory as a write
cache thus unifying multiple updates for the same data as a
single caching item, whereas NV-LOG just appends updates
in non-volatile memory. As in most operating systems,
pdflush in our experiments is invoked every 5 seconds and
flushes all the data updated more than 30 seconds ago. In
our experiments, the size of the non-volatile buffer cache is
changed from 1 to 8 MB. Note that the size of STT-MRAM
used in our simulation is configured by considering the
footprint of the workload traces. Thus, the relative size of
STT-MRAM in comparison with the DRAM size and the
workload footprint size needs to be the focus of interest
rather than the physical STT-MRAM size. In addition, as the
hardware technology of STT-MRAM is not mature yet, it is
difficult to estimate the exact capacity of STT-MRAM prod-
ucts for now. Even if the capacity becomes larger than that
used in this paper, investigating the effectiveness of our
scheme with a small size of STT-MRAM is valuable. Specifi-
cally, as the multiprogramming degree of modern computer
systems is being increased, their working-set would also
become larger than the workload used in our experiments.

Fig. 7 compares the storage write traffic for the legacy
buffer cache with pdflush, DF-LRW, and NV-LOG under
the RES workload, where the x-axis represents the size of
the volatile buffer cache ranging from 3 to 100 percent of
total footprint and the y-axis represents the amount of data
written to storage for the given cache size. For DF-LRW and
NV-LOG, the size of the non-volatile buffer cache is also
varied from 1 to 8 MB as shown in Figs. 7a, 7b, 7c, and 7d.

Our buffer cache reduces the storage write traffic of
pdflush significantly for all cache sizes. Specifically, the
amount of data written to storage is decreased by 69.8 per-
cent on average only with a small amount of non-volatile
memory. The reason for this large reduction lies in the elim-
ination of pdflush_eliminable introduced in Section 2. When
the size of the non-volatile buffer cache is very small, the
storage write traffic is expected to be large due to frequent

cache replacement. However, as shown in the figure, for all
of 1, 2, 4, and 8 MB cache sizes, the storage write traffic is
consistently small. The write traffic is slightly large only
when the size of both volatile and non-volatile buffer caches
is extremely small as shown in the leftmost graph of
Fig. 7a. When compared to NV-LOG, our scheme reduces
the write traffic by 36.0 percent on average. This reduc-
tion is obtained as our scheme unifies multiple updates
for the same data as a single caching item, whereas NV-
LOG just appends updates in non-volatile memory,
degrading the space efficiency.

Fig. 8 shows the write traffic of pdflush, NV-LOG, and
our scheme under the INS workload. Similar to the result
for the RES workload, our buffer cache with DF-LRW

Fig. 6. Software architecture of the developed cache simulator.

Fig. 7. Storage write traffic with the RES workload.
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reduces the amount of data written to storage significantly.
Specifically, the write traffic is decreased by 30.1 and 8.0
percent on average compared to pdflush and NV-LOG,
respectively. The improvement under the INS workload is
relatively smaller than that under RES because INS is a
read-intensive workload while RES is write-intensive. As
shown in Table 1, the ratio of read to write operations is
1:2.53 in the RES workload, but it is 17.2:1 in the INS
workload. As under RES, we can observe that the size of the
non-volatile buffer cache needed to reduce this write traffic
is very small.

Fig. 9 compares the storage write traffic for pdflush, DF-
LRW, and NV-LOG under the TPC-C workload. As shown
in the figure, DF-LRW reduces the storage write traffic

significantly for all cache sizes compared to pdflush. This
is because TPC-C has a large proportion of small updates
as shown in Fig. 5, which allows DF-LRW to buffer more
write requests with a small non-volatile buffer cache. The
write traffic of NV-LOG is also reduced dramatically when
the size of the non-volatile buffer cache is larger than
2 MB, but the performance gap between NV-LOG and DF-
LRW becomes wider as the cache size becomes small.
The write traffic of DF-LRW is decreased by 62.6 and 21.7
percent compared to pdflush and NV-LOG, respectively,
on average.

Fig. 10 compares the storage write traffic when the Link-
bench workload is used. As shown in the figure, our scheme
reduces the storage write traffic of pdflush significantly

Fig. 8. Storage write traffic with the INS workload. Fig. 9. Storage write traffic with the TPC-C workload.
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when the non-volatile buffer cache size is larger than 4 MB,
but there is almost no reduction under the cache size of 1
and 2 MB. Since plotting a graph needs to access a huge
amount of data at the same time, Linkbench has a relatively
large working set. In this workload, thrashing occurs if the
non-volatile buffer cache is not large enough to hold the
working set, failing to absorb storage writes. Though our
scheme gives no benefit with respect to the write traffic in
this case, it still has the effect of shortening the vulnerability
window of data loss. That is, upon a system crash, pdflush
loses the updated data after the last pdflush period (e.g., 30
seconds), whereas our scheme does not do so.

Considering the results in Figs. 7, 8, 9, and 10 and
the workload characteristics, we conclude that a small

STT-MRAM size of 1-4 MB is sufficient in general systems
but more space is needed for specific memory-intensive
applications like Linkbench. However, we do not believe
that our cases can be generalized to all environments. In
reality, the size of the non-volatile buffer cache should be
configured based on the scale of target system’s workloads
as well as the relative DRAM size of the system. Our cur-
rent conclusion is that only a small amount of first genera-
tion STT-MRAM products will be sufficient to eliminate
pdflush regardless of their density and capacity, if our soft-
ware technology is utilized.

4.2 Comparison of Recovery Time

We compare the system recovery time of the proposed DF-
LRW scheme with that of a legacy buffer cache that uses
pdflush and the NV-LOG scheme where non-volatile mem-
ory serves as a logging device. We assume that the system
crash occurs at any timepoint and measure the data traffic
between DRAM, NVRAM, and storage devices for the recov-
ery. Then, we measure the time components of the memory
copy and the data loading from storage in our experimental
systems, which are 5 and 150 us for a 4 KBdata access, respec-
tively. Finally, we calculate the recovery time by multiplying
the amount of data and the time component per unit. We
repeat this 10 times and take an average of the results.

Fig. 11 shows the recovery time of the three schemes. As
shown in the figure, the proposed scheme provides shorter
recovery time than the NV-LOG scheme. Specifically, the
reduction of the recovery time is 28.2 percent on average.
The system recovery of DF-LRW includes loading old ver-
sions of blocks to the volatile buffer cache for each partially
written fragment in the non-volatile buffer cache, and
reflecting the fragments to the volatile buffer cache. In com-
parison, NV-LOG commits the logged data in the non-vola-
tile memory to the storage file system during the recovery
process. As the legacy buffer cache with pdflush performs
journaling only for the metadata, it restores the file system

Fig. 10. Storage write traffic with the Linkbench workload.

Fig. 11. Comparison of recovery time varying the NVRAM size.
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consistency by committing the metadata log to the file sys-
tem locations, losing the updates for regular data except for
metadata between flush timepoints.

In the case of TPC-C, DF-LRW has the longest recovery
time among the three schemes, which is 1.7 times longer
than that of NV-LOG. Since the write operations of TPC-C
are mostly of small sizes, it has a large number of partial
fragments in the non-volatile buffer cache, which require
the original blocks to be loaded from the storage before
being reflected to DRAM. This results in a significant
increase of the storage accesses during the system recovery.
However, this feature is advantageous for most of the time
when the system is working well as small fragments are
space efficient and thus effective in reducing the storage
writes. The performance of normal situations and the sys-
tem recovery may have trade-off relations.

4.3 Implementation and Measurement

To assess the effectiveness of the proposed buffer cache fur-
ther, we implemented a prototype of DF-LRW on Linux
2.6.38. Our scheme is compared with the original Linux
with pdflush. We use EXT4 as the file system and the jour-
naling option is set to the ordered-mode, which is the
default option that journals only metadata. Our experimen-
tal platform consists of an Intel Core i3-2100 CPU running
at 3.1 GHz and 4 GB of DDR2-800 memory.

Though our design assumes STT-MRAM as the non-vol-
atile buffer cache, commercially available STT-MRAM prod-
ucts are limited for now, and thus we simply use a portion
of DRAM as the non-volatile buffer cache. Note that the per-
formance characteristics of STT-MRAM are similar to those
of DRAM as shown in Table 2 [14]. We measure the perfor-
mance with IOzone [17] and Filebench [18], representative
storage benchmarks.

Fig. 12 shows the throughput of our buffer cache in com-
parison with that of Linux with pdflush in the Filebench
benchmark. Filebench provides a series of predefined I/O
workloads that emulate different types of real server sys-
tems. The workloads used in the experiments are varmail,
proxy, webserver, and fileserver. We change the number of
threads for each workload and measure the total through-
put of all threads. As shown in the figure, our buffer cache
performs better than existing Linux pdflush for all work-
loads. Specifically, the performance improvement is 24.6
percent on average, and varmail shows the largest

improvement of 43.3 percent among the four workloads.
The reason for such large improvements is that varmail con-
tains a large number of write requests, thus incurring a
large number of flush operations. Moreover, varmail issues
read and write requests concurrently.

Though our scheme does not have any explicit policy to
improve read performance, eliminating frequent storage
writes frees the contention for hardware resources like the
memory bus and DMAs, improving I/O performance in
general. Even for read-intensive workloads like webserver
and proxy, our buffer cache improves performance by 2.5
percent and 15.6 percent, respectively, due to this reason.
For fileserver, which is write-intensive, the improvement by
our scheme is relatively small compared to varmail. This is
because most write requests in fileserver are large and
sequential writes that lead to frequent cache replacement.
As the number of threads increases, the throughput is also
improved due to higher parallelism as shown in Fig. 12a.
However, when the workload exceeds the maximum capac-
ity of the system, the performance drops rapidly with an
increased number of threads as shown in Fig. 12b.

Fig. 13 compares the throughput of our buffer cache and
Linux pdflush under the IOzone benchmark. IOzone is a
well-known micro benchmark that measures file I/O per-
formance by generating particular types of operations in
batches. It creates a single large file and performs a series of
operations on that file. We measure the performance with
four IOzone scenarios, initial write, random write, sequen-
tial write, and fwrite. Initial write creates a file and then
writes data sequentially to that file. The other write scenar-
ios do not include file creation procedures but involve writ-
ing to existing files with different access patterns. The
random write scenario issues a series of write requests at a
randomly selected offset of the file, whereas the sequential
write performs write operations from the start of the file
without changing the offset. The write requests are gener-
ated using the POSIX standard library in all scenarios. We

TABLE 2
Characteristics STT-MRAM Compared to Other

Memory and Storage Technologies

DRAM STT-MRAM PCM NAND

Maturity Product Prototype Product Product
Read Latency 10-50 ns 10-50 ns 50-100 ns 25 us
Write Latency 10-50 ns 10-50 ns 100-500 ns 200 us
Erase Latency - - - 200 ms
Energy (per
bit access)

2 pJ 0.02 pJ r: 20 pJ 10 nJ
w: 100 pJ

Static Power Yes No No No
Endurance 1016 1016 107-108 105

Cell Size 6�8 F2 > 6 F2 5�10 F2 4�5 F2

MLC No 4 bits/cell 4 bits/cell 4 bits/cell

Fig. 12. Throughput of Filebench as the number of threads is varied.
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vary the sizes of write requests from 1 to 8 KB. Since the
total amount of request data in IOzone is identical in each
run, the number of requests decreases as the size of each
request increases from 1 to 8 KB. As shown in the figure,
our buffer cache outperforms Linux pdflush in all the write
scenarios for all request sizes. Specifically, the performance
improvement by our buffer cache over Linux pdflush is 22.6
percent on average. This remarkable enhancement is
achieved from the large reduction of writes with the space-
efficient management of our non-volatile buffer cache.

When considering the request size, both Linux pdflush
and our scheme perform better as the request size increases
in all the scenarios. This is because a workload with a larger
request size contains less write requests, reducing software
overhead. Note that each I/O request invokes software
stacks, and thus the overhead is proportional to the number
of requests.

When we look at the different IOzone scenarios, shown
in Figs. 13a, 13b, 13c, and 13d, we see that the results for ran-
dom writes are very sensitive to the request size. This is
because random writes are largely affected by the number
of requests as random accesses incur large seek overhead to
move the disk head to the requested location. The relative
performance improvement of our scheme over Linux
pdflush is also the largest in random writes because the
overhead of disk seek is the largest in random writes. The
throughput of initial writes is a bit less than sequential
writes for both schemes, which can be attributed to the extra
overheads involved in file creation.

5 RELATED WORK

5.1 Buffer Caching Algorithms

To narrow the speed gap between main memory and stor-
age, buffer caching algorithms have been studied exten-
sively for decades. The LRU and LFU algorithms are
representative algorithms that consider the recency and the
frequency of block references, respectively.

There have been attempts to combine the advantages of
LRU and LFU. O’Neil et al. present the LRU-k algorithm to
address the problem of LRU that cannot consider the refer-
ence frequency of blocks [19]. LRU-k decides blocks to be
replaced based on the time of the kth-to-last reference. A
larger k can discriminate better between frequently and
infrequently referenced blocks. Johnson and Shasha pro-
posed a block replacement policy called 2Q [20]. This algo-
rithm divides the LRU cache list into two queues to remove
blocks referenced only once quickly from the cache, while
maintain repeatedly referenced blocks for an extended
period of time. Lee et al. proposed the least recently/fre-
quently used (LRFU) algorithm that subsumes the LRU and
LFU algorithms [21]. In LRFU, each cached block is associ-
ated with a combined recency and frequency (CRF) value
that estimates the re-reference likelihood of the block in
terms of both recency and frequency. All past references to
a block during its residence in the cache are reflected in CRF
and a reference’s contribution decreases as time progresses.

Adaptive replacement cache (ARC) is another algorithm
that adaptively considers the recency and frequency of
references [22]. ARC maintains two LRU lists to capture the
recency and frequency of refetences with separated lists,
and adaptively adjusts their sizes according to the evolution
of workloads.

Unified buffer management (UBM) detects reference pat-
terns and allocates separate cache space to each detected
pattern [23]. Specifically, UBM classifies referenced blocks
into three patterns, sequential, looping, and other referen-
ces, and then allocates cache space to each pattern based on
their marginal gain. Low inter-reference recency set (LIRS)
replacement uses the concept of inter reference recency to
accurately estimate future block references [24]. LIRS
divides blocks into two sets: High inter-reference recency
(HIR) and low inter-reference recency (LIR) sets. LIRS gives
higher caching priorities to the LIR set as it contains fre-
quently accessed blocks.

Recently, as NAND flash memory has been widely
adopted as the secondary storage of mobile systems, there
have been extensive studies on buffer caching algorithms
for NAND flash memory. Clean-first LRU (CFLRU) is a
cache replacement algorithm for flash memory that consid-
ers the physical characteristics of NAND flash memory, in
which reading and writing have different I/O costs [25].
CFLRU can accommodate the different eviction costs of a
clean block, which can simply be discarded, and a dirty
block, which should be written back to flash memory.
CFLRU maintains a certain cache area called window and
delays the eviction of dirty blocks in the window as long as
a clean block is available for eviction. LRU with write
sequence reordering (LRU-WSR) is another algorithm that
favors dirty blocks [26]. Basically, LRU-WSR also manages
blocks using the LRU list. Instead of setting the window
area, LRU-WSR gives one more chance to a dirty block
when it reaches the LRU position in the list. Though CFLRU
and LRU-WSR delay the replacement of dirty blocks, their
effect on reducing write traffic is limited as dirty blocks are
written to storage by pdflush or journaling before eviction.

Flash-aware buffer management (FAB) was proposed as
a buffer replacement algorithm in flash-based PMP systems
[27]. PMP systems commonly have long sequential accesses

Fig. 13. Throughput of IOzone as the request size is varied.
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for media data and some short accesses for metadata at the
same time. One problem with this situation is that short
write accesses cannot be buffered for a long time because
they are pushed away by a large amount of sequential data.
To cope with this problem, FAB manages buffered data
from the same NAND flash block as a group, and replaces
them together. Specifically, FAB replaces a group with the
largest number of buffers first, which is usually large
sequential data.

Block padding least recently used (BPLRU) is a write
buffer management algorithm to improve the random write
performance of flash storage [28]. Similar to FAB, BPLRU
groups buffers from the same NAND flash block, and repla-
ces them together. When a buffer is accessed by a write oper-
ation, buffers in the same group are moved together to the
MRU position of the list. BPLRU selects buffers in the LRU
position as a victim, and flushes all data in the group. BPLRU
has a similar aspect to our idea in that it also groups a certain
type of caching items andmanages them together. However,
the two schemes are fundamentally different. First, BPLRU
is devised for the internal write buffer of flash storage and it
is not affordable in the host side buffer cache layer. BPLRU
replaces multiple cached items belonging to the same physi-
cal flash block together, but logical-to-physical mapping
information is only accessible inside the device. Thus, the
host buffer cache cannot figure out the cached items belong-
ing to the same flash block under the current standard I/O
interfaces. BPLRU and DF-LRW are also different from an
algorithmic perspective. DF-LRW downsizes the caching
unit to a fragment in order to improve space efficiency,
whereas BPLRU uses the conventional caching unit of a logi-
cal block (or flash page). Instead, BPLRU extends the replace-
ment unit to multiple logical blocks in order to improve the
efficiency of garbage collection, whereas our scheme uses the
conventional I/O unit of a single logical block.

Cold and largest cluster (CLC) is another write buffer
replacement algorithm for NAND flash memory [41]. Simi-
lar to FAB and BPLRU, CLC manages buffered data from
the same NAND flash block as a group. When replacement
is needed, CLC selects a group with the largest number of
buffers that have not been referenced recently as a victim.

Shi et al. proposed another write buffer replacement
algorithm for flash memory called expectation-based LRU
(ExLRU) [42]. ExLRU accurately maintains access history
information in the write buffer based on a new cost model,
and replaces data with the minimum write cost to be writ-
ten to flash memory. Kim et al. proposed a new buffer cache
replacement scheme called SpatialClock for mobile flash
storage [43]. SpatialClock considers the spatial locality of
writes to flash storage in order to reduce the overall I/O
time. Wu et al. presented a hybrid page/block architecture
for flash-based SSDs, and proposed an adaptive write buffer
management scheme under this architecture called block-
page adaptive cache (BPAC) [44]. BPAC considers both tem-
poral and spatial locality of references in flash memory. To
do this, BPAC adaptively partitions the SSD write cache to
separately hold pages with high temporal locality and clus-
ters of pages with low temporal but high spatial locality.
Recently, Kim and Kim proposed a write buffer manage-
ment scheme in solid-state drives, called QLRU [45]. QLRU
exploits the future buffer reference patterns by using I/O

commands information in native command queuing (NCQ)
of SATA SSDs.

More recently, non-volatile buffer cache is used to
improve system reliability. Lee et al. presented a design of
a buffer cache that subsumes the functionality of caching
and journaling [9]. Their scheme supports the in-place
commit that avoids storage journaling, but still provides
the same journaling effect by simply altering the state of
the cached block to frozen. Our work is different from this
work as we reduce the flush overhead incurred by regular
data rather than journaling overhead for metadata. Fur-
thermore, we use only a small amount of non-volatile
buffer cache while their scheme adopts non-volatile mem-
ory for entire buffer cache.

5.2 Using Non-Volatile Memory in Memory
and Storage Hierarchy

Recently, high-speed non-volatile memory technologies
such as PCM and STT-MRAM have been catching inter-
est, and they may be used as main memory in future
computer systems. Specifically, non-volatile memory is
byte-accessible and its access time is (optimistically) pro-
jected to be almost identical to that of DRAM, while con-
suming less energy and providing higher scalability than
DRAM [4], [5], [6], [7].

Mogul et al. suggested an efficient memory management
policy for a hybrid memory system consisting of both
DRAM and PCM [29]. They proposed a page-attribute-
aware memory allocation policy that tries to place read-only
pages like code segments in PCM, while writable pages in
DRAM, thereby reducing the number of PCM writes. In line
with this research, Qureshi et al. proposed a memory archi-
tecture that uses a small amount of DRAM as the write
buffer of PCM memory in order to prolong the lifetime of
PCM and hide the long write latency of PCM [4]. Lee et al.
also suggested a PCM main memory architecture and
attempted to improve the write performance between the
last level cache and PCM memory [5]. They proposed two
policies, buffer reorganization and partial writes that track
data modifications and write only modified cache lines or
words to the PCM array. Lee et al. proposed the CLOCK-
DWF algorithm for the hybrid memory architecture consist-
ing of both DRAM and PCM [6]. They allocate read-inten-
sive pages to PCM and write-intensive pages to DRAM
based on memory reference characterization. Dhiman et al.
presented a hybrid PCM and DRAM memory architecture
and try to balance the write count of PCM by moving data
located at a PCM page to a DRAM page if the write count of
the PCM page becomes large [30]. Zhou et al. presented
DRAM cache partitioning and replacement algorithms for
PCM main memory [31]. Their algorithms aim to reduce the
cache miss ratio as well as write-backs from DRAM cache.
They also considered the balancing of PCM write queues in
the design of replacement algorithms.

There is another category of research that focused on
file system design for non-volatile memory. As the capac-
ity of these non-volatile memories was initially small, only
a limited portion of the entire file system image could be
placed in the non-volatile memory partitions. For example,
Pramfs is designed to store frequently accessed or impor-
tant data in non-volatile memory to support fast rebooting
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and resist crashes [32]. MRAMFS [33] and the NEB file sys-
tem [34] also maintain a certain part of the file system,
such as the metadata on non-volatile memory. They aim to
improve the space efficiency of non-volatile memory-
based storage. Specifically, MRAMFS saves space by com-
pressing metadata, while the NEB file system does this by
extent-based file management.

As the density of non-volatile memory gets improved,
recent studies have focused on the design of file systems
that retain the entire file system image on non-volatile mem-
ory. Baek et al. implemented a software layer to support
both file objects and memory objects together in the unified
memory system in which non-volatile memory serves as
both main memory and storage [35]. Condit et al. redesigned
a copy-on-write file system, called BPFS, for byte-address-
able storage [36]. BPFS performs in-place write, when the
updated data size is smaller than an atomic operation unit.
This can significantly reduce the out-of-place-update over-
head of copy-on-write. Wu and Reddy proposed a file sys-
tem for byte-addressable storage [37]. Assuming that byte-
addressable storage resides on the memory bus and can be
accessed directly from CPU, they proposed a file system
that accesses files through the same address space of virtual
memory systems. Lee et al. suggested a write-efficient jour-
naling file system that reduces writes for journaling in future
non-volatile memory based storage systems [38]. The pro-
posed file system handles incoming journaling operations
efficiently based on partial writability and random accessi-
bility of memory-based devices.

Ousterhout et al. proposed a RAMCloud architecture
that is a scalable in-memory data store system by aggregat-
ing the main memory of thousands of servers [40]. RAM-
Cloud logs only the modified part rather than the entire
object in backup servers to avoid data loss upon a crash of a
single server. This mechanism is conceptually similar to the
delta-write technique in our work, but we manage non-vol-
atile memory as a write cache thus unifying multiple
updates for the same data as a single caching item, whereas
RAMCloud just appends updates in memory. In addition,
RAMCloud does not consider the use of non-volatile mem-
ory, and thus its target system architecture is different to
that of our work.

6 CONCLUSION

Periodic flush operations from the buffer cache improve
the file system reliability but degrade the caching efficiency
greatly. This paper showed that the periodic flush opera-
tions account for 30-70 percent of total write traffic to
storage. To eliminate this inefficiency, we proposed, imple-
mented, and evaluated a new buffer cache architecture
that uses only a small amount of non-volatile memory
and stores modifications to the non-volatile buffer cache.
This buffer cache architecture removes almost all storage
accesses due to periodic flush operations without any loss
of reliability. It also improves the buffer cache performance
via space-efficient cache management such as delta-write
and fragment-grouping with only a small amount of non-
volatile memory. Our simulation and measurement results
have shown that the proposed scheme reduces the number
of write I/Os by 44.3 percent and also improves the

throughput by 23.6 percent on average for the specific
workloads we tested.
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